1
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
2
|
Mousa SA, Wissa DA, Hassan HH, Ebnalwaled AA, Khairy SA. Enhanced photocatalytic activity of green synthesized zinc oxide nanoparticles using low-cost plant extracts. Sci Rep 2024; 14:16713. [PMID: 39030264 PMCID: PMC11271574 DOI: 10.1038/s41598-024-66975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Developing stable and highly efficient metal oxide photocatalysts remains a significant challenge in managing organic pollutants. In this study, zinc oxide nanoparticles (ZnO NPs) were successfully synthesized using various plant extracts, pomegranate (P.M), beetroot roots (B.S), and seder, along with a chemical process. The produced ZnO NPs were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), Field Emission Scanning Electron Microscope (FESEM), High-Resolution Transmission Electron Microscopy (HRTEM), and Surface Area. For all prepared samples, the results indicated that the composition of the plant extract affects several characteristics of the produced particles, such as their photocatalytic properties, energy bandgap (Eg), particle size, and the ratio of the two intensity (0 0 2) and (1 0 0) crystalline planes. The particle size of the produced NPs varies between 20 and 30 nm. To examine NPs' photocatalytic activity in the presence of UV light, Methyl Orange (MO) was utilized. The Eg of ZnO synthesized by the chemical method was 3.16 e. V, whereas it was 2.84, 2.63, and 2.59 for P.M, Seder, and B.S extracts, respectively. The most effective ZnO NPs, synthesized using Beetroots, exhibited a degradation efficiency of 87 ± 0.5% with a kinetic rate constant of 0.007 min-1. The ratio of the two intensity (0 0 2) and (1 0 0) crystalline planes was also examined to determine a specific orientation in (0 0 2) that is linked to the production of oxygen vacancies in ZnO, which enhances their photocatalytic efficiency. Furthermore, the increase in photocatalytic effectiveness can be attributed to the improved light absorption by the inter-band gap states and effective charge transfer.
Collapse
Affiliation(s)
- Sahar A Mousa
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - D A Wissa
- Solid State Physics Department, Physics Research Institute, National Research Centre, Giza, Egypt
| | - H H Hassan
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - A A Ebnalwaled
- Electronics & Nano Devices Lab, Physics Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - S A Khairy
- Physics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Bauri S, Tripathi S, Choudhury AM, Mandal SS, Raj H, Maiti P. Nanomaterials as Theranostic Agents for Cancer Therapy. ACS APPLIED NANO MATERIALS 2023; 6:21462-21495. [DOI: 10.1021/acsanm.3c04235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Sudepta Bauri
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Swikriti Tripathi
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Avishek Mallick Choudhury
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Subham Sekhar Mandal
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Hans Raj
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
4
|
Gao W, Liang C, Zhao K, Hou M, Wen Y. Multifunctional gold nanoparticles for osteoporosis: synthesis, mechanism and therapeutic applications. J Transl Med 2023; 21:889. [PMID: 38062495 PMCID: PMC10702032 DOI: 10.1186/s12967-023-04594-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/04/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis is currently the most prevalent bone disorder worldwide and is characterized by low bone mineral density and an overall increased risk of fractures. To treat osteoporosis, a range of drugs targeting bone homeostasis have emerged in clinical practice, including anti-osteoclast agents such as bisphosphonates and denosumab, bone formation stimulating agents such as teriparatide, and selective oestrogen receptor modulators. However, traditional clinical medicine still faces challenges related to side effects and high costs of these types of treatments. Nanomaterials (particularly gold nanoparticles [AuNPs]), which have unique optical properties and excellent biocompatibility, have gained attention in the field of osteoporosis research. AuNPs have been found to promote osteoblast differentiation, inhibit osteoclast formation, and block the differentiation of adipose-derived stem cells, which thus is believed to be a novel and promising candidate for osteoporosis treatment. This review summarizes the advances and drawbacks of AuNPs in their synthesis and the mechanisms in bone formation and resorption in vitro and in vivo, with a focus on their size, shape, and chemical composition as relevant parameters for the treatment of osteoporosis. Additionally, several important and promising directions for future studies are also discussed, which is of great significance for prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weihang Gao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Zhao
- Department of Orthopaedics, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingming Hou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Yinxian Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
El-Sheekh MM, AlKafaas SS, Rady HA, Abdelmoaty BE, Bedair HM, Ahmed AA, El-Saadony MT, AbuQamar SF, El-Tarabily KA. How Synthesis of Algal Nanoparticles Affects Cancer Therapy? - A Complete Review of the Literature. Int J Nanomedicine 2023; 18:6601-6638. [PMID: 38026521 PMCID: PMC10644851 DOI: 10.2147/ijn.s423171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
The necessity to engineer sustainable nanomaterials for the environment and human health has recently increased. Due to their abundance, fast growth, easy cultivation, biocompatibility and richness of secondary metabolites, algae are valuable biological source for the green synthesis of nanoparticles (NPs). The aim of this review is to demonstrate the feasibility of using algal-based NPs for cancer treatment. Blue-green, brown, red and green micro- and macro-algae are the most commonly participating algae in the green synthesis of NPs. In this process, many algal bioactive compounds, such as proteins, carbohydrates, lipids, alkaloids, flavonoids and phenols, can catalyze the reduction of metal ions to NPs. In addition, many driving factors, including pH, temperature, duration, static conditions and substrate concentration, are involved to facilitate the green synthesis of algal-based NPs. Here, the biosynthesis, mechanisms and applications of algal-synthesized NPs in cancer therapy have been critically discussed. We also reviewed the effective role of algal synthesized NPs as anticancer treatment against human breast, colon and lung cancers and carcinoma.
Collapse
Affiliation(s)
- Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hadeer A Rady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Bassant E Abdelmoaty
- Molecular Cell Biology Unit, Division of Biochemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Heba M Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Abdelhamid A Ahmed
- Plastic Surgery Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
6
|
Balaji T, Manushankar CM, Al-Ghanim KA, Kamaraj C, Thirumurugan D, Thanigaivel S, Nicoletti M, Sachivkina N, Govindarajan M. Padina boergesenii-Mediated Copper Oxide Nanoparticles Synthesis, with Their Antibacterial and Anticancer Potential. Biomedicines 2023; 11:2285. [PMID: 37626781 PMCID: PMC10452182 DOI: 10.3390/biomedicines11082285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The utilization of nanoparticles derived from algae has generated increasing attention owing to their environmentally sustainable characteristics and their capacity to interact harmoniously with biologically active metabolites. The present study utilized P. boergesenii for the purpose of synthesizing copper oxide nanoparticles (CuONPs), which were subsequently subjected to in vitro assessment against various bacterial pathogens and cancer cells A375. The biosynthesized CuONPs were subjected to various analytical techniques including FTIR, XRD, HRSEM, TEM, and Zeta sizer analyses in order to characterize their stability and assess their size distribution. The utilization of Fourier Transform Infrared (FTIR) analysis has provided confirmation that the algal metabolites serve to stabilize the CuONPs and function as capping agents. The X-ray diffraction (XRD) analysis revealed a distinct peak associated with the (103) plane, characterized by its sharpness and high intensity, indicating its crystalline properties. The size of the CuONPs in the tetragonal crystalline structure was measured to be 76 nm, and they exhibited a negative zeta potential. The biological assay demonstrated that the CuONPs exhibited significant antibacterial activity when tested against both Bacillus subtilis and Escherichia coli. The cytotoxic effects of CuONPs and cisplatin, when tested at a concentration of 100 µg/mL on the A375 malignant melanoma cell line, were approximately 70% and 95%, respectively. The CuONPs that were synthesized demonstrated significant potential in terms of their antibacterial properties and their ability to inhibit the growth of malignant melanoma cells.
Collapse
Affiliation(s)
- Thirupathi Balaji
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Chethakkad Manikkan Manushankar
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Chinnaperumal Kamaraj
- Directorate of Research and Virtual Education, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India;
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Marcello Nicoletti
- Department of Environmental Biology, Foundation in Unam Sapientiam, Sapienza University of Rome, 00185 Rome, Italy;
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples Friendship University of Russia Named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India;
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
7
|
Beltrán Pineda ME, Lizarazo Forero LM, Sierra YCA. Mycosynthesis of silver nanoparticles: a review. Biometals 2023; 36:745-776. [PMID: 36482125 DOI: 10.1007/s10534-022-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles currently show multiple applications in the industrial, clinical and environmental fields due to their particular physicochemical characteristics. Conventional approaches for the synthesis of silver nanoparticles (AgNPs) are based on physicochemical processes which, although they show advantages such as high productivity and good monodispersity of the nanoparticles obtained, have disadvantages such as the high energy cost of the process and the use of harmful radiation or toxic chemical reagents that can generate highly polluting residues. Given the current concern about the environment and the potential cytotoxic effects of AgNPs, once they are released into the environment, a new green chemistry approach to obtain these nanoparticles called biosynthesis has emerged. This new alternative process counteracts some limitations of conventional synthesis methods, using the metabolic capabilities of living beings to manufacture nanomaterials, which have proven to be more biocompatible than their counterparts obtained by traditional methods. Among the organisms used, fungi are outstanding and are therefore being explored as potential nanofactories in an area of research known as mycosynthesis. For all the above, this paper aims to illustrate the advances in state of the art in the mycosynthesis of AgNPs, outlining the two possible mechanisms involved in the process, as well as the AgNPs stabilizing substances produced by fungi, the variables that can affect mycosynthesis at the in vitro level, the applications of AgNPs obtained by mycosynthesis, the patents generated to date in this field, and the limitations encountered by researchers in the area.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Universidad Nacional de Colombia- Doctorado en Biotecnología- Grupo de Investigación en Macromoléculas UN- Grupo de Investigación Biología Ambiental UPTC. Grupo de Investigación Gestión Ambiental Universidad de Boyacá, Tunja, Colombia.
| | - Luz Marina Lizarazo Forero
- Universidad Pedagógica y Tecnológica de Colombia- Grupo de Investigación Biología Ambiental, Tunja, Colombia
| | - Y Cesar A Sierra
- Universidad Nacional de Colombia. Grupo de Investigación en Macromoléculas, Bogotá, Colombia
| |
Collapse
|
8
|
Ünlüer N, Gül A, Hameş EE. Statistical optimization and characterization of monodisperse and stable biogenic gold nanoparticle synthesis using Streptomyces sp. M137-2. World J Microbiol Biotechnol 2023; 39:223. [PMID: 37291407 DOI: 10.1007/s11274-023-03661-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Microbial synthesis of gold nanoparticles (AuNPs), which are used in various forms with different properties in medicine, as a renewable bioresource has become increasingly important in recent years. In this study, statistical optimization of stable and monodispersed AuNPs synthesis was performed using a cell-free fermentation broth of Streptomyces sp. M137-2 and AuNPs were characterized, and their cytotoxicity was determined. The three factors determined as pH, gold salt (HAuCl4) concentration, and incubation time, which are effective in the extracellular synthesis of biogenic AuNPs, were optimized by Central Composite Design (CCD) and then UV-Vis Spectroscopy, Dynamic Light Scattering (DLS), X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Scanning Transmission Electron Microscope (STEM), size distribution, Fourier-Transform Infrared (FT-IR) Spectroscopy, X-Ray Photoelectron Spectrophotometer (XPS) and stability analyzes of AuNPs were carried out. Optimum values of the factors were determined as pH 8, 10- 3 M HAuCl4, and 72 h incubation using Response Surface Methodology (RSM). Almost spherical AuNPs with 20-25 nm protein corona on the surface, 40-50 nm in size, monodisperse, and highly stable form were synthesized. Biogenic AuNPs were confirmed from characteristic diffraction peaks in the XRD pattern, UV-vis peak centred at 541 nm. The FT-IR results confirmed the role of Streptomyces sp. M137-2 metabolites in the reduction and stabilization of AuNPs. The cytotoxicity results also showed that AuNPs obtained using Streptomyces sp. can be used safely in medicine. This is the first report to perform statistical optimization of size-dependent biogenic AuNPs synthesis using a microorganism.
Collapse
Affiliation(s)
- Nefise Ünlüer
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Türkiye
| | - Aytül Gül
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Türkiye
| | - Elif Esin Hameş
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Türkiye.
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, Izmir, Türkiye.
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Türkiye.
| |
Collapse
|
9
|
Qaeed MA, Hendi A, Obaid AS, Thahe AA, Osman AM, Ismail A, Mindil A, Eid AA, Aqlan F, Osman NMA, Al-Farga A, Al-Maaqar SM, Saif AA. The effect of different aqueous solutions ratios of Ocimum basilicum utilized in AgNPs synthesis on the inhibition of bacterial growth. Sci Rep 2023; 13:5866. [PMID: 37041159 PMCID: PMC10088745 DOI: 10.1038/s41598-023-31221-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/08/2023] [Indexed: 04/13/2023] Open
Abstract
This study examined the effect of varying concentrations of Ocimum basilicum aqueous extract, which was done via the green synthesis of Silver nanoparticles (AgNPs), on the identification of the most effective concentration for bacteria inhibitory activity. Different concentrations of the aqueous Ocimum basilicum extract (0.25, 0.50, 0.75 and 1.00 mM) were used as reducing and stabilizing agent to synthesize AgNPs by means of the reduction method. The crystal structure and morphology of the NPs were characterized UV-Vis spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The antibacterial efficacy of AgNPs was studied against E. coli ATCC 35218 using well diffusion, MIC, MBC, and time-kill curve. The dark yellow color of the Ocimum basilicum aqueous solution indicates the successful synthesis process of the AgNPs. UV-spectra of the AgNPs display a gradual increase of absorption in sequence with concentration increase of aqueous Ocimum basilicum extract solution from 0.25 to 1.00 mM. This, in turn, led to a shift in the wavelength from 488 to 497 nm, along with a change in the nanoparticle size from 52 to 8 nm. The tests also showed a high activity of the particles against bacteria (E. coli), ranging between 15.6 and 62.5 µg/ml. Based on AgNPs, it was confirmed that an aqueous Ocimum basilicum extract can be used as an effective, reducing and stabilizing agent for the synthesis of different sizes of AgNPs based on the solvent concentration. The AgNPs also proved to be effective in inhibiting and killing bacteria.
Collapse
Affiliation(s)
- Motahher A Qaeed
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Abdulmajeed Hendi
- Physics Department and IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ahmed S Obaid
- Physics Department, College of Science, University of Anbar, Ramadi, Iraq
| | - Asad A Thahe
- Department of Medical Physics College of Applied Science, University of Fallujah, Fallujah, Iraq
| | - Abdalghaffar M Osman
- Chemistry Department and IRC Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - A Ismail
- Department of Physics, University of Hafr Al Batin, Hafar Al-Batin, 31991, Saudi Arabia
| | - A Mindil
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Alharthi A Eid
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal Aqlan
- Chemistry Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nadir M A Osman
- Chemistry Department, College of Chemicals and Materials, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Saleh M Al-Maaqar
- Department of Biology, Faculty of Education, Albaydha University, Albaydha, Yemen.
| | - Ala'eddin A Saif
- Physics Department, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Plant-Based Green Synthesis of Copper Oxide Nanoparticles Using Berberis vulgaris Leaf Extract: an Update on Their Applications in Antibacterial Activity. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Oliveira BB, Ferreira D, Fernandes AR, Baptista PV. Engineering gold nanoparticles for molecular diagnostics and biosensing. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1836. [PMID: 35932114 DOI: 10.1002/wnan.1836] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Advances in nanotechnology and medical science have spurred the development of engineered nanomaterials and nanoparticles with particular focus on their applications in biomedicine. In particular, gold nanoparticles (AuNPs) have been the focus of great interest, due to their exquisite intrinsic properties, such as ease of synthesis and surface functionalization, tunable size and shape, lack of acute toxicity and favorable optical, electronic, and physicochemical features, which possess great value for application in biodetection and diagnostics purposes, including molecular sensing, photoimaging, and application under the form of portable and simple biosensors (e.g., lateral flow immunoassays that have been extensively exploited during the current COVID-19 pandemic). We shall discuss the main properties of AuNPs, their synthesis and conjugation to biorecognition moieties, and the current trends in sensing and detection in biomedicine and diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Beatriz B Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Viana Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,i4HB, Associate Laboratory-Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
12
|
Mansoor A, Khurshid Z, Khan MT, Mansoor E, Butt FA, Jamal A, Palma PJ. Medical and Dental Applications of Titania Nanoparticles: An Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203670. [PMID: 36296859 PMCID: PMC9611494 DOI: 10.3390/nano12203670] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 05/25/2023]
Abstract
Currently, titanium oxide (TiO2) nanoparticles are successfully employed in human food, drugs, cosmetics, advanced medicine, and dentistry because of their non-cytotoxic, non-allergic, and bio-compatible nature when used in direct close contact with the human body. These NPs are the most versatile oxides as a result of their acceptable chemical stability, lower cost, strong oxidation properties, high refractive index, and enhanced aesthetics. These NPs are fabricated by conventional (physical and chemical) methods and the latest biological methods (biological, green, and biological derivatives), with their advantages and disadvantages in this epoch. The significance of TiO2 NPs as a medical material includes drug delivery release, cancer therapy, orthopedic implants, biosensors, instruments, and devices, whereas their significance as a dental biomaterial involves dentifrices, oral antibacterial disinfectants, whitening agents, and adhesives. In addition, TiO2 NPs play an important role in orthodontics (wires and brackets), endodontics (sealers and obturating materials), maxillofacial surgeries (implants and bone plates), prosthodontics (veneers, crowns, bridges, and acrylic resin dentures), and restorative dentistry (GIC and composites).
Collapse
Affiliation(s)
- Afsheen Mansoor
- Department of Dental Material Sciences, School of Dentistry, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad 44080, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Talal Khan
- Department of Dental Biomaterials, Bakhtawar Amin Medical and Dental College, Multan 60650, Pakistan;
| | - Emaan Mansoor
- Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan;
| | - Faaz Ahmad Butt
- Department of Materials Engineering, NED University of Engineering & Technology, Karachi 74200, Pakistan;
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Paulo J. Palma
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
13
|
Effect of Currently Available Nanoparticle Synthesis Routes on Their Biocompatibility with Fibroblast Cell Lines. Molecules 2022; 27:molecules27206972. [PMID: 36296564 PMCID: PMC9612073 DOI: 10.3390/molecules27206972] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 12/04/2022] Open
Abstract
Nanotechnology has acquired significance in dental applications, but its safety regarding human health is still questionable due to the chemicals utilized during various synthesis procedures. Titanium nanoparticles were produced by three novel routes, including Bacillus subtilis, Cassia fistula and hydrothermal heating, and then characterized for shape, phase state, size, surface roughness, elemental composition, texture and morphology by SEM, TEM, XRD, AFM, DRS, DLS and FTIR. These novel titanium nanoparticles were tested for cytotoxicity through the MTT assay. L929 mouse fibroblast cells were used to test the cytotoxicity of the prepared titanium nanoparticles. Cell suspension of 10% DMEM with 1 × 104 cells was seeded in a 96-well plate and incubated. Titanium nanoparticles were used in a 1 mg/mL concentration. Control (water) and titanium nanoparticles stock solutions were prepared with 28 microliters of MTT dye and poured into each well, incubated at 37 °C for 2 h. Readings were recorded on day 1, day 15, day 31, day 41 and day 51. The results concluded that titanium nanoparticles produced by Bacillus subtilis remained non-cytotoxic because cell viability was >90%. Titanium nanoparticles produced by Cassia fistula revealed mild cytotoxicity on day 1, day 15 and day 31 because cell viability was 60−90%, while moderate cytotoxicity was found at day 41 and day 51, as cell viability was 30−60%. Titanium nanoparticles produced by hydrothermal heating depicted mild cytotoxicity on day 1 and day 15; moderate cytotoxicity on day 31; and severe cytotoxicity on day 41 and day 51 because cell viability was less than 30% (p < 0.001). The current study concluded that novel titanium nanoparticles prepared by Bacillus subtilis were the safest, more sustainable and most biocompatible for future restorative nano-dentistry purposes.
Collapse
|
14
|
Sharma NK, Vishwakarma J, Rai S, Alomar TS, AlMasoud N, Bhattarai A. Green Route Synthesis and Characterization Techniques of Silver Nanoparticles and Their Biological Adeptness. ACS OMEGA 2022; 7:27004-27020. [PMID: 35967040 PMCID: PMC9366950 DOI: 10.1021/acsomega.2c01400] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
The development of the most reliable and green techniques for nanoparticle synthesis is an emerging step in the area of green nanotechnology. Many conventional approaches used for nanoparticle (NP) synthesis are expensive, deadly, and nonenvironmental. In this new era of nanotechnology, to overcome such concerns, natural sources which work as capping and reducing agents, including bacteria, fungi, biopolymers, and plants, are suitable candidates for synthesizing AgNPs. The surface morphology and applications of AgNPs are significantly pretentious to the experimental conditions by which they are synthesized. Available scattered information on the synthesis of AgNPs comprises the influence of altered constraints and characterization methods such as FTIR, UV-vis, DLS, SEM, TEM, XRD, EDX, etc. and their properties and applications. This review focuses on all the above-mentioned natural sources that have been used for AgNP synthesis recently. The green routes to synthesize AgNPs have established effective applications in various areas, including biosensors, magnetic resonance imaging (MRI), cancer treatment, surface-enhanced Raman spectroscopy (SERS), antimicrobial agents, drug delivery, gene therapy, DNA analysis, etc. The existing boundaries and prospects for metal nanoparticle synthesis by the green route are also discussed herein.
Collapse
Affiliation(s)
- Nitin Kumar Sharma
- Department
of Chemical Engineering, Indian Institute
of Technology, Kanpur 208016, India
- Shri
Maneklal M. Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Jyotsna Vishwakarma
- K. B.
Pharmacy Institute of Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, India
| | - Summi Rai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Taghrid S. Alomar
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Ajaya Bhattarai
- Department
of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
- or
| |
Collapse
|
15
|
Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, Abdullah RS, Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022; 23:7400. [PMID: 35806405 PMCID: PMC9266776 DOI: 10.3390/ijms23137400] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, Muscat 112, Oman;
| | - Mahmood S. Jameel
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nazila Oladzadabbasabadi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | | | - Raja Saleh Abdullah
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
| | - Baharak Mehrdel
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Science, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
16
|
Insights into Nanopesticides for Ticks: The Superbugs of Livestock. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7411481. [PMID: 35720185 PMCID: PMC9200545 DOI: 10.1155/2022/7411481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022]
Abstract
Livestock is an integral part of agriculture countries where ticks play significant role as potent pests causing considerable losses to economy and health. Drug resistance has made these pests supersede conventional therapies and control programs Nanotechnology here comes as an advancing and significant candidate alternatively able to reverse drug resistance. Nanoparticles, hence, against ticks may better be considered as nanopesticides that act in ways other than conventional drug efficacies. The methods of nanoparticles production include green synthesis, chemical synthesis, and arthropod-based synthesis. Pros and cons of these nanopesticides are by no means neglectable. Studies are fewer than needed to comprehensively discuss nanopesticides. Current review thus systematically covers aspects of ticks as livestock pests, their drug resistance, advent of nanotechnology against pests, their production methodologies, mechanisms of actions of ticks, and current limitations. This review opens several avenues for further research on nanoparticles as nanopesticides against ticks.
Collapse
|
17
|
Effects of Waste-Derived ZnO Nanoparticles against Growth of Plant Pathogenic Bacteria and Epidermoid Carcinoma Cells. CRYSTALS 2022. [DOI: 10.3390/cryst12060779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Green synthesis of zinc oxide nanoparticles (ZnO NPs) has recently gained considerable interest because it is simple, environmentally friendly, and cost-effective. This study therefore aimed to synthesize ZnO NPs by utilizing bioactive compounds derived from waste materials, mangosteen peels, and water hyacinth crude extracts and investigated their antibacterial and anticancer activities. As a result, X-ray diffraction analysis confirmed the presence of ZnO NPs without impurities. An ultraviolet–visible absorption spectrum showed a specific absorbance peak around 365 nm with an average electronic band gap of 2.79 eV and 2.88 eV for ZnO NPs from mangosteen peels and a water hyacinth extract, respectively. An SEM analysis displayed both spherical shapes of ZnO NPs from the mangosteen peel extract (dimension of 154.41 × 172.89 nm) and the water hyacinth extract (dimension of 142.16 × 160.30 nm). Fourier transform infrared spectroscopy further validated the occurrence of bioactive molecules on the produced ZnO NPs. By performing an antibacterial activity assay, these green synthesized ZnO NPs significantly inhibited the growth of Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. citri, and Ralstonia solanacearum. Moreover, they demonstrated potent anti-skin cancer activity in vitro. Consequently, this study demonstrated the possibility of using green-synthesized ZnO NPs in the development of antibacterial or anticancer agents. Furthermore, this research raised the prospect of increasing the value of agricultural waste.
Collapse
|
18
|
Jang Y, Zhang X, Zhu R, Li S, Sun S, Li W, Liu H. Viola betonicifolia-Mediated Biosynthesis of Silver Nanoparticles for Improved Biomedical Applications. Front Microbiol 2022; 13:891144. [PMID: 35668765 PMCID: PMC9164254 DOI: 10.3389/fmicb.2022.891144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 12/17/2022] Open
Abstract
We report the biosynthesis of silver (Ag) nanoparticles (NAPs) (LEVB-Ag NAPs) by an environmentally friendly green synthesis approach using the phytoconstituents of Viola betonicifolia leaf extract. The spectroscopic techniques were employed to characterize biosynthesized LEVB-Ag NAPs successfully. Biosynthesized LEVB-Ag NAPs were assessed for antibacterial and antimycotic activities against bacterium and mycological strains (H. pylori, S. epidermidis, C. tropicalis, and T. rubrum) using the serial dilution method. They were also evaluated for their biofilm inhibiting potential against both bacterial and fungi species. They were further assessed for the cytobiocompatible potential with two normal cell lines (293T and hMSC). The results demonstrate that the biosynthesized LEVB-Ag NAPs showed superior log10 reduction in bacterial and fungal growth and presented more than 99.50% killing efficiency. Moreover, biosynthesized LEVB-Ag NAPs excellently inhibited the biofilm formation of bacterial (Gram-positive and Gram-negative) and mycological strains and presented more than 80% biofilm inhibiting percentage compared to both plant extract and CHE-Ag NAPs. They further presented good cytobiocompatibility in vitro with 293T and hMSC cells compared to CHE-Ag NAPs. Biosynthesized LEVB-Ag NAPs presented superior antibacterial, antimycotic, biofilm inhibition, and cytobiocompatible results that might be attributed to the synergistic effect of the NAPs’ physiochemical properties and the immobilized phytoconstituents from plant leaf extract on their surface. Hence, biosynthesized LEVB-Ag NAPs may be a promising contender for a variety of therapeutic applications.
Collapse
Affiliation(s)
- Yingping Jang
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaoya Zhang
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Rongxue Zhu
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Songlin Li
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shiyu Sun
- Department of Rehabilitation Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, China
- *Correspondence: Wenqiang Li,
| | - Hao Liu
- Department of Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
- Hao Liu,
| |
Collapse
|
19
|
Mittal S, Chakole CM, Sharma A, Pandey J, Chauhan MK. An Overview of Green Synthesis and Potential Pharmaceutical Applications of Nanoparticles as Targeted Drug Delivery System in Biomedicines. Drug Res (Stuttg) 2022; 72:274-283. [PMID: 35562101 DOI: 10.1055/a-1801-6793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanotechnology-based nanomedicine offers several benefits over conventional forms of therapeutic agents. Moreover, nanomedicine has become a potential candidate for targeting therapeutic agents at specific sites. However, nanomedicine prepared by synthetic methods may produce unwanted toxic effects. Due to their nanosize range, nanoparticles can easily reach the reticuloendothelial system and may produce unwanted systemic effects. The nanoparticles produced by the green chemistry approach would enhance the safety profile by avoiding synthetic agents and solvents in its preparations. This review encompasses toxicity consideration of nanoparticles, green synthesis techniques of nanoparticle preparation, biomedical application of nanoparticles, and future prospects.
Collapse
Affiliation(s)
- Shweta Mittal
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Chandrashekhar Mahadeo Chakole
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Aman Sharma
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| | - Jaya Pandey
- Amity School school of Applied Sciences Lucknow, Amity University, Uttar Pradesh, India
| | - Meenakshi Kanwar Chauhan
- NDDS Research Laboratory, Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, DPSR-University, New Delhi, INDIA
| |
Collapse
|
20
|
Wang F, Zhang W, Li H, Chen X, Feng S, Mei Z. How Effective are Nano-Based Dressings in Diabetic Wound Healing? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:2097-2119. [PMID: 35592100 PMCID: PMC9113038 DOI: 10.2147/ijn.s361282] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic wound caused by diabetes is an important cause of disability and seriously affects the quality of life of patients. Therefore, it is of great clinical significance to develop a wound dressing that can accelerate the healing of diabetic wounds. Nanoparticles have great advantages in promoting diabetic wound healing due to their antibacterial properties, low cytotoxicity, good biocompatibility and drug delivery ability. Adding nanoparticles to the dressing matrix and using nanoparticles to deliver drugs and cytokines to promote wound healing has proven to be effective. This review will focus on the effects of diabetes on wound healing, introduce the properties, preparation methods and action mechanism of nanoparticles in wound healing, and describe the effects and application status of various nanoparticle-loaded dressings in diabetes-related chronic wound healing.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Wenyao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Hao Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Xiaonan Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Sining Feng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Ziqing Mei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, People’s Republic of China
| |
Collapse
|
21
|
Le Wee J, Law MC, Chan YS, Choy SY, Tiong ANT. The Potential of Fe‐Based Magnetic Nanomaterials for the Agriculture Sector. ChemistrySelect 2022. [DOI: 10.1002/slct.202104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Le Wee
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Ming Chiat Law
- Department of Mechanical Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Sook Yan Choy
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| | - Angnes Ngieng Tze Tiong
- Department of Chemical and Energy Engineering Faculty of Engineering and Science Curtin University Malaysia CDT 250 98009 Miri Sarawak Malaysia
| |
Collapse
|
22
|
Tauseef A, Hisam F, Hussain T, Caruso A, Hussain K, Châtel A, Chénais B. Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Khan F, Shariq M, Asif M, Siddiqui MA, Malan P, Ahmad F. Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:673. [PMID: 35215000 PMCID: PMC8878231 DOI: 10.3390/nano12040673] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 01/09/2023]
Abstract
The key pathways for synthesizing nanoparticles are physical and chemical, usually expensive and possibly hazardous to the environment. In the recent past, the evaluation of green chemistry or biological techniques for synthesizing metal nanoparticles from plant extracts has drawn the attention of many researchers. The literature on the green production of nanoparticles using various metals (i.e., gold, silver, zinc, titanium and palladium) and plant extracts is discussed in this study. The generalized mechanism of nanoparticle synthesis involves reduction, stabilization, nucleation, aggregation and capping, followed by characterization. During biosynthesis, major difficulties often faced in maintaining the structure, size and yield of particles can be solved by monitoring the development parameters such as temperature, pH and reaction period. To establish a widely accepted approach, researchers must first explore the actual process underlying the plant-assisted synthesis of a metal nanoparticle and its action on others. The green synthesis of NPs is gaining attention owing to its facilitation of the development of alternative, sustainable, safer, less toxic and environment-friendly approaches. Thus, green nanotechnology using plant extract opens up new possibilities for the synthesis of novel nanoparticles with the desirable characteristics required for developing biosensors, biomedicine, cosmetics and nano-biotechnology, and in electrochemical, catalytic, antibacterial, electronics, sensing and other applications.
Collapse
Affiliation(s)
- Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohammad Shariq
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Mohd Asif
- Regional Ayurveda Research Institute, CCRAS, Ranikhet 263645, India;
| | - Mansoor Ahmad Siddiqui
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| | - Pieter Malan
- Unit for Environmental Sciences and Management, Mafikeng Campus, North-West University, Mmabatho 2735, South Africa;
| | - Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (M.S.); (M.A.S.)
| |
Collapse
|
24
|
Chen LL, Zhao L, Wang ZG, Liu SL, Pang DW. Near-Infrared-II Quantum Dots for In Vivo Imaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104567. [PMID: 34837314 DOI: 10.1002/smll.202104567] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In vivo fluorescence imaging can perform real-time, noninvasive, and high spatiotemporal resolution imaging to accurately obtain the dynamic biological information in vivo, which plays significant roles in the early diagnosis and treatment of cancer. However, traditional in vivo fluorescence imaging usually operates in the visible and near-infrared (NIR)-I windows, which are severely interfered by the strong tissue absorption, tissue scattering, and autofluorescence. The emergence of NIR-II imaging at 1000-1700 nm significantly breaks through the imaging limitations in deep tissues, due to less tissue scattering and absorption. Benefiting from the outstanding optical properties of NIR-II quantum dots (QDs), such as high brightness and good photostability, in vivo fluorescence imaging exhibits excellent temporal-spatial resolution and large penetration depth, and QDs have become a kind of promising fluorescent biomarkers in the field of in vivo fluorescence imaging. Herein, the authors review NIR-II QDs from preparation to modification, and summarize recent applications of NIR-II QDs, including in vivo imaging and imaging-guided therapies. Finally, they discuss the special concerns when NIR-II QDs are shifted from in vivo imaging applications to further in-depth applications.
Collapse
Affiliation(s)
- Lu-Lu Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Liang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
25
|
Sharma S, Kumar K, Thakur N. Green synthesis of silver nanoparticles and evaluation of their anti-bacterial activities: use of Aloe barbadensis miller and Ocimum tenuiflorum leaf extracts. NANOFABRICATION 2021. [DOI: 10.1515/nanofab-2020-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
The presence of various phytochemicals makes the leaf extract-based green synthesis advantageous to other conventional methods, as it facilitates the production of non-toxic by-product. In the present study, leaf extracts from two different plants: Aloe barbadensis miller and Ocimum tenuiflorum, were used to synthesise Ag nanoparticles. The absorbance at 419-432 nm from UV-visible spectroscopy indicates the formation of Ag in the synthesised samples. The effect of precursors’ concentration on the stability, size and shape of the synthesised samples has also been investigated at constant heating temperature, stirring time, and the pH of the solution. The TEM results showed that all the synthesised samples of nanoparticles demonstrated stability with a size range of 7-70 and 9-48 nm with Aloe barbadensis miller and Ocimum tenuiflorum leaf extracts, respectively. The formation of smaller Ag nanoparticles due to utilisation of different precursor concentration and leaf extracts was also explained. The synthesised samples’ anti-bacterial activity was examined against the pathogens, Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. In general, the green synthesis approach established a prospective for developing highly stable Ag nanoparticles with rigid particle shape/size distribution from different leaf extracts for the development of better anti-bacterial agents.
Collapse
Affiliation(s)
- Saurabh Sharma
- Department of Chemistry , Career Point University Hamirpur (HP) 176041 , India ; Center for Nano-Science and Technology , Career Point University , Hamirpur (HP) 176041 , India
| | - Kuldeep Kumar
- Department of Chemistry , Career Point University Hamirpur (HP) , India ; Center for Nano-Science and Technology , Career Point University Hamirpur (HP) 176041 , India
| | - Naveen Thakur
- Department of Physics , Career Point University Hamirpur (HP) 176041 , India ; Center for Nano-Science and Technology , Career Point University Hamirpur (HP) 176041 , India
| |
Collapse
|
26
|
Amjad R, Mubeen B, Ali SS, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Rasool R, Ullah I, Nadeem MS, Kazmi I. Green Synthesis and Characterization of Copper Nanoparticles Using Fortunella margarita Leaves. Polymers (Basel) 2021; 13:4364. [PMID: 34960915 PMCID: PMC8705435 DOI: 10.3390/polym13244364] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/19/2023] Open
Abstract
The use of biomaterials in the synthesis of nanoparticles is one of the most up-to-date focuses in modern nanotechnologies and nanosciences. More and more research on green methods of producing metal oxide nanoparticles (NP) is taking place, with the goal to overcome the possible dangers of toxic chemicals for a safe and innocuous environment. In this study, we synthesized copper nanoparticles (CuNPs) using Fortunella margarita leaves' extract, which reflects its novelty in the field of nanosciences. The visual observation of a color change from dark green to bluish green clearly shows the instant and spontaneous formation of CuNPs when the phytochemicals of F. margarita come in contact with Cu+2 ions. The synthesis of CuNPs was carried out at different conditions, including pH, temperature, concentration ratio and time, and were characterized with UV-Vis absorption spectra, scanning electron microscope (SEM) and X-ray diffraction (XRD). The UV-Vis analysis reveals the surface plasmon resonance property (SPR) of CuNPs, showing a characteristic absorption peak at 679 nm, while SEM reveals the spherical but agglomerated shape of CuNPs of the size within the range of 51.26-56.66 nm.
Collapse
Affiliation(s)
- Rutaba Amjad
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 5400, Pakistan
| | - Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 5400, Pakistan
| | - Syed Shahbaz Ali
- School of Physical Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Riyadh, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 5400, Pakistan
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 5400, Pakistan
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Makkah, Saudi Arabia
| |
Collapse
|
27
|
Kavitha A, Shanmugan S, Awuchi C, Kanagaraj C, Ravichandran S. Synthesis and enhanced antibacterial using plant extracts with silver nanoparticles: Therapeutic application. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Rauf A, Ahmad T, Khan A, Maryam, Uddin G, Ahmad B, Mabkhot YN, Bawazeer S, Riaz N, Malikovna BK, Almarhoon ZM, Al-Harrasi A. Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:194-203. [PMID: 33629627 DOI: 10.1080/21691401.2021.1890099] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
This study deals with facile and rapid synthesis of silver nanoparticles (AgNPs) and Gold nanoparticles (AuNPs) using Mentha longifolia leaves extracts (MLE). The synthesized AgNPs and AuNPs were characterized by UV-visible spectroscopy (UV-Vis), Fourier transformed infra-red spectroscopy (FT-IR), atomic force microscopy (AFM) and transmission electron microscopy (TEM) techniques. The phytochemical analysis showed the presence of bioactive secondary metabolites, which are involved in the synthesis of nanoparticles (NPs). The surface plasmon resonance (SPR) observed at 435 and 550 nm, confirmed the green synthesis of AgNPs and AuNPs, respectively. The TEM images showed poly dispersed and round oval shapes of Ag and Au NPs with an average particles size of 10.23 ± 2 nm and 13.45 ± 2 nm, respectively. TEM results are in close agreements with that of AFM analysis. The FT-IR spectroscopy revealed the presence of OH, -NH2 and C = O groups, which involved in the synthesis of NPs. The MLE and their AgNPs and AuNP exhibited good in vitro antibacterial and anti-oxidant activities. Moreover, MLE and NPs also showed in vivo analgesic activities in mice, and excellent sedative properties in open field test paradigm.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Touqeer Ahmad
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Maryam
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KPK, Pakistan
| | - Ghias Uddin
- Institute of Chemical Sciences, University of Peshawar, Peshawar, KPK, Pakistan
| | - Bashir Ahmad
- Centre for Biotechnology & Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Yahia Nasser Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Sciences (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Sami Bawazeer
- Pharmacognosy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nadia Riaz
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| |
Collapse
|
29
|
Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1473. [PMID: 34943685 PMCID: PMC8698349 DOI: 10.3390/antibiotics10121473] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Aunza Nayab Ansar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
30
|
Wang M, Meng Y, Zhu H, Hu Y, Xu CP, Chao X, Li W, Li C, Pan C. Green Synthesized Gold Nanoparticles Using Viola betonicifolia Leaves Extract: Characterization, Antimicrobial, Antioxidant, and Cytobiocompatible Activities. Int J Nanomedicine 2021; 16:7319-7337. [PMID: 34754187 PMCID: PMC8570924 DOI: 10.2147/ijn.s323524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Viola betonicifolia is a rich source of numerous secondary metabolites, such as alkaloids, flavonoids, tannins, phenolic compounds, saponins, triterpenoids, and so on, that are biologically active towards different potential biomedical applications. To broaden the potential use of Viola betonicifolia in the realm of bionanotechnology, we investigated the plant's ability to synthesize gold nanoparticles (Au NPs) in a green and efficient manner for the very first time. Methods The gold nanoparticles (VB-Au NPs) were synthesized using the leaves extract of Viola betonicifolia, in which plant's secondary metabolites function as both reducing and capping agents. The VB-Au NPs were successfully characterized with spectroscopic techniques. The antimicrobial properties of the VB-Au NPs were further explored against bacterial and mycological species. Additionally, their antioxidant, cytotoxic, and cytobiocompatibility properties were examined in vitro against linoleic acid peroxidation, MCF-7 cancer cells, and human mesenchymal stem cells (hMSCs), respectively. Results Results demonstrated that VB-Au NPs presented excellent antibacterial, antifungal, and biofilm inhibition performance against all the tested microbial species compared to plant leaves extract and commercially purchased chemically synthesized gold NPs (CH-Au NPs). Moreover, they also exhibited significant antioxidant potential, comparable to the external standard. The VB-Au NPs displayed good cytobiocompatibility with hMSCs and demonstrated excellent cytotoxic potential against MCF-7 cancer cells compared to CH-Au NPs. The current work presents a green method for synthesizing VB-Au NPs with enhanced antioxidant, antimicrobial, cytotoxic and biofilm inhibition efficacy compared to CH-Au NPs might be attributed to the synergistic effect of the nanoparticle's physical properties and the adsorbed biologically active phytomolecules from the plant leaves extract on their surface. Conclusion Thus, our study establishes a novel ecologically acceptable route for nanomaterials' fabrication with increased and/or extra medicinal functions derived from their herbal origins.
Collapse
Affiliation(s)
- Mincong Wang
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yue Meng
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Huifeng Zhu
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Yong Hu
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Chang-Peng Xu
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Xiaomin Chao
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Wenqiang Li
- Engineering Technology Research Center for Sports Assistive Devices of Guangdong, Guangzhou Sport University, Guangzhou, People's Republic of China
| | - Chengguo Li
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Chenglong Pan
- Department of Joint Surgery, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
31
|
A Novel Bacterial Route to Synthesize Cu Nanoparticles and Their Antibacterial Activity. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Liu AA, Sun EZ, Wang ZG, Liu SL, Pang DW. Artificial-regulated synthesis of nanocrystals in live cells. Natl Sci Rev 2021; 9:nwab162. [PMID: 35874310 PMCID: PMC9299112 DOI: 10.1093/nsr/nwab162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Live cells, as reservoirs of biochemical reactions, can serve as amazing integrated chemical plants where precursor formation, nucleation and growth of nanocrystals, and functional assembly can be carried out accurately following an artificial program. It is crucial but challenging to deliberately direct intracellular pathways to synthesize desired nanocrystals that cannot be produced naturally in cells, because the relevant reactions exist in different spatiotemporal dimensions and will never encounter spontaneously. This article summarizes progress in the introduction of inorganic functional nanocrystals into live cells via the ‘artificial-regulated space–time-coupled live-cell synthesis’ strategy. We also describe ingenious bio-applications of the nanocrystal–cell systems, and quasi-biosynthesis strategies expanded from live-cell synthesis. Artificial-regulated live-cell synthesis—which involves the interdisciplinary application of biology, chemistry, nanoscience and medicine—will enable researchers to better exploit the unanticipated potentialities of live cells and open up new directions in synthetic biology.
Collapse
Affiliation(s)
- An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, School of Medicine, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - En-Ze Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, School of Medicine, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, School of Medicine, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, College of Chemistry, School of Medicine, Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Krishnan S, Jayakumar D, Madhyastha H, Chadha A. The Complexity of Microbial Metal Nanoparticle Synthesis: A Study of Candida parapsilosis ATCC 7330 mediated Gold Nanoparticles Formation. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00825-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Martins M, Toste C, Pereira IAC. Enhanced Light-Driven Hydrogen Production by Self-Photosensitized Biohybrid Systems. Angew Chem Int Ed Engl 2021; 60:9055-9062. [PMID: 33450130 DOI: 10.1002/anie.202016960] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Storage of solar energy as hydrogen provides a platform towards decarbonizing our economy. One emerging strategy for the production of solar fuels is to use photocatalytic biohybrid systems that combine the high catalytic activity of non-photosynthetic microorganisms with the high light-harvesting efficiency of metal semiconductor nanoparticles. However, few such systems have been tested for H2 production. We investigated light-driven H2 production by three novel organisms, Desulfovibrio desulfuricans, Citrobacter freundii, and Shewanella oneidensis, self-photosensitized with cadmium sulfide nanoparticles, and compared their performance to Escherichia coli. All biohybrid systems produced H2 from light, with D. desulfuricans-CdS demonstrating the best activity overall and outperforming the other microbial systems even in the absence of a mediator. With this system, H2 was continuously produced for more than 10 days with a specific rate of 36 μmol gdcw -1 h-1 . High apparent quantum yields of 23 % and 4 % were obtained, with and without methyl viologen, respectively, exceeding values previously reported.
Collapse
Affiliation(s)
- Mónica Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Catarina Toste
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
35
|
Kaur R, Avti P, Kumar V, Kumar R. Effect of various synthesis parameters on the stability of size controlled green synthesis of silver nanoparticles. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf42a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
In this study, we have focused on the green method using Litchi Chinensis Leaf Extract (LCLE) for the synthesis of silver nanoparticles (AgNPs). Here, the experimental control parameters (reducing/stabilizing agent quantity, reaction time and temperature, silver ion concentrations) were studied during the size controlled synthesis of silver nanoparticles and their physicochemical properties have been studied. For biological studies, the stability of AgNPs at physiological pH is of vital importance; hence, post-synthesis solution stability of AgNPs was examined at various pH conditions. Stable AgNPs are formed by treating the aqueous solution of AgNO3 with LCLE. Formation of AgNPs was observed visually by the change in the color and further characterized by the surface Plasmon resonance (SPR) peak observed at 436 nm by UV–vis spectroscopy. The synthesized AgNPs were also characterized for their size distribution by Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), Transmission electron microscope (TEM), crystalline nature by X-Ray Diffraction (XRD) and Fourier Transform infrared (FITR) for the functional groups present. The size of AgNPs was in the range of 40–50 nm, spherical in with face centered cubic (FCC) structure. The biomolecules (epicatechin) present in LCLE were responsible for reduction, capping, and stabilizing agent of AgNPs. Post- synthesis, the stability of AgNPs has been studied by changes in the SPR peaks at various pH (2–11) conditions using UV–vis spectroscopy. This size controlled nanoparticles are very stable at physiological pH and retain their intrinsic SPR property.
Collapse
|
36
|
Dhanker R, Hussain T, Tyagi P, Singh KJ, Kamble SS. The Emerging Trend of Bio-Engineering Approaches for Microbial Nanomaterial Synthesis and Its Applications. Front Microbiol 2021; 12:638003. [PMID: 33796089 PMCID: PMC8008120 DOI: 10.3389/fmicb.2021.638003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Micro-organisms colonized the world before the multi-cellular organisms evolved. With the advent of microscopy, their existence became evident to the mankind and also the vast processes they regulate, that are in direct interest of the human beings. One such process that intrigued the researchers is the ability to grow in presence of toxic metals. The process seemed to be simple with the metal ions being sequestrated into the inclusion bodies or cell surfaces enabling the conversion into nontoxic nanostructures. However, the discovery of genome sequencing techniques highlighted the genetic makeup of these microbes as a quintessential aspect of these phenomena. The findings of metal resistance genes (MRG) in these microbes showed a rather complex regulation of these processes. Since most of these MRGs are plasmid encoded they can be transferred horizontally. With the discovery of nanoparticles and their many applications from polymer chemistry to drug delivery, the demand for innovative techniques of nanoparticle synthesis increased dramatically. It is now established that microbial synthesis of nanoparticles provides numerous advantages over the existing chemical methods. However, it is the explicit use of biotechnology, molecular biology, metabolic engineering, synthetic biology, and genetic engineering tools that revolutionized the world of microbial nanotechnology. Detailed study of the micro and even nanolevel assembly of microbial life also intrigued biologists and engineers to generate molecular motors that mimic bacterial flagellar motor. In this review, we highlight the importance and tremendous hidden potential of bio-engineering tools in exploiting the area of microbial nanoparticle synthesis. We also highlight the application oriented specific modulations that can be done in the stages involved in the synthesis of these nanoparticles. Finally, the role of these nanoparticles in the natural ecosystem is also addressed.
Collapse
Affiliation(s)
- Raunak Dhanker
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Touseef Hussain
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| | - Kawal Jeet Singh
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Shashank S. Kamble
- Department of Basic and Applied Sciences, School of Engineering and Sciences, GD Goenka University, Gurugram, India
| |
Collapse
|
37
|
Martins M, Toste C, Pereira IAC. Enhanced Light‐Driven Hydrogen Production by Self‐Photosensitized Biohybrid Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mónica Martins
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Catarina Toste
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa Av. da República 2780-157 Oeiras Portugal
| |
Collapse
|
38
|
Go green to protect plants: repurposing the antimicrobial activity of biosynthesized silver nanoparticles to combat phytopathogens. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s41204-021-00103-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS APPLIED BIO MATERIALS 2021; 4:1156-1177. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal nanohybrids are fast emerging functional nanomaterials with advanced structures, intriguing physicochemical properties, and a broad range of important applications in current nanoscience research. Significant efforts have been devoted toward design and develop versatile metal nanohybrid systems. Among numerous biological components, diverse proteins offer avenues for making advanced multifunctional systems with unusual properties, desired functions, and potential applications. This review discusses the rational design, properties, and applications of metal-protein nanohybrid materials fabricated from proteins and inorganic components. The construction of functional biomimetic nanohybrid materials is first briefly introduced. The properties and functions of these hybrid materials are then discussed. After that, an overview of promising application of biomimetic metal-protein nanohybrid materials is provided. Finally, the key challenges and outlooks related to this fascinating research area are also outlined.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
40
|
Rónavári A, Igaz N, Adamecz DI, Szerencsés B, Molnar C, Kónya Z, Pfeiffer I, Kiricsi M. Green Silver and Gold Nanoparticles: Biological Synthesis Approaches and Potentials for Biomedical Applications. Molecules 2021; 26:844. [PMID: 33562781 PMCID: PMC7915205 DOI: 10.3390/molecules26040844] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The nanomaterial industry generates gigantic quantities of metal-based nanomaterials for various technological and biomedical applications; however, concomitantly, it places a massive burden on the environment by utilizing toxic chemicals for the production process and leaving hazardous waste materials behind. Moreover, the employed, often unpleasant chemicals can affect the biocompatibility of the generated particles and severely restrict their application possibilities. On these grounds, green synthetic approaches have emerged, offering eco-friendly, sustainable, nature-derived alternative production methods, thus attenuating the ecological footprint of the nanomaterial industry. In the last decade, a plethora of biological materials has been tested to probe their suitability for nanomaterial synthesis. Although most of these approaches were successful, a large body of evidence indicates that the green material or entity used for the production would substantially define the physical and chemical properties and as a consequence, the biological activities of the obtained nanomaterials. The present review provides a comprehensive collection of the most recent green methodologies, surveys the major nanoparticle characterization techniques and screens the effects triggered by the obtained nanomaterials in various living systems to give an impression on the biomedical potential of green synthesized silver and gold nanoparticles.
Collapse
Affiliation(s)
- Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Dóra I. Adamecz
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| | - Bettina Szerencsés
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Csaba Molnar
- Broad Institute of MIT and Harvard, Cambridge, 415 Main St, Cambridge, MA 02142, USA;
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., H-6720 Szeged, Hungary; (A.R.); (Z.K.)
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1., H-6720 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (B.S.); (I.P.)
| | - Monika Kiricsi
- Department of Biochemistry and Molecular Biology and Doctoral School of Biology, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary; (N.I.); (D.I.A.)
| |
Collapse
|
41
|
Ahmad B, Shireen F, Rauf A, Shariati MA, Bashir S, Patel S, Khan A, Rebezov M, Khan MU, Mubarak MS, Zhang H. Phyto-fabrication, purification, characterisation, optimisation, and biological competence of nano-silver. IET Nanobiotechnol 2021; 15:1-18. [PMID: 34694726 PMCID: PMC8675842 DOI: 10.1049/nbt2.12007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Published studies indicate that virtually any kind of botanical material can be exploited to make biocompatible, safe, and cost-effective silver nanoparticles. This hypothesis is supported by the fact that plants possess active bio-ingredients that function as powerful reducing and coating agents for Ag+. In this respect, a phytomediation method provides favourable monodisperse, crystalline, and spherical particles that can be easily purified by ultra-centrifugation. However, the characteristics of the particles depend on the reaction conditions. Optimal reaction conditions observed in different experiments were 70-95 °C and pH 5.5-8.0. Green silver nanoparticles (AgNPs) have remarkable physical, chemical, optical, and biological properties. Research findings revealed the versatility of silver particles, ranging from exploitation in topical antimicrobial ointments to in vivo prosthetic/organ implants. Advances in research on biogenic silver nanoparticles have led to the development of sophisticated optical and electronic materials with improved efficiency in a compact configuration. So far, eco-toxicity of these nanoparticles is a big challenge, and no reliable method to improve the toxicity has been reported. Therefore, there is a need for reliable models to evaluate the effect of these nanoparticles on living organisms.
Collapse
Affiliation(s)
- Bashir Ahmad
- Center of Biotechnology and MicrobiologyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Farah Shireen
- Center of Biotechnology and MicrobiologyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Abdur Rauf
- Department of ChemistryUniversity of Swabi, SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
| | - Shumaila Bashir
- Department of PharmacyUniversity of PeshawarPeshawarKhyber PakhtunkhwaPakistan
| | - Seema Patel
- Bioinformatics and Medical Informatics Research CenterSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Ajmal Khan
- Oman Medicinal Plants and Marine ProductsUniversity of NizwaNizwaOman
| | - Maksim Rebezov
- K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University)MoscowRussian Federation
- V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of SciencesMoscowRussian Federation
- A. M. Prokhorov General Physics InstituteRussian Academy of ScienceMoscowRussian Federation
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL)Washington State UniversityRichlandWasingtonUSA
- Department of Energy Systems EngineeringFaculty of Agricultural Engineering and TechnologyUniversity of AgricultureFaisalabadPakistan
| | | | - Haiyuan Zhang
- Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| |
Collapse
|
42
|
Wei S, Guo C, Wang L, Xu J, Dong H. Bacterial synthesis of PbS nanocrystallites in one-step with L-cysteine serving as both sulfur source and capping ligand. Sci Rep 2021; 11:1216. [PMID: 33441850 PMCID: PMC7806705 DOI: 10.1038/s41598-020-80450-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/21/2020] [Indexed: 11/27/2022] Open
Abstract
The green bacterial biosynthesis of lead sulfide nanocrystallites by L-cysteine-desulfurizing bacterium Lysinibacillus sphaericus SH72 was demonstrated in this work. Nanocrystals formed by this bacterial method were characterized using the mineralogical and morphological approaches. The results revealed that the microbially synthesized PbS nanocrystals assume a cubic structure, and are often aggregated as spheroids of about 105 nm in size. These spheroids are composed of numerous nanoparticles with diameter 5-10 nm. Surface characterization of the bacterial nanoparticles with FTIR spectroscopy shows that the L-cysteine coats the surface of PbS nanoparticle as a stabilizing ligand. The optical features of the PbS nanocrystallites were assessed by UV-Vis spectroscopy and PL spectroscopy. The maximum absorption wavelength of the bacterial PbS particles occurs at 240 nm, and the photoluminescence emission band ranges from 375 to 550 nm. The band gap energy is calculated to be 4.36 eV, compared to 0.41 eV for the naturally occurring bulk PbS, with this clear blue shift attributable to the quantum size effect.
Collapse
Affiliation(s)
- Shiping Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
- School of Marine Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Ce Guo
- School of Marine Sciences, China University of Geosciences, Beijing, 100083, China
| | - Lijuan Wang
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Jiangfeng Xu
- School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
43
|
Othman AM, Elsayed MA, Al-Balakocy NG, Hassan MM, Elshafei AM. Biosynthesized silver nanoparticles by Aspergillus terreus NRRL265 for imparting durable antimicrobial finishing to polyester cotton blended fabrics: Statistical optimization, characterization, and antitumor activity evaluation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Tehri N, Vashishth A, Gahlaut A, Hooda V. Biosynthesis, antimicrobial spectra and applications of silver nanoparticles: current progress and future prospects. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Amit Vashishth
- Department of Biochemistry, International Institute of Veterinary Education and Research (LUVAS), Rohtak, Haryana, India
| | - Anjum Gahlaut
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vikas Hooda
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
45
|
Amina SJ, Guo B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int J Nanomedicine 2020; 15:9823-9857. [PMID: 33324054 PMCID: PMC7732174 DOI: 10.2147/ijn.s279094] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Metal nanoparticles are being extensively used in biomedical fields due to their small size-to-volume ratio and extensive thermal stability. Gold nanoparticles (AuNPs) are an obvious choice for biomedical applications due to their amenability of synthesis, stabilization, and functionalization, low toxicity, and ease of detection. In the past few decades, various chemical methods have been used for the synthesis of AuNPs, but recently, newer environment friendly green approaches for the synthesis of AuNPs have gained attention. AuNPs can be conjugated with a number of functionalizing moieties including ligands, therapeutic agents, DNA, amino acids, proteins, peptides, and oligonucleotides. Recently, studies have shown that gold nanoparticles not only infiltrate the blood vessels to reach the site of tumor but also enter inside the organelles, suggesting that they can be employed as effective drug carriers. Moreover, after reaching their target site, gold nanoparticles can release their payload upon an external or internal stimulus. This review focuses on recent advances in various methods of synthesis of AuNPs. In addition, strategies of functionalization and mechanisms of application of AuNPs in drug and bio-macromolecule delivery and release of payloads at target site are comprehensively discussed.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bin Guo
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, Houston, TX77204, USA
| |
Collapse
|
46
|
Ali N, Ali F, Khurshid R, Ikramullah, Ali Z, Afzal A, Bilal M, Iqbal HMN, Ahmad I. TiO2 Nanoparticles and Epoxy-TiO2 Nanocomposites: A Review of Synthesis, Modification Strategies, and Photocatalytic Potentialities. J Inorg Organomet Polym Mater 2020; 30:4829-4846. [DOI: 10.1007/s10904-020-01668-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/09/2020] [Indexed: 02/05/2023]
|
47
|
Thirumagal N, Jeyakumari AP. Photocatalytic and antibacterial activities of AgNPs from Mesua Ferrea seed. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03650-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
48
|
Akintelu SA, Olugbeko SC, Folorunso AS. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00317-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Jevapatarakul D, T-Thienprasert J, Payungporn S, Chavalit T, Khamwut A, T-Thienprasert NP. Utilization of Cratoxylum formosum crude extract for synthesis of ZnO nanosheets: Characterization, biological activities and effects on gene expression of nonmelanoma skin cancer cell. Biomed Pharmacother 2020; 130:110552. [DOI: 10.1016/j.biopha.2020.110552] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
|
50
|
Shahbandeh M, Taati Moghadam M, Mirnejad R, Mirkalantari S, Mirzaei M. The Efficacy of AgNO3 Nanoparticles Alone and Conjugated with Imipenem for Combating Extensively Drug-Resistant Pseudomonas aeruginosa. Int J Nanomedicine 2020; 15:6905-6916. [PMID: 33061358 PMCID: PMC7518771 DOI: 10.2147/ijn.s260520] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The extensive drug-resistant (XDR) Pseudomonas aeruginosa (P. aeruginosa) causes a range of infections with high mortality rate, which inflicts additional costs on treatment. The use of nano-biotechnology-based methods in medicine has opened a new perspective against drug-resistant bacteria. The aim of this study was to evaluate the effectiveness of the AgNO3 nanoparticles alone and conjugated with imipenem (IMI) to combat extensively drug-resistant P. aeruginosa. METHODS Antibiotic susceptibility was carried out using disc diffusion method. Detection of different resistant genes was performed using standard polymerase chain reaction (PCR). The chemically synthesized AgNO3 particles were characterized using scanning electron microscope (SEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) methods. Fourier transform infrared spectroscopy (FTIR) was accomplished to confirm the binding of AgNO3 with IMI. The microdilution broth method was used to obtain minimum inhibitory concentration (MIC) of AgNO3 and IMI-conjugated AgNO3. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was carried out on L929 cell line to study the cytotoxicity of nanoparticles. The data were analyzed by Eta correlation ratio and chi-square (X 2) test. RESULTS Analysis of the antibiotic resistance pattern showed that 12 (24%) isolates were XDR, and MIC values of IMI were between 64 and 128 μg/mL. Frequency of SHV, TEM, CTX M, IMP, VIM, OPR, SIM, SPM, GIM, NDM, VEB, PER, KPC, OXA, intI, intII, and intIII genes were 29 (58%), 26 (52%), 26 (52%), 32 (64%), 23 (46%), 43 (86%), 3 (6%), 6 (12%), 3 (6%), 4 (8%), 7 (14%), 6 (12%), 18 (36%), 4 (8%), 19 (38%), 16 (32%), and 2 (4%), respectively. The XRD, SEM, DLS, and FTIR analysis confirmed the synthesis of AgNO3 nanoparticles and their conjugation with IMI. The AgNO3 nanoparticles had antimicrobial activity, and their conjugation with IMI showed enhanced effectiveness against XDR isolates. The synthesized AgNO3 showed no cytotoxic effects. CONCLUSION The results suggest that IMI-conjugated AgNO3 has a strong potency as a powerful antibacterial agent against XDR P. aeruginosa.
Collapse
Affiliation(s)
- Mahsa Shahbandeh
- Young Researchers and Elite Club, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Majid Taati Moghadam
- Department of Microbiology, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mirnejad
- Molecular Biology Research Center, System Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shiva Mirkalantari
- Microbiology, Faculty of Medicine, Microbiology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mirzaei
- Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|