1
|
Mamardashvili G, Kaigorodova E, Solomonova N, Mamardashvili N. Towards antimicrobial agents: Design and antibacterial activity of a hybrid fluorophore where porphyrin and Rose Bengal moieties are linked through the hydroxyl group of a xanthene dye. Bioorg Chem 2024; 153:107960. [PMID: 39556933 DOI: 10.1016/j.bioorg.2024.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
The axial complex of Sn(IV)-tetra(4-sulfophenyl)porphyrin (SnP) with Rose Bengal (RB) was obtained where RB axial binding is realized through the hydroxyl groups of the xanthene dye [SnP(RB)2]. The luminescent properties of the SnP(RB)2 (fluorescence and ability to generate singlet oxygen at room temperature) in aqueous media with additives of surfactant cetylpyridinium chloride (CPC) and ε-poly-l-lysine (EPL) were studied. It was found that nature of the medium (surfactant additives of different concentrations) determines the effectiveness of the photoinduced energy transfer from the RB fragment to the SnP fragment of the hybrid fluorophore (HF). It has been established that the ability of the HF to generate singlet oxygen in D2O and D2O-micellar media is higher than that of its constituent fragments. The dark and photodynamic antibacterial activity of the HF against two microorganisms [Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus)] was determined and analyzed. It was shown how the antibacterial activity of the HF depends on the nature of the bacteria, the micellar environment and radiation dose.
Collapse
Affiliation(s)
- G Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - E Kaigorodova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation
| | - N Solomonova
- Ivanovo Regional Clinical Hospital, Lyubimova Str. 1, 115300 Ivanovo, Russian Federation
| | - N Mamardashvili
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya Str. 1, 153045 Ivanovo, Russian Federation.
| |
Collapse
|
2
|
Ma S, Huis In't Veld RV, de los Pinos E, Ossendorp FA, Jager MJ. Treatment of Conjunctival Melanoma Cell Lines With a Light-Activated Virus-Like Drug Conjugate Induces Immunogenic Cell Death. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 39495183 PMCID: PMC11539973 DOI: 10.1167/iovs.65.13.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Conjunctival melanoma (CJM) is a rare malignant ocular surface tumor, which often leads to local recurrences and metastases. In murine models of subcutaneous tumors, treatment with a novel virus-like drug conjugate (VDC; Bel-sar) showed a dual mechanism of action with direct tumor cell killing as well as stimulation of an antitumoral immune response. Bel-sar is currently being evaluated for the treatment of primary uveal melanoma and indeterminate nevi in a phase III clinical trial. We determined whether Bel-sar also has direct antitumor efficiency and a potential immunostimulatory capacity in CJM cells. Methods Three human tumor-derived CJM lines were used. Bel-sar's subcellular and intracellular locations were determined with tracers. Following light activation of Bel-sar, cytotoxicity and exposure of damage-associated molecular patterns (DAMPs) were assessed. Treated tumor cells were co-cultured with THP-1 derived macrophages to assess tumor-cell phagocytosis. Results Bel-sar was bound and internalized by CJM cells and subsequently found in the cell membrane, lysosome, Golgi apparatus, and mitochondria. Bel-sar activation induced near complete cell death with half-maximal inhibitory concentration (IC50) values between 30 pM and 60 pM. Finally, light-activated Bel-sar enhanced exposure of DAMPs, including calreticulin, heat shock protein 90, and stimulated phagocytosis by macrophages. Conclusions Treatment with a novel VDC (Bel-sar) induced pro-immunogenic cell death in all three CJM cell lines. The in vitro cytotoxicity was accompanied by exposure of DAMPs, suggesting Bel-sar is a potential treatment for CJM by a dual mechanism of action. This dual mechanism may provide a targeted and direct killing of tumor cells and induce an immune response which might decrease local recurrences and metastasis.
Collapse
Affiliation(s)
- Sen Ma
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ruben V. Huis In't Veld
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Immunology, Leiden University Medical Center (LUMC), The Netherlands
| | | | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Center (LUMC), The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
3
|
Kessel D. Highways and detours in the realm of photodynamic therapy for cancer control. Photochem Photobiol 2024; 100:1740-1744. [PMID: 38488188 DOI: 10.1111/php.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 11/17/2024]
Abstract
Critical elements of photodynamic therapy are a photosensitizing agent, light at a wavelength corresponding to an absorbance band of the agent, and sufficient oxygenation to create a cytotoxic concentration of reactive oxygen species. Other factors may promote efficacy, but these are critical.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
4
|
Tyubaeva PM, Gasparyan KG, Romanov RR, Kolesnikov EA, Martirosyan LY, Larkina EA, Tyubaev MA. Biomimetic Materials Based on Poly-3-hydroxybutyrate and Chlorophyll Derivatives. Polymers (Basel) 2023; 16:101. [PMID: 38201766 PMCID: PMC10780539 DOI: 10.3390/polym16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Electrospinning of biomimetic materials is of particular interest due to the possibility of producing flexible layers with highly developed surfaces from a wide range of polymers. Additionally, electrospinning is characterized by a high simplicity of implementation and the ability to modify the produced fibrous materials, which resemble structures found in living organisms. This study explores new electrospun materials based on polyhydroxyalkanoates, specifically poly-3-hydroxybutyrate, modified with chlorophyll derivatives. The research investigates the impact of chlorophyll derivatives on the morphology, supramolecular structure, and key properties of nonwoven materials. The obtained results are of interest for the development of new flexible materials with low concentrations of chlorophyll derivatives.
Collapse
Affiliation(s)
- Polina M. Tyubaeva
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Kristina G. Gasparyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| | - Roman R. Romanov
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Evgeny A. Kolesnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology (MISIS), 119991 Moscow, Russia;
| | - Levon Y. Martirosyan
- Department of Physical Chemistry of Synthetic and Natural Polymer Compositions, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119334 Moscow, Russia (L.Y.M.)
| | - Ekaterina A. Larkina
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technology, MIREA-Russian Technological University, 119454 Moscow, Russia
| | - Mikhail A. Tyubaev
- Academic Department of Innovational Materials and Technologies Chemistry, Plekhanov Russian University of Economics, 36 Stremyanny Per., 117997 Moscow, Russia; (R.R.R.); (M.A.T.)
| |
Collapse
|
5
|
Jao Y, Ding SJ, Chen CC. Antimicrobial photodynamic therapy for the treatment of oral infections: A systematic review. J Dent Sci 2023; 18:1453-1466. [PMID: 37799910 PMCID: PMC10548011 DOI: 10.1016/j.jds.2023.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Oral infection is a common clinical symptom. While antibiotics are widely employed as the primary treatment for oral diseases, the emergence of drug-resistant bacteria has necessitated the exploration of alternative therapeutic approaches. One such modality is antimicrobial photodynamic therapy (aPDT), which utilizes light and photosensitizers. Indeed, aPDT has been used alone or in combination with other treatment options dealing with periodontal disease for the elimination of biofilms from bacterial community to achieve bone formation and/or tissue regeneration. In this review article, in addition to factors affecting the efficacy of aPDT, various photosensitizers, the latest technology and perspectives on aPDT are discussed in detail. More importantly, the article emphasizes the novel design and clinical applications of photosensitizers, as well as the synergistic effects of chemical and biomolecules with aPDT to achieve the complete eradication of biofilms and even enhance the biological performance of tissues surrounding the treated oral area.
Collapse
Affiliation(s)
- Ying Jao
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Abstract
Pancreatobiliary malignancies have poor prognosis, and many patients are inoperable at the time of diagnosis. When surgical resection is impossible, systemic chemotherapy or radiotherapy is traditionally conducted with trial of immunotherapy or gene therapy lately. With the rapid development of endoscopic instruments and accessories in recent years, not only endoscopic early detection, characterization, and staging but also endoscopic palliative management of the pancreatobiliary malignancies is expanding the horizons. Endoscopic management is often preferred due to similar efficacy to surgical management with less morbidity. Here, we review the methodology and treatment outcome of various endoscopic management strategies in pancreatobiliary malignancies including endoscopic complication management, local palliative therapy, endoscopy-assisted therapy, and pain control utilizing endoscopic retrograde cholangiopancreatography or endoscopic ultrasound.
Collapse
|
7
|
Daylight-PDT: everything under the sun. Biochem Soc Trans 2022; 50:975-985. [PMID: 35385082 PMCID: PMC9162453 DOI: 10.1042/bst20200822] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
Abstract
5-Aminolevulinic acid-based photodynamic therapy (ALA-PDT) was first implemented over three decades ago and has since been mainly part of clinical practice for the management of pre-cancerous and cancerous skin lesions. Photodynamic therapy relies on the combination of a photosensitizer, light and oxygen to cause photo-oxidative damage of cellular components. 5-Aminolevulinic acid (ALA) is a natural precursor of the heme biosynthetic pathway, which when exogenously administered leads to the accumulation of the photoactivatable protoporphyrin IX. Although, effective and providing excellent cosmetic outcomes, its use has been restricted by the burning, stinging, and prickling sensation associated with treatment, as well as cutaneous adverse reactions that may be induced. Despite intense research in the realm of drug delivery, pain moderation, and light delivery, a novel protocol design using sunlight has led to some of the best results in terms of treatment response and patient satisfaction. Daylight PDT is the protocol of choice for the management of treatment of multiple or confluent actinic keratoses (AK) skin lesions. This review aims to revisit the photophysical, physicochemical and biological characteristics of ALA-PDT, and the underlying mechanisms resulting in daylight PDT efficiency and limitations.
Collapse
|
8
|
Amphiphilic Protoporphyrin IX Derivatives as New Photosensitizing Agents for the Improvement of Photodynamic Therapy. Biomedicines 2022; 10:biomedicines10020423. [PMID: 35203632 PMCID: PMC8962274 DOI: 10.3390/biomedicines10020423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive therapeutic modality based on the interaction between a photosensitive molecule called photosensitizer (PS) and visible light irradiation in the presence of oxygen molecule. Protoporphyrin IX (PpIX), an efficient and widely used PS, is hampered in clinical PDT by its poor water-solubility and tendency to self-aggregate. These features are strongly related to the PS hydrophilic–lipophilic balance. In order to improve the chemical properties of PpIX, a series of amphiphilic PpIX derivatives endowed with PEG550 headgroups and hydrogenated or fluorinated tails was synthetized. Hydrophilic–lipophilic balance (HLB) and log p-values were computed for all of the prepared compounds. Their photochemical properties (spectroscopic characterization, photobleaching, and singlet oxygen quantum yield) were also evaluated followed by the in vitro studies of their cellular uptake, subcellular localization, and photocytotoxicity on three tumor cell lines (4T1, scc-U8, and WiDr cell lines). The results confirm the therapeutic potency of these new PpIX derivatives. Indeed, while all of the derivatives were perfectly water soluble, some of them exhibited an improved photodynamic effect compared to the parent PpIX.
Collapse
|
9
|
Pallavi P, Girigoswami A, Girigoswami K, Hansda S, Ghosh R. Photodynamic Therapy in Cancer. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:1285-1308. [DOI: 10.1007/978-981-16-5422-0_232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
|
11
|
Chinna Ayya Swamy P, Sivaraman G, Priyanka RN, Raja SO, Ponnuvel K, Shanmugpriya J, Gulyani A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213233] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Teng KW, Lee SH. Characterization of Protoporphyrin IX Species in Vitro Using Fluorescence Spectroscopy and Polar Plot Analysis. J Phys Chem B 2019; 123:5832-5840. [DOI: 10.1021/acs.jpcb.9b01913] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Sang Hak Lee
- Department of Chemistry, Pusan National University, Busan 46241, Korea
| |
Collapse
|
13
|
|
14
|
Shinoda Y, Takahashi T, Akimoto J, Ichikawa M, Yamazaki H, Narumi A, Yano S, Fujiwara Y. Comparative photodynamic therapy cytotoxicity of mannose-conjugated chlorin and talaporfin sodium in cultured human and rat cells. J Toxicol Sci 2017; 42:111-119. [PMID: 28070104 DOI: 10.2131/jts.42.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Photodynamic therapy (PDT) is a Food and Drug Administration authorized method for cancer treatment, which uses photosensitizer and laser photo-irradiation to generate reactive oxygen species to induce cell death in tumors. Photosensitizers have been progressively developed, from first to third generation, with improvements in cell specificity, reduced side effects and toxicity, increased sensitivity for irradiation and reduced persistence of photosensitizer in healthy cells. These improvements have been achieved by basic comparative experiments between current and novel photosensitizers using cell lines; however, photosensitizers should be carefully evaluated because they may have cell type specificity. In the present study, we compared a third-generation photosensitizer, β-mannose-conjugated chlorin (β-M-chlorin), with the second generation, talaporfin sodium (NPe6), using seven different rat and human cell lines and a neuronal/glial primary culture prepared from rat embryos. NPe6 was more effective than β-M-chlorin in human-derived cell lines, and β-M-chlorin was more effective than NPe6 in rat primary cultures and rat-derived cell lines, except for the rat pheochromocytoma cell line, PC12. These differences of phototoxicity in different cell types are not because of differences in photosensitivity between the photosensitizers, but rather are associated with different distribution and accumulation rates in the different cell types. These data suggest that evaluation of photosensitizers for PDT should be carried out using as large a variety of cell types as possible because each photosensitizer may have cell type specificity.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Oxidation of protein-bound methionine in Photofrin-photodynamic therapy-treated human tumor cells explored by methionine-containing peptide enrichment and quantitative proteomics approach. Sci Rep 2017; 7:1370. [PMID: 28465586 PMCID: PMC5431048 DOI: 10.1038/s41598-017-01409-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 03/28/2017] [Indexed: 11/08/2022] Open
Abstract
In Photofrin-mediated photodynamic therapy (PDT), cell fate can be modulated by the subcellular location of Photofrin. PDT triggers oxidative damage to target cells, including the methionine (Met) oxidation of proteins. Here, we developed a new Met-containing peptide enrichment protocol combined with SILAC-based quantitative proteomics, and used this approach to explore the global Met oxidation changes of proteins in PDT-treated epidermoid carcinoma A431 cells preloaded with Photofrin at the plasma membrane, ER/Golgi, or ubiquitously. We identified 431 Met-peptides corresponding to 302 proteins that underwent severe oxidation upon PDT and observed overrepresentation of proteins related to the cell surface, plasma membrane, ER, Golgi, and endosome under all three conditions. The most frequently oxidized Met-peptide sequence was "QAMXXMM-E/G/M-S/G-A/G/F-XG". We also identified several hundred potential Photofrin-binding proteins using affinity purification coupled with LC-MS/MS, and confirmed the bindings of EGFR and cathepsin D with Photofrin. The enzyme activities of both proteins were significantly reduced by Photofrin-PDT. Our results shed light on the global and site-specific changes in Met-peptide oxidation among cells undergoing Photofrin-PDT-mediated oxidative stress originating from distinct subcellular sites, and suggest numerous potential Photofrin-binding proteins. These findings provide new insight into the molecular targets through which Photofrin-PDT has diverse effects on target cells.
Collapse
|
16
|
Villacorta RB, Roque KFJ, Tapang GA, Jacinto SD. Plant extracts as natural photosensitizers in photodynamic therapy: in vitro activity against human mammary adenocarcinoma MCF-7 cells. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Abramczyk H, Brozek-Pluska B, Surmacki J, Tondusson M, Freysz E. Photostability of biological systems—Femtosecond dynamics of zinc tetrasulfonated phthalocyanine at cancerous and noncancerous human Breast tissues. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Postiglione I, Barra F, Aloj SM, Palumbo G. Photodynamic therapy with 5-aminolaevulinic acid and DNA damage: unravelling roles of p53 and ABCG2. Cell Prolif 2016; 49:523-38. [PMID: 27389299 DOI: 10.1111/cpr.12274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/13/2016] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES In spite of high sensitivity of A549 cells (p53(+/+) ) to lethal effects of photodynamic therapy with 5-aminolaevulinic acid (5-ALA/PDT), DNA damage was observed only in H1299 cells (p53(-/-) ), suggesting that p53 may exert a protective effect. Studies on human colon adenocarcinoma cell lines HCT-116, and their cognate knockouts for p53, were not entirely consistent with the assumption above. Exploring alternative explanations for such conflicting behaviour, we observed that expression of the ATP-binding cassette G2 (ABCG2), a regulator of cell component efflux, had important effects on PDT-generated DNA injury in PC3 cells (prostate) which are p53(-/-) and positive for ABCG2. Addition of an ABCG2 inhibitor in ABCG2 positive A549 (p53(+/+) ) and PC3 (p53(-/-) ) cells eliminated resistance to DNA damage. MATERIALS AND METHODS All cell lines investigated were incubated with 5-ALA and irradiated. Effects of PDT were evaluated assessing residual cell viability, cell-cycle profiles, PpIX localization, comet assay and Western blotting. Identical measurements were made in the presence of ABCG2 inhibitor, in cells expressing the transporter. RESULTS Our data show that cell aptitude to defend its DNA from PDT-induced injury was mainly ruled by ABCG2 expression. These findings, while providing helpful information in predicting effectiveness of 5-ALA/PDT, may indicate a way to shift PDT from a palliative to a more effective approach in anti-cancer therapy.
Collapse
Affiliation(s)
- I Postiglione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - F Barra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - S M Aloj
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - G Palumbo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
19
|
Postiglione I, Chiaviello A, Barra F, Roscetto E, Soriano AA, Catania MR, Palumbo G, Pierantoni GM. Mitochondrial Malfunctioning, Proteasome Arrest and Apoptosis in Cancer Cells by Focused Intracellular Generation of Oxygen Radicals. Int J Mol Sci 2015; 16:20375-91. [PMID: 26343643 PMCID: PMC4613209 DOI: 10.3390/ijms160920375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/29/2022] Open
Abstract
Photofrin/photodynamic therapy (PDT) at sub-lethal doses induced a transient stall in proteasome activity in surviving A549 (p53+/+) and H1299 (p53−/−) cells as indicated by the time-dependent decline/recovery of chymotrypsin-like activity. Indeed, within 3 h of incubation, Photofrin invaded the cytoplasm and localized preferentially within the mitochondria. Its light activation determined a decrease in mitochondrial membrane potential and a reversible arrest in proteasomal activity. A similar result is obtained by treating cells with Antimycin and Rotenone, indicating, as a common denominator of this effect, the ATP decrease. Both inhibitors, however, were more toxic to cells as the recovery of proteasomal activity was incomplete. We evaluated whether combining PDT (which is a treatment for killing tumor cells, per se, and inducing proteasome arrest in the surviving ones) with Bortezomib doses capable of sustaining the stall would protract the arrest with sufficient time to induce apoptosis in remaining cells. The evaluation of the mitochondrial membrane depolarization, residual proteasome and mitochondrial enzymatic activities, colony-forming capabilities, and changes in protein expression profiles in A549 and H1299 cells under a combined therapeutic regimen gave results consistent with our hypothesis.
Collapse
Affiliation(s)
- Ilaria Postiglione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Angela Chiaviello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Federica Barra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Emanuela Roscetto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Amata A Soriano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Maria Rosaria Catania
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Giuseppe Palumbo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), Naples 80131, Italy.
| |
Collapse
|
20
|
Lai X, Ning F, Xia X, Wang D, Tang L, Hu J, Wu J, Liu J, Li X. HMME combined with green light-emitting diode irradiation results in efficient apoptosis on human tongue squamous cell carcinoma. Lasers Med Sci 2015. [DOI: 10.1007/s10103-015-1774-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Role of p38MAPK in apoptosis and autophagy responses to photodynamic therapy with Chlorin e6. Photodiagnosis Photodyn Ther 2015; 12:84-91. [DOI: 10.1016/j.pdpdt.2014.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/18/2022]
|
22
|
Affiliation(s)
- Sasidharan Swarnalatha Lucky
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
| | - Khee Chee Soo
- Division
of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore 169610
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, P. R. China 321004
| |
Collapse
|
23
|
Lapchenko AS. [Photodynamic therapy. The fields of applications and prospects for the further development in otorhinolaryngology]. Vestn Otorinolaringol 2015; 80:4-9. [PMID: 26978743 DOI: 10.17116/otorino20158064-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This article presents a review of the modern specialized medical literature concerned with the applications of photodynamic therapy (PDT) in otorhinolaryngology and medicine at large. The necessity of such a review of the available possibilities provided by PDT is dictated by the ever increasing interest of otorhinolaryngologists and specialists of other medical disciplines in the use of this method for the treatment of tumours and inflammatory diseases as well as their pyogenic complications. The author offers the critical assessment of the experience gained with the application of the known PDT technologies for the management of various pathological conditions. Especially much attention is given to the treatment of acute and chronic inflammation in the otorhinolaryngological practice with special reference to the yet unresolved problems.
Collapse
Affiliation(s)
- A S Lapchenko
- Kafedra otorinolaringologii lechebnogo fakul'teta Rossijskogo natsional'nogo issledovatel'skogo meditsinskogo universiteta im. N.I. Pirogova, Moskva, Rossija, 117997
| |
Collapse
|
24
|
Basic and Clinical Aspects of Photodynamic Therapy. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-12730-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Lin S, Zhang L, Lei K, Zhang A, Liu P, Liu J. Development of a multifunctional luciferase reporters system for assessing endoplasmic reticulum-targeting photosensitive compounds. Cell Stress Chaperones 2014; 19:927-37. [PMID: 24984699 PMCID: PMC4389854 DOI: 10.1007/s12192-014-0517-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/24/2014] [Accepted: 04/27/2014] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a recently developed antitumor modality utilizing the generation of reactive oxygen species (ROS), through light irradiation of photosensitizers (PSs) localized in tumor. Interference with proper functioning of endoplasmic reticulum (ER) by ER-targeting PDT is a newly proposed strategy to achieve tumor cell death. The aim of this study is to establish a multifunctional model to screen and assess ER-targeting PSs based on luciferase reporters system. Upregulation of GRP78 is a biomarker for the onset of ER stress. CHOP is a key initiating player in ER stress-induced cell death. Here, the most sensitive fragments of GRP78 and CHOP promoters responding to ER-targeting PDT were mapped and cloned into pGL3-basic vector, forming -702/GRP78-Luc and -443/CHOP-Luc construct, respectively. We demonstrated that -702/GRP78-Luc expression can be used to indicate the ER-targeting of PSs, meanwhile estimate the ROS level induced by low-dose ER-targeting PDT. Moreover, the luciferase signaling of -443/CHOP-Luc showed highly consistence with apoptosis rate caused by ER-targeting PDT, suggesting that -443/CHOP-Luc can evaluate the antitumor properties of PSs. Hypericin, Foscan® and methylene blue were applied to verify the sensitivity and reliability of our model. These results proved that GRP78-CHOP model may be suitable to screen ER-targeting photosensitive compounds with lower cost and higher sensitivity than traditional ways.
Collapse
Affiliation(s)
- Shengchao Lin
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Lingling Zhang
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Kecheng Lei
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Anle Zhang
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Ping Liu
- />Longhua Hospital Affiliated to Shanghai University of traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032 People’s Republic of China
| | - Jianwen Liu
- />Department of Molecular & Cellular Pharmacology, Biomedical Nanotechnology Center, State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, #268, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| |
Collapse
|
26
|
Chitsazi MT, Shirmohammadi A, Pourabbas R, Abolfazli N, Farhoudi I, Daghigh Azar B, Farhadi F. Clinical and Microbiological Effects of Photodynamic Therapy Associated with Non-surgical Treatment in Aggressive Periodontitis. J Dent Res Dent Clin Dent Prospects 2014; 8:153-9. [PMID: 25346834 PMCID: PMC4206757 DOI: 10.5681/joddd.2014.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 04/13/2014] [Indexed: 12/03/2022] Open
Abstract
Background and aims. The aim of this study was to compare the effectiveness of adjunctive photodynamic therapy (PDT) in the treatment of aggressive periodontitis.
Materials and methods. A total of 24 patients with clinical diagnosis of aggressive periodontitis received scaling and root planing (SRP) for periodontal treatment. In a split-mouth design study, the teeth of one quadrant of each arch with ≥4 mm of probing depth were selected randomly for additional treatment with PDT (test group). PDT was performed with a diode laser beam with a wavelength of 670-690 nm and a power of 75 Mw. The control group consisted of selected teeth of the contralateral quadrant (SRP only). Before any treatment, subgingival plaque samples were collected by an endodontic paper cone for microbiological analysis by real-time polymerase chain reaction (PCR) for detection of Aggregatibacter actinomycetecommitans. Clinical parameters including clinical attachment loss (CAL) as primary outcome, plaque index (PI), bleeding on probing (BOP), probing depth (PD) and gingival recession (REC) were measured at baseline and after 90 days. Inter-group and intra-group statistical analyses were performed.
Results. Treatment groups showed an improvement in all the clinical parameters and a significant reduction in the counts of A. actinomycetecommitans at 90 days compared to baseline (P < 0.05). None of the periodontal parameters exhibited significant differences between the two groups (P > 0.05).
Conclusion. Within the limitations of this study, the results did not show additional benefits from PDT as an adjunctive treatment for patients with aggressive periodontitis.
Collapse
Affiliation(s)
- Mohammad Taghi Chitsazi
- Associate Professor, Department of Periodontics, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adileh Shirmohammadi
- Associate Professor, Department of Periodontics, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Pourabbas
- Professor, Department of Periodontics, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Abolfazli
- Associate Professor, Department of Periodontics, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ilnaz Farhoudi
- Postgraduate Student, Department of Periodontics, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farrokh Farhadi
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N. Experimental use of photodynamic therapy in high grade gliomas: a review focused on 5-aminolevulinic acid. Photodiagnosis Photodyn Ther 2014; 11:319-30. [PMID: 24905843 DOI: 10.1016/j.pdpdt.2014.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) consists of a laser light exposure of tumor cells photosensitized by general or local administration of a pharmacological agent. Nowadays, PDT is a clinically established modality for treatment of many cancers. 5-Aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX) has proven its rational in fluoro-guided resection of malignant gliomas due to a selective tumor uptake and minimal skin sensitization. Moreover, the relatively specific accumulation of photosensitizing PPIX within the tumor cells has gained interest in the PDT of malignant gliomas. Several experimental and clinical studies have then established ALA-PDT as a valuable adjuvant therapy in the management of malignant gliomas. However, the procedure still requires optimizations in the fields of tissue oxygenation status, photosensitizer concentration or scheme of laser light illumination. In this extensive review, we focused on the methods and results of ALA-PDT for treating malignant gliomas in experimental conditions. The biological mechanisms, the effects on tumor and normal brain tissue, and finally the critical issues to optimize the efficacy of ALA-PDT were discussed.
Collapse
Affiliation(s)
- Marie-Charlotte Tetard
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France
| | - Maximilien Vermandel
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France.
| | | | - Jean-Paul Lejeune
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France
| | - Nicolas Reyns
- University Hospital of Lille - CHRU, Lille F59000, France; Université de Lille 2, Lille F59000, France; Inserm, U703 - ThIAIS, Loos F59120, France
| |
Collapse
|
28
|
Wei MF, Chen MW, Chen KC, Lou PJ, Lin SYF, Hung SC, Hsiao M, Yao CJ, Shieh MJ. Autophagy promotes resistance to photodynamic therapy-induced apoptosis selectively in colorectal cancer stem-like cells. Autophagy 2014; 10:1179-92. [PMID: 24905352 PMCID: PMC4203546 DOI: 10.4161/auto.28679] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). In cancer, autophagy acts as both a tumor suppressor and a tumor promoter. However, the role of autophagy in the resistance of CSCs to PDT has not been reported. In this study, CSCs were isolated from colorectal cancer cells using PROM1/CD133 (prominin 1) expression, which is a surface marker commonly found on stem cells of various tissues. We demonstrated that PpIX-mediated PDT induced the formation of autophagosomes in PROM1/CD133+ cells, accompanied by the upregulation of autophagy-related proteins ATG3, ATG5, ATG7, and ATG12. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of the ATG5 gene substantially triggered apoptosis of PROM1/CD133+ cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. In conclusion, our results revealed a protective role played by autophagy against PDT in CSCs and indicated that targeting autophagy could be used to elevate the PDT sensitivity of CSCs. These findings would aid in the development of novel therapeutic approaches for CSC treatment.
Collapse
Affiliation(s)
- Ming-Feng Wei
- Institute of Biomedical Engineering; National Taiwan University; Taipei, Taiwan
| | - Min-Wei Chen
- Department of Oncology; National Taiwan University Hospital; Taipei, Taiwan
| | - Ke-Cheng Chen
- Institute of Biomedical Engineering; National Taiwan University; Taipei, Taiwan; Department of Surgery; National Taiwan University Hospital; Taipei, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology; National Taiwan University Hospital; Taipei, Taiwan
| | - Susan Yun-Fan Lin
- Institute of Biomedical Engineering; National Taiwan University; Taipei, Taiwan
| | - Shih-Chieh Hung
- Institute of Clinical Medicine; National Yang-Ming University; Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center; Academia Sinica; Taipei, Taiwan
| | - Cheng-Jung Yao
- Gastroenterology; Taipei Medical University-Municipal Wan Fang Hospital; Taipei, Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering; National Taiwan University; Taipei, Taiwan; Department of Oncology; National Taiwan University Hospital; Taipei, Taiwan
| |
Collapse
|
29
|
Silva JC, Ferreira-Strixino J, Fontana LC, Paula LM, Raniero L, Martin AA, Canevari RA. Apoptosis-associated genes related to photodynamic therapy in breast carcinomas. Lasers Med Sci 2014; 29:1429-36. [DOI: 10.1007/s10103-014-1547-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/05/2014] [Indexed: 11/29/2022]
|
30
|
Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e143. [PMID: 24481022 PMCID: PMC3910004 DOI: 10.1038/mtna.2013.70] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/11/2013] [Indexed: 02/01/2023]
Abstract
Photodynamic therapy (PDT) uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6) with a human interleukin-6 receptor (IL-6R) binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R(+)) cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.Molecular Therapy-Nucleic Acids (2014) 3, e143; doi:10.1038/mtna.2013.70; published online 21 January 2014.
Collapse
|
31
|
Su X, Li Y, Wang P, Wang X, Liu Q. Protoporphyrin IX-mediated sonodynamic action induces apoptosis of K562 cells. ULTRASONICS 2014; 54:275-284. [PMID: 23978616 DOI: 10.1016/j.ultras.2013.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 07/14/2013] [Accepted: 07/21/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVES The present study aims to investigate apoptosis of human leukemia K562 cells induced by protoporphyrin IX (PpIX)-mediated sonodynamic therapy (PpIX-SDT). METHODS The uptakes of intracellular PpIX in K562 cells were detected by flow cytometry. The sub-cellular localization of PpIX was imaged by confocal microscope. The cytotoxic effect of PpIX-SDT was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenylter-trazolium bromide tetrazolium) assay. Apoptosis was evaluated by chromatin condensation with DAPI (4'-6-diamidino-2-phenylindole) staining, decrease of mitochondria membrane potential (MMP), re-distribution of Bax, and the expression changes of the key apoptosis-associated protein (Caspase-3 and polypeptide poly (ADP-robose) polymerase). The possible mechanism of SDT-induced apoptosis was investigated by detecting by intracellular ROS (reactive oxygen species) generation and effect of ROS scavenger-NAC (N-acetylcysteine) on SDT induced apoptosis. RESULTS The intracellular PpIX increased quickly within 2 h after PpIX administration and PpIX mainly localized in the mitochondria. Compared with PpIX alone and ultrasound alone groups, the synergistic cytotoxicity of PpIX plus ultrasound was significantly boosted. In addition, the ultrasound induced some extent of chromatin condensation and MMP loss was greatly enhanced by the presence of 2 μg/ml PpIX, where PpIX alone treatment showed no or only slight effect. Time-dependent Bax translocation, caspase-3 activation and PARP cleavage were detected in SDT treatment groups. Besides, intracellular ROS production was significantly enhanced after SDT, and the general ROS scavenger NAC could obviously alleviate the SDT-caused cell viability loss, MMP loss, Bax redistribution and nuclear changes. CONCLUSIONS These results indicated that PpIX-mediated sonodynamic action could induce apoptosis on K562 cells, and the intracellular ROS was involved in the PpIX-SDT induced apoptosis.
Collapse
Affiliation(s)
- Xiaomin Su
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062 Shaanxi, China
| | | | | | | | | |
Collapse
|
32
|
Wang J, You M, Zhu G, Shukoor MI, Chen Z, Zhao Z, Altman MB, Yuan Q, Zhu Z, Chen Y, Huang CZ, Tan W. Photosensitizer-gold nanorod composite for targeted multimodal therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:3678-84. [PMID: 23661612 PMCID: PMC4133987 DOI: 10.1002/smll.201202155] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 02/12/2013] [Indexed: 05/20/2023]
Abstract
In this work, a DNA inter-strand replacement strategy for therapeutic activity is successfully designed for multimodal therapy. In this multimodal therapy, chlorin e6 (Ce6) photosensitizer molecules are used for photodynamic therapy (PDT), while aptamer-AuNRs, are used for selective binding to target cancer cells and for photothermal therapy (PTT) with near infrared laser irradiation. Aptamer Sgc8, which specifically targets leukemia T cells, is conjugated to an AuNR by a thiol-Au covalent bond and then hybridized with a Ce6-labeled photosensitizer/reporter to form a DNA double helix. When target cancer cells are absent, Ce6 is quenched and shows no PDT effect. However, when target cancer cells are present, the aptamer changes structure to release Ce6 to produce singlet oxygen for PDT upon light irradiation. Importantly, by combining photosensitizer and photothermal agents, PTT/PDT dual therapy supplies a more effective therapeutic outcome than either therapeutic modality alone.
Collapse
Affiliation(s)
- Jian Wang
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
- Ministry of Education Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences Southwest University Chongqing, 400715 (PR China)
| | - Mingxu You
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
| | - Guizhi Zhu
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
| | - Mohammed Ibrahim Shukoor
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
| | - Zhuo Chen
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China. Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Zilong Zhao
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China. Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Meghan B. Altman
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
| | - Quan Yuan
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China. Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Zhi Zhu
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China. Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Yan Chen
- Center for Research at the Bio/Nano Interface Department of Chemistry and Shands Cancer Center University of Florida Genetics Institute University of Florida Gainesville, FL 32611-7200 (USA)
| | - Cheng Zhi Huang
- Correspondence Authors: Weihong Tan, ; Tel: (+1) 352-846-2410. Cheng Zhi Huang, ; Tel: (+86) 23-68254659
| | - Weihong Tan
- Correspondence Authors: Weihong Tan, ; Tel: (+1) 352-846-2410. Cheng Zhi Huang, ; Tel: (+86) 23-68254659
| |
Collapse
|
33
|
Wezgowiec J, Derylo MB, Teissie J, Orio J, Rols MP, Kulbacka J, Saczko J, Kotulska M. Electric field-assisted delivery of photofrin to human breast carcinoma cells. J Membr Biol 2013; 246:725-35. [PMID: 23546012 PMCID: PMC3786094 DOI: 10.1007/s00232-013-9533-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/08/2013] [Indexed: 12/21/2022]
Abstract
The influence of electroporation on the Photofrin uptake and distribution was evaluated in the breast adenocarcinoma cells (MCF-7) and normal Chinese hamster ovary cells (CHO) lacking voltage-dependent channels in vitro. Photofrin was used at a concentration of 5 and 25 μM. The uptake of Photofrin was assessed using flow cytometry and fluorescence microscopy methods. Cells viability was evaluated with crystal violet assay. Our results indicated that electropermeabilization of cells, in the presence of Photofrin, increased the uptake of the photosensitizer. Even at the lowest electric field intensity (700 V/cm) Photofrin transport was enhanced. Flow cytometry results for MCF-7 cells revealed ~1.7 times stronger fluorescence emission intensity for cells exposed to Photofrin and electric field of 700 V/cm than cells treated with Photofrin alone. Photofrin was effective only when irradiated with blue light. Our studies on combination of photodynamic reaction with electroporation suggested improved effectiveness of the treatment and showed intracellular distribution of Photofrin. This approach may be attractive for cancer treatment as enhanced cellular uptake of Photofrin in MCF-7 cells can help to reduce effective dose of the photosensitizer and exposure time in this type of cancer, diminishing side effects of the therapy.
Collapse
Affiliation(s)
- Joanna Wezgowiec
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Maria B. Derylo
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Justin Teissie
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Julie Orio
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Marie-Pierre Rols
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), 205 route de Narbonne, 31077 Toulouse, France
- Université de Toulouse, UPS, IPBS, 31077 Toulouse, France
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wrocław Medical University, Chalubinskiego 10, 50-368 Wrocław, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wrocław Medical University, Chalubinskiego 10, 50-368 Wrocław, Poland
| | - Malgorzata Kotulska
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
34
|
Liu KH, Wang CP, Chang MF, Chung YW, Lou PJ, Lin JH. Molecular characterization of photosensitizer-mediated photodynamic therapy by gene expression profiling. Hum Exp Toxicol 2013; 33:629-37. [PMID: 24064908 DOI: 10.1177/0960327113485257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is a novel cancer treatment based on the tumor-specific accumulation of a photosensitizer followed by irradiation with visible light, which induces selective tumor cell death via production of reactive oxygen species. To elucidate the underlying mechanisms, microarray analysis was used to analyze the changes in gene expression patterns during PDT induced by various photosensitizers. Cancer cells were subjected to four different photosensitizer-mediated PDT and the resulting gene expression profiles were compared. We identified many differentially expressed genes reported previously as well as new genes for which the functionfunctions in PDT are still unclear. Our current results not only advance the general understanding of PDT but also suggest that distinct molecular mechanisms are involved in different photosensitizer-mediated PDT. Elucidating the signaling mechanisms in PDT will provide information to modulate the antitumor effectiveness of PDT using various photosensitizers.
Collapse
Affiliation(s)
- K-H Liu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - C-P Wang
- Department of Otolaryngology, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - M-F Chang
- Biomedical Engineering Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Y-W Chung
- Biomedical Engineering Center, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - P-J Lou
- Department of Otolaryngology, College of Medicine, National Taiwan University Hospital and National Taiwan University, Taipei, Taiwan
| | - J-H Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
35
|
Kimura T, Takatsuki S, Miyoshi S, Fukumoto K, Takahashi M, Ogawa E, Ito A, Arai T, Ogawa S, Fukuda K. Nonthermal cardiac catheter ablation using photodynamic therapy. Circ Arrhythm Electrophysiol 2013; 6:1025-31. [PMID: 23995252 DOI: 10.1161/circep.113.000810] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Radiofrequency ablation has limitations, largely related to creation of lesions by heating. Here, we report the first nonthermal ablation by applying photodynamic therapy (PDT) to cardiac tissues using a custom-made deflectable laser catheter. The present study investigated the feasibility of PDT for cavotricuspid isthmus ablation in a canine model. METHODS AND RESULTS We evaluated the pharmacokinetic profiles of 17 canines after administration of a photosensitizer (talaporfin sodium) by various protocols. We succeeded in maintaining the photosensitizer concentration at a level in excess of the clinically effective dose for humans. Using a 4-polar 7-French deflectable laser catheter, we performed PDT-mediated cavotricuspid isthmus ablation in 8 canines. PDT caused oxidative injury only to the irradiated area and successfully produced a persistent electric conduction block. No acute, gross changes such as edematous degeneration, thrombus formation, steam pops, or traumatic injury were observed after irradiation. Hematoxylin and eosin staining of tissues samples also showed well-preserved endothelial layers. Testing of the blood samples taken before and after the procedure revealed no remarkable changes. Lesion size at 2 weeks after the procedure and the temperature data collected during irradiation were compared between the PDT and irrigated radiofrequency ablation procedures. A ventricular cross-section revealed a solid PDT lesion, which was as deep as a radiofrequency lesion. In addition, endocardial, surficial, and intramural temperature monitoring during the PDT irradiation clearly demonstrated the nonthermal nature of the ablation technique. CONCLUSIONS Nonthermal PDT-mediated catheter ablation is a potentially novel treatment for cardiac arrhythmias.
Collapse
Affiliation(s)
- Takehiro Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kiesslich T, Tortik N, Pichler M, Neureiter D, Plaetzer K. Apoptosis in cancer cells induced by photodynamic treatment – a methodological approach. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613300036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is approved for clinical indications including several (pre-) cancers of the skin and solid tumors of the brain and the gastrointestinal tract. It operates by an acute cellular response caused by oxidation of cell components following light-induced and photosensitizer-mediated generation of reactive oxygen species. By this, PDT is capable of inducing the major types of cytotoxic responses: autophagy, apoptosis, and necrosis. As excited photosensitizer molecules react rather non-specifically with neighboring molecules, we suggest that with PDT and most (if not any) cell-localizing photosensitizers, all kinds of cellular responses can be provoked — following a strict dose-dependency, i.e. a transition from survival, over apoptosis to necrosis depending on the applied photosensitizer concentration or light dose. In this review, we briefly discuss (i) the types of cell death induced by PDT focusing on apoptosis induction, (ii) a simple experimental approach to quickly assess the dose-dependent phototoxic responses based on viability assays, and (iii) an overview of in vitro apoptosis detection methods for further in depth analyses. With this conceptual framework, we attempt to provide a rational experimental approach for initial in vitro, cell-based characterization of newly synthesized photosensitizers or formulations thereof — thus to plug the gap between subsequent in vivo evaluation and the preceding fundamental (physico-)chemical work devoted to the improvement of photosensitizing drugs based on mainly porphyrins, phthalocyanines and their derivatives.
Collapse
Affiliation(s)
- Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Muellner Haupstrasse 48, 5020 Salzburg, Austria
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nicole Tortik
- Laboratory of Photodynamic Inactivation of Microorganisms (PDI-PLUS), Division of Physics and Biophysics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Auenbruggerplatz 15, 8036 Graz, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Muellner Haupstrasse 48, 5020 Salzburg, Austria
| | - Kristjan Plaetzer
- Laboratory of Photodynamic Inactivation of Microorganisms (PDI-PLUS), Division of Physics and Biophysics, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
37
|
Photodynamic therapy for cholangiocarcinoma using low dose mTHPC (Foscan(®)). Photodiagnosis Photodyn Ther 2013; 10:220-8. [PMID: 23993847 DOI: 10.1016/j.pdpdt.2012.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) combined with stenting is an effective treatment modality for palliation of nonresectable cholangiocarcinoma (CC). A drawback of standard PDT using Photofrin(®) as photosensitizer is the long lasting skin photosensitivity of up to 3 months. The aim of this study was to show the outcome of PDT of CC, potential side effects and to determine the best drug light interval (DLI) using mTHPC (Foscan(®)) at a low dose. METHODS 13 patients with nonresectable CC were treated with stenting and PDT (3mg Foscan(®) per treatment, 0.032-0.063 mg/kg body weight, 652 nm, 50 J/cm). Fluorescence measurements were performed with a single bare fiber for 5/13 patients prior to PDT at the tumor site to determine the fluorescence contrast. For another 7/13 patients, long-term fluorescence-kinetics were measured on the oral mucosa to determine the time of maximal relative fluorescence intensity. RESULTS The results so far indicate a median survival time of 13 months. Side effects such as perforations or skin phototoxicity could not be observed. Foscan(®) fluorescence within the tumor site was clearly detectable but a significant fluorescence contrast of tumor to adjacent healthy tissue could not be found. The fluorescence kinetics measured in the oral mucosa showed a maximum at 3.85 days (median) after drug administration. CONCLUSION Combined stenting and PDT performed with a low Foscan(®) dose results in equal and potentially longer survival times compared to standard Photofrin(®) PDT, while lowering the risk of side effects strongly. Thus it may improve the quality of life.
Collapse
|
38
|
Khurana M, Ulrich S, Kim A, Moriyama Y, Netchev G, Akens MK, Anderson HL, Wilson BC. Biodistribution and Pharmacokinetic Studies of a Porphyrin Dimer Photosensitizer (Oxdime) by Fluorescence Imaging and Spectroscopy in Mice Bearing Xenograft Tumors. Photochem Photobiol 2012; 88:1531-8. [DOI: 10.1111/j.1751-1097.2012.01194.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Photofrin binds to procaspase-3 and mediates photodynamic treatment-triggered methionine oxidation and inactivation of procaspase-3. Cell Death Dis 2012; 3:e347. [PMID: 22785533 PMCID: PMC3406584 DOI: 10.1038/cddis.2012.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diverse death phenotypes of cancer cells can be induced by Photofrin-mediated photodynamic therapy (PDT), which has a decisive role in eliciting a tumor-specific immunity for long-term tumor control. However, the mechanism(s) underlying this diversity remain elusive. Caspase-3 is a critical factor in determining cell death phenotypes in many physiological settings. Here, we report that Photofrin-PDT can modify and inactivate procaspase-3 in cancer cells. In cells exposed to an external apoptotic trigger, high-dose Photofrin-PDT pretreatment blocked the proteolytic activation of procaspase-3 by its upstream caspase. We generated and purified recombinant procaspase-3-D3A (a mutant without autolysis/autoactivation activity) to explore the underlying mechanism(s). Photofrin could bind directly to procaspase-3-D3A, and Photofrin-PDT-triggered inactivation and modification of procaspase-3-D3A was seen in vitro. Mass spectrometry-based quantitative analysis for post-translational modifications using both 16O/18O- and 14N/15N-labeling strategies revealed that Photofrin-PDT triggered a significant oxidation of procaspase-3-D3A (mainly on Met-27, -39 and -44) in a Photofrin dose-dependent manner, whereas the active site Cys-163 remained largely unmodified. Site-directed mutagenesis experiments further showed that Met-44 has an important role in procaspase-3 activation. Collectively, our results reveal that Met oxidation is a novel mechanism for the Photofrin-PDT-mediated inactivation of procaspase-3, potentially explaining at least some of the complicated cell death phenotypes triggered by PDT.
Collapse
|
40
|
Abstract
The photosensitizing and pharmacokinetic properties of porphyrin-type compounds have been investigated for nearly a century. In the last decade, two porphyrin derivatives were approved in the U.S.A. and in several other countries for the photodynamic treatment of various lesions. An overview of the different mechanisms for preferential porphyrinoid localization in malignant tumors is presented herein. Several uptake pathways are possible for each photosensitizer, which are determined by its structure, mode of delivery and tumor type. Comparisons of the different mechanisms and correlations with the structure of the sensitizer are presented. Current delivery systems for porphyrin sensitizers are described, as well as recent strategies for enhancing their tumor-specificity, including conjugation to a carrier system that selectively targets a tumor-associated receptor or antigen.
Collapse
Affiliation(s)
- Jens Osterloh
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
41
|
Subcellular co-localization of aluminum (III) phthalocyanine chloride tetrasulphonate with fluorescent markers in the human melanoma cell-line HT-144. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.mla.2011.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Chiu SM, Xue LY, Lam M, Rodriguez ME, Zhang P, Kenney ME, Nieminen AL, Oleinick NL. A requirement for bid for induction of apoptosis by photodynamic therapy with a lysosome- but not a mitochondrion-targeted photosensitizer. Photochem Photobiol 2011; 86:1161-73. [PMID: 20553412 DOI: 10.1111/j.1751-1097.2010.00766.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) with lysosome-targeted photosensitizers induces the intrinsic pathway of apoptosis via the cleavage and activation of the BH3-only protein Bid by proteolytic enzymes released from photodisrupted lysosomes. To investigate the role of Bid in apoptosis induction and the role of damaged lysosomes on cell killing by lysosome-targeted PDT, we compared the responses of wild type and Bid-knock-out murine embryonic fibroblasts toward a mitochondrion/endoplasmic reticulum-binding photosensitizer, Pc 4, and a lysosome-targeted sensitizer, Pc 181. Whereas apoptosis and overall cell killing were induced equally well by Pc 4-PDT in both cell lines, Bid(-/-) cells were relatively resistant to induction of apoptosis and to overall killing following PDT with Pc 181, particularly at low PDT doses. Thus, Bid is critical for the induction of apoptosis caused by PDT with the lysosome-specific sensitizers, but dispensable for PDT targeted to other membranes.
Collapse
Affiliation(s)
- Song-Mao Chiu
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chiaviello A, Postiglione I, Palumbo G. Targets and mechanisms of photodynamic therapy in lung cancer cells: a brief overview. Cancers (Basel) 2011; 3:1014-41. [PMID: 24212652 PMCID: PMC3756402 DOI: 10.3390/cancers3011014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 01/09/2023] Open
Abstract
Lung cancer remains one of the most common cancer-related causes of death. This type of cancer typically develops over a period of many years, and if detected at an early enough stage can be eliminated by a variety of treatments including photodynamic therapy (PDT). A critical discussion on the clinical applications of PDT in lung cancer is well outside the scope of the present report, which, in turn focuses on mechanistic and other aspects of the photodynamic action at a molecular and cellular level. The knowledge of these issues at pre-clinical levels is necessary to develop, check and adopt appropriate clinical protocols in the future. This report, besides providing general information, includes a brief overview of present experimental PDT and provides some non-exhaustive information on current strategies aimed at further improving the efficacy, especially in regard to lung cancer cells.
Collapse
Affiliation(s)
- Angela Chiaviello
- Department of Biologia e Patologia Cellulare e Molecolare "L. Califano" - Università Federico II, Via S. Pansini, 5 80131 Naples, Italy.
| | | | | |
Collapse
|
44
|
Tomioka Y, Kushibiki T, Awazu K. Evaluation of oxygen consumption of culture medium and in vitro photodynamic effect of talaporfin sodium in lung tumor cells. Photomed Laser Surg 2010; 28:385-90. [PMID: 19860571 DOI: 10.1089/pho.2008.2468] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Successful photodynamic therapy (PDT) requires high production of radical ions and singlet oxygen to kill target cells. However, PDT also induces angiogenesis through production of vascular endothelial growth factor (VEGF), which promotes cell regrowth and vascularization. In this study, we evaluated the importance of oxygen in PDT by measuring oxygen consumption, photosensitizer bleaching, and reactive oxygen species (ROS) production in the culture medium, and VEGF secretion either during or after PDT treatment using mouse Lewis lung carcinoma (LLC) cells. BACKGROUND DATA Local hypoxia is induced under a low oxygen environment. Oxygen is consumed when ROS and singlet oxygen are produced during PDT. The effect of oxygen consumption on cytotoxicity and VEGF secretion has not been clarified. MATERIALS AND METHODS Mouse Lewis lung carcinoma (LLC) cells treated with the photosensitizer talaporfin sodium were irradiated by a continuous wave semiconductor laser (wavelength, 664 +/- 1 nm). We used oxygen microelectrode for oxygen measurement, a fluorescent probe to detect ROS, MTT assay to evaluate the PDT efficacy, and enzyme-linked immunosorbent assay to measure VEGF concentration. RESULTS During PDT, oxygen consumption was higher with high doses of talaporfin sodium solution compared with low doses. In addition, the fluorescence of 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid, a probe for highly reactive oxygen species such as hydroxyl radicals (*OH), dramatically increased when the dose of talaporfin sodium solution was high. Moreover, VEGF concentration increased after PDT due to hypoxia in a manner dependent on photosensitizer concentration. CONCLUSION These results indicate that the efficiency of PDT might be improved by sustaining a replete oxygen environment during PDT, not only for ROS and singlet oxygen production, but also for inhibiting neoangiogenesis.
Collapse
Affiliation(s)
- Yutaka Tomioka
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
45
|
Chen X, Zhao P, Chen F, Li L, Luo R. Effect and mechanism of 5-aminolevulinic acid-mediated photodynamic therapy in esophageal cancer. Lasers Med Sci 2010; 26:69-78. [PMID: 20676910 DOI: 10.1007/s10103-010-0810-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 06/14/2010] [Indexed: 12/14/2022]
Abstract
5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) provides a novel and promising treatment for esophageal cancer. However, its specific mechanism has not been fully elucidated and its efficacy is remarkably varied. This study investigated the effect of ALA-PDT on esophageal squamous carcinoma cell line Eca-109 in vitro and vivo to explore optimal parameters, and evaluated the significance of cell apoptosis, cell cycle, ALA-protoporphyrin IX (ALA-PpIX) subcellular localization, and expression of Bcl-2 and Bax mRNA in cells to understand the mechanism of ALA-PDT for esophageal cancer. How ALA concentration, incubation time, and laser irradiation dose influenced the cell proliferation was determined by MTT assay. ALA-PpIX subcellular localization was analyzed by confocal microscopy. The mRNA changes were detected by quantitative real-time polymerase chain reaction (QRT-PCR). Tumor models transplanted with Eca-109 cells in nude mice were established (n = 10) and killed (n = 4) at 24 h post-PDT for malondialdehyde (MDA) detection and histological study. The remaining mice were measured the tumor size for 3 weeks after treatment. Our data show that ALA-PDT significantly inhibits cell proliferation (p < 0.05), the PDT efficacy depends on the saturation of ALA concentration, incubation time, and laser irradiation dose, and the best effect in tumor destruction is at 7-14 days post-PDT. ALA-PpIX is localized in mitochondria and cytoplasm. ALA-PDT induces cell apoptosis and arrests cell cycle at G0/G1 phase. Bcl-2 is significantly down-regulated while Bax is up-regulated (p < 0.05). The results of this study provide references in choosing clinical optimal PDT parameters and help in better understanding the PDT mechanism for esophageal cancer.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | | | | | | | | |
Collapse
|
46
|
Hsieh YJ, Yu JS, Lyu PC. Characterization of photodynamic therapy responses elicited in A431 cells containing intracellular organelle-localized photofrin. J Cell Biochem 2010; 111:821-33. [DOI: 10.1002/jcb.22767] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Wang P, Xiao L, Wang X, Li X, Liu Q. Sonodynamic effects of protoporphyrin IX disodium salt on Ehrlich ascetic tumor cells. ULTRASONICS 2010; 50:634-638. [PMID: 20189622 DOI: 10.1016/j.ultras.2010.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 05/28/2023]
Abstract
The cytotoxic effect of protoporphyrin IX disodium salt (PPIX) on isolated Ehrlich ascetic tumor (EAT) cells induced by ultrasound exposure was investigated. Tumor cells suspended in air-saturated phosphate buffer solution (PBS, pH 7.2) were exposed to ultrasound at 2.2MHz for up to 60 s in the presence and absence of PPIX. The viability of cells was determined by a trypan blue exclusion test. The morphological changes of cells in SDT were observed by scanning electron microscope (SEM). And the sub-cellular localization of PPIX in EAT cells was detected by confocal laser scanning microscopy (CLSM). The ultrasonically-induced cell damage increased as PPIX concentration increased, while no cell damage was observed with PPIX alone. CLSM observation revealed that the fluorescence of PPIX and rhodamine 123 (mitochondrial probe) overlapped very well in the cytoplasm. The results indicate that PPIX could enhance the ultrasonically-induced cell damage and mitochondria may play an important role during sonodynamically induced cytotoxicity.
Collapse
Affiliation(s)
- Pan Wang
- Key Laboratory of Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Shaanxi 710062, China
| | | | | | | | | |
Collapse
|
48
|
Takasaki AA, Aoki A, Mizutani K, Schwarz F, Sculean A, Wang CY, Koshy G, Romanos G, Ishikawa I, Izumi Y. Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol 2000 2010; 51:109-40. [PMID: 19878472 DOI: 10.1111/j.1600-0757.2009.00302.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Yanase S, Nomura J, Matsumura Y, Watanabe Y, Tagawa T. Synergistic Increase in Osteosarcoma Cell Sensitivity to Photodynamic Therapy with Aminolevulinic Acid Hexyl Ester in the Presence of Hyperthermia. Photomed Laser Surg 2009; 27:791-7. [DOI: 10.1089/pho.2008.2329] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shigeaki Yanase
- Department of Oral and Maxillofacial Surgery, Division of Reparative and Regenerative Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Dentistry and Oral Surgery, Mie Chuou Medical Center, Tsu, Mie, Japan
| | - Jouji Nomura
- Department of Oral and Maxillofacial Surgery, Division of Reparative and Regenerative Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiko Matsumura
- Department of Oral and Maxillofacial Surgery, Division of Reparative and Regenerative Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiro Watanabe
- Department of Oral and Maxillofacial Surgery, Division of Reparative and Regenerative Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Toshiro Tagawa
- Department of Oral and Maxillofacial Surgery, Division of Reparative and Regenerative Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
50
|
Levanon D, Manov I, Iancu TC. Qualitative and Quantitative Analysis of the Effects of Acetaminophen and N-Acetylcysteine on the Surface Morphology of Hep3B Hepatoma Cells in V itro. Ultrastruct Pathol 2009. [DOI: 10.1080/01913120490275204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|