1
|
Asadi Z, Aghaz F, Rahimi Z, Arkan E, Vaisi-Raygani A. Do Linalool-Loaded Solid Lipid Nanoparticles Improve the Quality of Naval Medical Research Institute Mouse Sperm During Freezing/Thawing and Handling Processes? Biopreserv Biobank 2025. [PMID: 40260493 DOI: 10.1089/bio.2024.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025] Open
Abstract
Introduction: Handling, freezing, and thawing of sperm causes oxidative stress, compromising sperm quality. Nanotechnology offers platforms for the smart delivery of antioxidants during these processes. Objectives: A solid lipid nanoparticle (SLN) was used to deliver linalool, as an antioxidant supplementation to Naval Medical Research Institute mouse sperm during handling, freezing, and thawing. Methods: Linalool-loaded solid lipid nanoparticle (L-SLN) was made using the self-assembly method. After the assessment of physicochemical properties, the impact of L-SLN (10, 20, 30, and 50 µg/mL) on sperm motility, viability, sperm DNA fragmentation (SDF), nitric oxide (NO) production, and the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), was investigated after its addition to the handling, freezing, and thawing media. Results: L-SLN was successfully created with a size of 262 ± 9.5 and a zeta potential of -28.5 ± 7.12, with an extended-release over time. During handling and freezing, supplementing corresponding media with L-SLN resulted in increased sperm motility and viability, specifically at 30 µg/mL. The percentage of SDF also decreased in post-thawed sperm at 30 µg/mL. L-SLN also led to elevated post-thawed NO production at 20 µg/mL, as well as increased SOD activity at 20 and 30 µg/mL. It also enhanced CAT and GPx activity at 30 and 10 µg/mL respectively. In handling media, L-SLN at 10 µg/mL could enhance NO production, CAT, and SOD activity, and at 20 µg/mL also boosted NO production and GPx activity. Generally, there was no significant improvement in sperm parameters with the mutual concentration of L-SLN for thawing media. Conclusions: Treating sperm extender media with 20 and 30 µg/mL of L-SLN and handling media with 10 and 30 µg/mL of L-SLN could improve sperm parameters following these interventions. L-SLN is a new antioxidant for sperm handling and freezing media, which may be applicable in human reproductive efforts.
Collapse
Affiliation(s)
- Zahra Asadi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asad Vaisi-Raygani
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
3
|
Najafi N, Barangi S, Moosavi Z, Aghaee-Bakhtiari SH, Mehri S, Karimi G. Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway. Biol Trace Elem Res 2024; 202:3163-3179. [PMID: 37853305 DOI: 10.1007/s12011-023-03897-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Arsenic (As) exposure is known to cause several neurological disorders through various molecular mechanisms such as oxidative stress, apoptosis, and autophagy. In the current study, we assessed the effect of melatonin (Mel) on As-induced neurotoxicity. Thirty male Wistar rat were treated daily for 28 consecutive days. As (15 mg/kg, gavage) and Mel (10 and 20 mg/kg, i.p.) were administered to rats. Morris water maze test was done to evaluate learning and memory impairment in training days and probe trial. Oxidative stress markers including MDA and GSH levels, SOD activity, and HO-1 levels were measured. Besides, the levels of apoptosis (caspase 3, Bax/Bcl2 ratio) and autophagy markers (Sirt1, Beclin-1, and LC3 II/I ratio) as well as the expression of miR-144 and miR-34a in cortex tissue were determined. As exposure disturbed learning and memory in animals and Mel alleviated these effects. Also, Mel recovered cortex pathological damages and oxidative stress induced by As. Furthermore, As increased the levels of apoptosis and autophagy proteins in cortex, while Mel (20 mg/kg) decreased apoptosis and autophagy. Also, Mel increased the expression of miR-144 and miR-34a which inhibited by As. In conclusion, Mel administration attenuated As-induced neurotoxicity through anti-oxidative, anti-apoptotic, and anti-autophagy mechanisms, which may be recommended as a therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Nahid Najafi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Koriem KMM, El-Qady SWB. Linalool attenuates hypothalamus proteome disturbance facilitated by methamphetamine induced neurotoxicity in rats. Neurotoxicology 2023; 99:70-81. [PMID: 37729970 DOI: 10.1016/j.neuro.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND One of the most powerful stimulants of the central nervous system is methamphetamine (METH). Linalool has a neuroprotective effect against ischemia injury by reducing oxidative stress and apoptosis. The present study investigated whether linalool can reverse the hypothalamus neurotoxicity and proteome disturbance in METH-treated rats. BRIEF METHOD A total of 36 male albino rats were split into two equal groups (normal and METH-treated). Three equal subgroups of normal rats were created; Control, Linalool (25 mg/kg), and Linalool (50 mg/kg); Normal rats were given daily oral doses of 1 ml of distilled water, 25 mg/kg linalool, and 50 mg/kg of linalool, respectively. METH groups were divided into 3 equal subgroups; METH-treated rats, Linalool (25 mg/kg)+METH-treated, and Linalool (50 mg/kg)+METH-treated subgroups; METH-treated rats received daily and oral doses of 1 ml distilled water, 25 mg/kg linalool, and 50 mg/kg of linalool, respectively. RESULTS According to the data obtained, METH caused a decrease of the sucrose preference test, travel distance test, and center square entries test, superoxide dismutase, glutathione peroxidase, catalase, NADPH oxidase, interleukin-10 but a rise in the center square duration test, tail suspension test, and forced swimming test, malondialdehyde, conjugated dienes, oxidative index, serotonin, dopamine, norepinephrine, γ-aminobutyric acid, tumour necrosis factor-α, interleukin-1β, interleukin-6 levels. When compared to the control group, rats treated with METH had lower sodium/potassium ATPase activity and missing of prothrombin, fibrinogen, and ceruloplasmin protein bands in the hypothalamus. In METH-treated rats, daily and oral co-administration with linalool brought all these parameters back to values that were close to control. SIGNIFICANCE According to obtained data, linalool could protect the hypothalamus against METH-induced neurotoxicity and proteome disturbance probably by modifying oxidative stress, neurotransmitters, inflammation, sodium/potassium-ATPase activity, proteome disturbance, and tissue histology in METH-treated rats where higher dose of linalool was more efficient than lower dose.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Sara W B El-Qady
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Kaviani F, Razavi BM, Mohsenzadeh MS, Rameshrad M, Hosseinzadeh H. Thymoquinone attenuates olanzapine-induced metabolic disorders in rats. Mol Biol Rep 2023; 50:8925-8935. [PMID: 37707771 DOI: 10.1007/s11033-023-08726-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Olanzapine (OLZ) is an atypical antipsychotic agent for psychotic disorders. Evidence has shown that OLZ is related to metabolic side effects, including obesity, hypertension, and insulin resistance. Thymoquinone (TQ) is the principal bioactive component of Nigella sativa. Several studies have been conducted to investigate the effectiveness of TQ in alleviating metabolic abnormalities. In the current research work, the protective effects of TQ on metabolic disorders induced by OLZ and possible underlying mechanisms were investigated. METHODS AND RESULTS Wistar rats were exposed to TQ alone (10 mg/kg), OLZ (5 mg/kg), or OLZ plus TQ (2.5, 5, or 10 mg/kg) given daily by intraperitoneal injection. After the treatment, variations in body weight, food intake, systolic blood pressure, serum leptin, biochemical factors, liver malondialdehyde (MDA), and glutathione (GSH) content were evaluated. Protein expression of AMPK in the liver was also measured by a western blotting test. OLZ increased body weight, food intake, MDA levels, and blood pressure. OLZ also elevated glucose, triglyceride, low-density lipoprotein cholesterol, and leptin serum levels. It decreased GSH. In the western blot, decreased AMPK protein level was obtained. These changes were attenuated by TQ co-administration. CONCLUSIONS The present study demonstrates the effectiveness of TQ on OLZ-induced metabolic abnormalities related to its antioxidant activity and regulation of glucose homeostasis and lipid metabolism.
Collapse
Affiliation(s)
- Farima Kaviani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Sadat Mohsenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Food Control Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Nawaz S, Muhammad Irfan H, Akram M, Jahan S. Linalool: Monoterpene alcohol effectiveness in chronic synovitis through lowering Interleukin-17, spleen and thymus indices. Int Immunopharmacol 2023; 121:110517. [PMID: 37348232 DOI: 10.1016/j.intimp.2023.110517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Interleukin-17 has a positive role in the initial induction and late chronic phases of many inflammatory disorders like arthritis. This cytokine has a strong option for therapeutic targeting due to the fact that it was found in the inflamed joints of individual with rheumatoid arthritis (RA) and persuasive evidence from experimental arthritis models indicating its pro-inflammatory actions. IL-17 suppression lessened the asperity of arthritis. The present study aimed to assess the anti-arthritic potential of linalool in a model of chronic joint inflammation (CFA-mediated rheumatoid arthritis) in rats. Linalool markedly lowered spleen and thymus indices as opposed to arthritic control. The over-formation of IL-17, COX-2, TNF-α IL-1β, iNOS and IL-6 were markedly impaired in all linalool treated rats, but IL-10 was raised as compared to arthritic animals in Real time-PCR. There was reduction in associated parameters like paw volume, arthritic index, mobility score, and flexion pain score and a marked increase in stance score in CFA model as compared to the arthritic control group. Furthermore, there was improvement in body weight, hematological, tissue, and radiological parameters in the CFA-model. Molecular docking study exhibited strong binding interaction of linalool with IL-17, PGE-2, iNOS and COX-2, thus providing a good correlation among experimental and theoretical results. The current findings show that linalool reduces adjuvant arthritis by suppressing pro-inflammatory mediators, arthritic development, and spleen and thymus indices. Thus, linalool may be employed therapeutically to alleviate arthritis in humans.
Collapse
Affiliation(s)
- Shoaib Nawaz
- College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | | | - Muhammad Akram
- College of Pharmacy University of Sargodha, Sargodha, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore 54600, Pakistan
| |
Collapse
|
7
|
Yan F, Wang L, Zhao L, Wang C, Lu Q, Liu R. Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food Chem Toxicol 2023; 175:113696. [PMID: 36870671 DOI: 10.1016/j.fct.2023.113696] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/16/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Acrylamide (ACR) is a common pollutant formed during food thermal processing such as frying, baking and roasting. ACR and its metabolites can cause various negative effects on organisms. To date, there have been some reviews summarizing the formation, absorption, detection and prevention of ACR, but there is no systematic summary on the mechanism of ACR-induced toxicity. In the past five years, the molecular mechanism for ACR-induced toxicity has been further explored and the detoxification of ACR by phytochemicals has been partly achieved. This review summarizes the ACR level in foods and its metabolic pathways, as well as highlights the mechanisms underlying ACR-induced toxicity and ACR detoxification by phytochemicals. It appears that oxidative stress, inflammation, apoptosis, autophagy, biochemical metabolism and gut microbiota disturbance are involved in various ACR-induced toxicities. In addition, the effects and possible action mechanisms of phytochemicals, including polyphenols, quinones, alkaloids, terpenoids, as well as vitamins and their analogs on ACR-induced toxicities are also discussed. This review provides potential therapeutic targets and strategies for addressing various ACR-induced toxicities in the future.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
8
|
Hosseini A, Pourheidar E, Rajabian A, Asadpour E, Hosseinzadeh H, Sadeghnia HR. Linalool attenuated ischemic injury in PC12 cells through inhibition of caspase-3 and caspase-9 during apoptosis. Food Sci Nutr 2023; 11:249-260. [PMID: 36655091 PMCID: PMC9834854 DOI: 10.1002/fsn3.3057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 02/01/2023] Open
Abstract
Numerous studies have indicated the pharmacological properties of linalool, a volatile terpene alcohol found in many flowers and spice plants, including anti-nociceptive, anti-inflammatory, and neuroprotective activities. The aim of this study was to explore the mechanisms of neuroprotection provided by (±) linalool and its enantiomer, (R)-(-) linalool against oxygen, and glucose deprivation/reoxygenation (OGD/R) in PC12 cells. PC12 cells were treated with (±) linalool and (R)-(-) linalool before exposure to OGD/R condition. Cell viability, reactive oxygen species (ROS) production, malondialdehyde (MDA) level, DNA damage, and the levels of proteins related to apoptosis were evaluated using MTT, comet assay, and western blot analysis, respectively. IC50 values for the PC12 cells incubated with (±) linalool and (R)-(-) linalool were 2700 and 2600 μM after 14 h, as well as 5440 and 3040 μM after 18 h, respectively. Survival of the ischemic cells pre-incubated with (±) linalool and (R)-(-) linalool (100 μM of both) increased compared to the cells subjected to the OGD/R alone (p < .001). ROS and MDA formation were also decreased following incubation with (±) linalool and (R)-(-) linalool compared to the OGD/R group (p < .01). In the same way, pre-treatment with (±) linalool and (R)-(-) linalool significantly reduced OGD/R-induced DNA injury compared to that seen in OGD/R group (p < .001). (±) Linalool and (R)-(-) linalool also restored Bax/Bcl-2 ratio and cleaved caspase-3 and caspase-9 (p < .001, p < .01) following ischemic injury. The neuroprotective effect of linalool against ischemic insult might be mediated by alleviation of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Elham Pourheidar
- Department of Intensive Care UnitHazrat Rasul akram HospitalIran University of Medical SciencesTehranIran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Elham Asadpour
- Anesthesiology and Critical Care Research CenterShiraz University of Medical SciencesShirazIran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
9
|
Preparation and Characterization of a Novel Multiparticulate Dosage Form Carrying Budesonide-Loaded Chitosan Nanoparticles to Enhance the Efficiency of Pellets in the Colon. Pharmaceutics 2022; 15:pharmaceutics15010069. [PMID: 36678698 PMCID: PMC9865799 DOI: 10.3390/pharmaceutics15010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
An attempt was made to conquer the limitation of orally administered nanoparticles for the delivery of budesonide to the colon. The ionic gelation technique was used to load budesonide on chitosan nanoparticles. The nanoparticles were investigated in terms of size, zeta potential, encapsulation efficiency, shape and drug release. Then, nanoparticles were pelletized using the extrusion-spheronization method and were investigated for their size, mechanical properties, and drug release. Pellets were subsequently coated with a polymeric solution composed of two enteric (eudragit L and S) and time-dependent polymers (eudragit RS) for colon-specific delivery. All formulations were examined for their anti-inflammatory effect in rats with induced colitis and the relapse of the colitis after discontinuation of treatment was also followed. The size of nanoparticles ranged between 288 ± 7.5 and 566 ± 7.7 nm and zeta potential verified their positive charged surface. The drug release from nanoparticles showed an initial burst release followed by a continuous release. Pelletized nanoparticles showed proper mechanical properties and faster drug release in acidic pH compared with alkaline pH. It was interesting to note that pelletized budesonide nanoparticles released the drug throughout the GIT in a sustained fashion, and had long-lasting anti-inflammatory effects while rapid relapse was observed for those treated with conventional budesonide pellets. It seems that there is a synergistic effect of nanoformulation of budesonide and the encapsulation of pelletized nanoparticles in a proper coating system for colon delivery that could result in a significant and long-lasting anti-inflammatory effect.
Collapse
|
10
|
Ghasemi-Gojani E, Kovalchuk I, Kovalchuk O. Cannabinoids and terpenes for diabetes mellitus and its complications: from mechanisms to new therapies. Trends Endocrinol Metab 2022; 33:828-849. [PMID: 36280497 DOI: 10.1016/j.tem.2022.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/05/2022]
Abstract
The number of people diagnosed with diabetes mellitus and its complications is markedly increasing worldwide, leading to a worldwide epidemic across all age groups, from children to older adults. Diabetes is associated with premature aging. In recent years, it has been found that peripheral overactivation of the endocannabinoid system (ECS), and in particular cannabinoid receptor 1 (CB1R) signaling, plays a crucial role in the progression of insulin resistance, diabetes (especially type 2), and its aging-related comorbidities such as atherosclerosis, nephropathy, neuropathy, and retinopathy. Therefore, it is suggested that peripheral blockade of CB1R may ameliorate diabetes and diabetes-related comorbidities. The use of synthetic CB1R antagonists such as rimonabant has been prohibited because of their psychiatric side effects. In contrast, phytocannabinoids such as cannabidiol (CBD) and tetrahydrocannabivarin (THCV), produced by cannabis, exhibit antagonistic activity on CB1R signaling and do not show any adverse side effects such as psychoactive effects, depression, or anxiety, thereby serving as potential candidates for the treatment of diabetes and its complications. In addition to these phytocannabinoids, cannabis also produces a substantial number of other phytocannabinoids, terpenes, and flavonoids with therapeutic potential against insulin resistance, diabetes, and its complications. In this review, the pathogenesis of diabetes, its complications, and the potential to use cannabinoids, terpenes, and flavonoids for its treatment are discussed.
Collapse
Affiliation(s)
| | - Igor Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| | - Olga Kovalchuk
- University of Lethbridge, Lethbridge, AB T1K3M4, Canada.
| |
Collapse
|
11
|
Laws JS, Smid SD. Evaluating Cannabis sativa L.'s neuroprotection potential: From bench to bedside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154485. [PMID: 36209703 DOI: 10.1016/j.phymed.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid β. CONCLUSIONS These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.
Collapse
Affiliation(s)
- John Staton Laws
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
12
|
Aniba canelilla (Kunth) Mez (Lauraceae) Essential Oil: Effects on Oxidative Stress and Vascular Permeability. Antioxidants (Basel) 2022; 11:antiox11101903. [PMID: 36290626 PMCID: PMC9598933 DOI: 10.3390/antiox11101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to investigate the antioxidant activity of Aniba canelilla (kunth) Mez (Lauraceae) essential oil (AcEO), exploring its potential for prevention and/or treatment of oxidative stress and associated inflammatory process. With this aim, Wistar rats (n = 6/group) were pre-treated intraperitoneally with saline (0.9%) or AcEO (2 or 5 mg/kg) for 5 days. One hour after the last dose, inflammation and oxidative stress were induced by carrageenan (0.3 mg/kg; ip.) administration. Total antioxidant capacity, reduced glutathione (GSH) and lipid peroxidation levels, protein concentration, and leukocyte migration were evaluated in peritoneal fluid. Lipid peroxidation was also evaluated in plasma. Carrageenan strongly reduced the peritoneal antioxidant capacity and GSH concentration, increasing peritoneal and plasma lipid peroxidation. It also promoted increased plasma leakage and leukocyte migration. Treatment with AcEO (2 and 5 mg/kg), whose major constituent was 1-nitro-2-phenylethane (77.5%), increased the peritoneal antioxidant capacity and GSH concentrations, and reduced lipid peroxidation, both peritoneal and plasma, thus inhibiting the carrageenan-induced oxidative imbalance. AcEO also reduced the carrageenan-induced plasma leakage and leukocyte migration. These data demonstrate the AcEO antioxidant activity and its ability to modulate plasma leakage and leukocyte migration, confirming its potential for treating diseases associated with inflammation and oxidative stress.
Collapse
|
13
|
In-Depth Study of Thymus vulgaris Essential Oil: Towards Understanding the Antibacterial Target Mechanism and Toxicological and Pharmacological Aspects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3368883. [PMID: 35909468 PMCID: PMC9334058 DOI: 10.1155/2022/3368883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Questions have been raised apropos the emerging problem of microbial resistance, which may pose a great hazard to the human health. Among biosafe compounds are essential oils which captured consumer draw due to their multifunctional properties compared to chemical medication drugs. Here, we examined the chemical profile and the mechanism(s) of action of the Thymus vulgaris essential oil (TVEO) against a Gram-negative bacterium Salmonella enterica Typhimurium ATTCC 10028 (S. enterica Typhimurium ATTCC 10028) and two Gram-positive bacteria Staphyloccocus aureus ATCC 6538 (S. aureus ATCC 6538) and Listeria monocytogenes ATCC 19117 (L. monocytogenes ATCC 19117). Findings showed that TVEO was principally composed of thymol, o-cymene, and γ-terpinene with 47.44, 16.55, and 7.80%, respectively. Molecular docking simulations stipulated that thymol and β-sesquiphellandrene (a minor compound at 1.37%) could target multiple bacterial pathways including topoisomerase II and DNA and RNA polymerases of the three tested bacteria. This result pointed plausible impairments of the pathogenic bacteria cell replication and transcription processes. Through computational approach, the VEGA quantitative structure–activity relationship (QSAR) model, we revealed that among twenty-six TVEO compounds, sixteen had no toxic effects and could be safe for human consumption as compared to the Food and Drug Administration (FDA) approved drugs (ciprofloxacin and rifamycin SV). Assessed by the SwissADME server, the pharmacokinetic profile of all identified TVEO compounds define their absorption, distribution, metabolism, and excretion (ADME) properties and were assessed. In order to predict their biological activity spectrum based on their chemical structure, all TVEO compounds were subjected to PASS (Prediction of Activity Spectra for Substances) online tool. Results indicated that the tested compounds could have multiple biological activities and various enzymatic targets. Findings of our study support that identified compounds of TVEO can be a safe and effective alternative to synthetic drugs and can easily combats hazardous multidrug-resistant bacteria.
Collapse
|
14
|
dos Santos ÉRQ, Maia JGS, Fontes-Júnior EA, Maia CDSF. Linalool as a Therapeutic and Medicinal Tool in Depression Treatment: A Review. Curr Neuropharmacol 2022; 20:1073-1092. [PMID: 34544345 PMCID: PMC9886818 DOI: 10.2174/1570159x19666210920094504] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Depression is a prevalent disease worldwide, limiting psychosocial functioning and thequality of life. Linalool is the main constituent of some essential oils from aromatic plants, representing about 70% of these volatile concentrates. Evidence of the linalool activity on the central nervous system, mainly acting as an antidepressant agent, is increasingly abundant. This review aimed to extend the knowledge of linalool's antidepressant action mechanisms, which is fundamental for future research, intending to highlight this natural compound as a new antidepressant phytomedication. A critical analysis is proposed here with probable hypotheses of the synergic mechanisms that support the evidence of antidepressant effects of the linalool. The literature search has been conducted in databases for published scientific articles before December 2020, using relevant keywords. Several pieces of evidence point to the anticonvulsant, sedative, and anxiolytic actions. In addition to these activities, other studies have revealed that linalool acts on the monoaminergic and neuroendocrine systems, inflammatory process, oxidative stress, and neurotrophic factors, such as BDNF, resulting in considerable advances in the knowledge of the etiology of depression. In this context, linalool emerges as a promising bioactive compound in the therapeutic arsenal, capable of interacting with numerous pathophysiological factors and acting on several targets. This review claims to contribute to future studies, highlighting the gaps in the linalool knowledge, such as its kinetics, doses, routes of administration, and multiple targets of interaction, to clarify its antidepressant activity.
Collapse
Affiliation(s)
- Éverton Renan Quaresma dos Santos
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - José Guilherme S. Maia
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão, 65080-805 São Luís, MA, Brazil
| | - Enéas Andrade Fontes-Júnior
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil;
| | - Cristiane do Socorro Ferraz Maia
- Laboratório de Farmacologia da Inflamação e Comportamento, Faculdade de Farmácia, Instituto de Ciências da Saúde, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil; ,Address correspondence to this author at the Laboratório de Farmacologia da Inflamação e do Comportamento, Instituto de Ciências da Saúde, Universidade Federal do Pará, Rua Augusto Corrêa 1, Campus do Guamá, Belém-Pará 66075-900, Brazil; Tel: +55 (91) 3201-7202; E-mails: ;
| |
Collapse
|
15
|
Sobhani Z, Mohtashami L, Amiri MS, Ramezani M, Emami SA, Simal‐Gandara J. Ethnobotanical and phytochemical aspects of the edible herb
Coriandrum sativum
L. J Food Sci 2022; 87:1386-1422. [PMID: 35279837 PMCID: PMC9314633 DOI: 10.1111/1750-3841.16085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/11/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022]
Abstract
Coriandrum sativum (coriander) is an edible herb in the family Apiaceae. The leaves, fruits, and stems of C. sativum have long been used as culinary spice due to their favorable odor. Traditional practitioners used this plant for treating different diseases like blepharitis, scabies, aphthous stomatitis, laryngitis, headache, and palpitation. In modern researches, coriander has demonstrated anxiolytic, anticonvulsant, antimigraine, neuroprotective, analgesic, diuretic, hypoglycemic, hypolipidemic, hypotensive, anticancer, and antioxidant activities. Coriander contains a wide range of bioactive phytochemicals among which phenylpropenes, terpenoids, isocoumarins, phytosterols, and fatty acids are the most important. This review provides information about the botanical and ethnobotanical aspects, chemical profile, therapeutic uses in Islamic traditional medicine (ITM), and recent pharmacological studies of coriander effects. The results have shown that coriander and its monoterpenoid compound, linalool, can be considered as potential drug candidates for treating metabolic syndrome and different inflammatory conditions especially neural and CNS diseases.
Collapse
Affiliation(s)
- Zahra Sobhani
- Department of Traditional Pharmacy, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Leila Mohtashami
- Department of Pharmacognosy, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Mahin Ramezani
- Nanotechnology Research Center Mashhad University of Medical Sciences Mashhad Iran
- Pharmaceutical Research Center Mashhad University of Medical Sciences Mashhad Iran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology University of Vigo—Ourense Campus Ourense Spain
| |
Collapse
|
16
|
Tan MA, Sharma N, An SSA. Multi-Target Approach of Murraya koenigii Leaves in Treating Neurodegenerative Diseases. Pharmaceuticals (Basel) 2022; 15:188. [PMID: 35215300 PMCID: PMC8880493 DOI: 10.3390/ph15020188] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) mainly affect neurons and gradually lead to a loss of normal motor and cognitive functions. Atypical protein homeostasis-misfolding, aggregations and accumulations, oxidative stress, inflammation, and apoptosis-are common features in most NDs. To date, due to the complex etiology and pathogenesis of NDs, no defined treatment is available. There has been increasing interest in plant extracts as potential alternative medicines as the presence of various active components may exert synergistic and multi-pharmacological effects. Murraya koenigii (Rutaceae) is utilized in Ayurvedic medicine for various ailments. Pharmacological studies evidenced its potential antioxidant, anti-inflammatory, anticancer, hepatoprotective, immunomodulatory, antimicrobial, and neuroprotective activities, among others. In line with our interest in exploring natural agents for the treatment of neurodegenerative diseases, this review presents an overview of literature concerning the mechanisms of action and the safety profile of significant bioactive components present in M. koenigii leaves to support further investigations into their neuroprotective therapeutic potential.
Collapse
Affiliation(s)
- Mario A. Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujung-gu, Seongnam-si 461-701, Gyeonggi-do, Korea
| |
Collapse
|
17
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
18
|
Hosseini M, Boskabady MH, Khazdair MR. Neuroprotective effects of Coriandrum sativum and its constituent, linalool: A review. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:436-450. [PMID: 34745916 PMCID: PMC8554282 DOI: 10.22038/ajp.2021.55681.2786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Coriander (Coriandrum sativum L.) is an annual herb belonging to the Apiaceae (Umbellifera) family that is used as food additives traditionally. This plant is called "Geshniz" in Persian and is native to Mediterranean regions but it is currently cultivated in several countries. All parts of coriander are edible and have been traditionally used to treat different disorders, including digestive problems, flatulence, diarrhea, colic and other gastrointestinal diseases. MATERIALS AND METHODS The databases PubMed, Web of Science, Google Scholar and Scopus were considered. The search terms were "Coriandrum sativum" or "linalool" and "anti-anxiety", "sedative", "antioxidant effect", "anticonvulsant" and "neuroprotective effect". RESULTS Antioxidant, diuretic, cholesterol lowering, anxiolytic, sedative-hypnotic and anticonvulsant activities were reported for the seeds and leaves of the plant. Furthermore, linalool as the main component of coriander has different neuropharmacological effects, including anti-anxiety, sedative, anticonvulsant and anti-Alzheimer's disease activities. CONCLUSION Various neuropharmacological effects of C. sativum and its component which have antioxidant and anti-inflammatory effects, have been summarized in the current review article.
Collapse
Affiliation(s)
- Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
19
|
Reshmitha T, Nisha P. Lycopene mitigates acrylamide and glycidamide induced cellular toxicity via oxidative stress modulation in HepG2 cells. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Linalool Alleviates A β42-Induced Neurodegeneration via Suppressing ROS Production and Inflammation in Fly and Rat Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8887716. [PMID: 33777322 PMCID: PMC7972854 DOI: 10.1155/2021/8887716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/17/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Terpenes are vital metabolites found in various plants and animals and known to be beneficial in the treatment of various diseases. Previously, our group identified terpenes that increased the survival of Alzheimer's disease (AD) model flies expressing human amyloid β (Aβ) and identified linalool as a neuroprotective terpene against Aβ toxicity. Linalool is a monoterpene that is commonly present as a constituent in essential oils from aromatic plants and is known to have anti-inflammatory, anticancer, antihyperlipidemia, antibacterial, and neuroprotective properties. Although several studies have shown the beneficial effect of linalool in AD animal models, the mechanisms underlying the beneficial effect of linalool on AD are yet to be elucidated. In the present study, we showed that linalool intake increased the survival of the AD model flies during development in a dose-dependent manner, while the survival of wild-type flies was not affected even at high linalool concentrations. Linalool also decreases Aβ-induced apoptosis in eye discs as well as the larval brain. Moreover, linalool intake was found to reduce neurodegeneration in the brain of adult AD model flies. However, linalool did not affect the total amount of Aβ42 protein or Aβ42 aggregation. Rather, linalool decreased Aβ-induced ROS levels, oxidative stress, and inflammatory response in the brains of AD model flies. Furthermore, linalool attenuated the induction of oxidative stress and gliosis by Aβ1-42 treatment in the rat hippocampus. Taken together, our data suggest that linalool exerts its beneficial effects on AD by reducing Aβ42-induced oxidative stress and inflammatory reactions.
Collapse
|
21
|
Shahdadi Sardou H, Akhgari A, Mohammadpour AH, Kamali H, Jafarian AH, Afrasiabi Garekani H, Sadeghi F. Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int J Pharm 2021; 597:120347. [PMID: 33545282 DOI: 10.1016/j.ijpharm.2021.120347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
A tunable release of 5-aminosalicylic acid (5-ASA) could bring therapeutic benefits in the treatment of inflammatory bowel disease (IBD). A 32 factorial design was used to achieve a tuned delivery of 5-ASA pellets in the small and large intestine using a coating composed of inulin/Eudragit RS (RS). The ratio of inulin/RS and coating level were independent variables while the dependent variables were the percent of drug release at pH 1.2 in 2 h and total release of drug in 10 h at pH 6.8. 5-ASA release from pellets was examined at different pH levels and the therapeutic efficacy of the optimum pellets was compared to 5-ASA pellets of Pentasa in rats with ulcerative colitis. The inulin/RS of 18/82 at a coating level of 16% was found to be the optimum for delivery of the drug to the small and large intestine. The coated pellets offered a superior therapeutic outcome compared to uncoated pellets and Pentasa in terms of colitis activity index (CAI), and the colon's tissue enzymes of GSH and MDA. The optimum coating composed of inulin and RS could offer a tuned sustained release of 5-ASA throughout the small and large intestine with the sensitivity of drug release to microbial degradation.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Zheng Y, Yang C, Zheng X, Guan Q, Yu S. Acrylamide treatment alters the level of Ca 2+ and Ca 2+-related protein kinase in spinal cords of rats. Toxicol Ind Health 2021; 37:113-123. [PMID: 33487136 DOI: 10.1177/0748233720971879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study aimed to analyze the neurological changes induced by acrylamide (ACR) poisoning and their underlying mechanisms within the spinal cords of male adult Wistar rats. The rats were randomly divided into three groups (n = 9 rats per group). ACR was intraperitoneally injected to produce axonopathy according to the daily dosing schedules of 20 or 40 mg/kg/day of ACR for eight continuous weeks (three times per week). During the exposure period, body weights and gait scores were assessed, and the concentration of Ca2+ was calculated in 27 mice. Protein kinase A (PKA), protein kinase C (PKC), cyclin-dependent protein kinase 5 (CDK5), and P35 were assessed by electrophoretic resolution and Western blotting. The contents of 3'-cyclic adenosine monophosphate (cAMP) and calmodulin (CaM) were determined using ELISA kits, and the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and PKC were determined using the commercial Signa TECTPKAassay kits. Compared with control rats, treatment with 20 and 40 mg/kg of ACR decreased body weight and increased gait scores at 8 weeks. Intracellular Ca2+ levels increased significantly in treated rats; CaM, PKC, CDK5, and P35 levels were significantly decreased; and PKA and cAMP levels remained unchanged. CaMKII, PKA, and PKC activities increased significantly. The results indicated that ACR can damage neurofilaments by affecting the contents and activities of CaM, CaMKII, PKA, cAMP, PKC, CDK5, and P35, which could result in ACR toxic neuropathy.
Collapse
Affiliation(s)
- Yunhe Zheng
- Gansu Provincial Center for Disease Control and Prevention, West Lanzhou, Gansu, People's Republic of China
| | - Chen Yang
- Gansu Provincial Center for Disease Control and Prevention, West Lanzhou, Gansu, People's Republic of China
| | - Xiu'e Zheng
- Shandong food and Drug Administration, SDFDA, Jinan, People's Republic of China
| | - Qiangdong Guan
- School of Public Health, Nanjing Medical University, Jiangning District, Nanjing, People's Republic of China
| | - Sufang Yu
- School of Public Health, 12589Shandong University, Jinan, People's Republic of China
| |
Collapse
|
23
|
Oskouei Z, Mehri S, Kalalinia F, Hosseinzadeh H. Evaluation of the effect of thymoquinone in d-galactose-induced memory impairments in rats: Role of MAPK, oxidative stress, and neuroinflammation pathways and telomere length. Phytother Res 2020; 35:2252-2266. [PMID: 33325602 DOI: 10.1002/ptr.6982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/08/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
D-galactose (d-gal) induces aging and memory impairment via oxidative stress and neuroinflammation pathways. This study evaluated the neuroprotective activity of thymoquinone (TQ) against d-gal. d-gal (400 mg/kg, SC), d-gal plus TQ (2.5, 5, 10 mg/kg, i.p.), and TQ alone (2.5 and 10 mg/kg) for 8 weeks were administered to rats. The effect of TQ on learning and memory were studied using the Morris water maze test. Malondialdehyde (MDA) and glutathione (GSH) levels were determined in the hippocampus. The levels of MAPKs (p-ERK/ERK, p-P38/P38), cAMP response elements binding (p-CREB/CREB), advanced glycation end products (AGEs), inflammatory markers (TNFα, IL-1β), glial fibrillary acidic protein (GFAP), and brain-derived neurotrophic factor (BDNF) were analyzed by western blotting. Telomere length was evaluated using real-time PCR. Memory and learning impairment, MDA enhancement, GSH reduction, and neuroinflammation via increasing the TNFα, IL-1β, and GFAP contents were observed in d-gal group. TQ with d-gal, improved memory impairment, reduced oxidative stress, and alleviated neuroinflammation. The elevated level of AGEs decreased by TQ compared to d-gal. No changes were observed in the levels of p-ERK/ERK, p-CREB/CREB, p-P38/P38, BDNF, and telomere length following administration of d-gal or TQ plus d-gal. TQ improved memory deficits of d-gal through anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Zahra Oskouei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Ghasemzadeh Rahbardar M, Hemadeh B, Razavi BM, Eisvand F, Hosseinzadeh H. Effect of carnosic acid on acrylamide induced neurotoxicity: in vivo and in vitro experiments. Drug Chem Toxicol 2020; 45:1528-1535. [DOI: 10.1080/01480545.2020.1845715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Batool Hemadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Zaccai M, Yarmolinsky L, Khalfin B, Budovsky A, Gorelick J, Dahan A, Ben-Shabat S. Medicinal Properties of Lilium candidum L. and Its Phytochemicals. PLANTS 2020; 9:plants9080959. [PMID: 32751398 PMCID: PMC7465089 DOI: 10.3390/plants9080959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/07/2023]
Abstract
Lilium candidum L., known as Madonna, meadow, or white lily, is a bulbous plant from the Liliaceae family, originating in the Middle East. L. candidum has been abundantly used in folk medicine since ancient times to relieve a variety of ailments, including age-related diseases, burns, ulcers, and coughs. The aim of this article is to investigate the anti-inflammatory and anti-diabetic activities of L. candidum extracts and its active phytochemicals. Some active volatile phytochemicals were identified using gas chromatography–mass spectrometry (GC-MS) analysis. Significant (p < 0.001) anti-diabetic properties of the extracts kaempferol, linalool, citronellal, and humulene were demonstrated by an elevation in glucose uptake by adipocytes. The significant (p < 0.01) effect of the plant extracts kaempferol, citronellal, and humulene on the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8) was demonstrated using enzyme-linked immunosorbent assay. Altogether, L. candidum and its rich collection of phytochemicals hold promising medicinal potential, and further investigations of its therapeutic prospects are encouraged.
Collapse
Affiliation(s)
- Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | | | - Boris Khalfin
- Eastern R&D Center, Kiryat Arba 9010000, Israel; (L.Y.); (B.K.); (J.G.)
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Arie Budovsky
- Research & Development Authority, Barzilai University Medical Center, Ashkelon 7830604, Israel;
| | - Jonathan Gorelick
- Eastern R&D Center, Kiryat Arba 9010000, Israel; (L.Y.); (B.K.); (J.G.)
| | - Arik Dahan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Shimon Ben-Shabat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Correspondence: ; Tel.: +972-54-599-1056
| |
Collapse
|
26
|
Levenberg K, Edris W, Levine M, George DR. Considering a Potential Role of Linalool as a Mood Stabilizer for Bipolar Disorder. Curr Pharm Des 2020; 26:5128-5133. [PMID: 32713332 DOI: 10.2174/1381612826666200724160742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022]
Abstract
Epidemiologic studies suggest that the lifetime prevalence of bipolar spectrum disorders ranges from 2.8 to 6.5 percent of the population. To decrease morbidity and mortality associated with disease progression, pharmacologic intervention is indicated for the majority of these patients. While a number of effective treatment regimens exist, many conventional medications have significant side effect profiles that adversely impact patients' short and long-term well-being. It is thus important to continue advancing and improving therapeutic options available to patients. This paper reviews the limitations of current treatments and examines the chemical compound Linalool, an alcohol found in many plant species, that may serve as an effective mood stabilizer. While relatively little is known about Linalool and bipolar disorder, the compound has been shown to have antiepileptic, anti-inflammatory, anxiolytic, anti-depressive, and neurotrophic effects, with mechanisms that are comparable to current bipolar disorder treatment options.
Collapse
Affiliation(s)
- Kate Levenberg
- College of Medicine, Penn State University College of Medicine, State College, Hershey, United States
| | - Wade Edris
- Department of Medicine, Penn State University College of Medicine, State College, Hershey, United States
| | - Martha Levine
- Department of Pediatrics, Penn State University College of Medicine, Hershey, United States
| | - Daniel R George
- Department of Pediatrics, Penn State University College of Medicine, Hershey, United States
| |
Collapse
|
27
|
de Araujo Andrade T, dos Passos Menezes P, de Carvalho YMBG, dos Santos Lima B, de Souza EPBSS, de Souza Araujo AA, Melo MAO, Quintans-Júnior LJ, de Souza Siqueira Quintans J, Guterres SS, Pohlmann AR, Shanmugam S, Frank LA, Serafini MR. (-)-linalool-Loaded Polymeric Nanocapsules Are a Potential Candidate to Fibromyalgia Treatment. AAPS PharmSciTech 2020; 21:184. [PMID: 32632735 DOI: 10.1208/s12249-020-01719-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022] Open
Abstract
Fibromyalgia (FM) is a chronic disease that has as main characteristic generalized musculoskeletal pain, which can cause physical and emotional problems to patients. However, pharmacological therapies show side effects that hamper the adhesion to treatment. Given this, (-)-linalool (LIN), a monoterpene with several therapeutic properties already reported in scientific literature as anti-depressive, antinociceptive, anti-inflammatory, and antihyperalgesic also demonstrated therapeutic potential in the treatment of FM. Nevertheless, physicochemical limitations as high volatilization and poor water-solubility make its use difficult. In this perspective, this present research had performed the incorporation of LIN into polymeric nanocapsules (LIN-NC). Size, morphology, encapsulation efficiency, cytotoxicity, and drug release were performed. The antihyperalgesic effect of LIN-NC was evaluated by a chronic non-inflammatory muscle pain model. The results demonstrated that the polymeric nanocapsules showed particle size of 199.1 ± 0.7 nm with a PDI measurement of 0.13 ± 0.01. The drug content and encapsulation efficiency were 13.78 ± 0.05 mg/mL and 80.98 ± 0.003%, respectively. The formulation did not show cytotoxicity on J774 macrophages. The oral treatment with LIN-NC and free-LIN increased the mechanical withdrawal threshold on all days of treatment in comparison with the control group. In conclusion, LIN-NC is a promising proposal in the development of phytotherapy-based nanoformulations for future clinical applications.
Collapse
|
28
|
Foroutanfar A, Mehri S, Kamyar M, Tandisehpanah Z, Hosseinzadeh H. Protective effect of punicalagin, the main polyphenol compound of pomegranate, against acrylamide‐induced neurotoxicity and hepatotoxicity in rats. Phytother Res 2020; 34:3262-3272. [DOI: 10.1002/ptr.6774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Amir Foroutanfar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | - Marzyeh Kamyar
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute Mashhad University of Medical Sciences Mashhad Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
29
|
Barangi S, Mehri S, Moosavi Z, Hayesd AW, Reiter RJ, Cardinali DP, Karimi G. Melatonin inhibits Benzo(a)pyrene-Induced apoptosis through activation of the Mir-34a/Sirt1/autophagy pathway in mouse liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110556. [PMID: 32247962 DOI: 10.1016/j.ecoenv.2020.110556] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Benzo(a)pyrene (BaP), an important environmental pollutant, is produced as the result of incomplete combustion of organic materials in many industries and food cooking process. It has been purposed that BaP induces hepatotoxicity through oxidative stress and apoptosis. Several studies have shown that melatonin can protect against chemical-induced apoptosis through autophagy pathway. In this study, we assessed the modulating effect of melatonin, a well-known antioxidant, on BaP-induced hepatotoxicity through induction of autophagy. Thirty male mice were treated daily for 28 consecutive days. BaP (75 mg/kg; oral gavage) and melatonin (10 and 20 mg/kg, i.p.) were administered to mice. The liver histopathology and the levels of apoptosis and autophagy proteins as well as the expression of miR-34a were determined. The BaP exposure induced severe liver histological injury and markedly enhanced AST, ALT and MDA level. Also, apoptosis proteins and hepatic miR-34a expression increased. However, the level of Sirt1 and autophagy markers such as LC3 II/I ratio and Beclin-1 reduced. The co-administration of melatonin reversed all changes caused by BaP. In summary, melatonin appears to be effective in BaP-induced hepatotoxicity maybe through the miR-34a/Sirt1/autophagy molecular pathway.
Collapse
Affiliation(s)
- Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - A Wallace Hayesd
- University of South Florida, Tampa, FL, USA; Michigan State University, East Lansing, MI, USA
| | - Russel J Reiter
- University of Texas, Health Science Center at San Antonio, Department of Cellular and Structural Biology, USA
| | - Daniel P Cardinali
- Faculty of Medical Sciences, Pontificia Universidad Católica Argentina, Aires, Argentina
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
de Lucena JD, Gadelha-Filho CVJ, da Costa RO, de Araújo DP, Lima FAV, Neves KRT, de Barros Viana GS. L-linalool exerts a neuroprotective action on hemiparkinsonian rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1077-1088. [DOI: 10.1007/s00210-019-01793-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
|
31
|
da Fonsêca DV, da Silva Maia Bezerra Filho C, Lima TC, de Almeida RN, de Sousa DP. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules 2019; 9:E835. [PMID: 31817682 PMCID: PMC6995584 DOI: 10.3390/biom9120835] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a most disabling neurological disorder affecting all age groups. Among the various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury produced by an excessive formation of free radicals may play a role in the development of this pathology. Therefore, new treatment approaches are needed to address resistant conditions that do not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant activities of essential oils and their chemical constituents. Data from studies published from January 2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of 19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising botanical families due to the largest number of reports about plant species from these families that produce anticonvulsant essential oils. Among the evaluated compounds, β-caryophyllene, borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to anticonvulsant action. These data show the potential of these natural products as health promoting agents and use against various types of seizure disorders. Their properties on oxidative stress may contribute to the control of this neurological condition. However, further studies on the toxicological profile and mechanism of action of essential oils are needed.
Collapse
Affiliation(s)
- Diogo Vilar da Fonsêca
- College of Medicine, Federal University of the Vale do São Francisco, Paulo Afonso, BA, CEP 48607-190, Brazil;
| | | | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, CEP 49100-000, Brazil;
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| |
Collapse
|
32
|
Role of Oxidative Stress, MAPKinase and Apoptosis Pathways in the Protective Effects of Thymoquinone Against Acrylamide-Induced Central Nervous System Toxicity in Rat. Neurochem Res 2019; 45:254-267. [PMID: 31728856 DOI: 10.1007/s11064-019-02908-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 12/24/2022]
Abstract
The present study evaluated biochemical endpoints characterizing acrylamide (ACR) neurotoxicity in the cortex of rats, following the possible neuroprotective activity of thymoquinone (TQ), an active constituent of Nigella sativa. ACR (50 mg/kg, intraperitoneal [i.p.]) concurrently with TQ (2.5, 5 and 10 mg/kg, i.p.) for 11 days were administered to rats. As positive control, vitamin E was used. After 11 days of injections, narrow beam test (NBT) was performed. The levels of reduced glutathione (GSH) and malondialdehyde (MDA) were measured and Western blotting was done for mitogen-activated protein kinases (MAPKinases) and apoptosis pathways proteins in the rats' cortex. Additionally, Evans blue assay was done to evaluate the integrity of blood brain barrier (BBB). Administration of ACR significantly induced gait abnormalities. A significant decrease and increase in the levels of GSH and MDA was observed in the cortex of ACR-treated rats, respectively. The elevation in the levels of caspases 3 and 9, glial fibrillary acidic protein (GFAP) content, and Bax/Bcl-2, P-P38/P38 and P-JNK/JNK ratios accompanied by reduction in myelin basic protein (MBP) content and P-ERK/ERK ratio were noticed in the ACR group. TQ (5 mg/kg) improved gait abnormalities, and restored these changes. ACR affected the integrity of BBB while TQ was able to maintain the integrity of this barrier. TQ reversed the alterations in the protein contents of MAP kinase and apoptosis signaling pathways as well as MBP and GFAP contents, induced by ACR. It protected against ACR-mediated neurotoxicity, partly through its antioxidant and antiapoptotic properties.
Collapse
|
33
|
Low Molecular Weight Chitosan (∼20 kDa) protects acrylamide induced oxidative stress in D. melanogaster by restoring dopamine and KIF5B levels. Carbohydr Polym 2019; 222:115005. [DOI: 10.1016/j.carbpol.2019.115005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
|
34
|
Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed Pharmacother 2019; 118:109295. [DOI: 10.1016/j.biopha.2019.109295] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/17/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
|
35
|
Barrera-Sandoval AM, Osorio E, Cardona-Gómez GP. Microglial-targeting induced by intranasal linalool during neurological protection postischemia. Eur J Pharmacol 2019; 857:172420. [DOI: 10.1016/j.ejphar.2019.172420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
|
36
|
Oner Z, Altınoz E, Elbe H, Ekinci N. The protective and therapeutic effects of linalool against doxorubicin-induced cardiotoxicity in Wistar albino rats. Hum Exp Toxicol 2019; 38:803-813. [DOI: 10.1177/0960327119842634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to determine the protective and therapeutic effects of linalool (LIN) against doxorubicin (DOX)-induced cardiotoxicity in rats histologically and biochemically. In experiments, 64 male Wistar albino rats were randomly divided into eight groups ( n = 8). These groups were control (C) (0.9% saline solution), DOX (20 mg/kg DOX), LIN50 (50 mg/kg LIN), LIN100 (100 mg/kg LIN), DOX + LIN50 (20 mg/kg DOX and 50 mg/kg LIN), DOX + LIN100 (20 mg/kg DOX and 100 mg/kg LIN), LIN50 + DOX (50 mg/kg LIN and 20 mg/kg DOX), and LIN100 + DOX (100 mg/kg LIN and 20 mg/kg DOX). It was determined that necrosis and extensive inflammatory cell infiltration were observed in the DOX group. It was determined that histopathological changes significantly decreased in groups treated with LIN after DOX administration. While the caspase-3 immunostaining was highly evident in DOX group apoptotic cells ( p < 0.001, for all), the intensity of caspase-3 immunostaining in the treatment groups decreased ( p < 0.05). While DOX administration resulted in a significant increase in malondialdehyde (MDA) levels and plasma Creatine kinase (CK) and lactate dehydrogenase (LDH) levels in cardiac tissue when compared to the C groups, it was observed that DOX + LIN administration led to a significant decrease in MDA, plasma CK and LDH levels and a significant increase in glutathione (GSH), superoxide dismutase, and catalase enzyme levels. Finally, it was concluded that DOX led to heavy cardiotoxicity and DOX + LIN administration could remove cardiomyopathy symptoms.
Collapse
Affiliation(s)
- Z Oner
- Department of Anatomy, Faculty of Medicine, Karabük University, Karabük, Turkey
| | - E Altınoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabük University, Karabük, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - N Ekinci
- Department of Anatomy, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
37
|
Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H. Neuroprotective Effects of Thymoquinone in Acrylamide-Induced Peripheral Nervous System Toxicity Through MAPKinase and Apoptosis Pathways in Rat. Neurochem Res 2019; 44:1101-1112. [PMID: 30725239 DOI: 10.1007/s11064-019-02741-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
Acrylamide (ACR) is extensively used in industrial areas and has been demonstrated to induce neurotoxicity via oxidative stress and apoptosis. In this study, we assessed the probable protective effects of thymoquinone (TQ), an active constituent of Nigella sativa, against ACR-induced neurotoxicity. ACR (50 mg/kg, i.p., for 11 days) and TQ (2.5, 5 and 10 mg/kg, i.p., for 11 days) were administered to rats. On 12th day, gait score was examined and rats were sacrificed. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were determined in sciatic nerve. Furthermore, western blotting was conducted. The exposure of rats to ACR caused severe gait disabilities. The MDA and GSH contents were increased and decreased, respectively. ACR decreased P-ERK/ERK ratio and myelin basic protein (MBP) content, but significantly increased P-JNK/JNK, P-P38/P38, Bax/Bcl-2 ratios and caspase 3 and 9 levels. Concurrently administration of TQ (5 and 10 mg/kg) with ACR, prevented gait abnormalities and meaningfully reduced MDA and elevated the GSH contents. Furthermore, TQ (5 mg/kg) elevated the P-ERK/ERK ratio and MBP content while reduced the P-JNK/JNK, P-P38/P38 ratios and apoptotic markers. MAP kinase and apoptosis signaling pathways were involved in ACR-induced neurotoxicity in rat sciatic nerve and TQ significantly reduced ACR neurotoxicity. TQ afforded neuroprotection, in part, due to its anti-oxidative stress and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Sabogal-Guáqueta AM, Posada-Duque R, Cortes NC, Arias-Londoño JD, Cardona-Gómez GP. Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: Attenuation by Linalool. Neuropharmacology 2018; 135:555-571. [PMID: 29680773 DOI: 10.1016/j.neuropharm.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Phospholipid alterations in the brain are associated with progressive neurodegeneration and cognitive impairment after acute and chronic injuries. Various types of treatments have been evaluated for their abilities to block the progression of the impairment, but effective treatments targeting long-term post-stroke alterations are not available. In this study, we analyzed changes in the central and peripheral phospholipid profiles in ischemic rats and determined whether a protective monoterpene, Linalool, could modify them. We used an in vitro model of glutamate (125 μM) excitotoxicity and an in vivo global ischemia model in Wistar rats. Linalool (0.1 μM) protected neurons and astrocytes by reducing LDH release and restoring ATP levels. Linalool was administered orally at a dose of 25 mg/kg every 24 h for a month, behavioral tests were performed, and a lipidomic analysis was conducted using mass spectrometry. Animals treated with Linalool displayed faster neurological recovery than untreated ischemic animals, accompanied by better motor and cognitive performances. These results were confirmed by the significant reduction in astrogliosis, microgliosis and COX-2 marker, involving a decrease of 24:0 free fatty acid in the hippocampus. The altered profiles of phospholipids composed of mono and polyunsaturated fatty acids (PC 36:1; 42:1 (24:0/18:1)/LPC 22:6)/LPE 22:6) in the ischemic hippocampus and the upregulation of PI 36:2 and other LCFA (long chain fatty acids) in the serum of ischemic rats were prevented by the monoterpene. Based on these data, alterations in the central and peripheral phospholipid profiles after long-term was attenuated by oral Linalool, promoting a phospholipid homeostasis, related to the recovery of brain function.
Collapse
Affiliation(s)
- Angélica Maria Sabogal-Guáqueta
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia; Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Natalie Charlotte Cortes
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquía, Medellín, Colombia
| | | | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
39
|
Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018; 99:411-421. [DOI: 10.1016/j.biopha.2018.01.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
|
40
|
Khazdair MR, Ghorani V, Alavinezhad A, Boskabady MH. Pharmacological effects of Zataria multiflora
Boiss L. and its constituents focus on their anti-inflammatory, antioxidant, and immunomodulatory effects. Fundam Clin Pharmacol 2018; 32:26-50. [DOI: 10.1111/fcp.12331] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/26/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Reza Khazdair
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Vahideh Ghorani
- Department of Physiology; School of Medicine; Pharmaceutical Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Azam Alavinezhad
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology; School of Medicine; Neurogenic Inflammation Research Centre; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
41
|
Dorri M, Hashemitabar S, Hosseinzadeh H. Cinnamon (Cinnamomum zeylanicum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 2018; 41:338-351. [DOI: 10.1080/01480545.2017.1417995] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mahyar Dorri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Hashemitabar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res Int 2017; 105:305-323. [PMID: 29433220 DOI: 10.1016/j.foodres.2017.11.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 01/03/2023]
Abstract
Coriandrum sativum (C. sativum) or coriander is one of the most popularly used spices in culinary worldwide, and its medicinal values has been recognized since ancient time. C. sativum contains bioactive phytochemicals that are accounted for a wide range of biological activities including antioxidant, anticancer, neuroprotective, anxiolytic, anticonvulsant, analgesic, migraine-relieving, hypolipidemic, hypoglycemic, hypotensive, antimicrobial, and antiinflammatory activities. The major compound, linalool, abundantly found in seeds is remarked for its abilities to modulate many key pathogenesis pathways of diseases. Apart from the modulating effects, the potent antioxidant property of the C. sativum provides a key mechanism behind its protective effects against neurodegenerative diseases, cancer, and metabolic syndrome. This review shed light on comprehensive aspects regarding the therapeutic values of the C. sativum, which indicate its significance of being a promising functional food for promoting the well-being in the era of aging and lifestyle-related diseases.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Chemical Biology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education (CHE), Ministry of Education, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
43
|
Gedik S, Erdemli ME, Gul M, Yigitcan B, Gozukara Bag H, Aksungur Z, Altinoz E. Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats. Biomed Pharmacother 2017; 95:764-770. [DOI: 10.1016/j.biopha.2017.08.139] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022] Open
|
44
|
Esmaeelpanah E, Razavi BM, Vahdati Hasani F, Hosseinzadeh H. Evaluation of epigallocatechin gallate and epicatechin gallate effects on acrylamide-induced neurotoxicity in rats and cytotoxicity in PC 12 cells. Drug Chem Toxicol 2017; 41:441-448. [DOI: 10.1080/01480545.2017.1381108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Elahe Esmaeelpanah
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Rakotosaona R, Randrianarivo E, Rasoanaivo P, Nicoletti M, Benelli G, Maggi F. Effect of the Leaf Essential Oil from Cinnamosma madagascariensis Danguy on Pentylenetetrazol-induced Seizure in Rats. Chem Biodivers 2017; 14. [PMID: 28657174 DOI: 10.1002/cbdv.201700256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 11/12/2022]
Abstract
In the Malagasy traditional practices, the smoke from burning leaves of Cinnamosma madagascariensis Danguy is inhaled to treat brain disorders such as dementia, epilepsy, and headache. In the present work, we have evaluated the in vivo anticonvulsant effects of the essential oil from leaves of C. madagascariensis (CMEO). CMEO was isolated by steam distillation. The anticonvulsant activity of CMEO (0.4 and 0.8 ml/kg bw) administered subcutaneously was evaluated on pentylenetetrazol (PTZ)-induced seizures in Wistar rats; diazepam was used as positive control. Linalool, limonene, and myrcene were the major CMEO constituents. At the dose of 0.8 ml/kg, CMEO completely arrested the PTZ-induced convulsions with moderate sedative effects. The traditional anticonvulsant use of C. madagascariensis was confirmed allowing us to candidate molecules from CMEO as potential drugs to treat convulsions associated with strong agitation.
Collapse
Affiliation(s)
- Rianasoambolanoro Rakotosaona
- Malagasy Institute of Applied Research, Rakoto Ratsimamanga Foundation, Avarabohitra Itaosy, Lot AVB 77, Antananarivo, Madagascar
| | - Emmanuel Randrianarivo
- Malagasy Institute of Applied Research, Rakoto Ratsimamanga Foundation, Avarabohitra Itaosy, Lot AVB 77, Antananarivo, Madagascar
| | - Philippe Rasoanaivo
- Malagasy Institute of Applied Research, Rakoto Ratsimamanga Foundation, Avarabohitra Itaosy, Lot AVB 77, Antananarivo, Madagascar
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University, Piazzale Aldo moro 5, 00185, Rome, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
46
|
Zhao M, Wang P, Li D, Shang J, Hu X, Chen F. Protection against neo-formed contaminants (NFCs)-induced toxicity by phytochemicals. Food Chem Toxicol 2017; 108:392-406. [DOI: 10.1016/j.fct.2017.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 01/18/2023]
|
47
|
Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces 2017; 154:123-132. [DOI: 10.1016/j.colsurfb.2017.03.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 01/21/2023]
|
48
|
Zhao M, Lewis Wang FS, Hu X, Chen F, Chan HM. Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways. Food Chem Toxicol 2017; 106:25-35. [PMID: 28526328 DOI: 10.1016/j.fct.2017.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/21/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
Acrylamide (AA) is a common food contaminant formed during food heat processing that has neurotoxic effects. We hypothesize that AA induces oxidative stress in astrocytes and microglia, leading to neurotoxicity. Oxidative status, translocation of Nrf2 and NF-κB, and related down-stream targets were measured in primary astrocytes and microglia obtained from BALB/c mice. The results showed that AA increased reactive oxygen species (ROS) formation and reduced glutathione levels, causing successive events associated with oxidative stress, including 4-hydroxynonenal and 8-hydroxy-2-deoxyguanosine adduct formation, in both cell types. Both Nrf2 and NF-κB pathways were activated, but Nrf2 and its downstream antioxidative genes acted at earlier stages in both cell types before NF-κB activation. After NF-κB activation, related cytokines, including IL-6, TNF-α, G-CSF, and IL-1β, were released and cell viability decreased. Greater ROS generation, faster glutathione reduction, and increased oxidative adduct formation were observed in microglia compared with astrocytes. Moreover, Nrf2/NF-κB and its downstream genes were up-regulated much faster and to greater degrees in microglia than astrocytes. These results clarify the roles of the Nrf2 and NF-κB pathways in AA-induced neurotoxicity. These cellular responses may provide new insights for the development of adverse outcome pathway approaches for risk assessments of AA.
Collapse
Affiliation(s)
- Mengyao Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Fu Sheng Lewis Wang
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture; Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
49
|
The Protective Effect of Lavender Essential Oil and Its Main Component Linalool against the Cognitive Deficits Induced by D-Galactose and Aluminum Trichloride in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7426538. [PMID: 28529531 PMCID: PMC5424179 DOI: 10.1155/2017/7426538] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022]
Abstract
Lavender essential oil (LO) is a traditional medicine used for the treatment of Alzheimer's disease (AD). It was extracted from Lavandula angustifolia Mill. This study was designed to investigate the effects of lavender essential oil (LO) and its active component, linalool (LI), against cognitive impairment induced by D-galactose (D-gal) and AlCl3 in mice and to explore the related mechanisms. Our results revealed that LO (100 mg/kg) or LI (100 mg/kg) significantly protected the cognitive impairments as assessed by the Morris water maze test and step-though test. The mechanisms study demonstrated that LO and LI significantly protected the decreased activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), and protected the increased activity of acetylcholinesterase (AChE) and content of malondialdehyde (MDA). Besides, they protected the suppressed nuclear factor-erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression significantly. Moreover, the decreased expression of synapse plasticity-related proteins, calcium-calmodulin-dependent protein kinase II (CaMKII), p-CaMKII, brain-derived neurotrophic factor (BDNF), and TrkB in the hippocampus were increased with drug treatment. In conclusion, LO and its active component LI have protected the oxidative stress, activity of cholinergic function and expression of proteins of Nrf2/HO-1 pathway, and synaptic plasticity. It suggest that LO, especially LI, could be a potential agent for improving cognitive impairment in AD.
Collapse
|
50
|
Xu P, Wang K, Lu C, Dong L, Gao L, Yan M, Aibai S, Yang Y, Liu X. Protective effects of linalool against amyloid beta-induced cognitive deficits and damages in mice. Life Sci 2017; 174:21-27. [PMID: 28235543 DOI: 10.1016/j.lfs.2017.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 10/20/2022]
Abstract
AIM Amyloid-beta (Aβ)-mediated neurotoxicity plays a pivotal role in the pathogenesis of Alzheimer's disease (AD), which induces oxidative stress and apoptosis. Linalool (LI) is a volatile monoterpene showing positive effect in AD treatment. This study was designed to research the protective effect of LI against neurotoxicity and cognitive deficits induced by Aβ1-40 in mice. MAIN METHODS Aβ1-40 (4μg) solution was injected in the bilateral hippocampus to induce cognitive deficits of mice. The protective effects of LI were evaluated by behavioral tests and the related mechanism was further explored by observing the apoptosis and oxidative stress changes in the hippocampus of mice. KEY FINDINGS LI (100mg/kg, i.p.) administration significantly improved the cognitive performance of model mice in Morris water maze test and step-through test. Meanwhile, LI effectively reversed the Aβ1-40 induced hippocampal cell injury in histological examination, apoptosis in TUNEL assay, changes of oxidative stress indicators (SOD, GPX, AChE). Besides, the activated cleaved caspase (caspase-3, caspase-9) was suppressed and Nrf2, HO-1 expression was elevated by LI treatment. SIGNIFICANCE LI could attenuate cognitive deficits induced by Aβ, and the neuroprotective effect of LI might be mediated by alleviation of apoptosis, oxidative stress depending on activation of Nrf2/HO-1 signaling. We could assume that LI has the potential to be a neuroprotective substance for AD therapy.
Collapse
Affiliation(s)
- Pan Xu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Kezhu Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Cong Lu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Liming Dong
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li Gao
- Department of Pharmacology and Toxicology Laboratory, Xinjiang Institute of Traditional Uighur Medicine, Ürümqi, Xinjiang 830049, China
| | - Ming Yan
- Department of Pharmacology and Toxicology Laboratory, Xinjiang Institute of Traditional Uighur Medicine, Ürümqi, Xinjiang 830049, China
| | - Silafu Aibai
- Department of Pharmacology and Toxicology Laboratory, Xinjiang Institute of Traditional Uighur Medicine, Ürümqi, Xinjiang 830049, China
| | - Yanyan Yang
- China Astronaut Research and Training Center, Yuanmingyuan West Road No. 1, Beijing 100094, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; China Astronaut Research and Training Center, Yuanmingyuan West Road No. 1, Beijing 100094, China.
| |
Collapse
|