1
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin-positive cell-derived small extracellular vesicles contribute to cardiac amyloidosis after myocardial infarction. Cell Rep 2025; 44:115408. [PMID: 40056419 PMCID: PMC12019684 DOI: 10.1016/j.celrep.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cardiac amyloidosis is a secondary phenomenon of an already pre-existing chronic condition. Whether cardiac amyloidosis represents one of the complications post myocardial infarction (MI) has yet to be fully understood. Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived serum amyloid A 3 (SAA3) monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from cardiac stromal cells (CSCs), which, in response to MI, activate the expression of a platelet aggregation-inducing type I transmembrane glycoprotein, Podoplanin (PDPN). CSCPDPN+-derived small extracellular vesicles (sEVs) are enriched in SAA3, and exosomal SAA3 engages with macrophage by Toll-like receptor 2, triggering overproduction with consequent impaired clearance and aggregation of SAA3 monomers into rigid fibers. SAA3 amyloid deposits reduce cardiac contractility and increase scar stiffness. Inhibition of SAA3 aggregation by retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils and improves heart function post MI.
Collapse
Affiliation(s)
- Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andrew D Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tao Wang
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Water J Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Çağla Tükel
- Center for Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Fu Q, Han M, Dai X, Lu R, Deng E, Shen X, Ou F, Pu Y, Xie X, Liu K, Gan Y, Li D. Therapeutic effect of three-dimensional hanging drop cultured human umbilical cord mesenchymal stem cells on osteoarthritis in rabbits. Stem Cell Res Ther 2024; 15:311. [PMID: 39294780 PMCID: PMC11411824 DOI: 10.1186/s13287-024-03905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have shown a positive effect on Osteoarthritis (OA), but the efficacy is still not significant in clinical. Conventional two-dimensional (2D) monolayer culture method is prone to cause MSCs undergoing replication senescence, which may affect the functions of MSCs. Three-dimensional (3D) culture strategy can sustain cell proliferative capacity and multi-differentiation potential. This study aimed to investigate the therapeutic potential of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) cultured by 3D hanging drop method on OA. METHODS hUC-MSCs were isolated from umbilical cord and cultured by 3D hanging drop method for 48 h. Scanning electron microscopy (SEM) was used to observe gross morphology 2D and 3D hUC-MSCs. Transcriptome comparison of gene expression differences between 2D and 3D hUC-MSCs. GO enrichment analysis, KEGG pathway enrichment analysis and GSEA enrichment analysis were used to analyze the impact of 3D hanging drop culture on the biological functions of hUC-MSCs. Female New Zealand rabbits (n = 12) were divided into 4 groups: Normal group, Model group, 2D hUC-MSCs treatment group and 3D hUC-MSCs treatment group. After 8 weeks, the gross and histological appearance of the cartilage was evaluated by safranin O-fast green staining and Mankin scoring system. The expression of type I collagen and type II collagen was detected by immunohistochemistry. The levels of IL-6, IL-7, TNFα, TGFβ1 and IL-10 in the knee joint fluid were tested by ELISA. RESULTS 3D hanging drop culture changed cell morphology but did not affect phenotype. The MSCs transcriptome profiles showed that 3D hanging drop culture method enhanced cell-cell contact, improved cell responsiveness to external stimuli and immunomodulatory function. The animal experiment results showed that hUC-MSCs could promote cartilage regeneration compared with Model group. 3D hUC-MSCs treatment group had a higher histological score and significantly increased type II collagen secretion. In addition, 3D hUC-MSCs treatment group increased the expression of anti-inflammatory factors TGFβ1 and IL-10. CONCLUSION The above experimental results illustrated that 3D hanging drop culture method could enhance the therapeutic effect of hUC-MSCs, and showed a good clinical application prospect in the treatment of OA.
Collapse
Affiliation(s)
- Qiang Fu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Mei Han
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Xiaoyu Dai
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Ruian Lu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Enjie Deng
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Xuemei Shen
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Feng Ou
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Yongguang Pu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Xueqin Xie
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Kang Liu
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Yuanshan Gan
- Chongqing Perfect Cell Biotechnology Co. LTD, Chongqing, 400700, P.R. China
| | - Dong Li
- Stem Cell and Regenerative Medicine Research Center, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, P.R. China.
| |
Collapse
|
3
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
4
|
Valente S, Ciavarella C, Hernández-Aguilera A, Salvador FA, Buzzi M, Joven J, Pasquinelli G. Phenotypic, morphological, and metabolic characterization of vascular-spheres from human vascular mesenchymal stem cells. Microsc Res Tech 2021; 85:447-459. [PMID: 34448515 PMCID: PMC9290655 DOI: 10.1002/jemt.23918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/31/2021] [Indexed: 01/01/2023]
Abstract
The ability to form spheroids under non‐adherent conditions is a well‐known property of human mesenchymal stem cells (hMSCs), in addition to stemness and multilineage differentiation features. In the present study, we tested the ability of hMSCs isolated from the vascular wall (hVW‐MSCs) to grow as spheres, and provide a characterization of this 3D model. hVW‐MSCs were isolated from femoral arteries through enzymatic digestion. Spheres were obtained using ultra‐low attachment and hanging drop methods. Immunophenotype and pluripotent genes (SOX‐2, OCT‐4, NANOG) were analyzed by immunocytochemistry and real‐time PCR, respectively. Spheres histological and ultrastructural architecture were examined. Cell viability and proliferative capacity were measured using LIVE/DEATH assay and ki‐67 proliferation marker. Metabolomic profile was obtained with liquid chromatography–mass spectrometry. In 2D, hVW‐MSCs were spindle‐shaped, expressed mesenchymal antigens, and displayed mesengenic potential. 3D cultures of hVW‐MSCs were CD44+, CD105low, CD90low, exhibited a low propensity to enter the cell cycle as indicated by low percentage of ki‐67 expression and accumulated intermediate metabolites pointing to slowed metabolism. The 3D model of hVW‐MSCs exhibits stemness, dormancy and slow metabolism, typically observed in stem cell niches. This culture strategy can represent an accurate model to investigate hMSCs features for future clinical applications in the vascular field.
Collapse
Affiliation(s)
- Sabrina Valente
- DIMES - Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carmen Ciavarella
- DIMES - Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Fernández-Arroyo Salvador
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Marina Buzzi
- Emilia Romagna Cord Blood Bank - Transfusion Service, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, IISPV, Universitat Rovira i Virgili, Reus, Spain.,Campus of International Excellence Southern Catalonia, Tarragona, Spain
| | - Gianandrea Pasquinelli
- DIMES - Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Subcellular Nephro-Vascular Diagnostic Program, Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Cimini M, Kishore R. Role of Podoplanin-Positive Cells in Cardiac Fibrosis and Angiogenesis After Ischemia. Front Physiol 2021; 12:667278. [PMID: 33912076 PMCID: PMC8072458 DOI: 10.3389/fphys.2021.667278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 01/05/2023] Open
Abstract
New insights into the cellular and extra-cellular composition of scar tissue after myocardial infarction (MI) have been identified. Recently, a heterogeneous podoplanin-expressing cell population has been associated with fibrogenic and inflammatory responses and lymphatic vessel growth during scar formation. Podoplanin is a mucin-like transmembrane glycoprotein that plays an important role in heart development, cell motility, tumorigenesis, and metastasis. In the adult mouse heart, podoplanin is expressed only by cardiac lymphatic endothelial cells; after MI, it is acquired with an unexpected heterogeneity by PDGFRα-, PDGFRβ-, and CD34-positive cells. Podoplanin may therefore represent a sign of activation of a cohort of progenitor cells during different phases of post-ischemic myocardial wound repair. Podoplanin binds to C-type lectin-like receptor 2 (CLEC-2) which is exclusively expressed by platelets and a variety of immune cells. CLEC-2 is upregulated in CD11bhigh cells, including monocytes and macrophages, following inflammatory stimuli. We recently published that inhibition of the interaction between podoplanin-expressing cells and podoplanin-binding cells using podoplanin-neutralizing antibodies reduces but does not fully suppress inflammation post-MI while improving heart function and scar composition after ischemic injury. These data support an emerging and alternative mechanism of interactome in the heart that, when neutralized, leads to altered inflammatory response and preservation of cardiac function and structure. The overarching objective of this review is to assimilate and discuss the available evidence on the functional role of podoplanin-positive cells on cardiac fibrosis and remodeling. A detailed characterization of cell-to-cell interactions and paracrine signals between podoplanin-expressing cells and the other type of cells that compose the heart tissue is needed to open a new line of investigation extending beyond the known function of these cells. This review attempts to discuss the role and biology of podoplanin-positive cells in the context of cardiac injury, repair, and remodeling.
Collapse
Affiliation(s)
- Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Pasanisi E, Ciavarella C, Valente S, Ricci F, Pasquinelli G. Differentiation and plasticity of human vascular wall mesenchymal stem cells, dermal fibroblasts and myofibroblasts: a critical comparison including ultrastructural evaluation of osteogenic potential. Ultrastruct Pathol 2019; 43:261-272. [DOI: 10.1080/01913123.2019.1673863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Emanuela Pasanisi
- Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, University Hospital, S. Orsola, Bologna, Italy
| | - Carmen Ciavarella
- Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, University Hospital, S. Orsola, Bologna, Italy
| | - Sabrina Valente
- Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, University Hospital, S. Orsola, Bologna, Italy
| | - Francesca Ricci
- Immunohaematology and Transfusion Medicine Service, University Hospital, S. Orsola, Bologna, Italy
| | - Gianandrea Pasquinelli
- Clinical Pathology, Department of Experimental, Diagnostic and Specialty Medicine, DIMES, University of Bologna, University Hospital, S. Orsola, Bologna, Italy
- National Institute for Cardiovascular Research (INRC), University of Bologna, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| |
Collapse
|
7
|
Minuth WW. Concepts for a therapeutic prolongation of nephrogenesis in preterm and low-birth-weight babies must correspond to structural-functional properties in the nephrogenic zone. Mol Cell Pediatr 2017; 4:12. [PMID: 29218481 PMCID: PMC5721096 DOI: 10.1186/s40348-017-0078-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Numerous investigations are dealing with anlage of the mammalian kidney and primary development of nephrons. However, only few information is available about the last steps in kidney development leading at birth to a downregulation of morphogen activity in the nephrogenic zone and to a loss of stem cell niches aligned beyond the organ capsule. Surprisingly, these natural changes in the developmental program display similarities to processes occurring in the kidneys of preterm and low-birth-weight babies. Although those babies are born at a time with a principally intact nephrogenic zone and active niches, a high proportion of them suffers on impairment of nephrogenesis resulting in oligonephropathy, formation of atypical glomeruli, and immaturity of parenchyma. The setting points out that up to date not identified noxae in the nephrogenic zone hamper primary steps of parenchyma development. In this situation, a possible therapeutic aim is to prolong nephrogenesis by medications. However, actual data provide information that administration of drugs is problematic due to an unexpectedly complex microanatomy of the nephrogenic zone, in niches so far not considered textured extracellular matrix and peculiar contacts between mesenchymal cell projections and epithelial stem cells via tunneling nanotubes. Thus, it remains to be figured out whether disturbance of morphogen signaling altered synthesis of extracellular matrix, disturbed cell-to-cell contacts, or modified interstitial fluid impair nephrogenic activity. Due to most unanswered questions, search for eligible drugs prolonging nephrogenesis and their reliable administration is a special challenge for the future.
Collapse
Affiliation(s)
- Will W Minuth
- Institute of Anatomy, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
8
|
Desantis S, Accogli G, Burk J, Zizza S, Mastrodonato M, Francioso EG, Rossi R, Crovace A, Resta L. Ultrastructural characteristics of ovine bone marrow-derived mesenchymal stromal cells cultured with a silicon stabilized tricalcium phosphate bioceramic. Microsc Res Tech 2017; 80:1189-1198. [PMID: 28799674 DOI: 10.1002/jemt.22916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022]
Abstract
Bioceramics are being used in experimental bone engineering application in association with bone marrow derived mesenchymal stem cells (BM-MSCs) as a new therapeutic tool, but their effects on the ultrastructure of BM-MSCs are yet unknown. In this study we report the morphological features of ovine (o)BM-MSCs cultured with Skelite, a resorbable bioceramic based on silicon stabilized tricalcium phosphate (SiTCP), able to promote the repair of induced bone defect in sheep model. oBM-MSCs were isolated from the iliac crest, cultured until they reached near-confluence and incubated with SiTCP. After 48 hr the monolayers were highly damaged and only few cells adhered to the plastic. Thus, SiTCP was removed, and after washing the cells were cultured until they became confluent. Then, they were trypsinizated and processed for transmission electron microscopy (TEM) and RT-PCR analysis. RT-PCR displayed that oBM-MSCs express typical surface marker for MSCs. TEM revealed the presence of electron-lucent cells and electron-dense cells, both expressing the CD90 surface antigen. The prominent feature of electron-lucent cells was the concentration of cytoplasmic organelles around the nucleus as well as large surface blebs containing glycogen or profiles of endoplasmic reticulum. The dark cells had a multilocular appearance by the presence of peripheral vacuoles. Some dark cells contained endocytic vesicles, lysosomes, and glycogen aggregates. oBM-MSCs showed different types of specialized interconnections. The comparison with ultrastructural features of untreated oBM-MSCs suggests the light and dark cells are two distinct cell types which were differently affected by SiTCP bioceramic. Skelite cultured ovine BM-MSCs display electron-dense and electron-lucent cells which are differently affected by this bioceramic. This suggests that they could play a different role in bioceramic based therapy.
Collapse
Affiliation(s)
- Salvatore Desantis
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Gianluca Accogli
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Janina Burk
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Street 55, Leipzigi, 04103, Germany.,Institute of Veterinary Physiolgy, University of Leipzig, An den Tierkliniken 7, Leipzig, 04103, Germany
| | - Sara Zizza
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Maria Mastrodonato
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70124, Italy
| | - Edda G Francioso
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Roberta Rossi
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Leonardo Resta
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| |
Collapse
|
9
|
Nawaz M, Fatima F. Extracellular Vesicles, Tunneling Nanotubes, and Cellular Interplay: Synergies and Missing Links. Front Mol Biosci 2017; 4:50. [PMID: 28770210 PMCID: PMC5513920 DOI: 10.3389/fmolb.2017.00050] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/03/2017] [Indexed: 12/15/2022] Open
Abstract
The process of intercellular communication seems to have been a highly conserved evolutionary process. Higher eukaryotes use several means of intercellular communication to address both the changing physiological demands of the body and to fight against diseases. In recent years, there has been an increasing interest in understanding how cell-derived nanovesicles, known as extracellular vesicles (EVs), can function as normal paracrine mediators of intercellular communication, but can also elicit disease progression and may be used for innovative therapies. Over the last decade, a large body of evidence has accumulated to show that cells use cytoplasmic extensions comprising open-ended channels called tunneling nanotubes (TNTs) to connect cells at a long distance and facilitate the exchange of cytoplasmic material. TNTs are a different means of communication to classical gap junctions or cell fusions; since they are characterized by long distance bridging that transfers cytoplasmic organelles and intracellular vesicles between cells and represent the process of heteroplasmy. The role of EVs in cell communication is relatively well-understood, but how TNTs fit into this process is just emerging. The aim of this review is to describe the relationship between TNTs and EVs, and to discuss the synergies between these two crucial processes in the context of normal cellular cross-talk, physiological roles, modulation of immune responses, development of diseases, and their combinatory effects in tissue repair. At the present time this review appears to be the first summary of the implications of the overlapping roles of TNTs and EVs. We believe that a better appreciation of these parallel processes will improve our understanding on how these nanoscale conduits can be utilized as novel tools for targeted therapies.
Collapse
Affiliation(s)
- Muhammad Nawaz
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil.,Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of GothenburgGothenburg, Sweden
| | - Farah Fatima
- Department of Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of São PauloSão Paulo, Brazil
| |
Collapse
|
10
|
Stefano GB, Kream RM. Aging Reversal and Healthy Longevity is in Reach: Dependence on Mitochondrial DNA Heteroplasmy as a Key Molecular Target. Med Sci Monit 2017; 23:2732-2735. [PMID: 28579605 PMCID: PMC5470867 DOI: 10.12659/msm.902515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent trends in biomedical research have highlighted the potential for effecting significant extensions in longevity with enhanced quality of life in aging human populations. Within this context, any proposed method to achieve enhanced life extension must include therapeutic approaches that draw upon essential biochemical and molecular regulatory processes found in relatively simple single cell organisms that are evolutionarily conserved within complex organ systems of higher animals. Current critical thinking has established the primacy of mitochondrial function in maintaining good health throughout plant and animal phyla. The mitochondrion represents an existentially defined endosymbiotic model of complex organelle development driven by evolutionary modification of a permanently enslaved primordial bacterium. Cellular mitochondria are biochemically and morphologically tailored to provide exponentially enhanced ATP-dependent energy production accordingly to tissue- and organ-specific physiological demands. Thus, individual variations in longevity may then be effectively sorted according to age-dependent losses of single-cell metabolic integrity functionally linked to impaired mitochondrial bioenergetics within an aggregate presentation of compromised complex organ systems. Recent empirical studies have focused on the functional role of mitochondrial heteroplasmy in the regulation of normative cellular processes and the initiation and persistence of pathophysiological states. Accordingly, elucidation of the multifaceted functional roles of mitochondrial heteroplasmy in normal aging and enhanced longevity will provide both a compelling genetic basis and potential targets for therapeutic intervention to effect meaningful life extension in human populations.
Collapse
|
11
|
Minuth WW, Denk L. Special Morphological Features at the Interface of the Renal Stem/Progenitor Cell Niche Force to Reinvestigate Transport of Morphogens During Nephron Induction. Biores Open Access 2016; 5:49-60. [PMID: 26862472 PMCID: PMC4744892 DOI: 10.1089/biores.2015.0039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formation of a nephron depends on reciprocal signaling of different morphogens between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Previously, it has been surmised that a close proximity exists between both involved cell types and that morphogens are transported between them by diffusion. However, actual morphological data illustrate that mesenchymal and epithelial stem/progenitor cell bodies are separated by a striking interface. Special fixation of specimens by glutaraldehyde (GA) solution including cupromeronic blue, ruthenium red, or tannic acid for electron microscopy depicts that the interface is not void but filled in extended areas by textured extracellular matrix. Surprisingly, projections of mesenchymal cells cross the interface to contact epithelial cells. At those sites the plasma membranes of a mesenchymal and an epithelial cell are connected via tunneling nanotubes. Regarding detected morphological features in combination with involved morphogens, their transport cannot longer be explained solely by diffusion. Instead, it has to be sorted according to biophysical properties of morphogens and to detected environment. Thus, the new working hypothesis is that morphogens with good solubility such as glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factors (FGFs) are transported by diffusion. Morphogens with minor solubility such as bone morphogenetic proteins (BMPs) are secreted and stored for delivery on demand in illustrated extracellular matrix. In contrast, morphogens with poor solubility such as Wnts are transported in mesenchymal cell projections along the plasma membrane or via illustrated tunneling nanotubes. However, the presence of an intercellular route between mesenchymal and epithelial stem/progenitor cells by tunneling nanotubes also makes it possible that all morphogens are transported this way.
Collapse
Affiliation(s)
- Will W Minuth
- Department of Molecular and Cellular Anatomy, University of Regensburg , Regensburg, Germany
| | - Lucia Denk
- Department of Molecular and Cellular Anatomy, University of Regensburg , Regensburg, Germany
| |
Collapse
|
12
|
Extracellular Vesicles: Evolving Factors in Stem Cell Biology. Stem Cells Int 2015; 2016:1073140. [PMID: 26649044 PMCID: PMC4663346 DOI: 10.1155/2016/1073140] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies.
Collapse
|
13
|
Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT, Zorov DB. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells. Stem Cells Transl Med 2015; 4:1011-20. [PMID: 26160961 DOI: 10.5966/sctm.2015-0010] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. SIGNIFICANCE The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to develop a detailed protocol for coculturing followed by cell separation.
Collapse
Affiliation(s)
- Valentina A Babenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Denis N Silachev
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Ljubava D Zorova
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Irina B Pevzner
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Anastasia A Khutornenko
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Egor Y Plotnikov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Gennady T Sukhikh
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| | - Dmitry B Zorov
- Faculty of Bioengineering and Bioinformatics, A.N. Belozersky Institute of Physico-Chemical Biology, and International Laser Center, Lomonosov Moscow State University, Moscow, Russian Federation; Gynecology and Perinatology, Research Center of Obstetrics, Moscow, Russian Federation
| |
Collapse
|