1
|
Chiew AL, Isbister GK. Advances in the understanding of acetaminophen toxicity mechanisms: a clinical toxicology perspective. Expert Opin Drug Metab Toxicol 2023; 19:601-616. [PMID: 37714812 DOI: 10.1080/17425255.2023.2259787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/02/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023]
Abstract
INTRODUCTION Acetaminophen (paracetamol) is a commonly used analgesic and antipyretic agent, which is safe in therapeutic doses. Acetaminophen poisoning due to self-harm or repeated supratherapeutic ingestion is a common cause of acute liver injury. Acetylcysteine has been a mainstay of treatment for acetaminophen poisoning for decades and is efficacious if administered early. However, treatment failures occur if administered late, in 'massive' overdoses or in high-risk patients. AREAS COVERED This review provides an overview of the mechanisms of toxicity of acetaminophen poisoning (metabolic and oxidative phase) and how this relates to the assessment and treatment of the acetaminophen poisoned patient. The review focuses on how these advances offer further insight into the utility of novel biomarkers and the role of proposed adjunct treatments. EXPERT OPINION Advances in our understanding of acetaminophen toxicity have allowed the development of novel biomarkers and a better understanding of how adjunct treatments may prevent acetaminophen toxicity. Newly proposed adjunct treatments like fomepizole are being increasingly used without robust clinical trials. Novel biomarkers (not yet clinically available) may provide better assessment of these newly proposed adjunct treatments, particularly in clinical trials. These advances in our understanding of acetaminophen toxicity and liver injury hold promise for improved diagnosis and treatment.
Collapse
Affiliation(s)
- Angela L Chiew
- Department of Clinical Toxicology, Prince of Wales Hospital, Randwick, NSW, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, New South Wales, Australia
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
| | - Geoffrey K Isbister
- New South Wales Poisons Information Centre, Sydney Children's Hospital, Sydney, New South Wales, Australia
- Clinical Toxicology Research Group, University of Newcastle, Callaghan, NSW, Australia
- Department of Clinical Toxicology, Calvary Mater Newcastle, Waratah, NSW, Australia
| |
Collapse
|
2
|
Ahmed LA, Abd El-Rhman RH, Gad AM, Hassaneen SK, El-Yamany MF. Dibenzazepine combats acute liver injury in rats via amendments of Notch signaling and activation of autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:337-348. [PMID: 32984915 DOI: 10.1007/s00210-020-01977-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/13/2020] [Indexed: 02/08/2023]
Abstract
Paracetamol is a commonly used over-the-counter analgesic and antipyretic drug. Nevertheless, an overdose of paracetamol leads to hepatic necrosis that can be lethal. This study aimed to assess the potential hepatoprotective effects of dibenzazepine, a Notch inhibitor, against acute liver injury in rats via interfering with oxidative stress, inflammation, apoptosis, autophagy, and Notch signaling. Silymarin (200 mg/kg, p.o.) or dibenzazepine (2 mg/kg, i.p.) were administered to rats for 5 days before a single hepatotoxic dose of paracetamol (800 mg/kg, i.p.). Pretreatment with silymarin and dibenzazepine significantly mitigated oxidative stress, inflammatory and apoptotic markers induced by paracetamol hepatotoxicity where dibenzazepine showed greater repression of inflammation. Furthermore, dibenzazepine was found to be significantly more efficacious than silymarin in inhibiting Notch signaling as represented by expression of Notch-1 and Hes-1. A significantly greater response was also demonstrated with dibenzazepine pretreatment with regard to the expression of autophagic proteins, Beclin-1 and LC-3. The aforementioned biochemical results were confirmed by histopathological examination. Autophagy and Notch signaling seem to play a significant role in protection provided by dibenzazepine for paracetamol-induced hepatotoxicity in rats, which could explain its superior results relative to silymarin. Graphical abstract.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Rana H Abd El-Rhman
- Department of Pharmacology, Egyptian Drug Authority formerly National Organization for Drug Control and Research, Giza, Egypt
| | - Amany M Gad
- Department of Pharmacology, Egyptian Drug Authority formerly National Organization for Drug Control and Research, Giza, Egypt
| | - Sherifa K Hassaneen
- Department of Pharmacology, Egyptian Drug Authority formerly National Organization for Drug Control and Research, Giza, Egypt
| | - Mohamad F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
McGill MR, Hinson JA. The development and hepatotoxicity of acetaminophen: reviewing over a century of progress. Drug Metab Rev 2020; 52:472-500. [PMID: 33103516 DOI: 10.1080/03602532.2020.1832112] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetaminophen (APAP) was first synthesized in the 1800s, and came on the market approximately 65 years ago. Since then, it has become one of the most used drugs in the world. However, it is also a major cause of acute liver failure. Early investigations of the mechanisms of toxicity revealed that cytochrome P450 enzymes catalyze formation of a reactive metabolite in the liver that depletes glutathione and covalently binds to proteins. That work led to the introduction of N-acetylcysteine (NAC) as an antidote for APAP overdose. Subsequent studies identified the reactive metabolite N-acetyl-p-benzoquinone imine, specific P450 enzymes involved, the mechanism of P450-mediated oxidation, and major adducted proteins. Significant gaps remain in our understanding of the mechanisms downstream of metabolism, but several events appear critical. These events include development of an initial oxidative stress, reactive nitrogen formation, altered calcium flux, JNK activation and mitochondrial translocation, inhibition of mitochondrial respiration, the mitochondrial permeability transition, and nuclear DNA fragmentation. Additional research is necessary to complete our knowledge of the toxicity, such as the source of the initial oxidative stress, and to greatly improve our understanding of liver regeneration after APAP overdose. A better understanding of these mechanisms may lead to additional treatment options. Even though NAC is an excellent antidote, its effectiveness is limited to the first 16 hours following overdose.
Collapse
Affiliation(s)
- Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, Little Rock, AR, USA.,Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jack A Hinson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Abstract
Acetaminophen (APAP)-induced acute liver failure (ALF) is a life-threatening disease with only a few treatment options available. Though extensive research has been conducted for more than 40 years, the underlying pathomechanisms are not completely understood. Here, we studied as to whether APAP-induced ALF can be prevented in mice by silencing the BH3-interacting domain death agonist (Bid) as a potential key player in APAP pathology. For silencing Bid expression in mice, siRNABid was formulated with the liver-specific siRNA delivery system DBTC and administered 48 h prior to APAP exposure. Mice which were pre-treated with HEPES (vehicleHEPES) and siRNALuci served as siRNA controls. Hepatic pathology was assessed by in vivo fluorescence microscopy, molecular biology, histology and laboratory analysis 6 h after APAP or PBS exposure. Application of siRNABid caused a significant decrease of mRNA and protein expression of Bid in APAP-exposed mice. Off-targets, such as cytochrome P450 2E1 and glutathione, which are known to be consumed under APAP intoxication, were comparably reduced in all APAP-exposed mice, underlining the specificity of Bid silencing. In APAP-exposed mice non-sterile inflammation with leukocyte infiltration and perfusion failure remained almost unaffected by Bid silencing. However, the Bid silencing reduced hepatocellular damage, evident by a remarkable decrease of DNA fragmented cells in APAP-exposed mice. In these mice, the expression of the pro-apoptotic protein Bax, which recently gained importance in the cell death pathway of regulated necrosis, was also significantly reduced, in line with a decrease in both, necrotic liver tissue and plasma transaminase activities. In addition, plasma levels of HMGB1, a marker of sterile inflammation, were significantly diminished. In conclusion, the liver-specific silencing of Bid expression did not protect APAP-exposed mice from microcirculatory dysfunction, but markedly protected the liver from necrotic cell death and in consequence from sterile inflammation. The study contributes to the understanding of the molecular mechanism of the APAP-induced pathogenic pathway by strengthening the importance of Bid and Bid silencing associated effects.
Collapse
|
5
|
Shu Y, He D, Li W, Wang M, Zhao S, Liu L, Cao Z, Liu R, Huang Y, Li H, Yang X, Lu C, Liu Y. Hepatoprotective Effect of Citrus aurantium L. Against APAP-induced Liver Injury by Regulating Liver Lipid Metabolism and Apoptosis. Int J Biol Sci 2020; 16:752-765. [PMID: 32071546 PMCID: PMC7019131 DOI: 10.7150/ijbs.40612] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/01/2019] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP) refers to a medication used to manage pain and fever symptoms, but it always causes liver injury when overdosed. Zhishi, dried young fruit of Citrus aurantium L., is a famous Citrus herbal medicine in Asian countries which is rich in dietary phenolic substances. In this study, the mechanism of Zhishi protected against APAP-induced liver injury was studied more deeply by metabolomic strategy and pharmacological study. The metabolomics results demonstrated that Zhishi can prevent the APAP-induced liver injury model by regulating liver metabolic disorders in glycerophospholipid metabolism, fatty acid biosynthesis and glycerolipid metabolism. Moreover, it is confirmed that Zhishi blocked apoptosis of APAP-induced BRL-3A cell by simultaneously regulating p53 up-regulated apoptosis regulator (PUMA), AMPK-SIRT1 and JNK1 signaling pathways. Our findings indicated that Zhishi exhibited a hepaprotective effect against APAP-induced liver necrosis by inhibiting the PUMA and reversing disorder of liver lipid metabolism which could assist in improving the clinical outcomes of chemical-induced liver injury.
Collapse
Affiliation(s)
- Yisong Shu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan He
- Patent Examination Cooperation (Tianjin) Center of the Patent Office, Tianjin, 300304, China
| | - Wen Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Menglei Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Zhao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linlin Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yujuan Huang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Li
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xueqing Yang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuanyan Liu
- Beijing University of Chinese Medicine, Beijing, 100029, China
| |
Collapse
|
6
|
Li S, Leeming MG, O'Hair RAJ. What are the Potential Sites of DNA Attack by N-Acetyl-p-benzoquinone Imine (NAPQI)? Aust J Chem 2020. [DOI: 10.1071/ch19361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic bioactivation of small molecules can produce electrophilic metabolites that can covalently modify proteins and DNA. Paracetamol (APAP) is a commonly used over-the-counter analgesic, and its hepatotoxic side effects have been postulated to be due to the formation of the electrophilic metabolite N-acetylbenzoquinone imine (NAPQI). It has been established that NAPQI reacts to form covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. While there have been scattered reports that APAP can form adducts with DNA the nature of these adducts have not yet been fully characterised. Here the four deoxynucleosides, deoxyguanosine (dG), deoxyadenosine (dA), deoxycytidine (dC), and deoxythymidine (dT) were reacted with NAPQI and the formation of adducts was profiled using liquid chromatography–mass spectrometry with positive-ion mode electrospray ionisation and collision-induced dissociation. Covalent adducts were detected for dG, dA, and dC and tandem mass spectrometry (MS/MS) spectra revealed common neutral losses of deoxyribose (116 amu) arising from cleavage of the glyosidic bond with formation of the modified nucleobase. Of the four deoxynucleosides, dC proved to be the most reactive, followed by dG and dA. A pH dependence was found, with greater reactivity being observed at pH 5.5. The results of density functional theory calculations aimed at understanding the relative reactivities of the four deoxynucleosides towards NAPQI are described.
Collapse
|
7
|
Mohammadi S, Nezami A, Esmaeili Z, Rouini MR, Ardakani YH, Lavasani H, Hassanzadeh G, Ghazi-Khansari M. Pharmacokinetic changes of tramadol in rats with hepatotoxicity induced by ethanol and acetaminophen in perfused rat liver model. Alcohol 2019; 77:49-57. [PMID: 30248395 DOI: 10.1016/j.alcohol.2018.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
Tramadol is an opioid agonist with activation monoaminergic properties. It can be administered orally, rectally, intravenously, or intramuscularly as a centrally acting analgesic. Liver injury can lead to changes in the metabolism of tramadol. In this study, the rate of tramadol metabolism in rats with damaged liver induced by ethanol and acetaminophen was assessed in a recirculation perfusion system. Acetaminophen is a mild analgesic and antipyretic agent, which can cause centrilobular hepatic necrosis in toxic doses, whereas alcohol causes death due to liver diseases. Alcoholic liver disease (ALD), such as alcoholic fatty liver, alcoholic hepatitis, and alcoholic fibrosis, is the most common liver disease. The aim of this study was to investigate the alteration in tramadol metabolism in different hepatotoxicity conditions in animal models. Male rats were randomly assigned to three groups. The control group received normal saline, group 2 received acetaminophen at the dose of 250 mg/kg/day, and group 3 received ethanol at the beginning dose of 3 g/kg/day, which was slowly increased to 6 g/kg/day. Tramadol was added to the perfusion solution at the concentration of 500 ng/mL. Samples were collected during 180 min, and analyte concentrations were determined by the High-Performance Liquid Chromatography (HPLC) method. The concentration of tramadol and its three main metabolites, O-desmethyltramadol (M1), N-desmethyltramadol (M2), and N,O-didesmethyltramadol (M5), were determined in perfusate samples. Ethanol and acetaminophen significantly affected the pattern of weight gain and liver weights before perfusion and caused a significant increase in enzyme activities. Moreover, histopathologic examination revealed that ethanol and acetaminophen caused liver damage. An increase in the elimination half-life and reduced clearance rate of tramadol were seen in the acetaminophen and ethanol groups, in comparison to the control group. Additionally, significant reductions in the Area Under the Curve (AUC) of metabolites of tramadol (M1, M2, and M5) were observed in the acetaminophen and ethanol groups in the perfused rat liver model. Liver damage caused by ethanol and acetaminophen during 45 days in animals leads to a significant reduction in the level of tramadol metabolites. Therefore, in patients with liver damage caused by ethanol and acetaminophen, caution needs to be considered when prescribing tramadol.
Collapse
|
8
|
Varlamov VT. Effect of Propanol-1 on the Reaction between Thiophenol and N,N'-Diphenyl-1,4-Benzoquinone Diimine in Chlorobenzene. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419040289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int J Mol Sci 2018; 19:ijms19123776. [PMID: 30486484 PMCID: PMC6321362 DOI: 10.3390/ijms19123776] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, Maharashtra 424 001, India.
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
10
|
Ibrahim SRM, El-Agamy DS, Abdallah HM, Ahmed N, Elkablawy MA, Mohamed GA. Protective activity of tovophyllin A, a xanthone isolated from Garcinia mangostana pericarps, against acetaminophen-induced liver damage: role of Nrf2 activation. Food Funct 2018; 9:3291-3300. [DOI: 10.1039/c8fo00378e] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tovophyllin A (TA) ameliorates APAP-induced hepatotoxicity by activating Nrf2 and inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry
- College of Pharmacy
- Taibah University
- Al Madinah Al Munawwarah 30078
- Saudi Arabia
| | - Dina S. El-Agamy
- Department of Pharmacology and Toxicology
- College of Pharmacy
- Taibah University
- Al-Madinah Al-Munawwarah
- Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine
- Faculty of Pharmacy
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Nishat Ahmed
- Department of Pharmacology and Toxicology
- College of Pharmacy
- Taibah University
- Al-Madinah Al-Munawwarah
- Saudi Arabia
| | - Mohamed A. Elkablawy
- Department of Pathology
- College of Medicine
- Taibah University
- Al-Madinah Al-Munawwarah
- Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine
- Faculty of Pharmacy
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| |
Collapse
|
11
|
Bae GH, Lee SK, Kim HS, Lee M, Lee HY, Bae YS. Lysophosphatidic acid protects against acetaminophen-induced acute liver injury. Exp Mol Med 2017; 49:e407. [PMID: 29217823 PMCID: PMC5750472 DOI: 10.1038/emm.2017.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 01/04/2023] Open
Abstract
We investigated the effect of lysophosphatidic acid (LPA) in experimental acetaminophen (APAP)-induced acute liver injury. LPA administration significantly reduced APAP-challenged acute liver injury, showing attenuated liver damage, liver cell death and aspartate aminotransferase and alanine aminotransferase levels. APAP overdose-induced mortality was also significantly decreased by LPA administration. Regarding the mechanism involved in LPA-induced protection against acute liver injury, LPA administration significantly increased the glutathione level, which was markedly decreased in APAP challenge-induced acute liver injury. LPA administration also strongly blocked the APAP challenge-elicited phosphorylation of JNK, ERK and GSK3β, which are involved in the pathogenesis of acute liver injury. Furthermore, LPA administration decreased the production of TNF-α and IL-1β in an experimental drug-induced liver injury animal model. Mouse primary hepatocytes express LPA1,3-6, and injection of the LPA receptor antagonist KI16425 (an LPA1,3-selective inhibitor) or H2L 5765834 (an LPA1,3,5-selective inhibitor) did not reverse the LPA-induced protective effects against acute liver injury. The therapeutic administration of LPA also blocked APAP-induced liver damage, leading to an increased survival rate. Collectively, these results indicate that the well-known bioactive lipid LPA can block the pathogenesis of APAP-induced acute liver injury by increasing the glutathione level but decreasing inflammatory cytokines in an LPA1,3,5-independent manner. Our results suggest that LPA might be an important therapeutic agent for drug-induced liver injury.
Collapse
Affiliation(s)
- Geon Ho Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung Kyun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Sik Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Seoul, Republic of Korea
| |
Collapse
|
12
|
Chu L, Li P, Song T, Han X, Zhang X, Song Q, Liu T, Zhang Y, Zhang J. Protective effects of tannic acid on pressure overload-induced cardiac hypertrophy and underlying mechanisms in rats. J Pharm Pharmacol 2017. [DOI: 10.1111/jphp.12763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
The aim of this study was to examine the cardioprotective effects and latent mechanism of tannic acid (TA) on cardiac hypertrophy.
Methods
Abdominal aortic banding (AAB) was used to induce pressure overload-induced cardiac hypertrophy in male Wistar rats, sham-operated rats served as controls. AAB rats were treated with TA (20 and 40 mg/kg) or captoril.
Key findings
Abdominal aortic banding rats that received TA showed ameliorated pathological changes in cardiac morphology and coefficients, decreased cardiac hypertrophy and apoptosis, a reduction in over expressions of angiotensin type 1 receptor (AT1R), angiotensin type 2 receptor (AT2R), phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and transforming growth factor-β (TGF-β) mRNA, and modified expression of matrix metal proteinase-9 (MMP-9) mRNA in AAB rat hearts. Furthermore, TA treatment contributed to a decrease in malondialdehyde (MDA) and endothelin-1 (ET-1) activities and content, while it caused an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), nitric oxide (NO) and endothelial NO synthase (e-NOS). Furthermore, TA downregulated expression of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), bax, caspase-3 and upregulated expression of bcl-2.
Conclusions
Tannic acid displayed obvious suppression of AAB-induced cardiac hypertrophy in rats. The cardioprotective effects of TA may be attributed to multitargeted inhibition of oxidative stress, inflammation, fibrosis and apoptosis in addition to an increase in NO levels, decrease in ET-1 levels, and downregulation of angiotensin receptors and the phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Li Chu
- Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Pinya Li
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Song
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Han
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qiongtao Song
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tao Liu
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuanyuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianping Zhang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
13
|
Loiola LMD, Cortez Tornello PR, Abraham GA, Felisberti MI. Amphiphilic electrospun scaffolds of PLLA–PEO–PPO block copolymers: preparation, characterization and drug-release behaviour. RSC Adv 2017. [DOI: 10.1039/c6ra25023h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-loaded nanofibrous scaffolds containing hydrophilic or hydrophobic drugs presented encapsulation efficiency, distribution and release dependent on copolymer composition.
Collapse
Affiliation(s)
| | - Pablo R. Cortez Tornello
- Research Institute of Materials Science and Technology
- INTEMA (UNMdP – CONICET)
- Mar del Plata
- Argentina
| | - Gustavo A. Abraham
- Research Institute of Materials Science and Technology
- INTEMA (UNMdP – CONICET)
- Mar del Plata
- Argentina
| | | |
Collapse
|
14
|
Ohba H, Kanazawa M, Kakiuchi T, Tsukada H. Effects of acetaminophen on mitochondrial complex I activity in the rat liver and kidney: a PET study with 18F-BCPP-BF. EJNMMI Res 2016; 6:82. [PMID: 27873239 PMCID: PMC5118230 DOI: 10.1186/s13550-016-0241-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/15/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND In the present study, 2-tert-butyl-4-chloro-5-[6-(4-18F-fluorobutoxy)-pyridin-3-ylmethoxy]-2H-pyridazin-3-one (18F-BCPP-BF), a PET probe for mitochondrial complex I (MC-I), was used to validate whether MC-I is a useful biomarker for detecting acetaminophen-induced dysfunctions in the liver and kidney. The kinetic and distribution of 18F-BCPP-BF were assessed in rats using high-resolution animal PET in vivo. The binding specificity of 18F-BCPP-BF to MC-I in the liver and kidney was confirmed by the pre-administration of rotenone, a specific MC-I inhibitor. The effects of acetaminophen on MC-I activity were assessed 2 and 24 h after the administration of vehicle or acetaminophen at a dose of 100 or 300 mg/kg. Biochemical parameters in plasma and urine were assessed 2, 6, and 24 h after the administration of vehicle or acetaminophen. RESULTS The uptake of 18F-BCPP-BF by the liver and kidney was significantly inhibited by the pre-administration of rotenone. Two and more hours after the administration of acetaminophen, the uptake of 18F-BCPP-BF was dose-dependently reduced in the liver, even at 100 mg/kg, and in the kidney at 300 mg/kg, whereas biological parameters started to be affected 6 h or later at doses of 300 mg/kg. CONCLUSIONS The present study demonstrated that 18F-BCPP-BF has potential as a PET probe for the quantitative imaging of hepatic and renal dysfunction as impaired MC-I activity in the early phase of the treatment for an overdose of acetaminophen in the living body with PET.
Collapse
Affiliation(s)
- Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Masakatsu Kanazawa
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Takeharu Kakiuchi
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamamatsu, Shizuoka, 434-8601, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamamatsu, Shizuoka, 434-8601, Japan.
| |
Collapse
|
15
|
Ni HM, McGill MR, Chao X, Du K, Williams JA, Xie Y, Jaeschke H, Ding WX. Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J Hepatol 2016; 65:354-62. [PMID: 27151180 PMCID: PMC4955750 DOI: 10.1016/j.jhep.2016.04.025] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in the US and many other countries. Metabolism of APAP results in formation of APAP protein adducts (APAP-AD) in hepatocytes and triggers mitochondrial dysfunction and necrosis. However, the mechanisms for how APAP-AD are removed from hepatocytes remain unknown. METHODS Mice or primary hepatocytes were treated with APAP. APAP-AD were determined by immunoblot, immunostaining and high pressure liquid chomatography with electrochemical detection analysis. RESULTS We found that APAP-AD were detected at 1h, peaked at approximately 2h, declined at 6h and almost full removed at 24h post treatment with APAP in mouse livers and in primary mouse hepatocytes. APAP-AD displayed a punctate pattern and were colocalized with GFP-LC3 positive autophagosomes and Lamp1 positive lysosomes in APAP-treated primary hepatocytes. Moreover, isolated autophagosomes and autolysosomes from APAP-treated mouse livers contained APAP-AD, suggesting autophagy may selectively remove APAP-AD. APAP-AD were detected in both detergent soluble and insoluble pools in APAP-treated mouse livers and hepatocytes. More importantly, pharmacological inhibition of autophagy by leupeptin or chloroquine increased whereas induction of autophagy by Torin 1 decreased serum APAP-AD levels in APAP-treated mice, which correlated with alanine aminotransferase levels and liver necrosis. Furthermore, SQSTM1/p62, an autophagy receptor protein, was recruited to APAP-AD. Adenovirus-mediated shRNA knockdown of SQSTM1/p62 led to increased APAP-AD and necrosis in primary hepatocytes. CONCLUSIONS Our data indicate that APAP-AD are removed though selective autophagy. Pharmacological induction of autophagy may be a novel promising approach for treating APAP-induced liver injury. LAY SUMMARY Acetaminophen overdose can form acetaminophen protein adducts and mitochondria damage in hepatocytes resulting in liver injury. Activation of autophagy-lysosomal degradation pathway can help to remove acetaminophen protein adducts. Pharmacological induction of autophagy may be a novel promising approach for treating APAP-induced liver injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
16
|
Walker V, Mills GA, Anderson ME, Ingle BL, Jackson JM, Moss CL, Sharrod-Cole H, Skipp PJ. The acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) inhibits glutathione synthetase in vitro; a clue to the mechanism of 5-oxoprolinuric acidosis? Xenobiotica 2016; 47:164-175. [PMID: 27086508 DOI: 10.3109/00498254.2016.1166533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 μM of GS with NAPQI (25-400 μM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.
Collapse
Affiliation(s)
- Valerie Walker
- a Department of Clinical Biochemistry , University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Graham A Mills
- b School of Pharmacy and Biomedical Sciences, University of Portsmouth , Portsmouth , UK
| | - Mary E Anderson
- c Department of Chemistry and Biochemistry , Texas Woman's University , Denton , TX , USA
| | - Brandall L Ingle
- d Department of Chemistry , Center for Advanced Scientific Computing and Modeling, University of North Texas , Denton , TX , USA
| | - John M Jackson
- e NIHR Southampton Biomedical Research Centre, Southampton General Hospital , Southampton , UK , and
| | - Charlotte L Moss
- f Centre for Proteomic Research and Biological Sciences, University of Southampton , Southampton , UK
| | - Hayley Sharrod-Cole
- a Department of Clinical Biochemistry , University Hospital Southampton NHS Foundation Trust , Southampton , UK
| | - Paul J Skipp
- f Centre for Proteomic Research and Biological Sciences, University of Southampton , Southampton , UK
| |
Collapse
|
17
|
Wojdyla K, Wrzesinski K, Williamson J, Fey SJ, Rogowska-Wrzesinska A. Acetaminophen-induced S-nitrosylation and S-sulfenylation signalling in 3D cultured hepatocarcinoma cell spheroids. Toxicol Res (Camb) 2016; 5:905-920. [PMID: 30090399 PMCID: PMC6072433 DOI: 10.1039/c5tx00469a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
Acetaminophen (APAP) is possibly the most widely used medication globally and yet little is known of its molecular effects at therapeutic doses. Using a novel approach, we have analysed the redox proteome of the hepatocellular cell line HepG2/C3A treated with therapeutic doses of APAP and quantitated both individual protein abundance and their reversible S-nitrosylation (SNO) and S-sulfenylation (SOH) modifications by mass spectrometry. APAP treatment results in a late, transient increase in ATP production and a multiplicity of alterations in protein abundance and modifications. The majority of the differentially SNO or SOH modified proteins are found in the endoplasmic reticulum and cytosol, suggesting that the source of reactive species is there. The cellular response indicates: constraint of fatty acid metabolism; reduction in ribosome construction and protein synthesis (to conserve ATP); maintenance of glutathione levels (by increased synthetic capacity); and an increased NADPH production (via the pentose phosphate pathway). This response appears to be coordinated, directly or indirectly, by the canonical Wnt and Nrf2 signalling pathways. Combined with the known role of NAPQI, these studies suggest that the physiological and toxicological responses form a continuum: therapeutic doses of APAP produce reactive species and NAPQI in the cytoplasm but result in little permanent damage. The cell mounts a multifaceted response which minimises disruption and repairs are effected within a day or two. Higher doses of APAP lead to intensified reactive species production, which increasingly disturbs mitochondrial function and eventually leads to cell death.
Collapse
Affiliation(s)
- Katarzyna Wojdyla
- Protein Research Group , Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark .
| | - Krzysztof Wrzesinski
- Tissue Culture Engineering Laboratory , Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - James Williamson
- Protein Research Group , Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark .
| | - Stephen J Fey
- Tissue Culture Engineering Laboratory , Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark
| | - Adelina Rogowska-Wrzesinska
- Protein Research Group , Department of Biochemistry and Molecular Biology , University of Southern Denmark , Campusvej 55 , 5230 Odense M , Denmark .
| |
Collapse
|
18
|
Leeming MG, Gamon LF, Wille U, Donald WA, O'Hair RAJ. What Are the Potential Sites of Protein Arylation by N-Acetyl-p-benzoquinone Imine (NAPQI)? Chem Res Toxicol 2015; 28:2224-33. [PMID: 26523953 DOI: 10.1021/acs.chemrestox.5b00373] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetaminophen (paracetamol, APAP) is a safe and widely used analgesic medication when taken at therapeutic doses. However, APAP can cause potentially fatal hepatotoxicity when taken in overdose or in patients with metabolic irregularities. The production of the electrophilic and putatively toxic compound N-acetyl-p-benzoquinone imine (NAPQI), which cannot be efficiently detoxicated at high doses, is implicated in APAP toxicity. Numerous studies have identified that excess NAPQI can form covalent linkages to the thiol side chains of cysteine residues in proteins; however, the reactivity of NAPQI toward other amino acid side chains is largely unexplored. Here, we report a survey of the reactivity of NAPQI toward 11 N-acetyl amino acid methyl esters and four peptides. (1)H NMR analysis reveals that NAPQI forms covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. Analogous reaction products were observed when NAPQI was reacted with synthetic model peptides GAIL-X-GAILR for X = Cys, Met, Tyr, and Trp. Tandem mass spectrometry peptide sequencing showed that the NAPQI modification sites are located on the "X" residue in each case. However, when APAP and the GAIL-X-GAILR peptide were incubated with rat liver microsomes that contain many metabolic enzymes, NAPQI formed by oxidative metabolism reacted with GAIL-C-GAILR exclusively. For the peptides where X = Met, Tyr, and Trp, competing reactions between NAPQI and alternative nucleophiles precluded arylation of the target peptide by NAPQI. Although Cys residues are favorably targeted under these conditions, these data suggest that NAPQI can, in principle, also damage proteins at Met, Tyr, and Trp residues.
Collapse
Affiliation(s)
- Michael G Leeming
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Luke F Gamon
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Uta Wille
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | - Richard A J O'Hair
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
19
|
Hwang JH, Kim YH, Noh JR, Choi DH, Kim KS, Lee CH. Enhanced Production of Adenosine Triphosphate by Pharmacological Activation of Adenosine Monophosphate-Activated Protein Kinase Ameliorates Acetaminophen-Induced Liver Injury. Mol Cells 2015; 38:843-50. [PMID: 26434492 PMCID: PMC4625065 DOI: 10.14348/molcells.2015.0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
The hepatic cell death induced by acetaminophen (APAP) is closely related to cellular adenosine triphosphate (ATP) depletion, which is mainly caused by mitochondrial dysfunction. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a key sensor of low energy status. AMPK regulates metabolic homeostasis by stimulating catabolic metabolism and suppressing anabolic pathways to increase cellular energy levels. We found that the decrease in active phosphorylation of AMPK in response to APAP correlates with decreased ATP levels, in vivo. Therefore, we hypothesized that the enhanced production of ATP via AMPK stimulation can lead to amelioration of APAP-induced liver failure. A769662, an allosteric activator of AMPK, produced a strong synergistic effect on AMPK Thr172 phosphorylation with APAP in primary hepatocytes and liver tissue. Interestingly, activation of AMPK by A769662 ameliorated the APAP-induced hepatotoxicity in C57BL/6N mice treated with APAP at a dose of 400 mg/kg intraperitoneally. However, mice treated with APAP alone developed massive centrilobular necrosis, and APAP increased their serum alanine aminotransferase and aspartate aminotransferase levels. Furthermore, A769662 administration prevented the loss of intracellular ATP without interfering with the APAP-mediated reduction of mitochondrial dysfunction. In contrast, inhibition of glycolysis by 2-deoxy-glucose eliminated the beneficial effects of A769662 on APAP-mediated liver injury. In conclusion, A769662 can effectively protect mice against APAP-induced liver injury through ATP synthesis by anaerobic glycolysis. Furthermore, stimulation of AMPK may have potential therapeutic application for APAP overdose.
Collapse
Affiliation(s)
- Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology (UST), Daejeon 305-806,
Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology (UST), Daejeon 305-806,
Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology (UST), Daejeon 305-806,
Korea
| | - Dong-Hee Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology (UST), Daejeon 305-806,
Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology (UST), Daejeon 305-806,
Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology (UST), Daejeon 305-806,
Korea
| |
Collapse
|
20
|
Abstract
![]()
The
analgesic and antipyretic compound acetaminophen (paracetamol)
is one of the most used drugs worldwide. Acetaminophen overdose is
also the most common cause for acute liver toxicity. Here we show
that acetaminophen and many structurally related compounds bind quinone
reductase 2 (NQO2) in vitro and in live cells, establishing
NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen
derived reactive oxygen species, more specifically superoxide anions,
in cultured cells. In humans, NQO2 is highly expressed in liver and
kidney, the main sites of acetaminophen toxicity. We suggest that
NQO2 mediated superoxide production may function as a novel mechanism
augmenting acetaminophen toxicity.
Collapse
Affiliation(s)
- Teemu P Miettinen
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee , DD1 5EH Dundee, Scotland , U.K
| | | |
Collapse
|
21
|
S-adenosyl-l-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry. Toxicol Appl Pharmacol 2014; 281:174-84. [PMID: 25246065 DOI: 10.1016/j.taap.2014.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
Abstract
Acetaminophen (APAP) hepatotoxicity is protected by S-adenosyl-l-methionine (SAMe) treatment 1hour (h) after APAP in C57/Bl6 mice. This study examined protein carbonylation as well as mitochondrial and cytosolic protein adduction by 4-hydroxynonenal (4-HNE) using mass spectrometry (MS) analysis. Additional studies investigated the leakage of mitochondrial proteins and 4-HNE adduction of these proteins. Male C57/Bl6 mice (n=5/group) were divided into the following groups and treated as indicated: Veh (15ml/kg water, ip), SAMe (1.25mmol/kg, ip), APAP (250mg/kg), and SAMe given 1h after APAP (S+A). APAP toxicity was confirmed by an increase (p<0.05) in plasma ALT (U/l) and liver weight/10g body weight relative to the Veh, SAMe and S+A groups 4h following APAP treatment. SAMe administered 1h post-APAP partially corrected APAP hepatotoxicity as ALT and liver weight/10g body weights were lower in the S+A group compared the APAP group. APAP induced leakage of the mitochondrial protein, carbamoyl phosphate synthase-1 (CPS-1) into the cytosol and which was reduced in the S+A group. SAMe further reduced the extent of APAP mediated 4-HNE adduction of CPS-1. MS analysis of hepatic and mitochondrial subcellular fractions identified proteins from APAP treated mice. Site specific 4-HNE adducts were identified on mitochondrial proteins sarcosine dehydrogenase and carbamoyl phosphate synthase-1 (CPS-1). In summary, APAP is associated with 4-HNE adduction of proteins as identified by MS analysis and that CPS-1 leakage was greater in APAP treated mice. SAMe reduced the extent of 4-HNE adduction of proteins as well as leakage of CPS-1.
Collapse
|
22
|
Hwang JH, Kim YH, Noh JR, Gang GT, Kim KS, Chung HK, Tadi S, Yim YH, Shong M, Lee CH. The protective role of NAD(P)H:quinone oxidoreductase 1 on acetaminophen-induced liver injury is associated with prevention of adenosine triphosphate depletion and improvement of mitochondrial dysfunction. Arch Toxicol 2014; 89:2159-66. [PMID: 25224400 DOI: 10.1007/s00204-014-1340-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/14/2014] [Indexed: 02/05/2023]
Abstract
UNLABELLED An overdose of acetaminophen (APAP) causes hepatotoxicity due to its metabolite, N-acetyl-p-benzoquinone imine. NAD(P)H quinone oxidoreductase 1 (NQO1) is an important enzyme for detoxification, because it catabolizes endogenous/exogenous quinone to hydroquinone. Although various studies have suggested the possible involvement of NQO1 in APAP-induced hepatotoxicity, its precise role in this remains unclear. We investigated the role of NQO1 against APAP-induced hepatotoxicity using a genetically modified rodent model. NQO1 wild-type (WT) and knockout (KO) mice were treated with different doses of APAP, and we evaluated the mortality and toxicity markers for cell death caused by APAP. NQO1 KO mice showed high sensitivity to APAP-mediated hepatotoxicity (as indicated by a large necrotic region) as well as increased levels of nitrotyrosine adducts and reactive oxygen species. APAP-induced cell death in the livers and primary hepatocytes of NQO1 KO mice, which was accompanied by an extensive reduction in adenosine triphosphate (ATP) levels. In accordance with this ATP depletion, cytosolic increases in mitochondrial proteins such as apoptosis-inducing factor, second mitochondria-derived activator of caspases/DIABLO, endonuclease G, and cytochrome c, which indicate severe mitochondrial dysfunction, were observed in NQO1 KO mice but not in WT mice after APAP exposure. Severe mitochondrial depolarization was also greater in hepatocytes isolated from NQO1 KO mice. Collectively, our data suggest that NQO1 plays a critical role in protection against energy depletion caused by APAP, and NQO1 may be useful in the development of therapeutic approaches to effectively diminish the hepatotoxicity caused by an APAP overdose.
Collapse
Affiliation(s)
- Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Yong-Hoon Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Gil-Tae Gang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea
| | - Hyo Kyun Chung
- Department of Internal Medicine, Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Chungku, Daejeon, 301-721, South Korea
| | - Surendar Tadi
- Division of Metrology for Quality Life, Korea Research Institute of Standard and Science (KRISS), Daejeon, South Korea
| | - Yong-Hyeon Yim
- Division of Metrology for Quality Life, Korea Research Institute of Standard and Science (KRISS), Daejeon, South Korea
| | - Minho Shong
- Department of Internal Medicine, Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Chungku, Daejeon, 301-721, South Korea.
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806, South Korea.
| |
Collapse
|
23
|
Gosselin S, Juurlink DN, Kielstein JT, Ghannoum M, Lavergne V, Nolin TD, Hoffman RS. Extracorporeal treatment for acetaminophen poisoning: recommendations from the EXTRIP workgroup. Clin Toxicol (Phila) 2014; 52:856-67. [PMID: 25133498 DOI: 10.3109/15563650.2014.946994] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The Extracorporeal Treatments in Poisoning (EXTRIP) workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments (ECTR) in poisoning and the results are presented here for acetaminophen (APAP). METHODS After a systematic review of the literature, a subgroup selected and reviewed the articles and summarized clinical and toxicokinetic data in order to propose structured voting statements following a pre-determined format. A two-round modified Delphi method was chosen to reach a consensus on voting statements, and the RAND/UCLA Appropriateness Method was used to quantify disagreement. Following discussion, a second vote determined the final recommendations. RESULTS Twenty-four articles (1 randomized controlled trial, 1 observational study, 2 pharmacokinetic studies, and 20 case reports or case series) were identified, yielding an overall very low quality of evidence for all recommendations. Clinical data on 135 patients and toxicokinetic data on 54 patients were analyzed. Twenty-three fatalities were reviewed. The workgroup agreed that N-acetylcysteine (NAC) is the mainstay of treatment, and that ECTR is not warranted in most cases of APAP poisoning. However, given that APAP is dialyzable, the workgroup agreed that ECTR is suggested in patients with excessively large overdoses who display features of mitochondrial dysfunction. This is reflected by early development of altered mental status and severe metabolic acidosis prior to the onset of hepatic failure. Specific recommendations for ECTR include an APAP concentration over 1000 mg/L if NAC is not administered (1D), signs of mitochondrial dysfunction and an APAP concentration over 700 mg/L (4630 mmol/L) if NAC is not administered (1D) and signs of mitochondrial dysfunction and an APAP concentration over 900 mg/L (5960 mmol/L) if NAC is administered (1D). Intermittent hemodialysis (HD) is the preferred ECTR modality in APAP poisoning (1D). CONCLUSION APAP is amenable to extracorporeal removal. Due to the efficacy of NAC, ECTR is reserved for rare situations when the efficacy of NAC has not been definitively demonstrated.
Collapse
Affiliation(s)
- S Gosselin
- Department of Emergency Medicine, Medical Toxicology Service, McGill University Health Centre, McGill University , Montréal, QC , Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Molecular mechanisms of liver injury: apoptosis or necrosis. ACTA ACUST UNITED AC 2014; 66:351-6. [PMID: 24867271 DOI: 10.1016/j.etp.2014.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022]
Abstract
Hepatic apoptosis is thought of as a prevalent mechanism in most forms of liver injury. However, the role of hepatic apoptosis is often intermixed with the cellular necrosis. It remains unknown how apoptosis is relevant to the progression of the liver injury. This review summarizes the characteristics of both hepatic apoptosis and necrosis in pathogenesis of liver diseases. Apoptosis and necrosis represent alternative outcomes of different etiology during liver injury. Apoptosis is a main mode of cell death in chronic viral hepatitis, but is intermingled with necrosis in cholestatic livers. Necrosis is the principal type of liver cell killing in acetaminophen-induced hepatotoxicity. Anti-apoptosis as a strategy is beneficial to liver repair response. Therapeutic options of liver disease depend on the understanding toward pathogenic mechanisms of different etiology.
Collapse
|
25
|
McGill MR, Jaeschke H. Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opin Drug Metab Toxicol 2014; 10:1005-17. [PMID: 24836926 DOI: 10.1517/17425255.2014.920823] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Drug hepatotoxicity is a major clinical issue. Acetaminophen (APAP) overdose is especially common. Serum biomarkers used to follow patient progress reflect either liver injury or function, but focus on biomarkers that can provide insight into the basic mechanisms of hepatotoxicity is increasing and enabling us to translate mechanisms of toxicity from animal models into humans. AREAS COVERED We review recent advances in mechanistic serum biomarker research in drug hepatotoxicity. Specifically, biomarkers for reactive drug intermediates, mitochondrial dysfunction, nuclear DNA damage, mode of cell death and inflammation are discussed, as well as microRNAs. Emphasis is placed on APAP-induced liver injury. EXPERT OPINION Several serum biomarkers of reactive drug intermediates, mitochondrial damage, nuclear DNA damage, apoptosis and necrosis and inflammation have been described. These studies have provided evidence that mitochondrial damage is critical in APAP hepatotoxicity in humans, while apoptosis has only a minor role, and inflammation is important for recovery and regeneration after APAP overdose. Additionally, mechanistic serum biomarkers have been shown to predict outcome as well as, or better than, some clinical scores. In the future, such biomarkers will help determine the need for liver transplantation and, with improved understanding of the human pathophysiology, identify novel therapeutic targets.
Collapse
Affiliation(s)
- Mitchell R McGill
- University of Kansas Medical Center, Department of Pharmacology, Toxicology and Therapeutics , 3901 Rainbow Blvd, MS 1018, Kansas City, KS 66160 , USA +1 913 588 7969 ; +1 913 588 7501 ;
| | | |
Collapse
|
26
|
Yang R, Zou X, Tenhunen J, Zhu S, Kajander H, Koskinen ML, Tonnessen TI. HMGB1 neutralization is associated with bacterial translocation during acetaminophen hepatotoxicity. BMC Gastroenterol 2014; 14:66. [PMID: 24708589 PMCID: PMC3985724 DOI: 10.1186/1471-230x-14-66] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 03/27/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Acetaminophen (APAP) hepatotoxicity is associated with a high rate of gram-negative enteric bacterial infection; however, the underlying mechanism is still unknown. APAP overdose induces massive hepatocyte necrosis, necrotic tissue releases high mobility group B1 (HMGB1) and exogenous HMGB1 is able to induce gut bacterial translocation (BT) in normal mice; therefore, it is possible that HMGB1 mediates gut BT in APAP hepatotoxicity. This study aims to test this hypothesis by using anti-HMGB1 neutralizing antibody to treat APAP overdose for 24-48 hours. METHODS Male C57BL/6 mice were intraperitoneally (i.p.) injected with a single dose of APAP (350 mg/kg dissolved in 1 mL sterile saline). 2 hrs after APAP injection, the APAP challenged mice were randomized to receive treatment with either anti-HMGB1 antibody (400 μg per dose) or non-immune (sham) IgG every 24 h for a total of 2 doses. RESULTS 24 and 48 hrs after APAP challenge, anti-HMGB1 treatment instead of sham IgG therapy significantly decreased serum HMGB1 concentrations and reduced BT by 85%; serum HMGB1 levels were positively correlated with the amount of BT; anti-HMGB1 therapy decreased hepatic BT at 48 h, which was associated with better recovered liver structure and better restored hepatic immune system that was shown by enhanced hepatic mRNA expression of TNF-α, IL-6 and extensive proliferation of inflammatory and reticuloendothelial cells; however, anti-HMGB1 treatment did not decrease gut mucosal permeability as compared to the sham IgG therapy at either 24 or 48 hrs. CONCLUSION HMGB1 neutralization is associated with bacterial translocation during APAP hepatotoxicity.
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Critical Care Medicine, University of Pittsburgh Medical School, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Gadomsky SY, Gadomska AV, Varlamov VT. New approaches to studying the kinetics of the radical reaction of N-phenyl-1,4-benzoquinone monoimine with 2-mercaptobenzothiazole. KINETICS AND CATALYSIS 2014. [DOI: 10.1134/s0023158414020013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Abstract
Acetaminophen (paracetamol) is the most frequently used analgesic and antipyretic drug available over the counter. At the same time, acetaminophen overdose is the most common cause of acute liver failure and the leading cause of chronic liver damage requiring liver transplantation in developed countries. Acetaminophen overdose causes a multitude of interrelated biochemical reactions in hepatocytes including the formation of reactive oxygen species, deregulation of Ca(2+) homeostasis, covalent modification and oxidation of proteins, lipid peroxidation, and DNA fragmentation. Although an increase in intracellular Ca(2+) concentration in hepatocytes is a known consequence of acetaminophen overdose, its importance in acetaminophen-induced liver toxicity is not well understood, primarily due to lack of knowledge about the source of the Ca(2+) rise. Here we report that the channel responsible for Ca(2+) entry in hepatocytes in acetaminophen overdose is the Transient Receptor Potential Melanostatine 2 (TRPM2) cation channel. We show by whole-cell patch clamping that treatment of hepatocytes with acetaminophen results in activation of a cation current similar to that activated by H2O2 or the intracellular application of ADP ribose. siRNA-mediated knockdown of TRPM2 in hepatocytes inhibits activation of the current by either acetaminophen or H2O2. In TRPM2 knockout mice, acetaminophen-induced liver damage, assessed by the blood concentration of liver enzymes and liver histology, is significantly diminished compared with wild-type mice. The presented data strongly suggest that TRPM2 channels are essential in the mechanism of acetaminophen-induced hepatocellular death.
Collapse
|
29
|
Bhattacharyya S, Pence L, Beger R, Chaudhuri S, McCullough S, Yan K, Simpson P, Hennings L, Hinson J, James L. Acylcarnitine profiles in acetaminophen toxicity in the mouse: comparison to toxicity, metabolism and hepatocyte regeneration. Metabolites 2013; 3:606-22. [PMID: 24958141 PMCID: PMC3901280 DOI: 10.3390/metabo3030606] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/07/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022] Open
Abstract
High doses of acetaminophen (APAP) result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI) to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP) or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT) levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA) expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS) model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Departments of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | - Lisa Pence
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Richard Beger
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Shubhra Chaudhuri
- Departments of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | - Sandra McCullough
- Departments of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| | - Ke Yan
- Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pippa Simpson
- Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Leah Hennings
- Departments of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Jack Hinson
- Departments of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Laura James
- Departments of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
| |
Collapse
|
30
|
Abdelmegeed MA, Jang S, Banerjee A, Hardwick JP, Song BJ. Robust protein nitration contributes to acetaminophen-induced mitochondrial dysfunction and acute liver injury. Free Radic Biol Med 2013; 60:211-22. [PMID: 23454065 PMCID: PMC3680365 DOI: 10.1016/j.freeradbiomed.2013.02.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 12/31/2022]
Abstract
Acetaminophen (APAP), a widely used analgesic/antipyretic agent, can cause liver injury through increased nitrative stress, leading to protein nitration. However, the identities of nitrated proteins and their roles in hepatotoxicity are poorly understood. Thus, we aimed at studying the mechanism of APAP-induced hepatotoxicity by systematic identification and characterization of nitrated proteins in the absence or presence of an antioxidant, N-acetylcysteine (NAC). The levels of nitrated proteins markedly increased at 2h in mice exposed to a single APAP dose (350mg/kg ip), which caused severe liver necrosis at 24h. Protein nitration and liver necrosis were minimal in mice exposed to nontoxic 3-hydroxyacetanilide or animals co-treated with APAP and NAC. Mass-spectral analysis of the affinity-purified nitrated proteins identified numerous mitochondrial and cytosolic proteins, including mitochondrial aldehyde dehydrogenase, Mn-superoxide dismutase, glutathione peroxidase, ATP synthase, and 3-ketoacyl-CoA thiolase, involved in antioxidant defense, energy supply, or fatty acid metabolism. Immunoprecipitation followed by immunoblot with anti-3-nitrotyrosine antibody confirmed that the aforementioned proteins were nitrated in APAP-exposed mice but not in NAC-cotreated mice. Consistently, NAC cotreatment significantly restored the suppressed activity of these enzymes. Thus, we demonstrate a new mechanism by which many nitrated proteins with concomitantly suppressed activity promotes APAP-induced mitochondrial dysfunction and hepatotoxicity.
Collapse
Affiliation(s)
- Mohamed A. Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Sehwan Jang
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Atrayee Banerjee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - James P. Hardwick
- Department of Integrative Medicine, Northeastern Ohio University College of Medicine, Rootstown, OH, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
31
|
Sun B, Utleg AG, Hu Z, Qin S, Keller A, Lorang C, Gray L, Brightman A, Lee D, Alexander VM, Ranish JA, Moritz RL, Hood L. Glycocapture-assisted global quantitative proteomics (gagQP) reveals multiorgan responses in serum toxicoproteome. J Proteome Res 2013; 12:2034-44. [PMID: 23540550 DOI: 10.1021/pr301178a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blood is an ideal window for viewing our health and disease status. Because blood circulates throughout the entire body and carries secreted, shed, and excreted signature proteins from every organ and tissue type, it is thus possible to use the blood proteome to achieve a comprehensive assessment of multiple-organ physiology and pathology. To date, the blood proteome has been frequently examined for diseases of individual organs; studies on compound insults impacting multiple organs are, however, elusive. We believe that a characterization of peripheral blood for organ-specific proteins affords a powerful strategy to allow early detection, staging, and monitoring of diseases and their treatments at a whole-body level. In this paper we test this hypothesis by examining a mouse model of acetaminophen (APAP)-induced hepatic and extra-hepatic toxicity. We used a glycocapture-assisted global quantitative proteomics (gagQP) approach to study serum proteins and validated our results using Western blot. We discovered in mouse sera both hepatic and extra-hepatic organ-specific proteins. From our validation, it was determined that selected organ-specific proteins had changed their blood concentration during the course of toxicity development and recovery. Interestingly, the peak responding time of proteins specific to different organs varied in a time-course study. The collected molecular information shed light on a complex, dynamic, yet interweaving, multiorgan-enrolled APAP toxicity. The developed technique as well as the identified protein markers is translational to human studies. We hope our work can broaden the utility of blood proteomics in diagnosis and research of the whole-body response to pathogenic cues.
Collapse
Affiliation(s)
- Bingyun Sun
- Institute for Systems Biology , 401 N. Terry Ave., Seattle, Washington 98109, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kamiyama N, Yamamoto M, Saiga H, Ma JS, Ohshima J, Machimura S, Sasai M, Kimura T, Ueda Y, Kayama H, Takeda K. CREBH determines the severity of sulpyrine-induced fatal shock. PLoS One 2013; 8:e55800. [PMID: 23409047 PMCID: PMC3567110 DOI: 10.1371/journal.pone.0055800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/02/2013] [Indexed: 11/18/2022] Open
Abstract
Although the pyrazolone derivative sulpyrine is widely used as an antipyretic analgesic drug, side effects, including fatal shock, have been reported. However, the molecular mechanism underlying such a severe side effect is largely unclear. Here, we report that the transcription factor CREBH that is highly expressed in the liver plays an important role in fatal shock induced by sulpyrine in mice. CREBH-deficient mice were resistant to experimental fatal sulpyrine shock. We found that sulpyrine-induced expression of cytochrome P450 2B (CYP2B) family genes, which are involved in sulpyrine metabolism, in the liver was severely impaired in CREBH-deficient mice. Moreover, introduction of CYP2B in CREBH-deficient liver restored susceptibility to sulpyrine. Furthermore, ectopic expression of CREBH up-regulated CYP2B10 promoter activity, and in vivo knockdown of CREBH in wild-type mice conferred a significant resistance to fatal sulpyrine shock. These data demonstrate that CREBH is a positive regulator of CYP2B in response to sulpyrine administration, which possibly results in fatal shock.
Collapse
Affiliation(s)
- Naganori Kamiyama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail: (MY); (KT)
| | - Hiroyuki Saiga
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ji Su Ma
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Jun Ohshima
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Sakaaki Machimura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Miwa Sasai
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Taishi Kimura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yoshiyasu Ueda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail: (MY); (KT)
| |
Collapse
|
33
|
Liu Y, Gardner CR, Laskin JD, Laskin DL. Classical and alternative activation of rat hepatic sinusoidal endothelial cells by inflammatory stimuli. Exp Mol Pathol 2012; 94:160-7. [PMID: 23103612 DOI: 10.1016/j.yexmp.2012.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/16/2022]
Abstract
The ability of rat hepatic sinusoidal endothelial cells (HSEC) to become activated in response to diverse inflammatory stimuli was analyzed. Whereas the classical macrophage activators, IFNγ and/or LPS upregulated expression of iNOS in HSEC, the alternative macrophage activators, IL-10 or IL-4+IL-13 upregulated arginase-1 and mannose receptor. Similar upregulation of iNOS and arginase-1 was observed in classically and alternatively activated Kupffer cells, respectively. Removal of inducing stimuli from the cells had no effect on expression of these markers, demonstrating that activation is persistent. Washing and incubation of IFNγ treated cells with IL-4+IL-13 resulted in decreased iNOS and increased arginase-1 expression, while washing and incubation of IL-4+IL-13 treated cells with IFNγ resulted in decreased arginase-1 and increased iNOS, indicating that classical and alternative activation of the cells is reversible. HSEC were more sensitive to phenotypic switching than Kupffer cells, suggesting greater functional plasticity. Hepatocyte viability and expression of PCNA, β-catenin and MMP-9 increased in the presence of alternatively activated HSEC. In contrast, the viability of hepatocytes pretreated for 2 h with 5 mM acetaminophen decreased in the presence of classically activated HSEC. These data demonstrate that activated HSEC can modulate hepatocyte responses following injury. The ability of hepatocytes to activate HSEC was also investigated. Co-culture of HSEC with acetaminophen-injured hepatocytes, but not control hepatocytes, increased the sensitivity of HSEC to classical and alternative activating stimuli. The capacity of HSEC to respond to phenotypic activators may represent an important mechanism by which they participate in inflammatory responses associated with hepatotoxicity.
Collapse
Affiliation(s)
- Yinglin Liu
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
34
|
Zimmermann HW, Trautwein C, Tacke F. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Front Physiol 2012; 3:56. [PMID: 23091461 PMCID: PMC3475871 DOI: 10.3389/fphys.2012.00056] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/27/2012] [Indexed: 12/12/2022] Open
Abstract
Different etiologies such as drug toxicity, acute viral hepatitis B, or acetaminophen poisoning can cause acute liver injury or even acute liver failure (ALF). Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF), interleukin-6 (IL-6), IL-1beta, or monocyte-chemoattractant protein-1 (MCP-1, CCL2) as well as activating other non-parenchymal liver cells, e.g., endothelial or hepatic stellate cells. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g., via caspase activation, but also activate protective signaling pathways, e.g., via nuclear factor kappa B (NF-κB). Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+) monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1) are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation, and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.
Collapse
|
35
|
Gadomska AV, Gadomsky SY, Varlamov VT. Chain mechanism of the reactions of N,N′-diphenyl-1,4-benzoquinone diimine with thiophenol and 1-decanethiol. KINETICS AND CATALYSIS 2012. [DOI: 10.1134/s0023158412050072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Ahmed OG, El-Mottaleb NAA. Renal function and arterial blood pressure alterations after exposure to acetaminophen with a potential role of Nigella sativa oil in adult male rats. J Physiol Biochem 2012; 69:1-13. [DOI: 10.1007/s13105-012-0182-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 05/24/2012] [Indexed: 11/29/2022]
|
37
|
Yang R, Zhang S, Cotoia A, Oksala N, Zhu S, Tenhunen J. High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity. BMC Gastroenterol 2012; 12:45. [PMID: 22569100 PMCID: PMC3444430 DOI: 10.1186/1471-230x-12-45] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/08/2012] [Indexed: 02/06/2023] Open
Abstract
Background Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Necrotic tissue releases high mobility group B1 (HMGB1), and HMGB1 contributes to liver injury. Even though blockade of HMGB1 does not protect against APAP-induced acute liver injury (ALI) at 9 h time point, the later time points are not studied and the role of HMGB1 in APAP overdose is unknown, it is possible that neutralization of HMGB1 might improve hepatocyte regeneration. This study aims to test whether blockade of HMGB1 improves hepatocyte regeneration after APAP overdose. Methods Male C57BL/6 mice were treated with a single dose of APAP (350 mg/kg). 2 hrs after APAP administration, the APAP challenged mice were randomized to receive treatment with either anti-HMGB1 antibody (400 μg per dose) or non-immune (sham) IgG every 24 hours for a total of 2 doses. Results 24 hrs after APAP injection, anti-HMGB1 therapy instead of sham IgG therapy significantly improved hepatocyte regeneration microscopically; 48 hrs after APAP challenge, the sham IgG treated mice showed 14.6% hepatic necrosis; in contrast, blockade of HMGB1 significantly decreased serum transaminases (ALT and AST), markedly reduced the number of hepatic inflammatory cells infiltration and restored liver structure to nearly normal; this beneficial effect was associated with enhanced hepatic NF-κB DNA binding and increased the expression of cyclin D1, two important factors related to hepatocyte regeneration. Conclusion HMGB1 impairs hepatocyte regeneration after APAP overdose; Blockade of HMGB1 enhances liver recovery and may present a novel therapy to treat APAP overdose.
Collapse
Affiliation(s)
- Runkuan Yang
- Department of Intensive Care Medicine, University of Tampere Medical School, Tampere 33014, Finland.
| | | | | | | | | | | |
Collapse
|
38
|
Gardner CR, Hankey P, Mishin V, Francis M, Yu S, Laskin JD, Laskin DL. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase. Toxicol Appl Pharmacol 2012; 262:139-48. [PMID: 22575169 DOI: 10.1016/j.taap.2012.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 01/20/2023]
Abstract
Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK⁻/⁻ mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK⁻/⁻ mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK⁻/⁻ mice. Whereas F4/80⁺ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK⁻/⁻ mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK⁻/⁻ mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity.
Collapse
Affiliation(s)
- Carol R Gardner
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kay HY, Kim YW, Ryu DH, Sung SH, Hwang SJ, Kim SG. Nrf2-mediated liver protection by sauchinone, an antioxidant lignan, from acetaminophen toxicity through the PKCδ-GSK3β pathway. Br J Pharmacol 2012; 163:1653-65. [PMID: 21039417 DOI: 10.1111/j.1476-5381.2010.01095.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Sauchinone, an antioxidant lignan, protects hepatocytes from iron-induced toxicity. This study investigated the protective effects of sauchinone against acetaminophen (APAP)-induced toxicity in the liver and the role of nuclear factor erythroid-2-related factor-2 (Nrf2) in this effect. EXPERIMENTAL APPROACH Blood biochemistry and histopathology were assessed in mice treated with APAP or APAP + sauchinone. The levels of mRNA and protein were measured using real-time PCR assays and immunoblottings. KEY RESULTS Sauchinone ameliorated liver injury caused by a high dose of APAP. This effect was prevented by a deficiency of Nrf2. Sauchinone treatment induced modifier subunit of glutamate-cysteine ligase, NAD(P)H:quinone oxidoreductase-1 (NQO1) and heat shock protein 32 in the liver, which was abolished by Nrf2 deficiency. In a hepatocyte model, sauchinone activated Nrf2, as evidenced by the increased nuclear accumulation of Nrf2, the induction of NQO1-antioxidant response element reporter gene, and glutamate-cysteine ligase and NQO1 protein induction, which contributed to the restoration of hepatic glutathione content. Consistently, treatment of sauchinone enhanced Nrf2 phosphorylation with a reciprocal decrease in its interaction with Kelch-like ECH-associated protein-1. Intriguingly, sauchinone activated protein kinase C-δ (PKCδ), which led to Nrf2 phosphorylation. In addition, it increased the inhibitory phosphorylation of glycogen synthase kinase-3β (GSK3β), derepressing Nrf2 activity, which was supported by the reversal of sauchinone's activation of Nrf2 by an activated mutant of GSK3β. Moreover, phosphorylation of GSK3β by sauchinone depended on PKCδ activation. CONCLUSION AND IMPLICATIONS Our results demonstrate that sauchinone protects the liver from APAP-induced toxicity by activating Nrf2, and this effect is mediated by PKCδ activation, which induces inhibitory phosphorylation of GSK3β.
Collapse
Affiliation(s)
- Hee Yeon Kay
- Innovative Drug Research Center for Metabolic and Inflammatory Diseases, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Sillimdong, Kwanak-gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Hur KY, So JS, Ruda V, Frank-Kamenetsky M, Fitzgerald K, Koteliansky V, Iwawaki T, Glimcher LH, Lee AH. IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. ACTA ACUST UNITED AC 2012; 209:307-18. [PMID: 22291093 PMCID: PMC3280871 DOI: 10.1084/jem.20111298] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mammalian stress sensor IRE1α plays a central role in the unfolded protein, or endoplasmic reticulum (ER), stress response by activating its downstream transcription factor XBP1 via an unconventional splicing mechanism. IRE1α can also induce the degradation of a subset of mRNAs in a process termed regulated IRE1-dependent decay (RIDD). Although diverse mRNA species can be degraded by IRE1α in vitro, the pathophysiological functions of RIDD are only beginning to be explored. Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in young adults in the United States and is primarily caused by CYP1A2-, CYP2E1-, and CYP3A4-driven conversion of APAP into hepatotoxic metabolites. We demonstrate here that genetic ablation of XBP1 results in constitutive IRE1α activation in the liver, leading to RIDD of Cyp1a2 and Cyp2e1 mRNAs, reduced JNK activation, and protection of mice from APAP-induced hepatotoxicity. A pharmacological ER stress inducer that activated IRE1α suppressed the expression of Cyp1a2 and Cyp2e1 in WT, but not IRE1α-deficient mouse liver, indicating the essential role of IRE1α in the down-regulation of these mRNAs upon ER stress. Our study reveals an unexpected function of RIDD in drug metabolism.
Collapse
Affiliation(s)
- Kyu Yeon Hur
- Deartment of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity. BMC Gastroenterol 2011; 11:125. [PMID: 22085740 PMCID: PMC3228804 DOI: 10.1186/1471-230x-11-125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 11/15/2011] [Indexed: 12/16/2022] Open
Abstract
Background Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G0), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-α and IL-6. Ringer's lactate solution (RLS) has been shown to increase serum TNF-α and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose. Methods C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline). Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours. Results 72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST) and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-α concentration, enhanced hepatic NF-κB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration. Conclusion RLS improves liver recovery from APAP hepatotoxicity.
Collapse
|
42
|
Age-related changes in the hepatic pharmacology and toxicology of paracetamol. Curr Gerontol Geriatr Res 2011; 2011:624156. [PMID: 21765826 PMCID: PMC3135080 DOI: 10.1155/2011/624156] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Optimal pharmacotherapy is determined when the pharmacokinetics and pharmacodynamics of the drug are understood. However, the age-related changes in pharmacokinetics and pharmacodynamics, as well as the increased interindividual variation mean optimal dose selection are a challenge for prescribing in older adults. Poor understanding of how hepatic clearance and toxicity are different with age results in suboptimal dose selection, poor efficacy, and/or increased toxicity. Of particular concern is the analgesic paracetamol which has been in use for more than 50 years and is consumed by a large proportion of older adults. Paracetamol is considered to be a relatively safe drug; however, caution must be taken because of its potential for toxicity. Paracetamol-induced liver injury from accidental overdose accounts for up to 55% of cases in older adults. Better understanding of how age affects the hepatic clearance and toxicity of drugs will contribute to evidence-based prescribing for older people, leading to fewer adverse drug reactions without loss of benefit.
Collapse
|
43
|
Dremza IK, Cheshchevik VT, Zabrodskaia SV, Maksimchik IZ, Sudnikovich EI, Lapshina EA, Zavodnik IB. [Hepatotoxic efects of acetaminophen. Protective properties of tryptophan-derivatives]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2011; 56:710-8. [PMID: 21395073 DOI: 10.18097/pbmc20105606710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rat intoxication with acetaminophen (APAP) (500-1500 mg/kg body weight intragastrically) caused a considerable dose-dependent decrease in reduced glutathione (GSH) level in both liver cellular cytoplasm and mitochondria (at the dose 1500 mg/kg body weight by 60% and 33%, respectively). The cytoplasmic GSH level decreased more pronounced by comparison with that in mitochondria. At the same time, we did not observe any inactivation of the mitochondrial enzymes: succinate dehydrogenase, alpha-ketoglutarate dehydrogenase, glutathione peroxidase despite of mitochondrial GSH consumption; also we did not observe any decrease in the respiratory activity of liver mitochondria isolated from APAP-intoxicated rats. A tryptophan derivative, melatonin (10 mg/kg body weight), did not prevent intramitochondrial GSH oxidation, but decreased the hepatoxity of APAP, diminishing the activities of AlT and AsT as well as bilirubin level in blood plasma of intoxicated rats. N-acetyl-nitrosotryptophan (a nitric oxide donor) did not exhibit any hepatoprotective effects.
Collapse
|
44
|
Stamper BD, Mohar I, Kavanagh TJ, Nelson SD. Proteomic analysis of acetaminophen-induced changes in mitochondrial protein expression using spectral counting. Chem Res Toxicol 2011; 24:549-58. [PMID: 21329376 DOI: 10.1021/tx1004198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Comparative proteomic analysis following treatment with acetaminophen (APAP) was performed on two different models of APAP-mediated hepatocellular injury in order to both identify common targets for adduct formation and track drug-induced changes in protein expression. Male C57BL/6 mice were used as a model for APAP-mediated liver injury in vivo, and TAMH cells were used as a model for APAP-mediated cytotoxicity in vitro. SEQUEST was unable to identify the precise location of sites of adduction following treatment with APAP in either system. However, semiquantitative analysis of the proteomic data sets using spectral counting revealed a downregulation of P450 isoforms associated with APAP bioactivation and an upregulation of proteins related to the electron transport chain by APAP compared to the control. Both mechanisms are likely compensatory in nature as decreased P450 expression is likely to attenuate toxicity associated with N-acetyl-p-quinoneimine (NAPQI) formation, whereas APAP-induced electron transport chain component upregulation may be an attempt to promote cellular bioenergetics.
Collapse
Affiliation(s)
- Brendan D Stamper
- Departments of Medicinal Chemistry and Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, United States
| | | | | | | |
Collapse
|
45
|
Kiziltepe T, Anderson KC, Kutok JL, Jia L, Boucher KM, Saavedra JE, Keefer LK, Shami PJ. JS-K has potent anti-angiogenic activity in vitro and inhibits tumour angiogenesis in a multiple myeloma model in vivo. J Pharm Pharmacol 2010; 62:145-51. [PMID: 20723011 DOI: 10.1211/jpp.62.01.0017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Glutathione S-transferases (GSTs) play an important role in multidrug resistance and are upregulated in multiple cancers. We have designed a prodrug class that releases nitric oxide on metabolism by GST. O(2)-(2,4-Dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, a member of this class) has potent antineoplastic activity. METHODS We studied the effect of JS-K on angiogenesis in human umbilical vein endothelial cells (HUVECs), OPM1 multiple myeloma cells, chick aortic rings and in mice. KEY FINDINGS JS-K inhibited the proliferation of HUVECs with a 50% inhibitory concentration (IC50) of 0.432, 0.466 and 0.505 microm at 24, 48 and 72 h, respectively. In the cord formation assay, JS-K led to a decrease in the number of cord junctions and cord length with an IC50 of 0.637 and 0.696 microm, respectively. JS-K inhibited cell migration at 5 h using VEGF as a chemoattractant. Migration inhibition occurred with an IC50 of 0.493 microm. In the chick aortic ring assay using VEGF or FGF-2 for vessel growth stimulation, 0.5 microm JS-K completely inhibited vessel growth. JS-K inhibited tumour angiogenesis in vivo in NIH III mice implanted subcutaneously with OPM1 multiple myeloma cells. CONCLUSIONS JS-K is a potent inhibitor of angiogenesis in vitro and tumour vessel growth in vivo. As such, it establishes a new class of antineoplastic agent that targets the malignant cells directly as well as their microenvironment.
Collapse
Affiliation(s)
- Tanyel Kiziltepe
- Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
rhIL-1Ra reduces hepatocellular apoptosis in mice with acetaminophen-induced acute liver failure. J Transl Med 2010; 90:1737-46. [PMID: 20644519 DOI: 10.1038/labinvest.2010.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure (ALF) is a life-threatening disease that has proven difficult to cure. In Western countries, acetaminophen (APAP) poisoning is the most common cause of ALF. However, the mode of cell death in APAP-induced ALF cases is controversial. Previous studies have shown that administration of anti-interleukin-1 (anti-IL-1) antibody attenuated APAP-induced liver injury, and that administration of anti-IL-1 receptor antagonist (anti-IL-1Ra) antibody exacerbated organ injury. These results prompted us to investigate the roles of IL-1Ra in APAP-induced ALF mice. Our results show that administration of recombinant human IL-1Ra (rhIL-1Ra) could significantly improve the survival rate of mice with ALF induced by APAP. Furthermore, we found that rhIL-1Ras could dramatically inhibit the activities of alanine aminotransferase and aspartate aminotransferase in serum, reduce the death of hepatocytes and accelerate the proliferation of hepatocytes. In addition, we show that hepatocellular apoptosis rather than necrosis was the major cause of ALF-induced animal death, and that the anti-apoptosis role of rhIL-1Ra was mediated by reducing the release of cytochrome c from the mitochondria, and the activities of caspase-3, caspase-8 and caspase-9 in the liver tissue. In conclusion, these data indicate that rhIL-1Ra is a promising candidate for the treatment of APAP-induced ALF in mice through the reduction of hepatocellular apoptosis.
Collapse
|
47
|
Dremza IK, Cheshchevik VT, Zabrodskaya SV, Maksimchik YZ, Sudnikovich EY, Lapshina EA, Zavodnik IB. Hepatotoxic effects of acetaminophen. Protective properties of tryptophan derivatives. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s199075081003008x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Thymoquinone supplementation reverses acetaminophen-induced oxidative stress, nitric oxide production and energy decline in mice liver. Food Chem Toxicol 2010; 48:2361-5. [DOI: 10.1016/j.fct.2010.05.072] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 11/23/2022]
|
49
|
Kon K, Kim JS, Uchiyama A, Jaeschke H, Lemasters JJ. Lysosomal iron mobilization and induction of the mitochondrial permeability transition in acetaminophen-induced toxicity to mouse hepatocytes. Toxicol Sci 2010; 117:101-8. [PMID: 20584761 DOI: 10.1093/toxsci/kfq175] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Acetaminophen induces the mitochondrial permeability transition (MPT) in hepatocytes. Reactive oxygen species (ROS) trigger the MPT and play an important role in AAP-induced hepatocellular injury. Because iron is a catalyst for ROS formation, our aim was to investigate the role of chelatable iron in MPT-dependent acetaminophen toxicity to mouse hepatocytes. Hepatocytes were isolated from fasted male C3Heb/FeJ mice. Necrotic cell killing was determined by propidium iodide fluorometry. Mitochondrial membrane potential was visualized by confocal microscopy of tetramethylrhodamine methylester. Chelatable ferrous ion was monitored by calcein quenching, and 70 kDa rhodamine-dextran was used to visualize lysosomes. Cell killing after acetaminophen (10mM) was delayed and decreased by more than half after 6 h by 1mM desferal or 1mM starch-desferal. In a cell-free system, ferrous but not ferric iron quenched calcein fluorescence, an effect reversed by dipyridyl, a membrane-permeable iron chelator. In hepatocytes loaded with calcein, intracellular calcein fluorescence decreased progressively beginning about 4 h after acetaminophen. Mitochondria then depolarized after about 6 h. Dipyridyl (20mM) dequenched calcein fluorescence. Desferal and starch-desferal conjugate prevented acetaminophen-induced calcein quenching and mitochondrial depolarization. As calcein fluorescence became quenched, lysosomes disappeared, consistent with release of iron from ruptured lysosomes. In conclusion, an increase of cytosolic chelatable ferrous iron occurs during acetaminophen hepatotoxicity, which triggers the MPT and cell killing. Disrupted lysosomes are the likely source of iron, and chelation of this iron decreases acetaminophen toxicity to hepatocytes.
Collapse
Affiliation(s)
- Kazuyoshi Kon
- Departments of Pharmaceutical & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
50
|
Leblanc A, Shiao TC, Roy R, Sleno L. Improved detection of reactive metabolites with a bromine-containing glutathione analog using mass defect and isotope pattern matching. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1241-1250. [PMID: 20391594 DOI: 10.1002/rcm.4507] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Drug bioactivation leading to the formation of reactive species capable of covalent binding to proteins represents an important cause of drug-induced toxicity. Reactive metabolite detection using in vitro microsomal incubations is a crucial step in assessing potential toxicity of pharmaceutical compounds. The most common method for screening the formation of these unstable, electrophilic species is by trapping them with glutathione (GSH) followed by liquid chromatography/mass spectrometry (LC/MS) analysis. The present work describes the use of a brominated analog of glutathione, N-(2-bromocarbobenzyloxy)-GSH (GSH-Br), for the in vitro screening of reactive metabolites by LC/MS. This novel trapping agent was tested with four drug compounds known to form reactive metabolites, acetaminophen, fipexide, trimethoprim and clozapine. In vitro rat microsomal incubations were performed with GSH and GSH-Br for each drug with subsequent analysis by liquid chromatography/high-resolution mass spectrometry on an electrospray time-of-flight (ESI-TOF) instrument. A generic LC/MS method was used for data acquisition, followed by drug-specific processing of accurate mass data based on mass defect filtering and isotope pattern matching. GSH and GSH-Br incubations were compared to control samples using differential analysis (Mass Profiler) software to identify adducts formed via the formation of reactive metabolites. In all four cases, GSH-Br yielded improved results, with a decreased false positive rate, increased sensitivity and new adducts being identified in contrast to GSH alone. The combination of using this novel trapping agent with powerful processing routines for filtering accurate mass data and differential analysis represents a very reliable method for the identification of reactive metabolites formed in microsomal incubations.
Collapse
Affiliation(s)
- André Leblanc
- Université du Québec à Montréal, Pharmaqam, Chemistry Department, Montréal, QC, Canada
| | | | | | | |
Collapse
|