1
|
Ober VT, Githure GB, Volpato Santos Y, Becker S, Moya Munoz G, Basquin J, Schwede F, Lorentzen E, Boshart M. Purine nucleosides replace cAMP in allosteric regulation of PKA in trypanosomatid pathogens. eLife 2024; 12:RP91040. [PMID: 38517938 PMCID: PMC10959531 DOI: 10.7554/elife.91040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.
Collapse
Affiliation(s)
- Veronica Teresa Ober
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Yuri Volpato Santos
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | - Sidney Becker
- Max Planck Institute of Molecular PhysiologyDortmundGermany
- TU Dortmund, Department of Chemistry and Chemical BiologyDortmundGermany
| | - Gabriel Moya Munoz
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| | | | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co KGBremenGermany
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Michael Boshart
- Faculty of Biology, Genetics, Ludwig-Maximilians University Munich (LMU)MartinsriedGermany
| |
Collapse
|
2
|
Therapeutic opportunities in colon cancer: Focus on phosphodiesterase inhibitors. Life Sci 2019; 230:150-161. [PMID: 31125564 DOI: 10.1016/j.lfs.2019.05.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
Despite novel technologies, colon cancer remains undiagnosed and 25% of patients are diagnosed with metastatic colon cancer. Resistant to chemotherapeutic agents is one of the major problems associated with treating colon cancer which creates the need to develop novel agents targeting towards newer targets. A phosphodiesterase is a group of isoenzyme, which, hydrolyze cyclic nucleotides and thereby lowers intracellular levels of cAMP and cGMP leading to tumorigenic effects. Many in vitro and in vivo studies have confirmed increased PDE expression in different types of cancers including colon cancer. cAMP-specific PDE inhibitors increase intracellular cAMP that leads to activation of effector molecules-cAMP-dependent protein kinase A, exchange protein activated by cAMP and cAMP gated ion channels. These molecules regulate cellular responses and exert its anticancer role through different mechanisms including apoptosis, inhibition of angiogenesis, upregulating tumor suppressor genes and suppressing oncogenes. On the other hand, cGMP specific PDE inhibitors exhibit anticancer effects through cGMP dependent protein kinase and cGMP dependent cation channels. Elevation in cGMP works through activation of caspases, suppression of Wnt/b-catenin pathway and TCF transcription leading to inhibition of CDK and survivin. These studies point out towards the fact that PDE inhibition is associated with anti-proliferative, anti-apoptotic and anti-angiogenic pathways involved in its anticancer effects in colon cancer. Thus, inhibition of PDE enzymes can be used as a novel approach to treat colon cancer. This review will focus on cAMP and cGMP signaling pathways leading to tumorigenesis and the use of PDE inhibitors in colon cancer.
Collapse
|
3
|
Powis G. Recent Advances in the Development of Anticancer Drugs that Act against Signalling Pathways. TUMORI JOURNAL 2018; 80:69-87. [PMID: 8016910 DOI: 10.1177/030089169408000201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer can be considered a disease of deranged intracellular signalling. The intracellular signalling pathways that mediate the effects of oncogenes on cell growth and transformation present attractive targets for the development of new classes of drugs for the prevention and treatment of cancer. This is a new approach to developing anticancer drugs and the potential, as well as some of the problems, inherent in the approach are discussed. Anticancer drugs that produce their effects by disrupting signalling pathways are already in clinical trial. Some properties of these drugs, as well as other inhibitors of signalling pathways under development as potential anticancer drugs, are reviewed.
Collapse
Affiliation(s)
- G Powis
- Arizona Cancer Center, University of Arizona Health Sciences Center, Tucson 85724
| |
Collapse
|
4
|
Grassi ES, Dicitore A, Negri I, Borghi MO, Vitale G, Persani L. 8-Cl-cAMP and PKA I-selective cAMP analogs effectively inhibit undifferentiated thyroid cancer cell growth. Endocrine 2017; 56:388-398. [PMID: 27460006 DOI: 10.1007/s12020-016-1057-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/11/2016] [Indexed: 12/25/2022]
Abstract
The main purpose of our work was to evaluate the effects of different cyclic adenosine monophosphate analogs on thyroid cancer-derived cell lines. In particular we studied 8-chloroadenosine-3',5'-cyclic monophosphate, the most powerful cyclic adenosine monophosphate analog, and the protein kinase A I-selective combination of 8-hexylaminoadenosine-3',5'cyclic monophosphate and 8-piperidinoadenosine-3',5'-cyclic monophosphate. The cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells growth. Site-selective cyclic adenosine monophosphate analogs are a class of cyclic adenosine monophosphate-derivate molecules that has been synthesized to modulate protein kinase A activity. Although the cyclic adenosine monophosphate/protein kinase A pathway plays a fundamental role in the regulation of thyroid cells proliferation, there are currently no studies exploring the role of cyclic adenosine monophosphate analogs in thyroid cancer. We evaluated the effects on cell proliferation, apoptosis activation and alterations of different intracellular pathways using 3-(4,5-dimetylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytofluorimetry, western blotting, and kinase inhibitors. Our results show that both compounds have antiproliferative potential. Both treatments were able to modify protein kinase A RI/RII ratio, thus negatively influencing cancer cells growth. Moreover, the two treatments differentially modulated various signaling pathways that regulate cell proliferation and apoptosis. Both treatments demonstrated interesting characteristics that prompt further studies aiming to understand the intimate interaction between different intracellular pathways and possibly develop novel anticancer therapies for undifferentiated thyroid cancer.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Irene Negri
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy.
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Via Zucchi 18, Cusano Milanino, 20095, Milan, Italy.
- Division of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
| |
Collapse
|
5
|
Hussain M, Shah Z, Abbas N, Javeed A, Mukhtar MM, Zhang J. Targeting tumor-associated immune suppression with selective protein kinase A type I (PKAI) inhibitors may enhance cancer immunotherapy. Med Hypotheses 2016; 86:56-9. [DOI: 10.1016/j.mehy.2015.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
6
|
Crystal structure of cyclic nucleotide-binding-like protein from Brucella abortus. Biochem Biophys Res Commun 2015; 468:647-52. [PMID: 26549229 DOI: 10.1016/j.bbrc.2015.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
The cyclic nucleotide-binding (CNB)-like protein (CNB-L) from Brucella abortus shares sequence homology with CNB domain-containing proteins. We determined the crystal structure of CNB-L at 2.0 Å resolution in the absence of its C-terminal helix and nucleotide. The 3D structure of CNB-L is in a two-fold symmetric form. Each protomer shows high structure similarity to that of cGMP-binding domain-containing proteins, and likely mimics their nucleotide-free conformation. A key residue, Glu17, mediates the dimerization and prevents binding of cNMP to the canonical ligand-pocket. The structurally observed dimer of CNB-L is stable in solution, and thus is likely to be biologically relevant.
Collapse
|
7
|
Hussain M, Tang F, Liu J, Zhang J, Javeed A. Dichotomous role of protein kinase A type I (PKAI) in the tumor microenvironment: a potential target for 'two-in-one' cancer chemoimmunotherapeutics. Cancer Lett 2015; 369:9-19. [PMID: 26276720 DOI: 10.1016/j.canlet.2015.07.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Abstract
An emerging trend in cancer chemoimmunotherapeutics is to develop 'two-in-one' therapies, which directly inhibit tumor growth and progression, as well as enhance anti-tumor immune surveillance. Protein kinase A (PKA) is a cAMP-dependent protein kinase that mediates signal transduction of G-protein coupled receptors (GPCRs). The regulatory subunit of PKA exists in two isoforms, RI and RII, which distinguish the PKA isozymes, PKA type I (PKAI) and PKA type II (PKAII). The differential expression of both PKA isozymes has long been linked to growth regulation and differentiation. RI/PKAI is particularly implicated in cellular proliferation and neoplastic transformation. Emerging experimental and pre-clinical data also indicate that RI/PKAI plays a key role in tumor-induced immune suppression. More briefly, RI/PKAI possesses a dichotomous role in the tumor microenvironment: not only contributes to tumor growth and progression, but also takes part in tumor-induced suppression of the innate and adaptive arms of anti-tumor immunosurveillance. This review specifically discusses this dichotomous role of RI/PKAI with respect to 'two-in-one' chemoimmunotherapeutic manipulation. The reviewed experimental and pre-clinical data provide the proof of concept validation that RI/PKAI may be regarded as an attractive target for a new, single-targeted, 'two hit' chemoimmunotherapeutic approach against cancer.
Collapse
Affiliation(s)
- Muzammal Hussain
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Fei Tang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | - Jiancun Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Science Park, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Aqeel Javeed
- Immunopharmacology Laboratory, Department of Pharmacology & Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Mohanty S, Kennedy EJ, Herberg FW, Hui R, Taylor SS, Langsley G, Kannan N. Structural and evolutionary divergence of cyclic nucleotide binding domains in eukaryotic pathogens: Implications for drug design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1575-85. [PMID: 25847873 DOI: 10.1016/j.bbapap.2015.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/25/2015] [Indexed: 12/24/2022]
Abstract
Many cellular functions in eukaryotic pathogens are mediated by the cyclic nucleotide binding (CNB) domain, which senses second messengers such as cyclic AMP and cyclic GMP. Although CNB domain-containing proteins have been identified in many pathogenic organisms, an incomplete understanding of how CNB domains in pathogens differ from other eukaryotic hosts has hindered the development of selective inhibitors for CNB domains associated with infectious diseases. Here, we identify and classify CNB domain-containing proteins in eukaryotic genomes to understand the evolutionary basis for CNB domain functional divergence in pathogens. We identify 359 CNB domain-containing proteins in 31 pathogenic organisms and classify them into distinct subfamilies based on sequence similarity within the CNB domain as well as functional domains associated with the CNB domain. Our study reveals novel subfamilies with pathogen-specific variations in the phosphate-binding cassette. Analyzing these variations in light of existing structural and functional data provides new insights into ligand specificity and promiscuity and clues for drug design. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Smita Mohanty
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602, USA
| | | | - Raymond Hui
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Susan S Taylor
- Department of Chemistry & Biochemistry and Pharmacology, University of CA, San Diego, USA
| | - Gordon Langsley
- INSERM U1016, CNRS UMR8104, Cochin Institute, Paris, 75014 France; Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA; Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Autism’s cancer connection: The anti-proliferation hypothesis and why it may matter. Med Hypotheses 2014; 82:26-35. [DOI: 10.1016/j.mehy.2013.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 12/30/2022]
|
10
|
Pérez-Sayáns M, Somoza-Martín JM, Barros-Angueira F, Gayoso-Diz P, Otero-Rey EM, Gándra-Rey JM, García-García A. Activity of β2-adrenergic receptor in oral squamous cell carcinoma is mediated by overexpression of the ADRBK2 gene: a pilot study. Biotech Histochem 2011; 87:179-86. [PMID: 21916780 DOI: 10.3109/10520295.2011.592151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The β2-adrenergic receptor is most frequently involved in carcinogenic processes. Earlier studies have established a relation between the β2-adrenergic receptor and various characteristics of cancer including cell proliferation, apoptosis, chemotaxis, metastasis, tumor growth and angiogenesis. Our goal was to determine differential expression of the genes involved in adrenergic receptors using DNA microarrays and to confirm their under- or overexpression using real-time quantitative PCR. Five of the nine genes investigated showed significantly altered expression levels in tumor cells (p < 0.05). The gene product with the highest Z-score (restrictive statistical technique for selection of appropriate genes to study) was ADRBK2. Significantly, most of the overexpressed genes were related to β-adrenergic receptors. Real-time PCR analysis confirmed the up regulation observed in the microarrays, which indicated overexpression in 100% of the tumors. In oral squamous cell carcinomas, malignant cells and surrounding tissue overexpress the ADRBK2 gene.
Collapse
Affiliation(s)
- M Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Entrerríos s/n, Santiago de Compostela, Spain.
| | | | | | | | | | | | | |
Collapse
|
11
|
8-Chloro-cyclic AMP and protein kinase A I-selective cyclic AMP analogs inhibit cancer cell growth through different mechanisms. PLoS One 2011; 6:e20785. [PMID: 21695205 PMCID: PMC3112188 DOI: 10.1371/journal.pone.0020785] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/09/2011] [Indexed: 12/29/2022] Open
Abstract
Cyclic AMP (cAMP) inhibits the proliferation of several tumor cells. We previously reported an antiproliferative effect of PKA I-selective cAMP analogs (8-PIP-cAMP and 8-HA-cAMP) on two human cancer cell lines of different origin. 8-Cl-cAMP, another cAMP analog with known antiproliferative properties, has been investigated as a potential anticancer drug. Here, we compared the antiproliferative effect of 8-Cl-cAMP and the PKA I-selective cAMP analogs in three human cancer cell lines (ARO, NPA and WRO). 8-Cl-cAMP and the PKA I-selective cAMP analogs had similarly potent antiproliferative effects on the BRAF-positive ARO and NPA cells, but not on the BRAF-negative WRO cells, in which only 8-Cl-cAMP consistently inhibited cell growth. While treatment with the PKA I-selective cAMP analogs was associated with growth arrest, 8-Cl-cAMP induced apoptosis. To further investigate the actions of 8-Cl-cAMP and the PKA I-selective cAMP analogs, we analyzed their effects on signaling pathways involved in cell proliferation and apoptosis. Interestingly, the PKA I-selective cAMP analogs, but not 8-Cl-cAMP, inhibited ERK phosphorylation, whereas 8-Cl-cAMP alone induced a progressive phosphorylation of the p38 mitogen-activated protein kinase (MAPK), via activation of AMPK by its metabolite 8-Cl-adenosine. Importantly, the pro-apoptotic effect of 8-Cl-cAMP could be largely prevented by pharmacological inhibition of the p38 MAPK. Altogether, these data suggest that 8-Cl-cAMP and the PKA I-selective cAMP analogs, though of comparable antiproliferative potency, act through different mechanisms. PKA I-selective cAMP analogs induce growth arrest in cells carrying the BRAF oncogene, whereas 8-Cl-cAMP induce apoptosis, apparently through activation of the p38 MAPK pathway.
Collapse
|
12
|
Naviglio S, Di Gesto D, Illiano F, Chiosi E, Giordano A, Illiano G, Spina A. Leptin potentiates antiproliferative action of cAMP elevation via protein kinase A down-regulation in breast cancer cells. J Cell Physiol 2010; 225:801-9. [PMID: 20589829 DOI: 10.1002/jcp.22288] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we have shown that leptin potentiates the antiproliferative action of cAMP elevating agents in breast cancer cells and that the protein kinase A (PKA) inhibitor KT-5720 prevented the antiproliferative effects induced by the leptin plus cAMP elevation. The present experiments were designed to gain a better understanding about the PKA role in the antitumor interaction between leptin and cAMP elevating agents and on the underlying signaling pathways. Here we show that exposure of MDA-MB-231 breast cancer cells to leptin resulted in a strong phosphorylation of both ERK1/2 and STAT3. Interestingly, intracellular cAMP elevation upon forskolin pretreatment completely abrogated both ERK1/2 and STAT3 phosphorylation in response to leptin and was accompanied by a consistent CREB phosphorylation. Notably, leptin plus forskolin cotreatments resulted in a strong decrease of both PKA regulatory RIα and catalytic subunits protein levels. Importantly, pretreatment with the PKA inhibitor KT-5720 blocked the forskolin-induced CREB phosphorylation and prevented both the inhibition by forskolin of leptin-induced ERK1/2 and STAT3 phosphorylation and the PKA subunits down-regulation induced by the combination of leptin and forskolin. Altogether, our results indicate that leptin-dependent signaling pathways are influenced by cAMP elevation and identify PKA as relevantly involved in the pharmacological antitumor interaction between leptin and cAMP elevating drugs in MDA-MB-231 cells. We propose a molecular model by which PKA confers its effects. Potential therapeutic applications by our data will be discussed.
Collapse
Affiliation(s)
- Silvio Naviglio
- Department of Biochemistry and Biophysics, Second University of Naples, Medical School, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Guo Y, Köck K, Ritter CA, Chen ZS, Grube M, Jedlitschky G, Illmer T, Ayres M, Beck JF, Siegmund W, Ehninger G, Gandhi V, Kroemer HK, Kruh GD, Schaich M. Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Cancer Res 2009; 15:1762-9. [PMID: 19240178 DOI: 10.1158/1078-0432.ccr-08-0442] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Successful treatment of acute myeloid leukemia (AML) remains a therapeutic challenge, with a high percentage of patients suffering from persistent or relapsed disease. Resistance to drug therapy can develop from increased drug export and/or altered intracellular signaling. Both mechanisms are mediated by the efflux transporters ABCC4 (MRP4), ABCC5 (MRP5), and ABCC11 (MRP8), which are involved in cellular efflux of endogenous signaling molecules (e.g., cyclic adenosine 3', 5'-monophosphate and cyclic guanosine 3',5'-monophosphate) and nucleoside analogues. The nucleoside analogue cytosine arabinoside (AraC) is administered to all patients with AML. EXPERIMENTAL DESIGN Expression of ABCC transporters MRP4, MRP5, and MRP8 in blast samples from 50 AML patients was investigated by real-time reverse transcription-PCR analysis and correlated with clinical outcome measures. Accumulation of radiolabeled AraC, transport of AraC metabolites, and AraC cytotoxicity were analyzed in MRP8-transfected LLC-PK1 cells. RESULTS Regression analysis revealed that high expression of MRP8 is associated with a low probability of overall survival assessed over 4 years (P<0.03). MRP8-transfected LLC-PK1 cells accumulated reduced intracellular levels of AraC (63% of the parental vector-transfected LLC-PK1 control cells) as well as AraC metabolites. Furthermore, AraC monophosphate was transported by MRP8-enriched membrane vesicles (116+/-6 versus 65+/-13 pmol/mg/10 minutes by control vesicles), and MRP8-transfected cells were resistant to AraC. CONCLUSION These data suggest that MRP8 is differentially expressed in AML blasts, that expression of MRP8 serves as a predictive marker for treatment outcome in AML, and that efflux of AraC metabolites by MRP8 is a mechanism that contributes to resistance of AML blasts.
Collapse
Affiliation(s)
- Yanping Guo
- Medical Science Division, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Han JH, Ahn YH, Choi KY, Hong SH. Involvement of AMP-activated protein kinase and p38 mitogen-activated protein kinase in 8-Cl-cAMP-induced growth inhibition. J Cell Physiol 2008; 218:104-12. [PMID: 18756496 DOI: 10.1002/jcp.21573] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
8-Cl-cAMP (8-chloro-cyclic AMP), which induces differentiation, growth inhibition and apoptosis in various cancer cells, has been investigated as a putative anti-cancer drug. Although we reported that 8-Cl-cAMP induces growth inhibition via p38 mitogen-activated protein kinase (MAPK) and a metabolite of 8-Cl-cAMP, 8-Cl-adenosine mediates this process, the action mechanism of 8-Cl-cAMP is still uncertain. In this study, it was found that 8-Cl-cAMP-induced growth inhibition is mediated by AMP-activated protein kinase (AMPK). 8-Cl-cAMP was shown to activate AMPK, which was also dependent on the metabolic degradation of 8-Cl-cAMP. A potent agonist of AMPK, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) could also induce growth inhibition and apoptosis. To further delineate the role of AMPK in 8-Cl-cAMP-induced growth inhibition and apoptosis, we used two approaches: pharmacological inhibition of the enzyme with compound C and expression of a dominant negative mutant (a kinase-dead form of AMPKalpha2, KD-AMPK). AICAR was able to activate p38 MAPK and pre-treatment with AMPK inhibitor or expression of KD-AMPK blocked this p38 MAPK activation. Cell growth inhibition was also attenuated. Furthermore, p38 MAPK inhibitor attenuated 8-Cl-cAMP- or AICAR-induced growth inhibition but had no effect on AMPK activation. These results demonstrate that 8-Cl-cAMP induced growth inhibition through AMPK activation and p38 MAPK acts downstream of AMPK in this signaling pathway.
Collapse
Affiliation(s)
- Jee Hae Han
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
15
|
Bajić V, Djelić N, Spremo-Potparević B, Zivković L, Milićević Z. A study on the genotoxic effects of 8-Cl-cAMP on human lymphocytes in vitro. RUSS J GENET+ 2008; 44:631-637. [PMID: 18672796 DOI: 10.1134/s1022795408050062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
8-chloro-cyclic adenosine 3',5'-monophosphate (8-Cl-cAMP) is the most potent cAMP analogue that selectively inhibits a variety of cancer cell lines in vitro and tumors in vivo. Its action toward a variety of tumors, especially when coupled with other antitumor agents, have lead to phase I clinical investigations and recently phase II clinical investigations. Until today very little was done to evaluate its genotoxic potential. In order to evaluate its genotoxic potential we used the cytogenetic and cytokinesis block micronucleus assay in vitro on peripheral blood lymphocytes of healthy individuals. Using three concentrations (1 microM, 5 microM and 15 microM), 8-Cl-cAMP in normal human peripheral blood lymphocytes did not induce any cytogenetic aberrations of the structural type [chromatid breakage, isochromatid breakage and gaps], but did induce premature centromere separation (PCS) in all respective doses and increased the frequency of micronuclei (p <0.05) only in the highest dose (15 microM). Antiproliferative action of 8-Cl-cAMP was estimated by using the cytokinesis block nuclear division index (NDI). The results showed a decrease in the NDI of cells exposed to all doses of 8-Cl-cAMP when compared to control. Therefore, the overall results show a genotoxic potential of 8-Cl-cAMP in peripheral blood lymphocytes in vitro.
Collapse
Affiliation(s)
- V Bajić
- Institute of Biomedical Research, Galenika Pharmaceuticals, 11000 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
16
|
Sang Cho-Chung Y. Overview: Oncologic, Endocrine & Metabolic Antisense oligonucleotides for the treatment of cancer. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.12.1737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Ahn YH, Han JH, Hong SH. Rap1 and p38 MAPK mediate 8-chloro-cAMP-induced growth inhibition in mouse fibroblast DT cells. J Cell Physiol 2007; 209:1039-45. [PMID: 16972264 DOI: 10.1002/jcp.20821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
8-Cl-cAMP, which is known to induce differentiation, growth inhibition, and apoptosis in various cancer cells, has been investigated as a putative anti-cancer drug. Previously, we reported that 8-Cl-cAMP and its metabolite 8-Cl-adenosine induce growth inhibition and apoptosis through p38 mitogen-activated protein kinase (MAPK) activation. To further investigate the signal mechanisms that regulate the cellular effects of 8-Cl-cAMP, we focused on a small GTPase Rap1 that is known to be involved in growth inhibition and reverse-transformation. 8-Cl-cAMP and 8-Cl-adenosine could increase Rap1 activity, which was blocked by ABT702-an adenosine kinase inhibitor. This suggests that 8-Cl-cAMP-induced Rap1 activation is also dependent on the metabolic degradation of 8-Cl-cAMP. Overexpression of a constitutively active mutant form of Rap1 (Rap1V12) attenuated cellular growth and soft-agar colony formation, which was basically the same effect as that observed with the 8-Cl-cAMP treatment. Furthermore, the Rap1V12 transfectant showed a high level of p38 MAPK activation. However, 8-Cl-cAMP-induced Rap1 activation was not diminished by SB203580, a p38 MAPK inhibitor, suggesting that Rap1 activation might act upstream of p38 MAPK activation during 8-Cl-cAMP-induced growth inhibition.
Collapse
Affiliation(s)
- Young-Ho Ahn
- School of Biological Sciences, and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
18
|
Nesterova MV, Johnson NR, Stewart T, Abrams S, Cho-Chung YS. CpG immunomer DNA enhances antisense protein kinase A RIalpha inhibition of multidrug-resistant colon carcinoma growth in nude mice: molecular basis for combinatorial therapy. Clin Cancer Res 2005; 11:5950-5. [PMID: 16115938 DOI: 10.1158/1078-0432.ccr-05-0624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CpG DNAs induce cytokines, activate natural killer cells, and elicit vigorous T-cell response leading to antitumor effects. Antisense oligodeoxynucleotides targeted against the RIalpha subunit of protein kinase A (antisense PKA RIalpha) induce growth arrest, apoptosis, and differentiation in a variety of cancer cell lines in vitro and in vivo. This study investigated the use of a combinatorial therapy consisting of the RNA-DNA second-generation antisense PKA RIalpha and the CpG immunomer (CpG DNA linked through 3'-3' linkage containing two accessible 5' ends). EXPERIMENTAL DESIGN HCT-15 multidrug-resistant colon carcinoma growth in nude mice was used as an experimental model. The inhibitory effect on tumor growth and apoptotic activity of antisense RIalpha and CpG immunomer, singly and in combination, were measured by tumor growth, levels of RIalpha subunit, and antiapoptotic and proapoptotic proteins. Effect on host-immune system was measured by mouse spleen size, interleukin-6 (IL-6) levels in mouse blood, and nuclear factor-kappaB (NF-kappaB) transcription activity in mouse spleen cells. RESULTS In combination, CpG immunomer and antisense PKA RIalpha induced additive/supra-additive effect on the inhibition of tumor growth. Antisense RIalpha but not CpG immunomer increased Bax and Bak proapoptotic protein levels and decreased Bcl-2 and RIalpha protein levels in tumor cells. CpG immunomer but not antisense RIalpha induced an enlargement of mouse spleen, increased IL-6 levels in mouse blood, and increased NF-kappaB transcription activity in mouse spleen cells. CONCLUSIONS These results show that type I PKA down-regulation and induction of apoptosis in tumor cells by antisense PKA RIalpha, and host-immune stimulation by CpG immunomer are responsible at the molecular level for the supra-additive effects of tumor growth inhibition. Thus, antisense PKA RIalpha and CpG immunomer in combination work cooperatively and as tumor-targeted therapeutics to treat human cancer.
Collapse
Affiliation(s)
- Maria V Nesterova
- Basic Research Laboratory, Cellular Biochemistry Section, National Cancer Institute, Bethesda, Maryland 20892-1750, USA
| | | | | | | | | |
Collapse
|
19
|
Ahn YH, Jung JM, Hong SH. 8-Chloro-cyclic AMP-induced growth inhibition and apoptosis is mediated by p38 mitogen-activated protein kinase activation in HL60 cells. Cancer Res 2005; 65:4896-901. [PMID: 15930311 DOI: 10.1158/0008-5472.can-04-3122] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
8-Chloro-cyclic AMP (8-Cl-cAMP), which is known to induce growth inhibition, apoptosis, and differentiation in various cancer cell lines, has been studied as a putative anticancer drug. However, the mechanism of anticancer activities of 8-Cl-cAMP has not been fully understood. Previously, we reported that the 8-Cl-cAMP-induced growth inhibition is mediated by protein kinase C (PKC) activation. In this study, we found that p38 mitogen-activated protein kinase (MAPK) also plays important roles during the 8-Cl-cAMP-induced growth inhibition and apoptosis. SB203580 (a p38-specific inhibitor) recovered the 8-Cl-cAMP-induced growth inhibition and apoptosis, whereas other MAPK inhibitors, such as PD98059 (an extracellular signal-regulated kinase-specific inhibitor) and SP600125 (a c-Jun NH2-terminal kinase-specific inhibitor), had no effect. The phosphorylation (activation) of p38 MAPK was increased in a time-dependent manner after 8-Cl-cAMP treatment. Furthermore, SB203580 was able to block PKC activation induced by 8-Cl-cAMP. However, PKC inhibitor (GF109203x) could not attenuate p38 activation, indicating that p38 MAPK activation is upstream of PKC activation during the 8-Cl-cAMP-induced growth inhibition. 8-Chloro-adenosine, a metabolite of 8-Cl-cAMP, also activated p38 MAPK and this activation was blocked by adenosine kinase inhibitor. These results suggest that 8-Cl-cAMP exerts its anticancer activity through p38 MAPK activation and the metabolite(s) of 8-Cl-cAMP mediates this process.
Collapse
Affiliation(s)
- Young-Ho Ahn
- School of Biological Sciences, Institute of Molecular Biology and Genetics, and Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
20
|
Korićanac LB, Todorović DV, Popović NM, Demajo MA, Ruzdijić SD, Ristić-Fira AM. Inhibition of B16 mouse melanoma cell growth and induction of apoptotic cell death with 8-chloroadenosine-3',5'-monophosphate and tiazofurin. Ann N Y Acad Sci 2005; 1030:384-92. [PMID: 15659821 DOI: 10.1196/annals.1329.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Novel antineoplastic agents, 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP) and tiazofurin (TR), have been shown to be effective against different malignant cells. Through specific mechanisms of action they modulate the cellular signal transduction pathway, thereby causing growth inhibition, cell differentiation, and apoptosis. The aim of this work was the in vitro study of either 8-Cl-cAMP or TR effects on B16/F10 and B16/C3 mouse melanoma cell growth and cell death. Significant cell growth inhibition was obtained after the application of 8-Cl-cAMP or TR. The presence and number of apoptotic cells was evaluated using agarose gel electrophoresis and flow cytometry. The number of apoptotic nuclei, after treatment with antineoplastic agents, did not significantly change in B16/F10 cells, although it did show a significant increase in B16/C3 cells. The expression of c-myc did not significantly change in B16/F10 cells after treatment with 8-Cl-cAMP or TR. The same results were obtained in B16/C3 cells after treatment with 8-Cl-cAMP. The level of c-myc expression showed a significant increase in B16/C3 cells after treatment with TR. Concerning the effects that the analyzed agents exhibited on melanoma cells and other cancer cells, further preclinical studies of these drugs will potentially lead to better understanding of the molecular mechanisms of their action and finally more efficient therapeutic approaches to malignant diseases.
Collapse
Affiliation(s)
- Lela B Korićanac
- Vinca Institute of Nuclear Sciences, Laboratory for Molecular Biology and Endocrinology, P.O. Box 522, 11001 Belgrade, Serbia and Montenegro.
| | | | | | | | | | | |
Collapse
|
21
|
Sandrini F, Stratakis C. Clinical and molecular genetics of primary pigmented nodular adrenocortical disease. ACTA ACUST UNITED AC 2005; 48:637-41. [PMID: 15761532 DOI: 10.1590/s0004-27302004000500007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carney complex (CNC) is a multiple endocrine neoplasia (MEN) syndrome associated with other, non-endocrine manifestations such as lentigines, cardiac myxomas and schwannomas. Primary pigmented nodular adrenocortical disease (PPNAD), leading to corticotrophin-independent Cushing's syndrome is the most frequent endocrine lesion in CNC. The complex has been mapped to 2p16 and 17q22-24, although additional heterogeneity may exist. The gene coding for the protein kinase A (PKA) type I-a regulatory subunit (RIa), PRKAR1A, had been mapped to 17q. Cloning of the PRKAR1A genomic structure and its sequencing showed mutations in CNC-, CNC with PPNAD- and sporadic PPNAD-patients. In CNC tumors, PKA activity showed increased stimulation by cAMP, whereas PKA activity ratio was decreased, and in CNC tumors, there is LOH of the normal allele, suggesting that normal PRKAR1A may be a tumor suppressor in these tissues. CNC is the first human disease caused by mutations of one of the subunits of the PKA enzyme, a critical component of the cAMP signaling system and a potential participant in many other signaling pathways.
Collapse
Affiliation(s)
- Fabiano Sandrini
- Section on Endocrinology & Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892-1862, USA.
| | | |
Collapse
|
22
|
Ahn YH, Jung JM, Hong SH. 8-Cl-cAMP and its metabolite, 8-Cl-adenosine induce growth inhibition in mouse fibroblast DT cells through the same pathways: protein kinase C activation and cyclin B down-regulation. J Cell Physiol 2004; 201:277-85. [PMID: 15334662 DOI: 10.1002/jcp.20047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
8-Chloro-cyclic AMP (8-Cl-cAMP) is known to be most effective in inducing growth inhibition and differentiation of a number of cancer cells. Also, its cellular metabolite, 8-Cl-adenosine was shown to induce growth inhibition in a variety of cell lines. However, the signaling mechanism that governs the effects of 8-Cl-cAMP and/or 8-Cl-adenosine is still uncertain and it is not even sure which of the two is the key molecule that induces growth inhibition. In this study using mouse fibroblast DT cells, it was found that adenosine kinase inhibitor and adenosine deaminase could reverse cellular growth inhibition induced by 8-Cl-cAMP and 8-Cl-adenosine. And 8-Cl-cAMP could not induce growth inhibition in the presence of phosphodiesterase (PDE) inhibitor, but 8-Cl-adenosine could. We also found that protein kinase C (PKC) inhibitor could restore this growth inhibition, and both the 8-Cl-cAMP and 8-Cl-adenosine could activate the enzymatic activity of PKC. Besides, after 8-Cl-cAMP and 8-Cl-adenosine treatment, cyclin B was down-regulated and a CDK inhibitor, p27 was up-regulated in a time-dependent manner. These results suggest that it is not 8-Cl-cAMP but 8-Cl-adenosine which induces growth inhibition, and 8-Cl-cAMP must be metabolized to exert this effect. Furthermore, there might exist signaling cascade such as PKC activation and cyclin B down-regulation after 8-Cl-cAMP and 8-Cl-adenosine treatment.
Collapse
Affiliation(s)
- Young-Ho Ahn
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | | | | |
Collapse
|
23
|
Bajic V, Stanimirovic Z, Stevanovic J. Genotoxicity potential of 8-Cl-cyclic adenosine monophosphate assessed with cytogenetic tests in vivo. Arch Med Res 2004; 35:209-14. [PMID: 15163461 DOI: 10.1016/j.arcmed.2004.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 01/09/2004] [Indexed: 11/24/2022]
Abstract
BACKGROUND Growth-modulating noncytotoxic activity of 8-chloro-adenosine 3',5'-cyclic monophosphate (8-Cl-cAMP) showed inhibitory effect on growth of a wide variety of cancer cell lines in vitro and in vivo. To assess possible genotoxic effects of 8-Cl-cAMP, we conducted a study in vivo using male BALB/c mice. METHODS Clastogenic effects were estimated by bone marrow micronucleus assay and cytogenetic test in adult mice BALB/c strain. 8-Cl-cAMP was administered intraperitoneally (i.p.) to three dose groups including 10 mg/kg body weight (b.w.), 90 mg/kg b.w., and 160 mg/kg b.w., with saline solution as negative control and cyclophosphamide, a known mutagen, and clastogen as positive control during a 7-day period in 24-h intervals. RESULTS Micronucleus test in vivo results showed consistently increasing dose-dependent pattern increase of dose regime (10 mg/kg body weight [b.w.], 90 mg/kg b.w., and 160 mg/kg b.w.), and increase in frequency of micronuclei in polychromatic erythrocytes (4.88 +/- 0.35, 8.32 +/- 0.57, and 11.74 +/- 0.37) compared to negative control (2.04 +/- 0.28). Quantitative effects are paralleled by structural changes in chromosome morphology. 8-Cl-cAMP induced structural (breaks, gaps, centric rings, acentrics, and Robertsonian translocations) and numerical-type chromosomal aberrations (aneuploidy and polyploidy). CONCLUSIONS Results of this study demonstrate that 8-Cl-cAMP has genotoxic potential in vivo.
Collapse
|
24
|
Bartsch M, Zorn-Kruppa M, Kühl N, Genieser HG, Schwede F, Jastorff B. Bioactivatable, membrane-permeant analogs of cyclic nucleotides as biological tools for growth control of C6 glioma cells. Biol Chem 2004; 384:1321-6. [PMID: 14515995 DOI: 10.1515/bc.2003.148] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, the cAMP analogs 8-bromo-cAMP (8-Br-cAMP), N6-2'O-dibutyryl-cAMP (DBcAMP) and 8-para-chlorophenylthio-cAMP (8-CPT-cAMP), as well as the corresponding cAMP-acetoxymethyl (AM)-ester-prodrugs were tested in a HPLC study for their membrane permeability, intracellular accumulation and biotransformation. Antiproliferative activities of these compounds were studied in the rat C6 glioma cell line. Chromatographic analysis revealed that the AM-ester analogs of the cyclic nucleotides penetrate quantitatively into rat C6 glioma cells and generate high amounts of their parent cyclic nucleotides intracellularly within 60 min; however, long-term growth inhibition tested in C6 cells is only slightly enhanced with the AM-ester prodrugs of 8-Br-cAMP or DBcAMP.
Collapse
Affiliation(s)
- Martin Bartsch
- Zentrum für Umwellforschung und Umwelttechnologie (UFT), Abt. Bioorganische Chemie, Universität Bremen, Leobener Strasse, D-28359 Bremen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Abstract
Nucleic acid therapies represent a direct genetic approach for cancer treatment. Such an approach takes advantage of mechanisms that activate genes known to confer a growth advantage to neoplastic cells. The ability to block the expression of these genes allows exploration of normal growth regulation. Progress in antisense technology has been rapid, and the traditional antisense inhibition of gene expression is now viewed on a genomic scale. This global view has led to a new vision in antisense technology, the elimination of nonspecific and undesirable side effects, and ultimately, the generation of more effective and less toxic nucleic acid medicines. Several antisense oligonucleotides are in clinical trials, are well tolerated, and are potentially active therapeutically. Antisense oligonucleotides are promising molecular medicines for treating human cancer in the near future.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, Basic Research Laboratory, National Cancer Institute, NIH, Bethesda, MD 20892-1750, USA.
| |
Collapse
|
27
|
Abstract
Carney complex (CNC) is a multiple endocrine neoplasia (MEN) syndrome characterized by lentigines, cardiac myxomas and tumors, including primary pigmented adrenocortical disease (PPNAD). In the present report we review the main clinical manifestations of this disorder. We also discuss some of the newest molecular information regarding CNC. The complex has been mapped to 2p16 and 17q22-24, and a third locus appears likely. The gene coding for the protein kinase A (PKA) type I-a regulatory subunit (RIa), PRKAR1A, had been mapped to 17q. Cloning of the PRKAR1A genomic structure and its sequencing showed mutations in CNC patients. So far, among 57 kindreds, PRKAR1A mutations have been found in 28. In almost all the mutations, the sequence change is predicted to lead to a premature stop codon; 1 mutation altered the initiator ATG codon. Analysis of mRNA transcripts in patient lymphocytes treated with cycloheximide showed that mutant mRNAs containing a premature stop codon were degraded, due to nonsense-mediated mRNA decay--the predicted mtPRKAR1A protein products were absent in these cells. In CNC tumors, PKA activity showed increased stimulation by cAMP, whereas PKA activity ratio was decreased. To date, mutations in the PRKAR1A gene have been described in CNC patients and in some sporadic endocrine tumors. LOH of the normal allele and increased PKA activity in response to cAMP are found in these tumors, suggesting that normal PRKAR1A (largely responsible for PKA type I activity) is implicated more widely in endocrine tumorigenesis. CNC is the first human disease caused by mutations of one of the subunits of the PKA holoenzyme, a critical component of numerous cellular signaling systems.
Collapse
Affiliation(s)
- Fabiano Sandrini
- Section on Endocrinology and Genetics, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, MD 20892-1862, USA
| | | |
Collapse
|
28
|
Cho-Chung YS, Nesterova M, Becker KG, Srivastava R, Park YG, Lee YN, Cho YS, Kim MK, Neary C, Cheadle C. Dissecting the circuitry of protein kinase A and cAMP signaling in cancer genesis: antisense, microarray, gene overexpression, and transcription factor decoy. Ann N Y Acad Sci 2002; 968:22-36. [PMID: 12119265 DOI: 10.1111/j.1749-6632.2002.tb04324.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Expression of the RI alpha subunit of the cAMP-dependent protein kinase type I (PKA-I) is enhanced in human cancer cell lines, in primary tumors, in transformed cells, and in cells upon stimulation of growth. Signaling via the cAMP pathway may be complex, and the biological effects of the pathway in normal cells may depend upon the physiological state of the cells. However, results of different experimental approaches such as antisense exposure, 8-Cl-cAMP treatment, and gene overexpression have shown that the inhibition of RI alpha/PKA-I exerts antitumor activity in a wide variety of tumor-derived cell lines examined in vitro and in vivo. cDNA microarrays have further shown that in a sequence-specific manner, RI alpha antisense induces alterations in the gene expression profile of cancer cells and tumors. The cluster of genes that define the "proliferation-transformation" signature are down-regulated, and those that define the "differentiation-reverse transformation" signature are up-regulated in antisense-treated cancer cells and tumors, but not in host livers, exhibiting the molecular portrait of the reverted (flat) phenotype of tumor cells. These results reveal a remarkable cellular regulation, elicited by the antisense RI alpha, superimposed on the regulation arising from the Watson-Crick base-pairing mechanism of action. Importantly, the blockade of both the PKA and PKC signaling pathways achieved with the CRE-transcription factor decoy inhibits tumor cell growth without harming normal cell growth. Thus, a complex circuitry of cAMP signaling comprises cAMP growth regulatory function, and deregulation of the effector molecule by this circuitry may underlie cancer genesis and tumor progression.
Collapse
Affiliation(s)
- Yoon S Cho-Chung
- Cellular Biochemistry Section, BRL, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1750, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Neary CL, Cho-Chung YS. Nuclear translocation of the catalytic subunit of protein kinase A induced by an antisense oligonucleotide directed against the RIalpha regulatory subunit. Oncogene 2001; 20:8019-24. [PMID: 11753685 DOI: 10.1038/sj.onc.1204992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2001] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/08/2022]
Abstract
The regulatory (R) subunits of cAMP-dependent protein kinase (PKA) are implicated in the regulation of cell proliferation and differentiation. There are two isoforms of PKA that are distinguished by two types of R subunit, RI and RII. Evidence suggests that RI is associated with proliferation and RII is associated with cell differentiation. Previous work in this laboratory has demonstrated that depletion of the RIalpha subunit by treatment with an antisense oligonucleotide (ODN) induces differentiation in leukemia cells and growth arrest and apoptosis in epithelial cancer cells. Using the prostate cancer cell line PC3M as a model system, we have developed a cell line that overexpresses a retroviral vector construct containing the RIalpha antisense gene. This cell line has been characterized and the effectiveness of the construct determined. In the work presented here, we demonstrate by immunocytochemistry that treatment with RIalpha antisense ODN induces translocation of the Calpha subunit of PKA to the nucleus of PC3M prostate cancer cells. The translocation of Calpha triggered by exogenous antisense ODN treatment mirrors that observed in cells endogenously overexpressing the antisense gene. Triggering the nuclear translocation of the Calpha subunit of PKA in the cell may be an important mechanism of action of RIalpha antisense that regulates cell growth independent of adenylate cyclase and cellular cAMP levels. The nuclear localization of the Calpha subunit of PKA may be an essential step in revealing the mechanism whereby this critical kinase regulates cell growth.
Collapse
Affiliation(s)
- C L Neary
- Cellular Biochemistry Section, Basic Research Laboratories, The Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, MD 20892-1750, USA
| | | |
Collapse
|
30
|
Kim SN, Ahn YH, Kim SG, Park SD, Cho-Chung YS, Hong SH. 8-Cl-cAMP induces cell cycle-specific apoptosis in human cancer cells. Int J Cancer 2001; 93:33-41. [PMID: 11391618 DOI: 10.1002/ijc.1308] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
8-Cl-cyclic adenosine monophosphate (8-Cl-cAMP) has been known to induce growth inhibition and differentiation in a variety of cancer cells by differential modulation of protein kinase A isozymes. To understand the anticancer activity of 8-Cl-cAMP further, we investigated the effect of 8-Cl-cAMP on apoptosis in human cancer cells. Most of the tested human cancer cells exhibited apoptosis upon treatment with 8-Cl-cAMP, albeit with different sensitivity. Among them, SH-SY5Y neuroblastoma cells and HL60 leukemic cells showed the most extensive apoptosis. The effect of 8-Cl-cAMP was not reproduced by other cAMP analogues or cAMP-elevating agents, showing that the effect of 8-Cl-cAMP was not caused by simple activation of protein kinase A (PKA). However, competition experiments showed that the binding of 8-Cl-cAMP to the cAMP receptor was essential for the induction of apoptosis. After the treatment of 8-Cl-cAMP, cells initially accumulated at the S and G2/M phases of the cell cycle and then apoptosis began to occur among the population of cells at the S/G2/M cell cycle phases, indicating that the 8-Cl-cAMP-induced apoptosis is closely related to cell cycle control. In support of this assumption, 8-Cl-cAMP-induced apoptosis was blocked by concomitant treatment with mimosine, which blocks the cell cycle at early S phase. Interestingly, 8-Cl-cAMP did not induce apoptosis in primary cultured normal cells and non-transformed cell lines, showing that 8-Cl-cAMP-induced apoptosis is specific to transformed cells. Taken together, our results show that the induction of apoptosis is one of the mechanisms through which 8-Cl-cAMP exerts anticancer activity.
Collapse
Affiliation(s)
- S N Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
31
|
Qian J, Yehia G, Molina C, Fernandes A, Donnelly R, Anjaria D, Gascon P, Rameshwar P. Cloning of human preprotachykinin-I promoter and the role of cyclic adenosine 5'-monophosphate response elements in its expression by IL-1 and stem cell factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2553-61. [PMID: 11160316 DOI: 10.4049/jimmunol.166.4.2553] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Preprotachykinin-I gene (PPT-I) encodes several peptides with organ-specific functions that link the neuroendocrine-immune-hemopoietic axis. We cloned upstream of the initiation site of human PPT-I promoter and identified consensus sequences for two cAMP response elements (CRE). PPT-I is induced by cytokines including those that signal through the cAMP pathway. Therefore, we studied the role of the two CRE in IL-1alpha and stem cell factor (SCF) stimulation of bone marrow stroma because both cytokines induce endogenous PPT-I in these cells and activate the cAMP pathway. Furthermore, bone marrow stroma expresses the transcription factors regulated by the cAMP pathways such as the repressor (ICERIIgamma) and activator (CREMtau). Mutagenesis of the two CRE and/or cotransfection with vectors that express ICERIIgamma or CREMtau indicated that the two CRE have major roles in PPT-I expression. The two CRE are also required for optimal promoter activity by SCF and IL-1alpha. A particular cytokine could concomitantly induce PPT-I and the high affinity G protein-coupled receptor for PPT-I peptides, NK-1R. We showed that SCF, a representative cytokine, induced PPT-I and NK-1R leading to autocrine and/or paracrine cell activation. Because NK-1R activates cAMP through the G protein, the results suggest that the presence of CRE sequences within PPT-I promoter could be important in the regulation of PPT-I expression by cytokines, irrespective of their ability to signal through cAMP. As PPT-I is implicated in hemopoietic regulation, immune responses, breast cancer, and other neural functions, these studies add to the basic biology of these processes and could provide targets for drug development.
Collapse
Affiliation(s)
- J Qian
- Department of Medicine-Hematology/Oncology, Graduate School of Biomedical Science, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schwede F, Maronde E, Genieser H, Jastorff B. Cyclic nucleotide analogs as biochemical tools and prospective drugs. Pharmacol Ther 2000; 87:199-226. [PMID: 11008001 DOI: 10.1016/s0163-7258(00)00051-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cyclic AMP (cAMP) and cyclic GMP (cGMP) are key second messengers involved in a multitude of cellular events. From the wealth of synthetic analogs of cAMP and cGMP, only a few have been explored with regard to their therapeutic potential. Some of the first-generation cyclic nucleotide analogs were promising enough to be tested as drugs, for instance N(6),O(2)'-dibutyryl-cAMP and 8-chloro-cAMP (currently in clinical Phase II trials as an anticancer agent). Moreover, 8-bromo and dibutyryl analogs of cAMP and cGMP have become standard tools for investigations of biochemical and physiological signal transduction pathways. The discovery of the Rp-diastereomers of adenosine 3',5'-cyclic monophosphorothioate and guanosine 3',5'-cyclic monophosphorothioate as competitive inhibitors of cAMP- and cGMP-dependent protein kinases, as well as subsequent development of related analogs, has proven very useful for studying the molecular basis of signal transduction. These analogs exhibit a higher membrane permeability, increased resistance against degradation, and improved target specificity. Furthermore, better understanding of signaling pathways and ligand/protein interactions has led to new therapeutic strategies. For instance, Rp-8-bromo-adenosine 3',5'-cyclic monophosphorothioate is employed against diseases of the immune system. This review will focus mainly on recent developments in cyclic nucleotide-related biochemical and pharmacological research, but also highlights some historical findings in the field.
Collapse
Affiliation(s)
- F Schwede
- Center for Environmental Research and Environmental Technology, Department of Bioorganic Chemistry, University of Bremen, Leobener Strasse, D-28359, Bremen, Germany
| | | | | | | |
Collapse
|
33
|
Pesic M, Drabek K, Esler C, Ruzdijic S, Pejanovic V, Pietrzkowski Z. Inhibition of cell growth and proliferation in human glioma cells and normal human astrocytes induced by 8-Cl-cAMP and tiazofurin. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:963-75. [PMID: 10893715 DOI: 10.1080/15257770008033036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
8-Cl-cAMP and tiazofurin (TR) are anti-tumor agents that besides their antiproliferative effect, also induce differentiation of tumor cells. Although, these agents exert a profound effect on the same events of tumor cell life, it is thought that 8-Cl-cAMP and TR act by modulating the signal transduction pathway through distinct mechanisms. We have compared their effect on two human glioma cell lines (U87 MG and U251 MG) and examined if there is selectivity in their action toward normal human astrocytes.
Collapse
Affiliation(s)
- M Pesic
- Institute for Biological Research, Department of Neurobiology and Immunology, Belgrade, Yugoslavia
| | | | | | | | | | | |
Collapse
|
34
|
Cho YS, Park YG, Lee YN, Kim MK, Bates S, Tan L, Cho-Chung YS. Extracellular protein kinase A as a cancer biomarker: its expression by tumor cells and reversal by a myristate-lacking Calpha and RIIbeta subunit overexpression. Proc Natl Acad Sci U S A 2000; 97:835-40. [PMID: 10639166 PMCID: PMC15417 DOI: 10.1073/pnas.97.2.835] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1999] [Accepted: 11/18/1999] [Indexed: 11/18/2022] Open
Abstract
Overexpression of cAMP-dependent protein kinase (PKA) type I isozyme is associated with cell proliferation and neoplastic transformation. The presence of PKA on the external surface of LS-174T human colon carcinoma cells has been shown. Here, we show that cancer cells of various cell types excrete PKA into the conditioned medium. This extracellular PKA (ECPKA) is present in active, free catalytic subunit (C subunit) form, and its activity is specifically inhibited by PKA inhibitory protein, PKI. Overexpression of the Calpha or RIalpha subunit gene of PKA in an expression vector, which up-regulates intracellular PKA type I, markedly up-regulates ECPKA expression. In contrast, overexpression of the RIIbeta subunit, which eliminates PKA type I, up-regulates PKA type II, and reverts the transformed phenotype, down-regulates ECPKA. A mutation in the Calpha gene that prevents myristylation allows the intracellular PKA up-regulation but blocks the ECPKA increase, suggesting that the NH(2)-terminal myristyl group of Calpha is required for the ECPKA expression. In serum of cancer patients, the ECPKA expression is up-regulated 10-fold as compared with normal serum. These results indicate that the ECPKA expression is an ordered cellular response of a living cell to actively exclude excess intracellular PKA molecules from the cell. This phenomenon is up-regulated in tumor cells and has an inverse relationship with the hormone dependency of breast cancer. Thus, the extracellular PKA may serve as a potential diagnostic and prognostic marker for cancer.
Collapse
Affiliation(s)
- Y S Cho
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Institutes of Health, National Cancer Institute, Bethesda, MD 20892-1750, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Alper O, Hacker NF, Cho-Chung YS. Protein kinase A-Ialpha subunit-directed antisense inhibition of ovarian cancer cell growth: crosstalk with tyrosine kinase signaling pathway. Oncogene 1999; 18:4999-5004. [PMID: 10490835 DOI: 10.1038/sj.onc.1202830] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of the RIalpha subunit of cAMP-dependent protein kinase type I is increased in human cancers in which an autocrine pathway for epidermal growth factor-related growth factors is activated. We have investigated the effect of sequence-specific inhibition of RIalpha gene expression on ovarian cancer cell growth. We report that RIalpha antisense treatment results in a reduction in RIalpha expression and protein kinase A type I, and inhibition of cell growth. The growth inhibition was accompanied by changes in cell morphology and appearance of apoptotic nuclei. In addition, EGF receptor, c-erbB-2 and c-erbB-3 levels were reduced, and the basal and EGF-stimulated mitogen-activated protein kinase activities were reduced. Protein kinase A type I and EGF receptor levels were also reduced in cells overexpressing EGF receptor antisense cDNA. These results suggest that the antisense depletion of RIalpha leads to blockade of both the serine-threonine kinase and the tyrosine kinase signaling pathways resulting in arrest of ovarian cancer cell growth.
Collapse
Affiliation(s)
- O Alper
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland MD 20892-1750, USA
| | | | | |
Collapse
|
36
|
The 3rd Annual NIH Symposium on Therapeutic Oligonucleotides. Bethesda, Maryland, USA. December 4, 1998. Abstracts. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1999; 9:359-431. [PMID: 10498436 DOI: 10.1089/oli.1.1999.9.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
37
|
Noguchi K, Murata T, Cho-Chung YS. 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP) selectively eliminates protein kinase A type I to induce growth inhibition in c-ras-transformed fibroblasts. Eur J Cancer 1998; 34:1260-7. [PMID: 9849489 DOI: 10.1016/s0959-8049(98)00051-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
8-Chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), a site-selective cyclic adenosine 3',5'-monophosphate (cAMP) analogue, exhibits growth inhibition in a broad spectrum of cancer cell lines. We investigated the effect of 8-Cl-cAMP on c-ras-transformed mouse fibroblasts (MP3/3T3) which were established by transfection of Balb3T3 cells (Balb3T3) with the point-mutated c-ras gene [G12-->V12]. 8-Cl-cAMP (2-5 microM) exerted over 80% growth inhibition by day 4 on MP3/3T3, while inhibiting parental Balb3T3 cell growth less than 40%. In order to distinguish the effect of 8-Cl-cAMP from that of 8-chloroadenosine (8-Cl-adenosine), we examined the effect of 8-Cl-cAMP in serum-free medium. 8-Cl-cAMP demonstrated a potent growth inhibition of MP3/3T3 cells cultured in serum-free medium, suggesting that the growth inhibitory effect of 8-Cl-cAMP was not due to its hydrolysed product, 8-Cl-adenosine. In addition, both Balb3T3 and MP3/3T3 contained cAMP phosphodiesterases mainly composed of isozyme IV which has previously been reported to be insensitive towards the hydrolysis of 8-Cl-cAMP. Non-transformed Balb3T3 cells contained only type II cAMP-dependent protein kinase (PKA), whereas transformed MP3/3T3 exhibited a marked increase in type I PKA. The growth inhibition of MP3/3T3 by 8-Cl-cAMP accompanied almost complete elimination of type I PKA without affecting type II PKA. Moreover, 8-Cl-cAMP induced an arrest in the G0/G1-phase of the cell cycle in MP3/3T3. 8-Cl-adenosine had little or no effect on the cell cycle kinetics of MP3/3T3 cells. These results show that 8-Cl-cAMP is a novel cAMP analogue which selectively eliminates type I PKA to induce growth inhibition in transformed fibroblasts.
Collapse
Affiliation(s)
- K Noguchi
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1750, USA
| | | | | |
Collapse
|
38
|
Fassina G, Aluigi MG, Gentleman S, Wong P, Cai T, Albini A, Noonan DM. The cAMP analog 8-Cl-cAMP inhibits growth and induces differentiation and apoptosis in retinoblastoma cells. Int J Cancer 1997; 72:1088-94. [PMID: 9378544 DOI: 10.1002/(sici)1097-0215(19970917)72:6<1088::aid-ijc25>3.0.co;2-#] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinoblastomas appear to be derived from a multipotential stem cell of the retina, due to alterations of the Rb1 gene. These tumors arise only within a discrete time frame during childhood, prior to terminal differentiation of the retinal precursor cells. Treatment of retinoblastoma cells with certain agents can induce a partial differentiation of cell types resembling those of the mature retina, such as rod and cone photoreceptors, glia, conventional neurons and pigment epithelia. We have tested the effects of 8-Cl-cAMP, a synthetic analog of cAMP which preferentially binds to and activates the RII subunit of protein kinase A on the Y-79 retinoblastoma cell line in vitro. Y-79 cells treated with 8-Cl-cAMP produced short, branching processes and showed a substantial increase in staining for neuron-specific enolase, a marker for conventional neuronal differentiation. In contrast, dibutyryl-cAMP gives a strong increase in the glial marker glial acidic fibrillary protein. Y-79 cell proliferation was strongly inhibited by 8-Cl-cAMP at concentrations as low as 5-25 microM. 8-Cl-cAMP significantly increased the rate of apoptosis of Y-79 cells in a dose-dependent manner. It also modulated expression of the RI regulatory subunit of intracellular cAMP-dependent protein kinase A, which is produced in abnormal quantities by Y-79 cells. A decrease in protein production was observed, with no clear effect on the RI subunit mRNA expression, suggesting that RI regulation occurs post-transcriptionally.
Collapse
Affiliation(s)
- G Fassina
- Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Langeveld CH, Jongenelen CA, Theeuwes JW, Baak JP, Heimans JJ, Stoof JC, Peters GJ. The antiproliferative effect of 8-chloro-adenosine, an active metabolite of 8-chloro-cyclic adenosine monophosphate, and disturbances in nucleic acid synthesis and cell cycle kinetics. Biochem Pharmacol 1997; 53:141-148. [PMID: 9037246 DOI: 10.1016/s0006-2952(96)00593-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
8-Chloro-adenosine, the dephosphorylated metabolite of the antineoplastic agent 8-chloro-cyclic AMP, has been proposed to act on the regulatory subunits of cyclic AMP-dependent protein kinase. 8-Chloro-adenosine has a growth-inhibitory effect, the mechanism of which is unclear. We investigated the effects of 8-chloro-cyclic AMP and 8-chloro-adenosine on nucleic acid synthesis and cell cycle kinetics in two human glioma cell lines. These effects were compared to those of the cyclic AMP analogue 8-(4-chlorophenyl)-thio-cyclic AMP (8-CPTcAMP), which is less susceptible to dephosphorylation. Whereas 8-CPTcAMP almost completely inhibited RNA and DNA synthesis, both 8-chloro-adenosine and 8-chloro-cyclic AMP only partly inhibited synthesis of RNA and DNA at growth-inhibitory concentrations, as demonstrated by using [5-1H] uridine and [14C]thymidine incorporation. Therefore, the growth-inhibitory effect of 8-chloro-cyclic AMP is not (or not completely) due to activation of cyclic AMP-dependent protein kinase nor to the inhibition of nucleic acid synthesis. Flow cytometric analysis revealed that 8-chloro-cyclic AMP and 8-chloro-adenosine probably block cell cycle progression at the G2M phase. The effects of 8-chloro-cyclic AMP on nucleic acid synthesis and cell cycle progression were largely prevented by adenosine deaminase, which inactivates 8-chloro-adenosine. This indicates that the effects of 8-chloro-cyclic AMP were at least in part due to its metabolite 8-chloro-adenosine. Incorporation of 8-chloro-adenosine into RNA and DNA might contribute to the disturbance of the cell cycle kinetics and growth-inhibitory effect of 8-chloro-adenosine.
Collapse
Affiliation(s)
- C H Langeveld
- Department of Neurology, Graduate School of Neurosciences Amsterdam, Vrije Universiteit, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Qing F, Hayes MJ, Rhodes CG, Krausz T, Fountain SW, Burke MM, Jones T, Hughes JM. Reduced beta adrenoceptor density in vivo in human lung tumours: a preliminary study with positron emission tomography. Thorax 1996; 51:727-32. [PMID: 8882081 PMCID: PMC472497 DOI: 10.1136/thx.51.7.727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reduced beta adrenergic receptor density in tumours has been reported in previous in vitro studies. The aim of the present study was to assess whether this occurs in vivo. METHODS Pulmonary beta adrenoceptors were imaged and quantified in vivo using positron emission tomography (PET) and the beta antagonist radioligand (S)-[11C]CGP-12177 in five men with lung tumours of mean age 58 years (range 42-68). The histology of the tumours was squamous cell carcinoma in two cases, adenocarcinoma in one, carcinoid tumour in one, and large cell carcinoma in one. The regional blood volume and extravascular tissue density were also measured using PET. Regions of interest were drawn for both non-tumour and tumour lung tissue. RESULTS The mean (SD) blood volume was 0.142 (0.025) ml/ml in tumour regions and 0.108 (0.010) ml/ml in normal lung regions--a difference of 31%. Mean (SD) extravascular tissue density was 0.653 (0.133) g/ml in tumour regions, substantially higher than in normal lung regions (0.157 (0.021) g/ml). On the contrary, beta receptor density was 5.1 (1.8) pmol/g in tumour regions, lower than the value of 9.9 (1.6) pmol/g found in adjacent normal lung--a difference of 48%. CONCLUSIONS In vivo beta adrenoceptor density is reduced in human lung tumours.
Collapse
Affiliation(s)
- F Qing
- Department of Medicine, Respiratory Division, Royal Postgraduate Medical School, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cummings J, Langdon SP, Ritchie AA, Burns DJ, Mackay J, Stockman P, Leonard RC, Miller WR. Pharmacokinetics, metabolism and tumour disposition of 8-chloroadenosine 3',5'-monophosphate in breast cancer patients and xenograft bearing mice. Ann Oncol 1996; 7:291-6. [PMID: 8740794 DOI: 10.1093/oxfordjournals.annonc.a010574] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND 8-Chloroadenosine 3',5'-monophosphate (8-Cl-cAMP) is undergoing phase I clinical trials as an anticancer drug. However, there is debate as to whether it is a prodrug for its 8-Cl-adenosine metabolite. DESIGN Pharmacokinetics, metabolism and tumour disposition studies have been performed in 7 breast cancer patients receiving continuous infusion (28 day) 8-Cl-cAMP (0.54 or 1.08 mg/kg/day) and tumour biopsies were obtained before and on the last day of infusion. Parallel studies were performed in nude mice bearing the HT29 human colon cancer xenograft after continuous infusion (7 day) of active drug doses (50 or 100 mg/kg/day). RESULTS Steady state plasma levels (Css) of 8-Cl-cAMP in patients ranged from 0.15-0.72 microM but 8-Cl-adenosine was not detected in plasma. In contrast, 8-Cl-cAMP was not detectable in 3 tumour biopsies but 8-Cl-adenosine was present in 2 samples at high concentrations (1.33 and 2.02 microM). In mice, Css of 8-Cl-cAMP ranged from 3.2-4.6 microM and 8-Cl adenosine was present in plasma only at the higher dose (100 mg/kg/day, peak concentration of 2.3 microM). In the HT29 xenograft, 8-Cl-cAMP levels were considerably lower than in plasma (0.37-1.22 microM) while 8-Cl-adenosine was present at 5.3-21.0 microM and 8-Cl-AMP was found at 11.3-35.7 microM. CONCLUSIONS The fate of 8-Cl-cAMP in human tumours is characterised by extensive metabolism to products which are not generally observed in plasma. These data raise the possibility that 8-Cl-cAMP is a prodrug for a product of its metabolism in human tumours.
Collapse
Affiliation(s)
- J Cummings
- Imperial Cancer Research Fund, Western General Hospital, Edinburgh, U.K
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cho-Chung YS. Protein kinase A-directed antisense restrains cancer growth: sequence-specific inhibition of gene expression. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1996; 6:237-44. [PMID: 8915509 DOI: 10.1089/oli.1.1996.6.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Increased expression of the RI alpha subunit of cAMP-dependent protein kinase type I has been shown in human cancer cell lines, in primary tumors, in cells after transformation, and in cells upon stimulation of growth. The sequence-specific inhibition of RI alpha gene expression by an antisense oligodeoxynucleotide results in the differentiation of leukemia cells and growth arrest of cancer cells of epithelial origin. A single-injection RI alpha antisense treatment in vivo also causes a reduction in RI alpha expression and inhibition of tumor growth. Tumor cells behave like untransformed cells by making less protein kinase type I. The RI alpha antisense, which produces a biochemical imprint for growth control, requires infrequent dosing to restrain neoplastic growth in vivo.
Collapse
Affiliation(s)
- Y S Cho-Chung
- Cellular Biochemistry Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1750, USA
| |
Collapse
|
43
|
Cho-Chung YS, Pepe S, Clair T, Budillon A, Nesterova M. cAMP-dependent protein kinase: role in normal and malignant growth. Crit Rev Oncol Hematol 1995; 21:33-61. [PMID: 8822496 DOI: 10.1016/1040-8428(94)00166-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Y S Cho-Chung
- Laboratory of Tumor Immunology and Biology, DCBDC, NCI, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
44
|
Scala S, Budillon A, Zhan Z, Cho-Chung YS, Jefferson J, Tsokos M, Bates SE. Downregulation of mdr-1 expression by 8-Cl-cAMP in multidrug resistant MCF-7 human breast cancer cells. J Clin Invest 1995; 96:1026-34. [PMID: 7543490 PMCID: PMC286382 DOI: 10.1172/jci118088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
8-Cl-cAMP, a site-selective analogue of cAMP, decreased mdr-1 expression in multidrug-resistant human breast cancer cells. A sixfold reduction of mdr-1 mRNA expression by 8-Cl-cAMP began within 8 h of treatment and was associated with a decrease in the synthesis of P-glycoprotein and with an increase in vinblastine accumulation. A reduction in mdr-1 expression after 8-Cl-cAMP treatment was also observed in multidrug-resistant human ovarian cancer cell lines. 8-Cl-cAMP is known to change the ratio between the two regulatory subunits, RI and RII, of protein kinase A (PKA). We observed that RI alpha decreased within 24 h of 8-Cl-cAMP treatment, that RII beta increased after as few as 3 h of treatment, and that PKA catalytic activity remained unchanged during 48 h of 8-Cl-cAMP treatment. The results are consistent with the hypothesis that mdr-1 expression is regulated in part by changes in PKA isoenzyme levels. Although 8-Cl-cAMP has been used to differentiate cells in other model systems, the only differentiating effect that could be detected after 8-Cl-cAMP treatment in the MCF-7TH cells was an increase in cytokeratin expression. Evidence that the reduction of mdr-1 mRNA occurred at the level of gene transcription was obtained by measuring chloramphenicol acetyltransferase (CAT) mRNA in MCF-7TH cells transfected with an mdr-1 promoter-CAT construct prior to 8-Cl-cAMP treatment. Thus, 8-Cl-cAMP is able to downregulate mdr-1 expression and suggests a new approach to reversal of drug resistance in human breast cancer.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/analogs & derivatives
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Adenocarcinoma/pathology
- Base Sequence
- Breast Neoplasms/pathology
- Cell Differentiation
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinase RIIbeta Subunit
- Cyclic AMP-Dependent Protein Kinase RIalpha Subunit
- Cyclic AMP-Dependent Protein Kinases/physiology
- Drug Resistance, Multiple/genetics
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- Humans
- Isoenzymes/physiology
- Keratins/biosynthesis
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- Recombinant Fusion Proteins/biosynthesis
- Tumor Cells, Cultured/drug effects
- Vinblastine/metabolism
Collapse
Affiliation(s)
- S Scala
- Medicine Branch, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The development of cross-resistance to many natural product anticancer drugs, termed multidrug resistance (MDR), is a serious limitation to cancer chemotherapy. MDR is often associated with overexpression of the MDR1 gene product, P-glycoprotein, a multifunctional drug transporter. Understanding the mechanisms that regulate the transcriptional activation of MDR1 may afford a means of reducing or eliminating MDR. We have found that MDR1 expression can be modulated by type I cAMP-dependent protein kinase (PKA). This suggests that MDR may be modulated by selectively downregulating PKA activity to effect inhibition of PKA-dependent trans-activating factors which may be involved in MDR1 transcription. High levels of type I PKA occur in primary breast carcinomas and patients exhibiting this phenotype show decreased survival. The selective type I PKA inhibitors, 8-Cl-cAMP and Rp8-Cl-cAMP[S], may be particularly useful for downregulating PKA, and inhibit transient expression of a reporter gene under the control of MDR1 promoter elements. Thus, investigations of the signalling pathways involved in transcriptional regulation of MDR1 may lead to a greater understanding of the mechanisms governing the expression of MDR and provide a focus for pharmacological intervention.
Collapse
Affiliation(s)
- C Rohlff
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | |
Collapse
|
46
|
Ramage AD, Langdon SP, Ritchie AA, Burns DJ, Miller WR. Growth inhibition by 8-chloro cyclic AMP of human HT29 colorectal and ZR-75-1 breast carcinoma xenografts is associated with selective modulation of protein kinase A isoenzymes. Eur J Cancer 1995; 31A:969-73. [PMID: 7646930 DOI: 10.1016/0959-8049(95)00190-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Significant dose-related inhibition of growth of HT29 human colorectal cancer xenografts and ZR-75-1 breast cancer xenografts in immune-suppressed mice was induced by the cyclic AMP analogue, 8-chloroadenosine 3',5'-cyclic monophosphate (8-Cl-cyclic AMP) when given by alzet mini-pumps over a 7-day period at doses of either 50 or 100 mg/kg/day. Levels and types of cyclic AMP binding proteins were measured by ligand binding and photoaffinity labelling, respectively, in tumours harvested at the end of the treatment period. Compared with levels in tumours from control animals, values of tumour cyclic AMP binding proteins from treated animals were significantly reduced. These effects were associated with an apparent modulation of the types of cyclic AMP binding proteins, 8-Cl-cyclic AMP-treated xenografts displaying a reduced ratio of RI/RII isoforms compared with untreated control tumours.
Collapse
Affiliation(s)
- A D Ramage
- ICRF Medical Oncology Unit, Western General Hospital, Edinburgh, U.K
| | | | | | | | | |
Collapse
|
47
|
Umezawa A, Koyama K, Tanaka J, Sato Y, Asanuma Y. Effect of dibutyryl cyclic AMP on the cell cycle of human pancreatic cancer inoculated in nude mice. J Surg Oncol 1995; 58:129-33. [PMID: 7844984 DOI: 10.1002/jso.2930580212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The prognosis of pancreatic cancer is very poor because of its high malignant potential. To improve the prognosis of pancreatic cancer, a decrease in the grade of malignancy by dibutyryl cyclic AMP (db-cAMP), a differentiation inducer, was attempted using human pancreatic cancer cell line inoculated to nude mice. In this study, 0.1 or 5.0 mumol/animal/day of db-cAMP was administered for 7 consecutive days in short-term group animals and for 28 consecutive days in long-term group animals. Animals in both groups are sacrificed 28 days after first administration of db-cAMP, and tumor size, histology, and cell cycle analysis using flow cytometry (FCM) were studied. Tumor size and histology showed no significant changes by db-cAMP. However, in cell cycle analysis, 5.0 mumol/animal/day of db-cAMP brought significant block of the cell cycle phases between G1 and S in the short-term group and the phase between S and G2/M in the long-term group, indicating a decrease in cell cycle speed and, consequently, a decrease in the proliferation of tumor cell. The results show that db-cAMP may be useful in decreasing the grade of malignancy of pancreatic cancer.
Collapse
Affiliation(s)
- A Umezawa
- Department of Surgery, Akita University School of Medicine, Japan
| | | | | | | | | |
Collapse
|
48
|
Bobek M, Bloch A. Relationship Between the Structure of Sangivamycin-Derived Nucleosides and Their Effect on Leukemic Cell Growth and on Protein Kinase A and C Activity. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/15257779408013252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Buraczewska I, Szumiel I, Zagórski S, Afanasjev GG. Effects of 8-chloroadenosine-3',5'-monophosphate in combination with irradiation in L5178Y mouse lymphoblasts. Acta Oncol 1994; 33:671-5. [PMID: 7946447 DOI: 10.3109/02841869409121781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of a new anticancer drug, 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP-), a site selective cAMP analog, that inhibits growth of cancer cells in vitro, was examined in L5178Y (LY) murine lymphoma cells. Two LY sublines were used, grown in full Fisher's medium: LY-R, radiation resistant and LY-S, radiation sensitive. The latter was also adapted to grow in simplified medium. In the full medium conversion of 8-Cl-cAMP to 8-chloroadenosine presumably was the case of cytotoxicity. In the simplified medium this conversion was limited and the cytotoxic effect much less pronounced. Cytotoxicity was equal in LY-R and LY-S cells and it was not related to changes in the cell cycle distribution; the latter were observed in LY-S, but not in LY-R cells. There was no interaction of the drug with x-rays in LY cells grown either in full or simplified medium.
Collapse
Affiliation(s)
- I Buraczewska
- Department of Radiobiology and Health Protection, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | | | | | | |
Collapse
|
50
|
Pepe S, Ruggiero A, Tortora G, Ciardiello F, Garbi C, Yokozaki H, Cho-Chung YS, Clair T, Skalhegg BS, Bianco AR. Flow-cytometric detection of the RI alpha subunit of type I cAMP-dependent protein kinase in human cells. CYTOMETRY 1994; 15:73-9. [PMID: 8162827 DOI: 10.1002/cyto.990150112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
cAMP-dependent protein kinase (PKA) is composed of two genetically distinct catalytic (C) and regulatory (R) subunits. There are two different classes of PKA, designated as type I and type II, which contain distinct R subunits (RI or RII, respectively) but share a common C subunit. Enhanced expression of type I PKA has been correlated with cell proliferation and neoplastic transformation. Detection of the different PKA subunits is usually performed by photoaffinity labeling with 8-N3-32P-cAMP or by radioimmunolabeling techniques. Both techniques are time consuming and require a high number of cells and the use of radioactive reagents. Using the MCF-10A normal human mammary cell line infected with a recombinant retroviral vector containing the human RI alpha gene (MCF-10A RI alpha), we have developed a flow-cytometric assay to detect the intracellular content of RI alpha protein in human cells. MCF-10A and MCF-10A RI alpha cells were fixed in 1.5% paraformaldehyde at 37 degrees C for 15 min and permeabilized by methanol and acetone (1:1) at -20 degrees C for 5 min before staining with a specific IgG2a MoAb followed by a FITC-conjugate rabbit-anti mouse IgG. This procedure was also successfully utilized to recognize RI alpha protein content in human peripheral blood lymphocytes. Flow-cytometric detection of the RI alpha subunit in human cells is feasible and allows the study of the role of type I PKA in cell growth and neoplastic transformation.
Collapse
Affiliation(s)
- S Pepe
- Cattedra di Oncologia Medica, II Facoltà di Medicina e Chirurgia, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|