1
|
Hashemi-Afzal F, Ganji F, Vasheghani-Farahani E. Orally disintegrating films based on pullulan and HPMC with carbopol-coated mucoadhesive nanoparticles for dual-pattern drug release. Int J Biol Macromol 2025; 306:141568. [PMID: 40023430 DOI: 10.1016/j.ijbiomac.2025.141568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Dual-pattern drug release systems are a new type of drug delivery system designed to achieve both immediate and sustained drug release. This study developed a dual-pattern system by combining orally disintegrating films (ODFs) with mucoadhesive nanoparticles (NPs). The NPs were made from silk fibroin (SF) coated with carbopol polymer (CP) and loaded with midazolam (MID) (MID-CP/SFNPs). MID was chosen for its rapid onset, high lipophilicity, and excellent bioavailability, making it ideal for buccal administration. The MID-CP/SFNPs had an average diameter of 260.3 nm, a negative zeta potential of -22 mV, and an 80.6 % encapsulation efficiency. When tested against rabbit buccal mucosa, the CP/SFNPs demonstrated excellent mucoadhesive properties. Using a casting process, the MID-CP/SFNPs were combined with polysaccharide films made from pullulan and hydroxypropyl methylcellulose (PUL/HPMC) containing MID. The final product, MID-CP/SFNPs@MID-ODFs, had a uniform thickness of 68.8 μm, a consistent drug content of 87.5 %, significant flexibility (219 times), and a suitable disintegration time of 16 s. This formulation showed a rapid initial drug release of 45.6 % within the first 30 min, followed by a sustained release, resulting in a total of 91 % of the drug being released over 20 h. Histological evaluations confirmed no adverse effects on the microscopic structure of the buccal mucosa. This innovative system, combining ODFs with mucoadhesive NPs, showed promising results, making it a viable candidate for biomedical applications.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Fariba Ganji
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| |
Collapse
|
2
|
Robles-Fernández A, Jiménez-Boland D, Leon-Cecilla A, Villegas-Montoya M, Traverso JÁ, Cuadros MA, Martín-Rodríguez A, Lopez-Lopez MT, Bramini M, Moraila-Martínez CL, Sánchez-Moreno P. Tuning lipid nanocarrier mechanical properties to improve glioblastoma targeting and blood brain barrier penetration. NANOSCALE 2025. [PMID: 40293789 DOI: 10.1039/d5nr00984g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Nanocarrier lipid systems (NLSs) have emerged as versatile platforms for diagnostic and therapeutic applications, including drug delivery, gene therapy, and vaccine development. Recent advancements highlight their potential in targeting infectious diseases and treating pathological conditions like tumors, largely due to their ability to effectively encapsulate and deliver therapeutic agents. This study focuses on the synthesis and characterization of NLSs with varying lipid compositions to understand their physicochemical and mechanical properties, which are crucial for their performance in biomedical applications. NLSs were prepared using a solvent displacement method, resulting in formulations with different ratios of olive oil and stearic acid. These formulations were characterized to determine their size, polydispersity index, and surface charge. Dynamic Light Scattering and Nanoparticle Tracking Analysis revealed that the size of the NLSs increased with higher stearic acid content. The NLSs demonstrated stability across a range of pH levels and in cell culture medium. The biomolecular corona formation and its impact on surface charge were also evaluated, showing significant effects on NLS stability. Mechanical properties, including rigidity and deformability, were assessed using Atomic Force Microscopy and rheological tests. The study found that increasing stearic acid content enhanced NLS rigidity and adhesion strength, which is crucial for their behaviour in biological systems such as blood circulation, tumor targeting, and cellular uptake. Biological evaluations demonstrated that these mechanical properties significantly influenced bio-interactions. Softer NLSs with a pure olive oil core displayed enhanced translocation across an in vitro blood-brain barrier model, underscoring their potential for drug delivery to the brain. Conversely, glioblastoma cell uptake studies revealed that the more rigid NLSs were internalized more efficiently by U87-MG cells, suggesting a role for stiffness in cellular entry. These findings provide insights into optimizing NLSs for specific therapeutic applications, particularly in overcoming barriers like the blood-brain barrier and targeting cerebral diseases.
Collapse
Affiliation(s)
- Ana Robles-Fernández
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
| | - Daniel Jiménez-Boland
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
| | - Alberto Leon-Cecilla
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014, Granada, Spain
| | - Martín Villegas-Montoya
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
- Universidad Autónoma de Sinaloa, Facultad de Biología, 80040, Culiacán, Mexico
| | - José Ángel Traverso
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
| | - Miguel A Cuadros
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
| | | | - Modesto T Lopez-Lopez
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
- Instituto de Investigación Biosanitaria Ibs.GRANADA, E-18014, Granada, Spain
| | - Mattia Bramini
- Universidad de Granada, Departamento de Biología Celular, E-18071 Granada, Spain.
| | | | - Paola Sánchez-Moreno
- Universidad de Granada, Departamento de Física Aplicada, E-18071, Granada, Spain.
| |
Collapse
|
3
|
Patel V, Mehta T, Shah J, Soni K. Quality by design driven development of lipid nanoparticles for cutaneous targeting: a preliminary approach. Drug Deliv Transl Res 2025; 15:1393-1410. [PMID: 39145818 DOI: 10.1007/s13346-024-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/16/2024]
Abstract
Fungal infections are the fourth common cause of infection affecting around 50 million populations across the globe. Dermatophytes contribute to the majority of superficial fungal infections. Clotrimazole (CTZ), an imidazole derivative is widely preferred for the treatment of topical fungal infections. Conventional topical formulations enable effective penetration of CTZ into the stratum corneum, however, its low solubility results in poor dermal bioavailability, and variable drug levels limit the efficacy. The aim was to increase dermal bioavailability and sustain drug release, thereby potentially enhancing drug retention and reducing its side effects. This work evaluated the CTZ loaded solid lipid nanoparticles (SLN) consisting of precirol and polysorbate-80 developed using high pressure homogenization and optimized with QbD approach. Prior to release studies, CTZ-SLNs were characterized by different analytical techniques. The laser diffractometry and field emission scanning electron microscopy indicated that SLNs were spherical in shape with mean diameter of 450 ± 3.45 nm. DSC and XRD results revealed that the drug remained molecularly dispersed in the lipid matrix. The CTZ-SLNs showed no physicochemical instability during 6 months of storage at different temperatures. Further, the Carbopol with its pseudoplastic behavior showed a crucial role in forming homogenous and stable network for imbibing the CTZ-SLN dispersion for effective retention in skin. As examined, in-vitro drug release was sustained up to 24 h while ex-vivo skin retention and drug permeation studies showed the highest accumulation and lowest permeation with nanogel in comparison to pure drug and Candid® cream. Further, the in-vivo antifungal efficacy of nanogel suggested once-a-day application for 10 days, supported by histopathological analysis for complete eradication infection. In summary, the findings suggest, that nanogel-loaded with CTZ-SLNs has great potential for the management of fungal infections caused by Candida albicans.
Collapse
Affiliation(s)
- Viral Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa-388421, Anand, Gujarat, India.
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India.
| | - Tejal Mehta
- Department of Pharmaceutics and Pharmaceutical Technology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India.
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India
| | - Kinal Soni
- Department of Pharmacology, Institute of Pharmacy, Nirma University, S G Highway, Ahmedabad, 382481, Gujarat, India
| |
Collapse
|
4
|
Gupta DS, Suares D. Uncovering the Emerging Prospects of Lipid-based Nanoparticulate Vehicles in Lung Cancer Management: A Recent Perspective. Pharm Nanotechnol 2025; 13:155-170. [PMID: 38468532 DOI: 10.2174/0122117385286781240228060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024]
Abstract
Lung cancer, a leading cause of cancer-related deaths globally, is gaining research interest more than ever before. Owing to the burden of pathogenesis on the quality of life of patients and subsequently the healthcare system, research efforts focus on its management and amelioration. In an effort to improve bioavailability, enhance stability, minimize adverse effects and reduce the incidence of resistance, nanotechnological platforms have been harnessed for drug delivery and improving treatment outcomes. Lipid nanoparticles, in particular, offer an interesting clinical opportunity with respect to the delivery of a variety of agents. These include synthetic chemotherapeutic agents, immunotherapeutic molecules, as well as phytoconstituents with promising anticancer benefits. In addition to this, these systems are being studied for their usage in conjunction with other treatment strategies. However, their applications remain limited owing to a number of challenges, chiefly clinical translation. There is a need to address the scalability of such technologies, in order to improve accessibility. The authors aim to offer a comprehensive understanding of the evolution of lipid nanoparticles and their application in lung cancer, the interplay of disease pathways and their mechanism of action and the potential for delivery of a variety of agents. Additionally, a discussion with respect to results from preclinical studies has also been provided. The authors have also provided a well-rounded insight into the limitations and future perspectives. While the possibilities are endless, there is a need to undertake focused research to expedite clinical translation and offer avenues for wider applications in disease management.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Divya Suares
- Department of Pharmaceutical Sciences, Shobhaben Pratapbhai Patel School of Pharmacy & Technology, Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| |
Collapse
|
5
|
Glader C, Jeitler R, Stanzer S, Harbusch N, Prietl B, El-Heliebi A, Selmani A, Fröhlich E, Mussbacher M, Roblegg E. Investigation of nanostructured lipid carriers for fast intracellular localization screening using the Echo liquid handler. Int J Pharm 2024; 665:124698. [PMID: 39277150 DOI: 10.1016/j.ijpharm.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
In the field of precision medicine, therapy is optimized individually for each patient, enhancing efficacy while reducing side effects. This involves the identification of promising drug candidates through high-throughput screening on human derived cells in culture. However, screening of drugs which have poor solubility or permeability remains challenging, especially when targeting intracellular components. Therefore, encapsulation of drugs into advanced delivery systems such as nanostructured lipid carries (NLC) becomes necessary. Here we show that the cellular uptake of NLC with different matrix compositions can be assessed in a high-throughput screening system based on acoustic droplet ejection (ADE) technology (Echo liquid handler). Our findings indicate that surface tension and viscosity of the NLC dispersions need to be tailored to enable a reliable ADE transfer. The automated NLC uptake studies indicated that the composition of the matrix, more specifically the amount of oleic acid, significantly influenced cellular uptake. The data obtained were corroborated by imaging based and spectral flow cytometry cellular uptake studies. These findings thus not only provide the basis for a screening tool to rapidly identify the efficacy of NLC uptake but also enable a next step toward precision high-throughput drug screening under consideration of an optimized drug delivery system.
Collapse
Affiliation(s)
- Christina Glader
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Ramona Jeitler
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Stefanie Stanzer
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Oncology, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria.
| | | | - Barbara Prietl
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Endocrinology and Diabetology, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Amin El-Heliebi
- CBmed GmbH Stiftingtalstraße 5, 8010 Graz, Austria; Medical University of Graz, Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Atida Selmani
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| | - Eleonore Fröhlich
- Medical University of Graz, Center for Medical Research, Stiftingtalstraße 24, 8010 Graz, Austria.
| | - Marion Mussbacher
- University of Graz, Institute of Pharmaceutical Sciences, Pharmacology & Toxicology, Humboldtstraße 46, 8010 Graz, Austria.
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria.
| |
Collapse
|
6
|
Rostamkhani N, Salimi M, Adibifar A, Karami Z, Agh-Atabay AH, Rostamizadeh K, Abdi Z. Enhanced anti-tumor and anti-metastatic activity of quercetin using pH-sensitive Alginate@ZIF-8 nanocomposites: in vitroand in vivostudy. NANOTECHNOLOGY 2024; 35:475102. [PMID: 39163872 DOI: 10.1088/1361-6528/ad713f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Quercetin (Qc) possesses anti-cancer properties, such as cell signaling, growth suppression, pro-apoptotic, anti-proliferative, and antioxidant effects. In this study, we developed an alginate-modified ZIF-8 (Alg@ZIF-8) to enhance the anti-tumor efficacy of Qc. The developed alginate-modified quercetin-loaded ZIF-8 (Alg@Qc@ZIF-8) was characterized using scanning electron microscope (SEM), dynamic light scattering (DLS), fourier transform infrared spectroscopy Thermogravimetric analysis, Brunauer-Emmett-Teller, and x-ray diffraction. The drug release pattern was evaluated at pH 5.4 and 7.4. The cytotoxicity of nanoparticles was assessed on the 4T1 cell line. Finally, the anti-tumor activity of Alg@Qc@ZIF-8 was evaluated in 4T1 tumor-bearing mice. SEM showed that the nanoparticles were spherical with a diameter of mainly below 50 nm. The DLS showed that the developed nanoparticles' hydrodynamic diameter, zeta potential, and polydispersity index were 154.9 ± 7.25 nm, -23.8 ± 5.33 mV, and 0.381 ± 0.09, respectively. The drug loading capacity was 10.40 ± 0.02%. Alg@Qc@ZIF-8 exhibited pH sensitivity, releasing more Qc at pH 5.4 (about 3.62 times) than at pH 7.4 after 24 h. Furthermore, the IC50value of Alg@Qc@ZIF-8 on the 4T1 cell line was 2.16 times lower than net Qc. Importantly, in tumor-bearing mice, Alg@Qc@ZIF-8 demonstrated enhanced inhibitory effects on tumor growth and lung metastasis compared to net Qc. Considering thein vitroandin vivooutcomes, Alg@Qc@ZIF-8 might hold great potential for effective breast cancer management.
Collapse
Affiliation(s)
- Neda Rostamkhani
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Salimi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Arghavan Adibifar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Karami
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Kobra Rostamizadeh
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Psychiatry and Behavioral Sciences, Department of Pharmacology, School of Medicine, University of Washington, Seattle, WA, United States of America
| | - Zahra Abdi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
7
|
V G, Kothapalli P, Vasanthan M. A Comprehensive Review on Solid Lipid Nanoparticles as a Carrier for Oral Absorption of Phyto-Bioactives. Cureus 2024; 16:e68339. [PMID: 39355082 PMCID: PMC11444802 DOI: 10.7759/cureus.68339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Phyto-bioactive (PB) compounds are naturally occurring substances derived from plants that offer significant health benefits ranging from antioxidant and anti-inflammatory activities to potential cancer-fighting properties. However, their widespread application is limited by several inherent limitations, such as low bioavailability, poor biostability, limited aqueous solubility, and no site-specific target. Additionally, the necessity for high concentrations of effective PBs doses further restricts their use. Encapsulating PBs in suitable nanocarriers, particularly solid lipid nanoparticles (SLNs), can enhance their stability in biological environments, improve water solubility, enable controlled release, and allow for targeted delivery. This innovative approach increases bioavailability, reduces toxicity, and potentially lowers effective dosages. The current review examines the critical factors influencing oral PBs delivery, explores how biocompatible and biodegradable SLNs can be optimized to overcome these challenges, and discusses emerging techniques in nanoparticle design that could further enhance the efficacy of PBs delivery systems.
Collapse
Affiliation(s)
- Gokul V
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Pavithra Kothapalli
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| | - Manimaran Vasanthan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, IND
| |
Collapse
|
8
|
Deol PK, Kaur IP, Dhiman R, Kaur H, Sharma G, Rishi P, Ghosh D. Investigating wound healing potential of sesamol loaded solid lipid nanoparticles: Ex-vivo, in vitro and in-vivo proof of concept. Int J Pharm 2024; 654:123974. [PMID: 38447777 DOI: 10.1016/j.ijpharm.2024.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/07/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Sesamol, a lignan, obtained from sesame seeds (Sesamum indicum Linn., Pedaliaciae) has a promising antioxidant, and anti-inflammatory profile. When applied topically, free sesamol rapidly crosses skin layers and gets absorbed in systemic circulation. Its encapsulation into solid lipid nanoparticles not only improved its localised delivery to skin but also resulted in better skin retention, as found in ex-vivo skin retention studies. Free and encapsulated sesamol was compared for antimicrobial and antibiofilm activity against some common skin pathogens and it was found that encapsulation improved the antimicrobial profile by 200%. In vivo evaluation in diabetic open excision wound model suggested that encapsulation of sesamol in SLNs substantially enhanced its wound healing potential when investigated for biophysical, biochemical and histological parameters. It was envisaged that this was achieved via inhibiting bacterial growth and clearing the bacterial biofilm at the wound site, and by regulating oxidative stress in skin tissue.
Collapse
Affiliation(s)
- Parneet Kaur Deol
- G.H.G. Khalsa College of Pharmacy Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Ravi Dhiman
- G.H.G. Khalsa College of Pharmacy Gurusar Sadhar, Ludhiana, Punjab, India
| | - Harmanjot Kaur
- G.H.G. Khalsa College of Pharmacy Gurusar Sadhar, Ludhiana, Punjab, India
| | - Garima Sharma
- University Institute of Pharmaceutical Sciences, Punjab University Chandigarh, India
| | - Parveen Rishi
- Department of Microbiology, Punjab University Chandigarh, India
| | - Deepa Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab, India
| |
Collapse
|
9
|
Köksal Karayildirim Ç. Preparation, Characterization, and Antiangiogenic Evaluation of a Novel 5-Fluorouracil Derivative Solid Lipid Nanoparticle with a Hen's Egg Chorioallantoic Membrane Assay and Wound Healing Response in HaCaT Keratinocytes. ACS OMEGA 2024; 9:16640-16647. [PMID: 38617689 PMCID: PMC11007769 DOI: 10.1021/acsomega.4c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
5-Fluorouracil is a heterocyclic aromatic organic compound, and it is commonly used as a chemotherapeutic agent in many cancers. The present goal is to analyze and characterize the physicochemical and biological properties of a new therapeutic formulation of 5-FUD-Gal under simulated chronic wound and oxidative stress conditions. After synthesis of a new 5-fluorouracil derivative, preparation and characterization of the formulation were carried out. The antiangiogenic effect, wound healing, and oxidative stress responses were conducted with a HET-CAM assay and in vitro cell culture technique. The results initially demonstrated that 5-FUD-Gal synthesized by a series of reactions and the SLN formulation were prepared successfully. A strong cell protective effect above 98% cell viability was detected at 20 μM at 48 h. The wound closure of the HaCaT scratch assay was calculated to be 90.12 and 98.98% at 10 and 20 μM concentrations, respectively, at 48 h. Moreover, the strongest effect of 5-FUD-Gal-F was observed at 20 μM concentration on chicken embryos. This study provides novel insights that a new derivative of semisynthetic 5-FUD-Gal-F can be further evaluated as a therapeutic chemical compound in cancer disease.
Collapse
|
10
|
Sheoran S, Arora S, Velingkar A, Pawar SC, Vuree S. Empowering treatment strategies for pancreatic cancer by employing lipid nanoparticle-driven drug delivery. RECENT ADVANCES IN NANOCARRIERS FOR PANCREATIC CANCER THERAPY 2024:239-266. [DOI: 10.1016/b978-0-443-19142-8.00016-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Maiti D, Naseeruddin Inamdar M, Almuqbil M, Suresh S, Mohammed Basheeruddin Asdaq S, Alshehri S, Ali Al Arfaj S, Musharraf Alamri A, Meshary Aldohyan M, Theeb Alqahtani M, Mohammed Alosaimi T, Haran Alenazi S, Almadani ME, Ahmed S. Mulla J, Imam Rabbani S. Evaluation of solid-lipid nanoparticles formulation of methotrexate for anti-psoriatic activity. Saudi Pharm J 2023; 31:834-844. [PMID: 37228325 PMCID: PMC10203772 DOI: 10.1016/j.jsps.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/06/2023] [Indexed: 05/27/2023] Open
Abstract
Background & Objectives Methotrexate (MTX) is commonly used to manage psoriasis. The drug has erratic absorption characteristics and shows several complications. The present study uses different experimental models to evaluate the solid-lipid nanoparticles of MTX (SLN-MTX) for the anti-psoriatic effect. Methods A prepared SLN-MTX formulation was used and its permeability studies were conducted on Wistar rat abdominal skin. The organ-level distribution of the drug in the formulation was tested in mice and the in-vitro anti-psoriatic activity was determined in CL-177; XB-2 keratinocytes cell lines. The efficacy of SLN-MTX formulation was compared with standard MTX and marketed MTX preparations. The results are analyzed statistically using the student's t-test. Results The data suggested that MTX from the formulation was slowly released and completely (80.36%) permeated through the skin. The flux and permeation data were found to be maximum for SLN-MTX compared to marketed and standard preparations. MTX in the formulation was found to be distributed more in the liver (67.5%) and kidney (2.34%). Further, SLN-MTX formulation showed dose-dependent inhibition on the growth of keratinocytes, and the cytotoxic concentration (CTC50) was found to be the least (518 mcg/ml). Interpretation & Conclusion The findings suggested that MTX in solid-lipid nanoparticles could be a promising formulation for the management of psoriasis since the drug was slowly released, progressively inhibited the growth of keratinocytes, and distributed mostly in organs meant for elimination. More studies in this direction might establish the precise safety and efficacy of SLN-MTX formulation in psoriasis.
Collapse
Affiliation(s)
- Debarati Maiti
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India
| | - Mohammed Naseeruddin Inamdar
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India
- Department of Pharmacology, East West College of Pharmacy, Bangalore, India
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sarasija Suresh
- RGV Research and Innovations Pvt Ltd (RGVRI), Bangalore, India
| | | | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Saad Ali Al Arfaj
- King Abdulaziz Medical City in Riyadh, Ministry of National Guard, Riyadh, Saudi Arabia
| | - Ali Musharraf Alamri
- King Abdulaziz Medical City in Riyadh, Ministry of National Guard, Riyadh, Saudi Arabia
| | | | | | | | - Sami Haran Alenazi
- King Abdulaziz Medical City in Riyadh, Ministry of National Guard, Riyadh, Saudi Arabia
| | - Moneer E. Almadani
- Department of clinical medicine, College of medicine, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
| | - Jameel Ahmed S. Mulla
- Department of Pharmaceutics, Shree Santkrupa College of Pharmacy, Ghogaon, Karad, Maharashtra, India
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
12
|
Registre C, Soares RDOA, Rubio KTS, Santos ODH, Carneiro SP. A Systematic Review of Drug-Carrying Nanosystems Used in the Treatment of Leishmaniasis. ACS Infect Dis 2023; 9:423-449. [PMID: 36795604 DOI: 10.1021/acsinfecdis.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Leishmaniasis is an infectious disease responsible for a huge rate of morbidity and mortality in humans. Chemotherapy consists of the use of pentavalent antimonial, amphotericin B, pentamidine, miltefosine, and paromomycin. However, these drugs are associated with some drawbacks such as high toxicity, administration by parenteral route, and most seriously the resistance of some strains of the parasite to them. Several strategies have been used to increase the therapeutic index and reduce the toxic effects of these drugs. Among them, the use of nanosystems that have great potential as a site-specific drug delivery system stands out. This review aims to compile results from studies that were carried out using first- and second-line antileishmanial drug-carrying nanosystems. The articles referred to here were published between 2011 and 2021. This study shows the promise of effective applicability of drug-carrying nanosystems in the field of antileishmanial therapeutics, with the perspective of providing better patient adherence to treatment, increased therapeutic efficacy, reduced toxicity of conventional drugs, as well as the potential to efficiently improve the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Charmante Registre
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Rodrigo D O A Soares
- Immunopathology Laboratory, Research Center in Biological Sciences/NUPEB, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Karina T S Rubio
- Toxicology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Orlando D H Santos
- Phytotechnology Laboratory, School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais 35400000, Brazil
| | - Simone P Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, 81377 Munich, Germany
| |
Collapse
|
13
|
Topical hydrophilic gel with itraconazole-loaded polymeric nanomicelles improves wound healing in the treatment of feline sporotrichosis. Int J Pharm 2023; 634:122619. [PMID: 36682505 DOI: 10.1016/j.ijpharm.2023.122619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
Sporotrichosis is a superficial fungal disease that can affect animals and humans. The high number of infected cats has been associated with zoonotic transmission and contributed to sporotrichosis being considered by the World Health Organization as one of the main neglected tropical fungal diseases for 2021-2030. Oral administration of itraconazole (ITZ) is the first choice for treatment, but it is expensive, time-consuming, and often related to serious adverse effects. As a strategy to optimize the treatment, we proposed the development of a hydrophilic gel with nanomicelles loaded with ITZ (HGN-ITZ). The HGN-ITZ was developed using an I-optimal design and characterized for particle size, Zeta potential, drug content, microscopic aspects, viscosity, spreadability, in vitro drug release, in vitro antifungal activity, and clinical evaluation in cats. The HGN-ITZ showed a high content of ITZ (97.3 ± 2.1 mg/g); and characteristics suitable for topical application (viscosity, spreadability, globules size, Zeta potential, controlled drug release). In a pilot clinical study, cats with disseminated sporotrichosis were treated with oral ITZ or HGN-ITZ + oral ITZ. A mortality rate of 21.3% was observed for the oral ITZ group compared to 5.3% for the HGN-ITZ + oral ITZ group. In a cat with a single lesion, topical treatment alone (HGN-ITZ) provided complete healing of the lesion in 45 days. No signs of topical irritation were observed during the treatments, suggesting that HGN-ITZ can be a promising strategy in the treatment of sporotrichosis.
Collapse
|
14
|
Sorasitthiyanukarn FN, Muangnoi C, Gomez CB, Suksamrarn A, Rojsitthisak P, Rojsitthisak P. Potential Oral Anticancer Therapeutic Agents of Hexahydrocurcumin-Encapsulated Chitosan Nanoparticles against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15020472. [PMID: 36839794 PMCID: PMC9959490 DOI: 10.3390/pharmaceutics15020472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Hexahydrocurcumin-encapsulated chitosan nanoparticles (HHC-CS-NPs) were formulated by oil-in-water emulsification and ionotropic gelation and optimized using the Box-Behnken design. The particle size, zeta potential, and encapsulation efficiency of the optimized HHC-CS-NPs were 256 ± 14 nm, 27.3 ± 0.7 mV, and 90.6 ± 1.7%, respectively. The TEM analysis showed a spherical shape and a dense structure with a narrow size distribution. The FT-IR analysis indicated no chemical interaction between the excipients and the drugs in the nanoparticles, but the existence of the drugs was molecularly dispersed in the nanoparticle matrices. The drug release profile showed a preliminary burst release followed by a sustained release under simulated gastrointestinal (GI) and physiological conditions. A stability study suggested that the HHC-CS-NPs were stable under UV light, simulated GI, and body fluids. The in vitro bioaccessibility and bioavailability of the HHC-CS-NPs were 2.2 and 6.1 times higher than those of the HHC solution, respectively. The in vitro evaluation of the antioxidant, anti-inflammatory, and cytotoxic effects of the optimized HHC-CS-NPs demonstrated that the CS-NPs significantly improved the biological activities of HHC in radical scavenging, hemolysis protection activity, anti-protein denaturation, and cytotoxicity against MDA-MB-231 breast cancer cells. Western blot analysis showed that the apoptotic protein expression of Bax, cytochrome C, caspase-3, and caspase-9, were significantly up-regulated, whereas the anti-apoptotic protein Bcl-2 expression was down-regulated in the HHC-CS-NP-treated cells. Our findings suggest that the optimized HHC-CS-NPs can be further developed as an efficient oral treatment for breast cancer.
Collapse
Affiliation(s)
- Feuangthit N. Sorasitthiyanukarn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Clinton B. Gomez
- Department of Industrial Pharmacy, College of Pharmacy, University of the Philippines Manila, Manila 1000, Metro Manila, Philippines
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Pranee Rojsitthisak
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-4221; Fax: +662-611-7586
| | - Pornchai Rojsitthisak
- Center of Excellent in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Mehandole A, Walke N, Mahajan S, Aalhate M, Maji I, Gupta U, Mehra NK, Singh PK. Core-Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 2023; 24:50. [PMID: 36703085 DOI: 10.1208/s12249-023-02504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Amongst the several nano-drug delivery systems, lipid or polymer-based core-shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core-shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core-shell NC's mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core-shell NCs and applications in the foreseeable future.
Collapse
Affiliation(s)
- Arti Mehandole
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Nikita Walke
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
16
|
Compritol-Based Alprazolam Solid Lipid Nanoparticles for Sustained Release of Alprazolam: Preparation by Hot Melt Encapsulation. Molecules 2022; 27:molecules27248894. [PMID: 36558027 PMCID: PMC9783086 DOI: 10.3390/molecules27248894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
The current study was designed to investigate the feasibility of incorporating the water-insoluble lipophilic drug Alprazolam (Alp) into solid lipid nanoparticles (SLNs) to offer the combined benefits of the quick onset of action along with the sustained release of the drug. Therefore, compritol-based alprazolam-loaded SLNs (Alp-SLNs) would provide early relief from anxiety and sleep disturbances and long-lasting control of symptoms in patients with depression, thereby enhancing patient compliance. The optimized Alp-SLNs analyzed by DLS and SEM showed consistent particle size of 92.9 nm with PI values and standard deviation of the measurements calculated at <0.3 and negative surface charge. These characteristic values demonstrate the desired level of homogeneity and good physical stability of Alp-SLNs. The SLNs had a good entrapment efficiency (89.4%) and high drug-loading capacity (77.9%). SEM analysis revealed the smooth spherical morphology of the SLNs. The physical condition of alprazolam and absence of interaction among formulation components in Alp-SLNs was confirmed by FTIR and DSC analyses. XRD analysis demonstrated the molecular dispersion of crystalline alprazolam in Alp-SLNs. The in vitro release study implied that the release of Alp from the optimized Alp-SLN formulation was sustained as compared to the Alp drug solution because Alp-SLNs exhibited sustained release of alprazolam over 24 h. Alp-SLNs are a promising candidate to achieve sustained release of the short-acting drug Alp, thereby reducing its dosing frequency and enhancing patient compliance.
Collapse
|
17
|
Alvandi H, Hatamian-Zarmi A, Mokhtari-Hosseini ZB, Webster TJ, Ebrahimi Hosseinzadeh B. Selective biological effects of natural selenized polysaccharides from Fomes fomentarius mycelia loaded solid lipid nanoparticles on bacteria and gastric cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Abd-Alrahman AS, Ismail RA, Mohammed MA. Colloidal synthesis of cesium iodide nanocrystals for visible-enhanced photodetection applications. PHYSICA E: LOW-DIMENSIONAL SYSTEMS AND NANOSTRUCTURES 2022; 143:115375. [DOI: 10.1016/j.physe.2022.115375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Abd-Alrahman AS, A.Ismail R, Mohammed MA. Preparation of Nanostructured HgI2 Nanotubes/Si Photodetector by Laser Ablation in Liquid. SILICON 2022; 14:8397-8407. [DOI: 10.1007/s12633-021-01609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 09/02/2023]
|
20
|
Ozgenc E, Karpuz M, Arzuk E, Gonzalez-Alvarez M, Sanz MB, Gundogdu E, Gonzalez-Alvarez I. Radiolabeled Trastuzumab Solid Lipid Nanoparticles for Breast Cancer Cell: in Vitro and in Vivo Studies. ACS OMEGA 2022; 7:30015-30027. [PMID: 36061662 PMCID: PMC9435033 DOI: 10.1021/acsomega.2c03023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Radiolabeled trastuzumab (TRZ) loaded solid lipid nanoparticles (SLNs) were prepared by high shear homogenization and sonication techniques. The apoptosis mechanism of TRZ-SLNs was studied only with the MCF-7 cell line, while the cytotoxicity and cell binding capacity were investigated using breast cancer cells (MCF-7 and MDA-MB-231) and the human keratinocyte cell line (HaCaT). The particle sizes of TRZ-SLNs were found to be below 100 nm, and they possessed a negative charge. The high radiolabeling efficiency and good radiolabeling stability in saline and a cell culture medium were obtained in the results of radiolabeling studies. According to the in vitro studies, TRZ-SLNs were found to be biocompatible, and they effectively induced apoptosis in MCF-7 cells. After the parenteral injection of TRZ-SLNs into rats, a sustained release profile in blood circulation was achieved compared with free drug solution by the evaluation of pharmacokinetic parameters. As a conclusion, the study reveals that Technetium-99m (99mTc radiolabeled) TRZ loaded SLN formulations could be promising theranostic agents based on their characterization profiles, in vitro cellular uptake and apoptosis induction capacity, and in vivo pharmacokinetic profiles.
Collapse
Affiliation(s)
- Emre Ozgenc
- Department
of Radiopharmacy, Ege University, 35040, Izmir, Turkey
| | - Merve Karpuz
- Department
of Radiopharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Ege Arzuk
- Department
of Toxicology, Faculty of Pharmacy, Ege
University, 35040, Izmir, Turkey
| | - Marta Gonzalez-Alvarez
- Department
of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Elche, Alicante, Spain
| | - Marival Bermejo Sanz
- Department
of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Elche, Alicante, Spain
| | - Evren Gundogdu
- Department
of Radiopharmacy, Ege University, 35040, Izmir, Turkey
| | - Isabel Gonzalez-Alvarez
- Department
of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Elche, Alicante, Spain
| |
Collapse
|
21
|
Khan AA, Atiya A, Akhtar S, Yadav Y, Qureshi KA, Jaremko M, Mahmood S. Optimization of a Cefuroxime Axetil-Loaded Liquid Self-Nanoemulsifying Drug Delivery System: Enhanced Solubility, Dissolution and Caco-2 Cell Uptake. Pharmaceutics 2022; 14:pharmaceutics14040772. [PMID: 35456606 PMCID: PMC9028143 DOI: 10.3390/pharmaceutics14040772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cefuroxime axetil (CA) is an oral cephalosporin which hydrolyzes rapidly to the active parent compound cefuroxime. CA is known to have incomplete oral bioavailability (30−50%) due to its poor solubility and enzymatic conversion to cefuroxime in the gut lumen. In order to overcome these drawbacks, a lipid-based self-nanoemulsifying drug delivery system (SNEDDS) has been developed and optimized. The SNEDDS formulations were prepared using the aqueous phase titration method. The greatest self-emulsifying area was found in the 2:1 Smix ratio. As a result, different SNEDDS formulations were carefully selected from this phase diagram based on their smaller droplet size < 100 nm, polydispersity index ≤ 0.5, dispersibility (Grade A), and transmittance (%) > 85%. Thermodynamic stability tests were carried out in order to rule out any metastable/unstable SNEDDS formulations. The droplet size, polydispersity index, zeta potential, and entrapment efficiency (% EE) of optimized CA-loaded SNEDDS (C-3) were 18.50 ± 1.83 nm, 0.064 ± 0.008, −22.12 ± 1.20 mV, and 97.62 ± 1.06%, respectively. In vitro release studies revealed that the SNEDDS formulation had increased CA solubility. CA-SNEDDS-C3 increased CA cellular uptake, possibly due to increased CA solubility and the inhibition of enzymatic conversion to cefuroxime. Finally, in terms of the improvement of oral bioavailability, CA-loaded-SNEDDS could be a viable alternative to commercially available CA formulations.
Collapse
Affiliation(s)
- Arshad Ali Khan
- The Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (A.A.K.); (S.M.)
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia;
| | - Safia Akhtar
- Division of Endocrinology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (S.A.); (Y.Y.)
| | - Yogesh Yadav
- Division of Endocrinology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (S.A.); (Y.Y.)
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.A.K.); (S.M.)
| |
Collapse
|
22
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
23
|
Sainaga Jyothi VG, Ghouse SM, Khatri DK, Nanduri S, Singh SB, Madan J. Lipid nanoparticles in topical dermal drug delivery: Does chemistry of lipid persuade skin penetration? J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Pugazhendhi A, Suganthy N, Chau TP, Sharma A, Unpaprom Y, Ramaraj R, Karuppusamy I, Brindhadevi K. Cannabinoids as anticancer and neuroprotective drugs: Structural insights and pharmacological interactions—A review. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Synthesis of HgI2 Nanoparticles and Nanorods by Laser Ablation in Liquid for Photodetector Applications: Effect of Laser Fluence. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02124-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Liu Y, Sukumar UK, Kanada M, Krishnan A, Massoud TF, Paulmurugan R. Camouflaged Hybrid Cancer Cell-Platelet Fusion Membrane Nanovesicles Deliver Therapeutic MicroRNAs to Presensitize Triple-Negative Breast Cancer to Doxorubicin. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2103600. [PMID: 34899115 PMCID: PMC8664068 DOI: 10.1002/adfm.202103600] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 05/29/2023]
Abstract
Camouflaged cell-membrane-based nanoparticles have been gaining increasing attention owing to their improved biocompatibility and immunomodulatory properties. Using nanoparticles prepared from the membranes of specific cell types, or fusions derived from different cells membranes, can improve their functional performance in several aspects. Here, we used cell membranes extracted from breast cancer cells and platelets to fabricate a hybrid-membrane vesicle fusion (cancer cell-platelet-fusion-membrane vesicle, CPMV) in which we loaded therapeutic microRNAs (miRNAs) for the treatment of triple-negative breast cancer (TNBC). We used a clinically scalable microfluidic platform for the fusion of cell membranes. The reconstitution process during synthesis allows for efficient loading of miRNAs into CPMVs. We systematically optimized the conditions for preparation of miRNA-loaded CPMVs and demonstrated their property of homing to source cells using in vitro experiments, and by therapeutic evaluation in vivo. In vitro, the CPMVs exhibited significant recognition of their source cells and avoided engulfment by macrophages. After systemic delivery in mice, the CPMVs showed a prolonged circulation time and site-specific accumulation at implanted TNBC-xenografts. The delivered antimiRNAs sensitized TNBCs to doxorubicin, resulting in an improved therapeutic response and survival rate. This strategy has considerable potential for clinical translation to improve personalized therapy for breast cancer and other malignancies.
Collapse
Affiliation(s)
- Yi Liu
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
- Department of Critical Care Medicine, Chongqing Medical University Affiliated Second Hospital, Chongqing, China
| | - Uday K. Sukumar
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824., USA
| | - Anandi Krishnan
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California
- Canary Center for Cancer Early Detection, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
27
|
Ramzan M, Kaur G, Trehan S, Agrewala JN, Michniak-Kohn BB, Hussain A, Mahdi WA, Gulati JS, Kaur IP. Mechanistic evaluations of ketoconazole lipidic nanoparticles for improved efficacy, enhanced topical penetration, cellular uptake (L929 and J774A.1), and safety assessment: In vitro and in vivo studies. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Manan FAA, Yusof NA, Abdullah J, Mohammad F, Nurdin A, Yazan LS, Khiste SK, Al-Lohedan HA. Drug Release Profiles of Mitomycin C Encapsulated Quantum Dots-Chitosan Nanocarrier System for the Possible Treatment of Non-Muscle Invasive Bladder Cancer. Pharmaceutics 2021; 13:1379. [PMID: 34575455 PMCID: PMC8469644 DOI: 10.3390/pharmaceutics13091379] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Nanotechnology-based drug delivery systems are an emerging technology for the targeted delivery of chemotherapeutic agents in cancer therapy with low/no toxicity to the non-cancer cells. With that view, the present work reports the synthesis, characterization, and testing of Mn:ZnS quantum dots (QDs) conjugated chitosan (CS)-based nanocarrier system encapsulated with Mitomycin C (MMC) drug. This fabricated nanocarrier, MMC@CS-Mn:ZnS, has been tested thoroughly for the drug loading capacity, drug encapsulation efficiency, and release properties at a fixed wavelength (358 nm) using a UV-Vis spectrophotometer. Followed by the physicochemical characterization, the cumulative drug release profiling data of MMC@CS-Mn:ZnS nanocarrier (at pH of 6.5, 6.8, 7.2, and 7.5) were investigated to have the highest release of 56.48% at pH 6.8, followed by 50.22%, 30.88%, and 10.75% at pH 7.2, 6.5, and 7.5, respectively. Additionally, the drug release studies were fitted to five different pharmacokinetic models including pesudo-first-order, pseudo-second-order, Higuchi, Hixson-Crowell, and Korsmeyers-Peppas models. From the analysis, the cumulative MMC release suits the Higuchi model well, revealing the diffusion-controlled mechanism involving the correlation of cumulative drug release proportional to the function square root of time at equilibrium, with the correlation coefficient values (R2) of 0.9849, 0.9604, 0.9783, and 0.7989 for drug release at pH 6.5, 6.8, 7.2, and 7.5, respectively. Based on the overall results analysis, the formulated nanocarrier system of MMC synergistically envisages the efficient delivery of chemotherapeutic agents to the target cancerous sites, able to sustain it for a longer time, etc. Consequently, the developed nanocarrier system has the capacity to improve the drug loading efficacy in combating the reoccurrence and progression of cancer in non-muscle invasive bladder diseases.
Collapse
Affiliation(s)
- Fariza Aina Abd Manan
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.A.A.M.); (J.A.)
| | - Nor Azah Yusof
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.A.A.M.); (J.A.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jaafar Abdullah
- Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.A.A.M.); (J.A.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Faruq Mohammad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Armania Nurdin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (L.S.Y.)
| | - Latifah Saiful Yazan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (L.S.Y.)
| | - Sachin K. Khiste
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Hamad A. Al-Lohedan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
29
|
Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J Control Release 2021; 337:646-660. [PMID: 34384795 DOI: 10.1016/j.jconrel.2021.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.
Collapse
|
30
|
Junqueira L, Polonini H, Ramos C, Ferreira AO, Raposo N, Brandão M. Assessment of a Novel Vitamin D3 Formulation with Nanostructured Lipid Carriers for Transdermal Delivery. Curr Drug Deliv 2021; 19:614-624. [PMID: 34238191 DOI: 10.2174/1567201818666210708121304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Develop and assess a transdermal emulsion loaded with nanostructured lipid carriers for vitamin D3 supplementation. METHODS Vitamin D3 loaded nanostructured lipid carriers, produced via high shear homogenization and ultrasonication, were assessed for their particle size, distribution, morphology, zeta potential, entrapment efficiency, and cytotoxicity. They were incorporated into a transdermal vehicle, and the stability and ex vivo permeation were evaluated. RESULTS Spherical nanoparticles were developed with a particle size of 192.5 nm, a polydispersity index of 0.13, a zeta potential of -29.0 mV, and an entrapment efficiency of 99.75%. They were stable (particle size and distribution) for 15 days when stored in a refrigerator and for 30 days at room temperature and 32 °C. The nanoparticles decreased the drug cytotoxicity against fibroblasts, as shown by IC50 (nanoparticle: 32.48 μg mL-1; vitamin D3: 16.73 μg mL-1). The emulsion loaded with nanoparticles minimized the degradation of vitamin D3 when compared with the nanoparticle dispersion. Additionally, the emulsion provided the skin permeation of vitamin D3 following the recommended daily allowance. CONCLUSION To the best of our knowledge, this is the first study to use nanostructured lipid carriers for transdermal delivery of vitamin D. The developed formulation is a promising strategy to overcome the vitamin D3 variable oral bioavailability. It also represents a comfortable route of administrationd. Thus it could be beneficial for patients and clinicians. However, further studies are needed to allow the permeation of larger amounts of vitamin D3, and the combination of these nanoparticles with microneedles would be interesting.
Collapse
Affiliation(s)
- Laura Junqueira
- NUPICS- Núcleo de Pesquisa e Inovação em Ciências da Saúde, Universidade Federal de Juiz de Fora, Juiz de Fora. Brazil
| | - Hudson Polonini
- NUPICS- Núcleo de Pesquisa e Inovação em Ciências da Saúde, Universidade Federal de Juiz de Fora, Juiz de Fora. Brazil
| | | | - Anderson O Ferreira
- NUPICS- Núcleo de Pesquisa e Inovação em Ciências da Saúde, Universidade Federal de Juiz de Fora, Juiz de Fora. Brazil
| | - Nádia Raposo
- NUPICS- Núcleo de Pesquisa e Inovação em Ciências da Saúde, Universidade Federal de Juiz de Fora, Juiz de Fora. Brazil
| | - Marcos Brandão
- NUPICS- Núcleo de Pesquisa e Inovação em Ciências da Saúde, Universidade Federal de Juiz de Fora, Juiz de Fora. Brazil
| |
Collapse
|
31
|
Trenkenschuh E, Friess W. Freeze-drying of nanoparticles: How to overcome colloidal instability by formulation and process optimization. Eur J Pharm Biopharm 2021; 165:345-360. [PMID: 34052428 DOI: 10.1016/j.ejpb.2021.05.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Lyophilization of nanoparticle (NP) suspensions is a promising technology to improve stability, especially during long-term storage, and offers new routes of administration in solid state. Although considered as a gentle drying process, freeze-drying is also known to cause several stresses leading to physical instability, e.g. aggregation, fusion, or content leakage. NPs are heterogeneous regarding their physico-chemical properties which renders them different in their sensitivity to lyophilization stress and upon storage. But still basic concepts can be deducted. We summarize basic colloidal stabilization mechanisms of NPs in the liquid and the dried state. Furthermore, we give information about stresses occurring during the freezing and the drying step of lyophilization. Subsequently, we review the most commonly investigated NP types including lipophilic, polymeric, or vesicular NPs regarding their particle properties, stabilization mechanisms in the liquid state, and important freeze-drying process, formulation and storage strategies. Finally, practical advice is provided to facilitate purposeful formulation and process development to achieve NP lyophilizates with high colloidal stability.
Collapse
Affiliation(s)
- Eduard Trenkenschuh
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany
| | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universitaet Muenchen, 81377 Munich, Germany.
| |
Collapse
|
32
|
Mante PK, Adomako NO, Antwi P, Kusi-Boadum NK, Osafo N. Solid-lipid nanoparticle formulation improves antiseizure action of cryptolepine. Biomed Pharmacother 2021; 137:111354. [DOI: 10.1016/j.biopha.2021.111354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022] Open
|
33
|
Paswan SK, Saini TR, Jahan S, Ganesh N. Designing and Formulation Optimization of Hyaluronic Acid Conjugated PLGA Nanoparticles of Tamoxifen for Tumor Targeting. Pharm Nanotechnol 2021; 9:217-235. [PMID: 33745427 DOI: 10.2174/2211738509666210310155807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 02/02/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Tamoxifen is widely used for the treatment of estrogen receptor-positive breast cancer. However, it is associated with severe side effects of cancerous proliferation on the uterus endometrium. The tumor-targeting formulation strategies can effectively overcome drug side effects of tamoxifen and provide safer drug treatment. OBJECTIVE This study aimed to design tumor-targeted PLGA nanoparticles of tamoxifen by attaching hyaluronic acid (HA) as a ligand to actively target the CD44 receptors present at breast cancer cells surface. METHODS PLGA-PEG-HA conjugate was synthesized in the laboratory, and its tamoxifen-loaded nanoparticles were fabricated and characterized by FTIR, NMR, DSC, and XRD analysis. Formulation optimization was done by Box-Behnken design using Design-Expert software. The formulations were evaluated for in vitro drug release and cytotoxic effect on MCF-7 cell lines. RESULTS The particle size, PDI, and drug encapsulation efficiency of optimized nanoparticles were 294.8, 0.626, and 65.16%, respectively. Optimized formulation showed 9.56% burst release and sustained drug release for 8h. The drug release was affected by non-Fickian diffusion process and supplemented further by the erosion of polymeric matrix which followed the Korsmeyer-Peppas model. MTT cell line assay showed 47.48% cell mortality when treated with tamoxifen-loaded PLGA- PEG-HA nanoparticles. CONCLUSION Hyaluronic acid conjugated PLGA-PEG nanoparticles of tamoxifen were designed for active targeting to cancerous breast cells. The results of the MTT assay showed that tamoxifen nanoparticles formulation was more cytotoxic than tamoxifen drug alone, which is attributed to their preferential uptake by cell lines by the affinity of CD44 receptors of cell lines to HA ligand present in nanoparticles.
Collapse
Affiliation(s)
- Suresh K Paswan
- Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore (M.P.), India
| | - Tulsi R Saini
- Industrial Pharmacy Research Lab, Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore (M.P.), India
| | - Sarwar Jahan
- Department of Research, Clinical Cytogenetics Laboratory, Jawaharlal Nehru Cancer Hospital & Research Centre (JNCHRC), Bhopal, Madhya Pradesh, India
| | - Narayanan Ganesh
- Department of Research, Clinical Cytogenetics Laboratory, Jawaharlal Nehru Cancer Hospital & Research Centre (JNCHRC), Bhopal, Madhya Pradesh, India
| |
Collapse
|
34
|
Malta R, Loureiro JB, Costa P, Sousa E, Pinto M, Saraiva L, Amaral MH. Development of lipid nanoparticles containing the xanthone LEM2 for topical treatment of melanoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Particle Detection and Characterization for Biopharmaceutical Applications: Current Principles of Established and Alternative Techniques. Pharmaceutics 2020; 12:pharmaceutics12111112. [PMID: 33228023 PMCID: PMC7699340 DOI: 10.3390/pharmaceutics12111112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022] Open
Abstract
Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle–light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP®) technology.
Collapse
|
36
|
Firdaus S, Hassan N, Mirza MA, Ara T, El-Serehy HA, Al-Misned FA, Iqbal Z. FbD directed fabrication and investigation of luliconazole based SLN gel for the amelioration of candidal vulvovaginitis: a 2 T (thermosensitive & transvaginal) approach. Saudi J Biol Sci 2020; 28:317-326. [PMID: 33424312 PMCID: PMC7785458 DOI: 10.1016/j.sjbs.2020.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 01/14/2023] Open
Abstract
Candidal vulvovaginitis (CVV), is the second most leading vaginal infection (global prevalence > 75%), caused due to excessive growth of Candida spp., predominantly Candida albicans (>95% cases). The current treatment regimens for CVV are marred with the challenges of fungal resistance & infection recurrence, subsequently leading to the compromised therapeutic efficacy of anti-fungal drugs, prolonged treatment and low patient compliance. The core of the present research was the fabrication & investigation of 2 T-SLN (solid lipid nanoparticles) gel carrying luliconazole for the amelioration of CVV. '2T' symbolizes transvaginal & thermosensitive attributes of the present formulation. SLNs were prepared by a modified melt emulsification-ultra sonication method using a combination of solid lipids (Gelucire 50/13 & Precirol ATO 5), surfactant (Tween 80) and co-surfactant (Kolliphor). Formulation by design (FbD) approach was adopted to obtain appropriately screened and tailored SLNs. The optimized SLNs yielded a particle size, polydispersity index & entrapment efficiency of 62.18 nm, 0.263 & 81.5% respectively. To formulate the 2 T-gel, the final SLNs were loaded into Carbopol 971P-NF and Triethanolamine based gel. The 2 T-SLN gel was found to be easily spreadable and homogenous with mean extrudability (15 ± 0.4 g/cm2), viscosity (696.42 ± 2.34 Pa·s) and %drug content (93.24 ± 0.73%) values.. The pH of the prepared 2 T-SLN gel (4.5 ± 0.5) was in concordance with the vaginal pH (normal conditions). For in-vitro characterization of an optimized 2 T-SLN gel the release kinetics & anticandidal activity were assessed which offers a %cumulative drug release of 62 ± 0.5% in 72 h and 37.3 ± 1.5 mm zone of inhibition in 48 h. The visual appearance & dimensions were determined using fluorescent microscopy (spherical shape) & transmission electron microscopy (90-120 nm) respectively. The optimized 2 T-SLN gel showcases a skin-friendly profile with no significant signs of erythema and oedema and was found to be stable at room temperature for 2 months without any visual non-uniformity/cracking/breaking. In conclusion, the current research serves a new therapeutic perspective in assessing the activity of luliconazole for vaginal drug delivery using a 2 T-SLN gel system.
Collapse
Affiliation(s)
- Salma Firdaus
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Tabasum Ara
- Department of pharmaceutical Sciences, University of Kashmir, J&K, India
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad A Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
37
|
Fonseca-Santos B, Silva PB, Rigon RB, Sato MR, Chorilli M. Formulating SLN and NLC as Innovative Drug Delivery Systems for Non-Invasive Routes of Drug Administration. Curr Med Chem 2020; 27:3623-3656. [PMID: 31232233 DOI: 10.2174/0929867326666190624155938] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.
Collapse
Affiliation(s)
- Bruno Fonseca-Santos
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Patrícia Bento Silva
- University of Brasilia (UnB), Department of Genetics and Morphology, Brasilia, Federal District 70910-970, Brazil
| | - Roberta Balansin Rigon
- University of Campinas (UNICAMP), Faculty of Pharmaceutical Sciences, Campinas, Sao Paulo 13083-871, Brazil
| | - Mariana Rillo Sato
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| | - Marlus Chorilli
- Sao Paulo State University - UNESP, School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, Sao Paulo 14801-903, Brazil
| |
Collapse
|
38
|
Routray SB, Patra CN, Raju R, Panigrahi KC, Jena GK. Lyophilized SLN of Cinnacalcet HCl: BBD enabled optimization, characterization and pharmacokinetic study. Drug Dev Ind Pharm 2020; 46:1080-1091. [PMID: 32486863 DOI: 10.1080/03639045.2020.1775632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Objective: The objective of the present research is to formulate solid lipid nanoparticles (SLN) of CH to improve its oral bioavailability.Methods: Cinnacalcet hydrochloride (CH) exhibits poor oral bioavailability of 20 to 25% because of low aqueous solubility and first pass metabolism. The SLN formulations were optimized using Box-Behnken Design. SLN formulation was prepared using hot homogenization technique followed by ultra-sonication and evaluated. The optimized SLN formulation was lyophilized to improve the stability of the formulation further.Results: Compritol 888 ATO (COM), Soya lecithin (SL) and poloxamer 188 (POL) were selected as lipid, surfactant and co-surfactant respectively. For optimistaion, the desirable goal was fixed for variour responses vis-a-vis entrapment efficiency (EE), particle size (PS) and (time taken for diffusion of 85% drug) T85%. The optimized single dose of SLN obtained using BBD consisting of 30 mg of CH, 100 mg of COM, 150 mg of SL and 0.1% w/v of POL. The pharmacokinetic study revealed that optimized SLN and lyophilized SLN were found to increase the oral bioavailability nearly two times compared to an aqueous suspension of pure drug.Conclusion: Thus lyophilized SLN formulation explicated the potential of lipid-based nanoparticles as a potential carrier in improving the oral delivery and stability of CH.
Collapse
Affiliation(s)
- Sudhansu Bhusan Routray
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Ch Niranjan Patra
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Rajarani Raju
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Kahnu Charan Panigrahi
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Biju Patnaik, University of Technology, Rourkela, India
| |
Collapse
|
39
|
Zaki AG, El-Sayed ESR, Abd Elkodous M, El-Sayyad GS. Microbial acetylcholinesterase inhibitors for Alzheimer's therapy: recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery. Appl Microbiol Biotechnol 2020; 104:4717-4735. [PMID: 32285176 PMCID: PMC7223626 DOI: 10.1007/s00253-020-10560-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Abstract Neurodegenerative disorders especially Alzheimer’s disease (AD) are significantly threatening the public health. Acetylcholinesterase (AChE) inhibitors are compounds of great interest which can be used as effective agents for the symptomatic treatment of AD. Although plants are considered the largest source for these types of inhibitors, the microbial production of AChE inhibitors represents an efficient, easily manipulated, eco-friendly, cost-effective, and alternative approach. This review highlights the recent advances on the microbial production of AChE inhibitors and summarizes all the previously reported successful studies on isolation, screening, extraction, and detecting methodologies of AChE inhibitors from the microbial fermentation, from the earliest trials to the most promising anti-AD drug, huperzine A (HupA). In addition, improvement strategies for maximizing the industrial production of AChE inhibitors by microbes will be discussed. Finally, the promising applications of nano-material-based drug delivery systems for natural AChE inhibitor (HupA) will also be summarized. Key Points • AChE inhibitors are potential therapies for Alzheimer’s disease. • Microorganisms as alternate sources for prospective production of such inhibitors. • Research advances on extraction, detection, and strategies for production improvement. • Nanotechnology-based approaches for an effective drug delivery for Alzheimer’s disease.
Collapse
Affiliation(s)
- Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.,Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt. .,Chemical Engineering Department, Egyptian Armed Forces, Military Technical College (MTC), Cairo, Egypt.
| |
Collapse
|
40
|
Biodistribution of Nanostructured Lipid Carriers in Mice Atherosclerotic Model. Molecules 2019; 24:molecules24193499. [PMID: 31561608 PMCID: PMC6803849 DOI: 10.3390/molecules24193499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis is a major cardiovascular disease worldwide, that could benefit from innovative nanomedicine imaging tools and treatments. In this perspective, we here studied, by fluorescence imaging in ApoE-/- mice, the biodistribution of non-functionalized and RXP470.1-targeted nanostructured lipid carriers (NLC) loaded with DiD dye. RXP470.1 specifically binds to MMP12, a metalloprotease that is over-expressed by macrophages residing in atherosclerotic plaques. Physico-chemical characterizations showed that RXP-NLC (about 105 RXP470.1 moieties/particle) displayed similar features as non-functionalized NLC in terms of particle diameter (about 60-65 nm), surface charge (about −5 — −10 mV), and colloidal stability. In vitro inhibition assays demonstrated that RXP-NLC conserved a selectivity and affinity profile, which favored MMP-12. In vivo data indicated that NLC and RXP-NLC presented prolonged blood circulation and accumulation in atherosclerotic lesions in a few hours. Twenty-four hours after injection, particle uptake in atherosclerotic plaques of the brachiocephalic artery was similar for both nanoparticles, as assessed by ex vivo imaging. This suggests that the RXP470.1 coating did not significantly induce an active targeting of the nanoparticles within the plaques. Overall, NLCs appeared to be very promising nanovectors to efficiently and specifically deliver imaging agents or drugs in atherosclerotic lesions, opening avenues for new nanomedicine strategies for cardiovascular diseases.
Collapse
|
41
|
Patel MH, Mundada VP, Sawant KK. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, in vitro characterization, cell line studies and in vivo efficacy in schizophrenia. Drug Dev Ind Pharm 2019; 45:1242-1257. [PMID: 30880488 DOI: 10.1080/03639045.2019.1593434] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objective: The aim of the present investigation was to investigate the efficacy of solid lipid nanoparticles (SLNs) to enhance the absorption and bioavailability of lurasidone hydrochloride (LH) following oral administration. Methods: The LH loaded SLNs (LH-SLNs) were prepared by high pressure homogenization (HPH) method, optimized using box Behnken design and evaluated for particle size (PS), entrapment efficiency (EE), morphology, FTIR, DSC, XRD, in vitro release, ex vivo permeation, transport studies across Caco-2 cell line and in vivo pharmacokinetic and pharmacodynamic studies. Results: The LH-SLNs had PS of 139.8 ± 5.5 nm, EE of 79.10 ± 2.50% and zeta potential of -30.8 ± 3.5 mV. TEM images showed that LH-SLNs had a uniform size distribution and spherical shape. The in vitro release from LH-SLNs followed the Higuchi model. The ex vivo permeability study demonstrated enhanced drug permeation from LH-SLNs (>90%) through rat intestine as compared to LH-suspension. The SLNs were found to be taken up by energy dependent, endocytic mechanism which was mediated by clathrin/caveolae-mediated endocytosis across Caco-2 cell line. The pharmacokinetic results showed that oral bioavailability of LH was improved over 5.16-fold after incorporation into SLNs as compared to LH-suspension. The pharmacodynamic study proved the antipsychotic potential of LH-SLNs in the treatment of schizophrenia. Conclusion: It was concluded that oral administration of LH-SLNs in rats improved the bioavailability of LH via lymphatic uptake along with improved therapeutic effect in MK-801 induced schizophrenia model in rats.
Collapse
Affiliation(s)
- Mitali H Patel
- a Drug Delivery Research Laboratory, Faculty of Pharmacy , TIFAC Center of Relevance and Excellence in NDDS, The M. S. University of Baroda , Vadodara , India
| | - Veenu P Mundada
- a Drug Delivery Research Laboratory, Faculty of Pharmacy , TIFAC Center of Relevance and Excellence in NDDS, The M. S. University of Baroda , Vadodara , India
| | - Krutika K Sawant
- a Drug Delivery Research Laboratory, Faculty of Pharmacy , TIFAC Center of Relevance and Excellence in NDDS, The M. S. University of Baroda , Vadodara , India
| |
Collapse
|
42
|
Dumont C, Bourgeois S, Fessi H, Dugas PY, Jannin V. In-vitro evaluation of solid lipid nanoparticles: Ability to encapsulate, release and ensure effective protection of peptides in the gastrointestinal tract. Int J Pharm 2019; 565:409-418. [PMID: 31100381 DOI: 10.1016/j.ijpharm.2019.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022]
Abstract
Peptides are rarely orally administrated due to rapid degradation in the gastrointestinal tract and low absorption at the epithelial border. The objective of this study was to encapsulate a model water-soluble peptide in biodegradable and biocompatible solid lipid-based nanoparticles, i.e. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) in order to protect it from metabolic degradation. Leuprolide (LEU) and a LEU-docusate Hydrophobic Ion Pair (HIP) were encapsulated in SLN and NLC by High Pressure Homogenization. The particles were characterized regarding their Encapsulation Efficiency (EE), size, morphology, peptide release in FaSSIF-V2, and protective effect towards proteases. Nanoparticles of 120 nm with platelet structures were obtained. Formation of HIP led to a significant increase in LEU EE. Particle size was moderately affected by the presence of simulated fluids. Nonetheless, an important burst release was observed upon dispersion in FaSSIF-V2. NLC were able to improve LEU-HIP resistance to enzymatic degradation induced by trypsin but presented no advantages in presence of α-chymotrypsin. SLN provided no protection regarding both proteases. Despite an increased amount of encapsulated peptide in solid lipid-based nanoparticles following HIP formation, the important specific surface area linked to their platelet structures resulted in an important peptide release upon dispersion in FaSSIF-V2 and limited protection towards enzymatic degradation.
Collapse
Affiliation(s)
- Camille Dumont
- Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest cedex, France; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France; Univ Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de Lyon, F-69008 Lyon, France
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, C2P2 UMR5265, 43 Bd du 11 Nov. 1918, Villeurbanne, France
| | - Vincent Jannin
- Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest cedex, France.
| |
Collapse
|
43
|
Evaluation of miscibility and polymorphism of synthetic and natural lipids for nanostructured lipid carrier (NLC) formulations by Raman mapping and multivariate curve resolution (MCR). Eur J Pharm Sci 2019; 135:51-59. [PMID: 31071439 DOI: 10.1016/j.ejps.2019.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/25/2019] [Accepted: 05/04/2019] [Indexed: 11/20/2022]
Abstract
Nanostructured lipid carriers (NLC) belong to youngest lipid-based nanocarrier class and they have gained increasing attention over the last ten years. NLCs are composed of a mixture of solid and liquid lipids, which solubilizes the active pharmaceutical ingredient, stabilized by a surfactant. The miscibility of the lipid excipients and structural changes (polymorphism) play an important role in the stability of the formulation and are not easily predicted in the early pharmaceutical development. Even when the excipients are macroscopically miscible, microscopic heterogeneities can result in phase separation during storage, which is only detected after several months of stability studies. In this sense, this work aimed to evaluate the miscibility and the presence of polymorphism in lipid mixtures containing synthetic (cetyl palmitate, Capryol 90®, Dhaykol 6040 LW®, Precirol ATO5® and myristyl myristate) and natural (beeswax, cocoa and shea butters, copaiba, sweet almond, sesame and coconut oils) excipients using Raman mapping and multivariate curve resolution - alternating least squares (MCR-ALS) method. The results were correlated to the macroscopic stability of the formulations. Chemical maps constructed for each excipient allowed the direct comparison among formulations, using standard deviation of the histograms and the Distributional Homogeneity Index (DHI). Lipid mixtures of cetyl palmitate/Capryol®; cetyl palmitate/Dhaykol®; myristyl myristate/Dhaykol® and myristyl myristate/coconut oil presented a single histogram distribution and were stable. The sample with Precirol®/Capryol® was not stable, although the histogram distribution was narrower than the samples with cetyl palmitate, indicating that miscibility was not the factor responsible for the instability. Structural changes before and after melting were identified for cocoa butter and shea butter, but not in the beeswax. Beeswax + copaiba oil sample was very homogenous, without polymorphism and stable over 6 months. Shea butter was also homogeneous and, in spite of the polymorphism, was stable. Formulations with cocoa butter presented a wider histogram distribution and were unstable. This paper showed that, besides the miscibility evaluation, Raman imaging could also identify the polymorphism of the lipids, two major issues in lipid-based formulation development that could help guide the developer understand the stability of the NLC formulations.
Collapse
|
44
|
Qin Z, Chen F, Chen D, Wang Y, Tan Y, Ban J. Transdermal permeability of triamcinolone acetonide lipid nanoparticles. Int J Nanomedicine 2019; 14:2485-2495. [PMID: 31040670 PMCID: PMC6459147 DOI: 10.2147/ijn.s195769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Triamcinolone acetonide (TAA) is an effective and the most commonly used corticosteroid hormone for the treatment of hypertrophic scars (HSs). However, the clinically used dosage has poor tissue permeability and injection safety. By contrast, lipid nanoparticles (LNPs) have the advantage of high affinity for the skin. Materials and methods This article describes the preparation of TAA-LNPs using poly(lactic-co-glycolic acid) as a carrier material, which have good biocompatibility and biodegradability. Based on a systematic investigation of its physicochemical properties, a rabbit ear HSs model was established to evaluate the percutaneous permeability of TAA-LNPs in scar tissue in vitro as well as to assess its curative effect and skin irritation. Results The results showed that the TAA-LNPs formed uniform and round particles under fluoroscopy and had a complex structure in which a nanoparticle core was surrounded by multiple vesicles. The particles were 232.2±8.2 nm in size, and the complimentary potential was -42.16 mV. The encapsulation efficiency was 85.24%, which is greater than that of other common liposomes and nanoparticles. A test of in vitro scar tissue permeability showed that penetration into scar tissue was twofold and 40-fold higher for TAA-LNPs than for common liposome and commercial suspensions, respectively. The concentration of the absorbed drug effectively inhibited fibroblast proliferation, achieved a therapeutic effect in HSs, and did not stimulate intact or damaged skin. Conclusion The preparation of TAA into LNPs for transdermal administration can enhance transdermal permeation performance and the safety of this drug, which is beneficial for the treatment of HSs.
Collapse
Affiliation(s)
- Zhenmiao Qin
- School of Pharmacy, Hainan Medical University, Haikou, People's Republic of China,
| | - Feng Chen
- School of Pharmacy, Hainan Medical University, Haikou, People's Republic of China, .,Hainan Provincial Key Laboratory of R&D of Tropical Herbs, Hainan Medical University, Haikou, People's Republic of China,
| | - Demei Chen
- School of Pharmacy, Hainan Medical University, Haikou, People's Republic of China,
| | - Yong Wang
- School of Pharmacy, Hainan Medical University, Haikou, People's Republic of China, .,Hainan Provincial Key Laboratory of R&D of Tropical Herbs, Hainan Medical University, Haikou, People's Republic of China,
| | - Yinfeng Tan
- School of Pharmacy, Hainan Medical University, Haikou, People's Republic of China, .,Hainan Provincial Key Laboratory of R&D of Tropical Herbs, Hainan Medical University, Haikou, People's Republic of China,
| | - Junfeng Ban
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China,
| |
Collapse
|
45
|
Carneiro SP, Carvalho KV, de Oliveira Aguiar Soares RD, Carneiro CM, de Andrade MHG, Duarte RS, dos Santos ODH. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids Surf B Biointerfaces 2019; 175:306-313. [DOI: 10.1016/j.colsurfb.2018.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/26/2022]
|
46
|
Santiago RR, Gyselle de Holanda e Silva K, Dantas dos Santos N, Genre J, Freitas de Oliveira Lione V, Silva AL, Marcelino HR, Gondim AD, Tabosa do Egito ES. Nanostructured lipid carriers containing Amphotericin B: Development, in vitro release assay, and storage stability. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Dumont C, Bourgeois S, Fessi H, Jannin V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int J Pharm 2018; 541:117-135. [DOI: 10.1016/j.ijpharm.2018.02.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022]
|
48
|
Duque L, Körber M, Bodmeier R. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants. Eur J Pharm Sci 2018; 117:128-137. [PMID: 29452211 DOI: 10.1016/j.ejps.2018.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired.
Collapse
Affiliation(s)
- Luisa Duque
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany
| | - Martin Körber
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany; Pensatech Pharma GmbH, Kelchstrasse 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany.
| |
Collapse
|
49
|
Enhanced Anti-Cancer Capability of Ellagic Acid Using Solid Lipid Nanoparticles (SLNs). INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2018. [DOI: 10.5812/ijcm.9402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
Freitas SCMP, Tavares ER, Silva BMO, Meneghini BC, Kalil-Filho R, Maranhão RC. Lipid core nanoparticles resembling low-density lipoprotein and regression of atherosclerotic lesions: effects of particle size. ACTA ACUST UNITED AC 2018. [PMID: 29513883 PMCID: PMC5912096 DOI: 10.1590/1414-431x20177090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Particles are usually polydispersed and size is an important feature for lipid-based drug delivery systems in order to optimize cell-particle interactions as to pharmacologic action and toxicity. Lipid nanoparticles (LDE) with composition similar to that of low-density lipoprotein carrying paclitaxel were shown to markedly reduce atherosclerosis lesions induced in rabbits by cholesterol feeding. The aim of this study was to test whether two LDE fractions, one with small (20-60 nm) and the other with large (60-100 nm) particles, had different actions on the atherosclerotic lesions. The two LDE-paclitaxel fractions, prepared by microfluidization, were separated by density gradient ultracentrifugation and injected (4 mg/body weight, intravenously once a week) into two groups of rabbits previously fed cholesterol for 4 weeks. A group of cholesterol-fed animals injected with saline solution was used as control to assess lesion reduction with treatment. After the treatment period, the animals were euthanized for analysis. After treatment, both the small and large nanoparticle preparations of LDE-paclitaxel had equally strong anti-atherosclerosis action. Both reduced lesion extension in the aorta by roughly 50%, decreased the intima width by 75% and the macrophage presence in the intima by 50%. The two preparations also showed similar toxicity profile. In conclusion, within the 20-100 nm range, size is apparently not an important feature regarding the LDE nanoparticle system and perhaps other solid lipid-based systems.
Collapse
|