1
|
Hakami AY, Alghamdi BS, Alshehri FS. Exploring the potential use of melatonin as a modulator of tramadol-induced rewarding effects in rats. Front Pharmacol 2024; 15:1373746. [PMID: 38738177 PMCID: PMC11082292 DOI: 10.3389/fphar.2024.1373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Background Melatonin is responsible for regulating the sleep-wake cycle and circadian rhythms in mammals. Tramadol, a synthetic opioid analgesic, is used to manage moderate to severe pain but has a high potential for abuse and dependence. Studies have shown that melatonin could be a potential modulator to reduce tramadol addiction. Methods Male Wistar rats were used to investigate the effect of melatonin on tramadol-induced place preference. The rats were divided into four groups: control, tramadol, tramadol + melatonin (single dose), and tramadol + melatonin (repeated doses). Tramadol was administered intraperitoneally at 40 mg/kg, while melatonin was administered at 50 mg/kg for both the single dose and repeated-dose groups. The study consisted of two phases: habituation and acquisition. Results Tramadol administration produced conditioned place preference (CPP) in rats, indicating rewarding effects. However, melatonin administration blocked tramadol-induced CPP. Surprisingly, repeated doses of melatonin were ineffective and did not reduce the expression of CPP compared to that of the single dose administration. Conclusion The study suggests that melatonin may be a potential therapeutic option for treating tramadol addiction. The results indicate that melatonin attenuates the expression of tramadol-induced CPP, supporting its uses as an adjunct therapy for managing tramadol addiction. However, further studies are needed to investigate its effectiveness in humans.
Collapse
Affiliation(s)
- Alqassem Y. Hakami
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad S. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Burgess HJ, Troost JP, Rizvydeen M, Kikyo F, Kebbeh N, Tan M, Roecklein KA, King AC, Hasler BP. Do sleep and circadian characteristics predict alcohol use in adult drinkers? ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:680-691. [PMID: 38546532 PMCID: PMC11015972 DOI: 10.1111/acer.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND While sleep and circadian rhythms are recognized contributors to the risk for alcohol use and related problems, few studies have examined whether objective sleep and circadian measures can predict future alcohol use in humans, and no such studies have been conducted in adults. This study examined whether any baseline sleep and/or circadian characteristics of otherwise healthy adults predicted their alcohol use over the subsequent 12 months. METHODS Participants (21-42 years) included 28 light and 50 heavy drinkers. At baseline, a comprehensive range of self-reported and objective sleep/circadian measures was assessed via questionnaires, wrist actigraphy, and measurement of dim light melatonin onset and circadian photoreceptor responsivity. Following this, the number of alcoholic drinks per week and binge drinking episodes per month were assessed quarterly over the subsequent 12 months. Anticipated effects of alcohol (stimulation, sedation, and rewarding aspects) were also assessed quarterly over the 12 months. Analyses included generalized linear mixed-effects models and causal mediation analysis. RESULTS Across the range of measures, only self-reported insomnia symptoms and a longer total sleep time at baseline predicted more drinks per week and binges per month (ps <0.02). There was a trend for the anticipated alcohol effect of wanting more alcohol at the 6-month timepoint to mediate the relationship between insomnia symptoms at baseline and drinks per week at 12 months (p = 0.069). CONCLUSIONS These results suggest that in otherwise healthy adults, insomnia symptoms, even if subclinical, are a significant predictor of future drinking, and appear to outweigh the influence of circadian factors on future drinking, at least in otherwise healthy adults. Insomnia symptoms may be a modifiable target for reducing the risk of alcohol misuse.
Collapse
Affiliation(s)
- Helen J. Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan P. Troost
- Michigan Institute for Clinical & Health Research, University of Michigan, Ann Arbor, MI USA
| | - Muneer Rizvydeen
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Fumitaka Kikyo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL, USA
| | - Nema Kebbeh
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Michael Tan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL, USA
| | | | - Andrea C. King
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Brant P. Hasler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Arrona-Palacios A, Lee JH, Czeisler CA, Duffy JF. The Timing of the Melatonin Onset and Phase Angle to Sleep Onset in Older Adults after Uncontrolled vs. Controlled Lighting Conditions. Clocks Sleep 2023; 5:350-357. [PMID: 37489435 PMCID: PMC10366720 DOI: 10.3390/clockssleep5030026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
The main aim of this study was to explore how melatonin onset timing and phase angle to bedtime in healthy older adults are impacted by prior light exposure. A total of 13 healthy older (ages 56-74) individuals were studied on two successive evenings. Prior to the first evening, the participants were in self-selected lighting conditions for the first 4-6 h of the day and then were in dim light (3 lux) until their scheduled bedtime. On the second day, individuals from Project A remained in the dim lighting conditions throughout the entire day but those in Project B were in more typical indoor lighting (~90 lux) throughout the day. On both evenings, hourly blood samples were collected and assayed for melatonin, and melatonin onset timing and phase angle to sleep onset was determined. Overall, melatonin onset was earlier and the phase angle was larger on Night 1 than on Night 2. In Project A there was no significant difference between melatonin onset on night 1 vs. night 2. However, in Project B melatonin onset was significantly later on Night 2 (in typical indoor lighting) than on Night 1 (in dim lighting). Our results suggest that in older people, uncontrolled bright light early in the day did not impact the timing of dim light melatonin onset (DLMO) when assessed later that same evening. However, in older adults, exposure to ordinary room light during melatonin phase assessment appeared to suppress melatonin, leading to a later observed time of melatonin onset, as has been reported previously for young adults.
Collapse
Affiliation(s)
- Arturo Arrona-Palacios
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.A.-P.); (J.-H.L.); (C.A.C.)
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jung-Hie Lee
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.A.-P.); (J.-H.L.); (C.A.C.)
- Department of Psychiatry, Kangwon National University School of Medicine, Chunchon 200-947, Republic of Korea
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.A.-P.); (J.-H.L.); (C.A.C.)
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jeanne F. Duffy
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (A.A.-P.); (J.-H.L.); (C.A.C.)
- Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Gendy MNS, Frey BN, Van Ameringen M, Kuhathasan N, MacKillop J. Cannabidiol as a candidate pharmacotherapy for sleep disturbance in alcohol use disorder. Alcohol Alcohol 2023:7150867. [PMID: 37139966 DOI: 10.1093/alcalc/agad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/05/2023] Open
Abstract
Among individuals with alcohol use disorder (AUD), it is estimated that the majority suffer from persistent sleep disturbances for which few candidate medications are available. Our aim wass to critically review the potential for cannabidiol (CBD) as a treatment for AUD-induced sleep disturbance. As context, notable side effects and abuse liability for existing medications for AUD-induced sleep disturbance reduce their clinical utility. CBD modulation of the endocannabinoid system and favorable safety profile have generated substantial interest in its potential therapeutic use for various medical conditions. A number of preclinical and clinical studies suggest promise for CBD in restoring the normal sleep-wake cycle and in enhancing sleep quality in patients diagnosed with AUD. Based on its pharmacology and the existing literature, albeit primarily preclinical and indirect, CBD is a credible candidate to address alcohol-induced sleep disturbance. Well-designed RCTs will be necessary to test its potential in managing this challenging feature of AUD.
Collapse
Affiliation(s)
- Marie N S Gendy
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8P 3R2, Canada
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Women's Health Concerns Clinic at St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
| | - Michael Van Ameringen
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
| | - Nirushi Kuhathasan
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8S 4K1, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8P 3R2, Canada
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON L8N 3K7, Canada
- Women's Health Concerns Clinic at St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, ON L8N 3K7, Canada
- Michael G. DeGroote Centre for Medicinal Cannabis Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
5
|
Burgess HJ, Rizvydeen M, Kikyo F, Kebbeh N, Tan M, Roecklein KA, Hasler BP, King AC, Cao D. Sleep and circadian differences between light and heavy adult alcohol drinkers. Alcohol Clin Exp Res 2022; 46:1181-1191. [PMID: 35908247 PMCID: PMC9357170 DOI: 10.1111/acer.14872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022]
Abstract
Background Numerous studies have reported that eveningness is associated with increased alcohol consumption. However, biological markers of circadian timing, such as dim light melatonin onset (DLMO) and circadian photoreceptor responsivity (post‐illumination pupil response, PIPR), have rarely been assessed in the context of habitual alcohol consumption. This study aimed to examine sleep, circadian timing, and photoreceptor responsivity in adult alcohol drinkers. Methods Participants (21 to 45 years) included 28 light and 50 heavy drinkers. The 8‐day study consisted of a week of adlib sleep monitored with wrist actigraphy, followed by a 9‐h laboratory session with a photoreceptor responsivity and circadian phase assessment. Results The heavy drinkers obtained on average 28 more minutes of sleep (p = 0.002) and reported more eveningness than the light drinkers (p = 0.029). There was a trend for a shorter DLMO‐midsleep interval (p = 0.059) in the heavy drinkers, reflecting a tendency for them to sleep at an earlier circadian phase. The PIPR in the heavy drinkers was significantly smaller than in the light drinkers (p = 0.032), suggesting reduced circadian photoreceptor responsivity in the heavy drinkers. A larger PIPR was significantly associated with a later DLMO in the light drinkers (r = 0.44, p = 0.019), but this relationship was absent in the heavy drinkers (r = −0.01, p = 0.94). Conclusions These results are consistent with earlier reports of more eveningness and a shorter DLMO‐midsleep interval being associated with heavier alcohol drinking. The novel finding of reduced circadian photoreceptor responsivity in heavy drinkers is consistent with prior rodent studies. Future studies should explore the impact of habitual alcohol consumption on other measures of circadian photoreceptor responsivity.
Collapse
Affiliation(s)
- Helen J Burgess
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Muneer Rizvydeen
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Fumitaka Kikyo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nema Kebbeh
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Tan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kathryn A Roecklein
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea C King
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, USA
| | - Dingcai Cao
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Meinhardt MW, Giannone F, Hirth N, Bartsch D, Spampinato SM, Kelsch W, Spanagel R, Sommer WH, Hansson AC. Disrupted circadian expression of beta-arrestin 2 affects reward-related µ-opioid receptor function in alcohol dependence. J Neurochem 2021; 160:454-468. [PMID: 34919270 DOI: 10.1111/jnc.15559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
There is increasing evidence for a daily rhythm of μ-opioid receptor (MOR) efficacy and the development of alcohol dependence. Previous studies show that beta-Arrestin 2 (bArr2) has an impact on alcohol intake, at least partially mediated via modulation of MOR signaling, which in turn mediates the alcohol rewarding effects. Considering the interplay of circadian rhythms on MOR and alcohol dependence, we aimed to investigate bArr2 in alcohol dependence at different time-points of the day/light cycle on the level of bArr2 mRNA (in situ hybridization), MOR availability (receptor autoradiography) and MOR signaling (Damgo-stimulated G-protein coupling) in the nucleus accumbens of alcohol-dependent and non-dependent Wistar rats. Using a microarray data set we found that bArr2, but not bArr1, shows a diurnal transcription pattern in the accumbens of naïve rats with higher expression levels during the active cycle. In three-week abstinent rats, bArr2 is upregulated in the accumbens at the beginning of the active cycle (ZT15), whereas no differences were found at the beginning of the inactive cycle (ZT3), compared to controls. This effect was accompanied with a specific downregulation of MOR binding in the active cycle. Additionally, we detect a higher receptor coupling during the inactive cycle compared to the active cycle in alcohol-dependent animals. Together, we report a daily rhythmicity for bArr2 expression linked to an inverse pattern of MOR, suggesting an involvement for bArr2 on circadian regulation of G-protein coupled receptors in alcohol dependence. The presented data may have implications for the development of novel bArr2-related treatment targets for alcoholism.
Collapse
Affiliation(s)
- Marcus W Meinhardt
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany.,Department of Molecular Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Nathalie Hirth
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Santi M Spampinato
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126, Bologna, Italy
| | - Wolfgang Kelsch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| |
Collapse
|
7
|
Alshehri FS, Alghamdi BS, Hakami AY, Alshehri AA, Althobaiti YS. Melatonin attenuates morphine-induced conditioned place preference in Wistar rats. Brain Behav 2021; 11:e2397. [PMID: 34710287 PMCID: PMC8671767 DOI: 10.1002/brb3.2397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Morphine is the predominantly used drug for postoperative and cancer pain management. However, the abuse potential of morphine is the primary disadvantage of using opioids in pain management. Melatonin is a neurohormone synthesized in the pineal gland and is involved in circadian rhythms in mammals, as well as other physiological functions. Melatonin provenly attenuates alcohol-seeking and relapse behaviors in rats. Therefore, we aimed to investigate the involvement of the melatonergic system in attenuating morphine dependence. MATERIALS AND METHODS Male Wistar rats were divided into three groups: control, morphine, and morphine + melatonin. Animals were habituated for 3 days, and the initial preference was evaluated. Following the initial preference, the control group received the vehicle and was placed for a 45-min session in the assigned chamber every day, alternating between the two chambers, for 8 days. The morphine group received a morphine injection (5 mg/kg, IP) and was placed for a 45-min session in the white chamber, for a total of four sessions. The morphine + melatonin group received the morphine injection (5 mg/kg, IP) for a total of four sessions over an 8-day period. In the posttest session, the control and morphine groups received a vehicle injection 30 min before placement in the conditioned place preference (CPP). The morphine + melatonin group received a single injection of melatonin (50 mg/kg, IP) 30 min before the preference test. RESULTS Statistical analysis revealed that repeated administration of morphine for four sessions produced a significant increase in the CPP score in the morphine group compared to the control group. However, a single melatonin injection administered 30 min before the posttest attenuated morphine-seeking behavior and reduced morphine-induced place preference. CONCLUSION These findings provide novel evidence for the role of the melatonergic system as a potential target in modulating morphine-seeking behavior.
Collapse
Affiliation(s)
- Fahad S Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alqassem Y Hakami
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdullah A Alshehri
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.,College of Pharmacy, Addiction and Neuroscience Research Unit, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
8
|
Zhang R, Manza P, Tomasi D, Kim SW, Shokri-Kojori E, Demiral SB, Kroll DS, Feldman DE, McPherson KL, Biesecker CL, Wang GJ, Volkow ND. Dopamine D1 and D2 receptors are distinctly associated with rest-activity rhythms and drug reward. J Clin Invest 2021; 131:e149722. [PMID: 34264865 DOI: 10.1172/jci149722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Certain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude) and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking. METHODS We examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, age: 42.40±12.22) and its relationship to drug reward. Rest-activity rhythms were assessed by one-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride Positron Emission Tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed. RESULTS We found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or 'social jet lag', whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate. CONCLUSION These findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders. TRIAL REGISTRATION ClinicalTrials.gov: NCT03190954FUNDING. This work was accomplished with support from the National Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).
Collapse
Affiliation(s)
- Rui Zhang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Ehsan Shokri-Kojori
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Sukru B Demiral
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Katherine L McPherson
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Catherine L Biesecker
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, United States of America
| | - Nora D Volkow
- National Institute on Drug Abuse, NIH, Bethesda, United States of America
| |
Collapse
|
9
|
Abstract
Investigation of the pathogenesis of alcoholism in humans using different methodological approaches has facilitated detection of important biological factors of consequent metabolic diseases, endocrine disorders, and other medical conditions, such as alcoholic cardiomyopathy, alcoholic hypertension, heart and vascular lesions, alcoholic liver disease, alcoholic pancreatitis, etc. Alcohol abuse leads to damage to the nervous system, which can result in neurological and mental disorders, including alcoholic polyneuropathy, psychosis, and alcohol dementia. The complexity and versatility of the harmful effects of regular alcohol consumption on the human body can be considered in the perspective of a chronobiological approach, because alcohol is chronotoxic to biological processes. As a rhythm regulator, melatonin exerts a wide range of different effects: circadian rhythm regulation, thermoregulation, sleep induction, antioxidant, immunomodulatory, and anti-stress ones. This review presents from a chronobiological perspective the impact of melatonin on alcohol intoxication in terms of mental disorders, sleep and inflammation, hepatic injury, and mitochondrial function. It discusses the main clinical effects of melatonin on alcohol injury and the main targets as a therapy for alcohol disorders. Chronobiological effects of ethanol are related to melatonin suppression that has been associated with, among others, cancer risk. Exogenous melatonin seems to be a promising hepato- and immune-protector due to its antioxidant and anti-inflammatory properties, which in combination with other medicines makes it useful to prevent alcoholic organ damage. The reason for the scientific interest in melatonin as a treatment for alcoholism is obvious; the number of cases of this pathology that gives rise to metabolic syndrome, and its subsequent transformation into steatohepatitis, liver fibrosis, and cirrhosis, is increasing worldwide. Melatonin not only exerts antioxidant effects but it exerts various other effects contributing to the management of liver conditions. This review discusses the interaction between normal and pathological processes caused by alcohol consumption and the relationship between alcohol and melatonin in these conditions.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Science, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|
10
|
Swanson GR, Siskin J, Gorenz A, Shaikh M, Raeisi S, Fogg L, Forsyth C, Keshavarzian A. Disrupted diurnal oscillation of gut-derived Short chain fatty acids in shift workers drinking alcohol: Possible mechanism for loss of resiliency of intestinal barrier in disrupted circadian host. Transl Res 2020; 221:97-109. [PMID: 32376406 PMCID: PMC8136245 DOI: 10.1016/j.trsl.2020.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
Microbiota derived short chain fatty acids (SCFAs) are produced by fermentation of nondigestible fiber, and are a key component in intestinal barrier homeostasis. Since the microbiome has diurnal fluctuations, we hypothesized that SCFAs in humans have a diurnal rhythm and their rhythmicity would be impacted by the host central circadian misalignment (night shift work) which would make intestinal barrier more susceptible to disruption by alcohol. To test this hypothesis, we studied 3 groups of subjects: patients with alcohol use disorder, but no liver disease (AD), healthy day workers (DW), and night workers (NW). All subjects were studied at baseline and then in DW and NW subjects after moderate daily alcohol (0.5 g/kg) for 7 days. Gut-derived plasma SCFAs showed a significant circadian oscillation by cosinor analysis in DW; however, SCFA in the AD and NW subjects lost 24-hour rhythmicity. Decrease in SCFA correlated with increased colonic permeability. Both chronic and moderate alcohol consumption for 1 week caused circadian disruption based on wrist actigraphy and urinary melatonin. Our study shows that (1) gut-derived plasma SCFAs have a diurnal rhythm in humans that is impacted by the central clock of the host; (2) moderate alcohol suppresses SCFAs which was associated with increased colonic permeability; and (3) less invasive urinary 6-SM correlated and rest-activity actigraphy correlated with plasma melatonin. Future studies are needed to examine the role circadian misalignment on gut derived SCFAs as possible mechanism for loss of intestinal barrier resiliency to injurious agents like alcohol.
Collapse
Affiliation(s)
- Garth R Swanson
- Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois.
| | - Joel Siskin
- Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois
| | - Annika Gorenz
- Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois
| | - Maliha Shaikh
- Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois
| | - Shohreh Raeisi
- Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois
| | - Louis Fogg
- Community, Systems and Mental Health Nursing, Rush University, Chicago, Illinois
| | - Christopher Forsyth
- Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois
| | - Ali Keshavarzian
- Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois; Departments of Pharmacology; Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Kayahara GM, Valente VB, Pereira RB, Lopes FYK, Crivelini MM, Miyahara GI, Biasoli ÉR, Oliveira SHP, Bernabé DG. Pineal gland protects against chemically induced oral carcinogenesis and inhibits tumor progression in rats. Oncotarget 2020; 11:1816-1831. [PMID: 32499868 PMCID: PMC7244010 DOI: 10.18632/oncotarget.27551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/14/2020] [Indexed: 12/24/2022] Open
Abstract
Clinical investigations suggest that melatonin suppression and circadian dysfunction may be related to cancer development in shift workers. Studies also show that melatonin suppression after pinealectomy increases cancer incidence in preclinical models. However, no study evaluated the influence of pinealectomy on oral cancer development. In the current study, we investigated the effects of pinealectomy on oral squamous cell carcinoma (OSCC) occurrence and progression in rats. Rats submitted to sham surgery were used as control. Pinealectomy promoted an increase of 140% in OSCC occurrence when compared to sham animals. Tumors from pinealectomized rats displayed a higher volume and thickness than the tumors from sham-operated animals. Pinealectomy induced atrophy of the epithelium adjacent to the oral lesions. Pinealectomized rats showed higher mean number of tumor-associated macrophages and eosinophils in the invasive front of OSCC. In addition, nuclear overexpression of ERK1/2 and p53 was also observed in the front of carcinomas from pinealectomized rats. These results reveal that pineal gland plays a protective role against oral carcinogenesis. The melatonin suppression caused by the pinealectomy might contribute to oral cancer development by acting on ERK1/2 and p53 pathways and regulating tumor inflammation.
Collapse
Affiliation(s)
- Giseli Mitsuy Kayahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil.,Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Vitor Bonetti Valente
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Rosani Belzunces Pereira
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Felipe Yudi Kabeya Lopes
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Marcelo Macedo Crivelini
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Glauco Issamu Miyahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil.,Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Éder Ricardo Biasoli
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil.,Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Sandra Helena Penha Oliveira
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil.,Laboratory of Immunopharmacology, Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil.,Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, SP 15050-015, Araçatuba, São Paulo, Brazil
| |
Collapse
|
12
|
Alterations in circadian rhythms following alcohol use: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109831. [PMID: 31809833 DOI: 10.1016/j.pnpbp.2019.109831] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/20/2022]
Abstract
Increasing evidence suggest a bidirectional link between disrupted circadian rhythms and alcohol use disorders (AUD). A better understanding of these alcohol-induced changes in circadian rhythms will likely provide important therapeutic solutions. We conducted a systematic review based on the PubMed database examining biological rhythms in all stages of alcohol use: acute alcohol consumption, AUD, alcohol withdrawal, and abstinence. Different changes in circadian rhythms have been observed after a single acute alcohol intake, but also during AUD and alcohol withdrawal. Following a single acute alcohol intake, changes in biological rhythms are dose-dependent, reflected in the melatonin and cortisol secretions, and the core body temperature (CBT) rhythms. These alterations normalize the next morning and appear mostly for acute alcohol intake higher than 0.5 g/kg. These alterations are more severe during AUD and persist over time. In addition, interestingly, opposite patterns of the melatonin physiological ratio between diurnal and nocturnal secretion (N/D ratio < 1) have been observed during AUD and appear to be a marker of chronic daily use. During alcohol withdrawal, circadian rhythms desynchronization correlates with the severity of alcohol withdrawal symptoms and withdrawal complications such as delirium tremens. During abstinence a resynchronization of circadian rhythms of cortisol and CBT appears in most patients about 1 month after alcohol withdrawal. Disruption of melatonin circadian rhythms can persist after 3-12 weeks of abstinence. The circadian genetic vulnerability associated with biological rhythms alterations in alcohol use disorders increases the risk of relapses. Circadian-based interventions could play a critical role in preventing and treating AUD.
Collapse
|
13
|
Wang DQ, Wang XL, Wang CY, Wang Y, Li SX, Liu KZ. Effects of chronic cocaine exposure on the circadian rhythmic expression of the clock genes in reward-related brain areas in rats. Behav Brain Res 2019; 363:61-69. [DOI: 10.1016/j.bbr.2019.01.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
|
14
|
Alcohol and sleep-related problems. Curr Opin Psychol 2019; 30:117-122. [PMID: 31128400 DOI: 10.1016/j.copsyc.2019.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/16/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022]
Abstract
Alcohol is one of the most commonly used psychoactive substances in the community. Many individuals use alcohol for its sleep-promoting effects. Nonetheless, alcohol disrupts sleep through multiple mechanisms, such as disrupting electrophysiologic sleep architecture, triggering insomnia, and contributing to abnormalities of circadian rhythms and short sleep duration (SSD) in cross-sectional studies. Alcohol also increases breathing-related sleep events such as snoring and oxygen desaturation, especially in those with pre-existing problems. Emerging data demonstrate that insomnia may co-exist with SSD and circadian abnormalities. Future studies should unravel these tentative associations in individuals who misuse alcohol.
Collapse
|
15
|
Hasler BP, Bruce S, Scharf D, Ngari W, Clark DB. Circadian misalignment and weekend alcohol use in late adolescent drinkers: preliminary evidence. Chronobiol Int 2019; 36:796-810. [PMID: 30950299 DOI: 10.1080/07420528.2019.1586720] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alcohol use accelerates during late adolescence, predicting the development of alcohol use disorders (AUDs) and other negative outcomes. Identifying modifiable risk factors for alcohol use during this time could lead to novel prevention approaches. Burgeoning evidence suggests that sleep and circadian factors are cross-sectionally and longitudinally linked to alcohol use and problems, but more proximal relationships have been understudied. Circadian misalignment, in particular, is hypothesized to increase the risk for AUDs, but almost no published studies have included a biological measure of misalignment. In the present study, we aimed to extend existing research by assessing the relationship between adolescent circadian misalignment and alcohol use on a proximal timeframe (over two weeks) and by including three complementary measures of circadian alignment. We studied 36 healthy late (18-22 years old, 22 females) alcohol drinkers (reporting ≥1, standard drink per week over the past 30 days) over 14 days. Throughout the study, participants reported prior day's alcohol use and prior night's sleep each morning via smartphone and a secure, browser-based interface. Circadian phase was assessed via the dim light melatonin onset (DLMO) in the laboratory on two occasions (Thursday and Sunday nights) in counterbalanced order. The three measures of circadian alignment included DLMO-midsleep interval, "classic" social jet lag (weekday-weekend difference in midsleep), and "objective" social jet lag (weekday-weekend difference in DLMO). Multivariate imputation by chained equations was used to impute missing data, and Poisson regression models were used to assess associations between circadian alignment variables and weekend alcohol use. Covariates included sex, age, Thursday alcohol use, and Thursday sleep characteristics. As predicted, greater misalignment was associated with greater weekend alcohol use for two of the three alignment measures (shorter DLMO-midsleep intervals and larger weekday-weekend differences in midsleep), while larger weekday-weekend differences in DLMO were associated with less alcohol use. Notably, in contrast to expectations, the distribution of weekday-weekend differences in DLMO was nearly equally distributed between individuals advancing over the weekend and those delaying over the weekend. This unexpected finding plausibly reflects the fact that college students are not subject to the same systematically earlier weekday schedules observed in high school students and working adults. These preliminary findings support the need for larger, more definitive studies investigating the proximal relationships between circadian alignment and alcohol use among late adolescents.
Collapse
Affiliation(s)
- Brant P Hasler
- a Department of Psychiatry , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Scott Bruce
- b Department of Statistics , George Mason University , Fairfax , VA , USA
| | - Deborah Scharf
- c Department of Psychology , Lakehead University , Thunder Bay , Canada
| | - Wambui Ngari
- a Department of Psychiatry , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Duncan B Clark
- a Department of Psychiatry , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| |
Collapse
|
16
|
Chakravorty S, Vandrey RG, He S, Stein MD. Sleep Management Among Patients with Substance Use Disorders. Med Clin North Am 2018; 102:733-743. [PMID: 29933826 PMCID: PMC6289280 DOI: 10.1016/j.mcna.2018.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sleep and substance use disorders commonly co-occur. Insomnia is commonly associated with use and withdrawal from substances. Circadian rhythm abnormalities are being increasingly linked with psychoactive substance use. Other sleep disorders, such as sleep-related breathing disorder, should be considered in the differential diagnosis of insomnia, especially in those with opioid use or alcohol use disorder. Insomnia that is brief or occurs in the context of active substance use is best treated by promoting abstinence. A referral to a sleep medicine clinic should be considered for those with chronic insomnia or when another intrinsic sleep disorder is suspected.
Collapse
Affiliation(s)
- Subhajit Chakravorty
- Department of Psychiatry, Perelman School of Medicine, Corporal Michael J. Crescenz VA Medical Center, MIRECC, 2nd Floor, Postal Code 116, 3900 Woodland Avenue, Philadelphia, PA 19104, USA.
| | - Ryan G Vandrey
- Behavioral Pharmacology Research Unit, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Sean He
- Post-baccalaureate studies program, College of Liberal Arts and Professional Studies, University of Pennsylvania, 3440 Market Street Suite 100, Philadelphia, PA 19104, USA; Department of R & D, Corporal Michael J. Crescenz VA Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104, USA
| | - Michael D Stein
- Department of Health Law, Policy and Management, Boston University School of Public Health, 715 Albany Street, Boston, MA 02118, USA
| |
Collapse
|
17
|
Onaolapo OJ, Onaolapo AY. Melatonin in drug addiction and addiction management: Exploring an evolving multidimensional relationship. World J Psychiatry 2018; 8:64-74. [PMID: 29988891 PMCID: PMC6033744 DOI: 10.5498/wjp.v8.i2.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/06/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023] Open
Abstract
Melatonin is a pleiotropic signalling molecule that regulates several physiological functions, and synchronises biological rhythms. Recent evidences are beginning to reveal that a dysregulation of endogenous melatonin rhythm or action may play a larger role in the aetiology and behavioural expression of drug addiction, than was previously considered. Also, the findings from a number of animal studies suggest that exogenous melatonin supplementation and therapeutic manipulation of melatonin/melatonin receptor interactions may be beneficial in the management of behavioural manifestations of drug addiction. However, repeated exogenous melatonin administration may cause a disruption of its endogenous rhythm and be associated with potential drawbacks that might limit its usefulness. In this review, we examine the roles of melatonin and its receptors in addictive behaviours; discussing how our understanding of melatonin’s modulatory effects on the brain rewards system and crucial neurotransmitters such as dopamine has evolved over the years. Possible indications(s) for melatonergic agents in addiction management, and how manipulations of the endogenous melatonin system may be of benefit are also discussed. Finally, the potential impediments to application of melatonin in the management of addictive behaviours are considered.
Collapse
Affiliation(s)
- Olakunle J Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology and Therapeutics, Ladoke Akintola University of Technology, Osogbo 230263, Osun State, Nigeria
| | - Adejoke Y Onaolapo
- Behavioural Neuroscience/Neurobiology Unit, Department of Anatomy, Ladoke Akintola University of Technology, Ogbomosho 210211, Oyo State, Nigeria
| |
Collapse
|
18
|
Capella MDM, Martinez-Nicolas A, Adan A. Circadian Rhythmic Characteristics in Men With Substance Use Disorder Under Treatment. Influence of Age of Onset of Substance Use and Duration of Abstinence. Front Psychiatry 2018; 9:373. [PMID: 30174624 PMCID: PMC6107843 DOI: 10.3389/fpsyt.2018.00373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022] Open
Abstract
There is evidence of the reciprocal influence between the alteration of circadian rhythms and Substance Use Disorders (SUD), and part of the success of the SUD treatment lays in the patient's rhythmic recovery. We aim to elucidate the effect of the SUD treatment in circadian rhythmicity considering, for the first time, the age of onset of substance use (OSU) and duration of abstinence. We registered the sleep-wake schedules, the chronotype and the distal skin temperature of 114 SUD patients with at least 3 months of abstinence, considering whether they had begun consumption at age 16 or earlier (OSU ≤ 16, n = 56) or at 17 or later (OSU ≥ 17, n = 58), and duration of abstinence as short (SA: 3 to 5 months, n = 38), medium (MA: 6 to 9 months, n = 35) or long (LA: more than 9 months, n = 41). Moreover, we compared the patients' distal skin temperature pattern with a similar sample of healthy controls (HC, n = 103). SUD patients showed a morningness tendency and higher night values, amplitude and stability, a better adjustment to the cosine model and lower minimum temperature and circadianity index in the distal skin temperature rhythm, in contrast to the HC group. The OSU ≥ 17 and LA groups showed a more robust distal skin temperature pattern, as well as milder clinical characteristics when compared to the OSU ≤ 16 and SA groups, respectively. The circadian disturbances associated to substance consumption seem to improve with treatment, although the age of OSU and the duration of abstinence are modulating variables. Our results highlight the need to include chronobiological strategies that boost circadian rhythmicity both in SUD prevention and rehabilitation programs. The measurement of distal skin temperature rhythm, a simple and reliable procedure, could be considered an indicator of response to treatment in SUD patients.
Collapse
Affiliation(s)
- Maria Del Mar Capella
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain
| | - Antonio Martinez-Nicolas
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Ana Adan
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Neural Mechanisms of Circadian Regulation of Natural and Drug Reward. Neural Plast 2017; 2017:5720842. [PMID: 29359051 PMCID: PMC5735684 DOI: 10.1155/2017/5720842] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/07/2017] [Accepted: 10/11/2017] [Indexed: 01/26/2023] Open
Abstract
Circadian rhythms are endogenously generated near 24-hour variations of physiological and behavioral functions. In humans, disruptions to the circadian system are associated with negative health outcomes, including metabolic, immune, and psychiatric diseases, such as addiction. Animal models suggest bidirectional relationships between the circadian system and drugs of abuse, whereby desynchrony, misalignment, or disruption may promote vulnerability to drug use and the transition to addiction, while exposure to drugs of abuse may entrain, disrupt, or perturb the circadian timing system. Recent evidence suggests natural (i.e., food) and drug rewards may influence overlapping neural circuitry, and the circadian system may modulate the physiological and behavioral responses to these stimuli. Environmental disruptions, such as shifting schedules or shorter/longer days, influence food and drug intake, and certain mutations of circadian genes that control cellular rhythms are associated with altered behavioral reward. We highlight the more recent findings associating circadian rhythms to reward function, linking environmental and genetic evidence to natural and drug reward and related neural circuitry.
Collapse
|
20
|
Melatonin reduces motivation for cocaine self-administration and prevents relapse-like behavior in rats. Psychopharmacology (Berl) 2017; 234:1741-1748. [PMID: 28246896 DOI: 10.1007/s00213-017-4576-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/17/2017] [Indexed: 01/09/2023]
Abstract
RATIONALE Melatonin is a hormone involved in the entrainment of circadian rhythms, which appears dysregulated in drug users. Further, it has been demonstrated that melatonin can modulate the reinforcing effects of several drugs of abuse and may therefore play a role in drug addiction. OBJECTIVE Here, we investigated whether administration of melatonin reduces relapse-like behavior and the motivation to seek cocaine in rats. METHODS Male Sprague-Dawley rats were submitted to long-term cocaine self-administration training. Thereafter, melatonin effects were assessed on: (1) the motivation to work for cocaine in the break point test, (2) the relapse-like behavior in the cue-induced reinstatement test, (3) the distance traveled in the open field test, and (4) sucrose preference in a two-bottle choice paradigm. Melatonin, 25 or 50 mg/kg, was injected 3-4 h after the dark phase onset, 30 min prior to each test. RESULTS Both doses of melatonin decreased the number of active pokes in both break point and cue-induced reinstatement tests, demonstrating that melatonin can reduce the cocaine-seeking behavior and the motivation to work for cocaine. Administration of the higher dose of this hormone, however, significantly reduced the number of inactive pokes during the cue-induced reinstatement test and tended to reduce animals' locomotor activity in the open field test. Sucrose preference was unchanged in both vehicle- and melatonin-treated animal groups. CONCLUSIONS Our data suggest that melatonin administration may lower the risk of relapse triggered by cues in cocaine-experienced animals.
Collapse
|
21
|
Schubert JR, Todd Arnedt J. Management of Insomnia in Patients with Alcohol Use Disorder. CURRENT SLEEP MEDICINE REPORTS 2017. [DOI: 10.1007/s40675-017-0066-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Antúnez JM, Capella MDM, Navarro JF, Adan A. Circadian rhythmicity in substance use disorder male patients with and without comorbid depression under ambulatory and therapeutic community treatment. Chronobiol Int 2016; 33:1410-1421. [PMID: 27611843 DOI: 10.1080/07420528.2016.1223092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although there have been described alterations of circadian rhythmicity both in patients with substance use disorder (SUD) and patients with major depressive disorder (MDD), the circadian characteristics of SUD patients with comorbid MDD (SUD-MDD) are unknown. Likewise, the possible influence of the different modalities of treatments (ambulatory or therapeutic community) upon the circadian rhythmicity of SUD patients has not been characterized. Therefore, this study analyzes the circadian rhythmic profiles of SUD and SUD-MDD patients under ambulatory and therapeutic community treatment. The sample was composed of 40 SUD and 40 SUD-MDD men, aged 22-55 yrs, under treatment and with abstinence for at least three months (including each group 20 ambulatory and 20 from therapeutic community). Patients completed a sociodemographic, clinical and sleep-wake schedules interview, the Composite Scale of Morningness, and wore on the wrist an ambulatory device known as iButton® Thermochron DS1921H, which registered their distal skin temperature every two minutes for 48 hours. All the groups showed a tendency to morningness without differences among them in concordance with their sleep-wake schedules. With regard to distal skin temperature circadian rhythm, SUD patients showed higher values than SUD-MDD in amplitude, relative amplitude, percentage rhythm, and first harmonic power, and lower minimum temperature in 10 consecutive hours (p < .043, in all cases). Therapeutic community group values were lower in minimum temperature and higher in amplitude, relative amplitude, and 12 harmonic accumulated power (p < .028, in all cases) as compared to ambulatory ones. Moreover, all groups showed higher Rayleigh vector and rhythm stability as compared to normative population (p < .043, in both cases). The circadian rhythmic differences observed for diagnosis and type of treatment are indicative of a higher circadian rhythmicity robustness in SUD and therapeutic community patients as compared to SUD-MDD and ambulatory ones, respectively. Although drug consumption exerts a negative effect on the circadian rhythmicity, our results (high amplitude and rhythm stability) are indicative of an adequate circadian functioning as well as of an adjustment to the light-dark cycle in both diagnosis and type of treatment which may constitute a marker of the adherence to treatment and recovery status.
Collapse
Affiliation(s)
- Juan Manuel Antúnez
- a Department of Psychobiology, School of Psychology , University of Málaga , Málaga , Spain
| | - María Del Mar Capella
- b Department of Clinical Psychology and Psychobiology , School of Psychology, University of Barcelona , Barcelona , Spain
| | - José Francisco Navarro
- a Department of Psychobiology, School of Psychology , University of Málaga , Málaga , Spain
| | - Ana Adan
- b Department of Clinical Psychology and Psychobiology , School of Psychology, University of Barcelona , Barcelona , Spain.,c Institute of Neurosciences , University of Barcelona , Barcelona , Spain
| |
Collapse
|
23
|
Nowakowska-Domagała K, Mokros Ł, Jabłkowska-Górecka K, Grzelińska J, Pietras T. The relationship between chronotype and personality among patients with alcohol dependence syndrome: Pilot study. Chronobiol Int 2016; 33:1351-1358. [DOI: 10.1080/07420528.2016.1213738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katarzyna Nowakowska-Domagała
- Department of Cognitive Science, Faculty of Educational Sciences, Institute of Psychology, University of Lodz, Lodz, Poland
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| | | | - Joanna Grzelińska
- Institute of Psychology, Faculty of Educational Sciences, University of Lodz, Lodz, Poland
| | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
24
|
Swanson GR, Gorenz A, Shaikh M, Desai V, Kaminsky T, Van Den Berg J, Murphy T, Raeisi S, Fogg L, Vitaterna MH, Forsyth C, Turek F, Burgess HJ, Keshavarzian A. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking. Am J Physiol Gastrointest Liver Physiol 2016; 311:G192-201. [PMID: 27198191 PMCID: PMC4967173 DOI: 10.1152/ajpgi.00087.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/14/2016] [Indexed: 01/31/2023]
Abstract
Alcohol-induced intestinal hyperpermeability (AIHP) is a known risk factor for alcoholic liver disease (ALD), but only 20-30% of heavy alcoholics develop AIHP and ALD. The hypothesis of this study is that circadian misalignment would promote AIHP. We studied two groups of healthy subjects on a stable work schedule for 3 mo [day workers (DW) and night workers (NW)]. Subjects underwent two circadian phase assessments with sugar challenge to access intestinal permeability between which they drank 0.5 g/kg alcohol daily for 7 days. Sleep architecture by actigraphy did not differ at baseline or after alcohol between either group. After alcohol, the dim light melatonin onset (DLMO) in the DW group did not change significantly, but in the NW group there was a significant 2-h phase delay. Both the NW and DW groups had no change in small bowel permeability with alcohol, but only in the NW group was there an increase in colonic and whole gut permeability. A lower area under the curve of melatonin inversely correlated with increased colonic permeability. Alcohol also altered peripheral clock gene amplitude of peripheral blood mononuclear cells in CLOCK, BMAL, PER1, CRY1, and CRY2 in both groups, and inflammatory markers lipopolysaccharide-binding protein, LPS, and IL-6 had an elevated mesor at baseline in NW vs. DW and became arrhythmic with alcohol consumption. Together, our data suggest that central circadian misalignment is a previously unappreciated risk factor for AIHP and that night workers may be at increased risk for developing liver injury with alcohol consumption.
Collapse
Affiliation(s)
- Garth R. Swanson
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Annika Gorenz
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Maliha Shaikh
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Vishal Desai
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Thomas Kaminsky
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Jolice Van Den Berg
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Terrence Murphy
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Shohreh Raeisi
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Louis Fogg
- 4ommunity, Systems and Mental Health Nursing, Rush University, Chicago, Illinois;
| | - Martha Hotz Vitaterna
- 2Department of Neurobiology, Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois; ,3Northwestern University Feinberg School of Medicine, Chicago, Illinois;
| | - Christopher Forsyth
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Fred Turek
- 2Department of Neurobiology, Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois; ,3Northwestern University Feinberg School of Medicine, Chicago, Illinois;
| | - Helen J. Burgess
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois; ,5Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois; and
| | - Ali Keshavarzian
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois; ,6Departments of Pharmacology; Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
25
|
Ara A, Jacobs W, Bhat IA, McCall WV. Sleep Disturbances and Substance Use Disorders: A Bi-Directional Relationship. Psychiatr Ann 2016. [DOI: 10.3928/00485713-20160512-01] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Abstract
The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases.
Collapse
|
27
|
|
28
|
Effect of circadian rhythm disturbance on morphine preference and addiction in male rats: Involvement of period genes and dopamine D1 receptor. Neuroscience 2016; 322:104-14. [PMID: 26892296 DOI: 10.1016/j.neuroscience.2016.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/16/2016] [Accepted: 02/10/2016] [Indexed: 12/17/2022]
Abstract
It is claimed that a correlation exists between disturbance of circadian rhythms by factors such as alteration of normal light-dark cycle and the development of addiction. However, the exact mechanisms involved in this relationship are not much understood. Here we have studied the effect of constant light on morphine voluntary consumption and withdrawal symptoms and also investigated the involvement of Per1, Per2 and dopamine D1 receptor in these processes. Male wistar rats were kept under standard (LD) or constant light (LL) conditions for one month. The plasma concentration of melatonin was evaluated by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was used to determine the mRNA expression of Per1, Per2 and dopamine D1 receptor in the striatum and prefrontal cortex. Morphine preference (50mg/L) was evaluated in a two-bottle-choice paradigm for 10 weeks and withdrawal symptoms were recorded after administration of naloxone (3mg/kg). One month exposure to constant light resulted in a significant decrease of melatonin concentration in the LL group. In addition, mRNA levels of Per2 and dopamine D1 receptor were up-regulated in both the striatum and prefrontal cortex of the LL group. However, expression of Per1 gene was only up-regulated in the striatum of LL rats in comparison to LD animals. Furthermore, after one month exposure to constant light, morphine consumption and preference ratio and also severity of naloxone-induced withdrawal syndrome were significantly greater in LL animals. It is concluded that exposure to constant light by up-regulation of Per2 and dopamine D1 receptor in the striatum and prefrontal cortex and up-regulation of Per1 in the striatum and the possible involvement of melatonin makes animals vulnerable to morphine preference and addiction.
Collapse
|
29
|
Swanson GR, Gorenz A, Shaikh M, Desai V, Forsyth C, Fogg L, Burgess HJ, Keshavarzian A. Decreased melatonin secretion is associated with increased intestinal permeability and marker of endotoxemia in alcoholics. Am J Physiol Gastrointest Liver Physiol 2015; 308:G1004-11. [PMID: 25907689 PMCID: PMC4469868 DOI: 10.1152/ajpgi.00002.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/15/2015] [Indexed: 01/31/2023]
Abstract
Chronic heavy alcohol use is known to cause gut leakiness and alcoholic liver disease (ALD), but only 30% of heavy drinkers develop increased intestinal permeability and ALD. The hypothesis of this study was that disruption of circadian rhythms is a potential risk factor in actively drinking alcoholics for gut leakiness and endotoxemia. We studied 20 subjects with alcohol use disorder (AD) and 17 healthy controls (HC, 6 day workers, 11 night workers). Subjects wore a wrist actiwatch for 7 days and underwent a 24-h dim light phase assessment and urine collection for intestinal permeability. The AD group had significantly less total sleep time and increased fragmentation of sleep (P < 0.05). AD also had significantly lower plasma melatonin levels compared with the HC [mean area under the curve (AUC) 322.78 ± 228.21 vs. 568.75 ± 304.26 pg/ml, P = 0.03]. In the AD group, AUC of melatonin was inversely correlated with small bowel and colonic intestinal permeability (lactulose-to-mannitol ratio, r = -0.39, P = 0.03; urinary sucralose, r = -0.47, P = 0.01). Cosinor analysis of lipopolysaccharide-binding protein (marker of endotoxemia) and lipopolysaccharide every 4 h for 24 h in HC and AD subjects had a midline estimating statistic of rhythm of 5,026.15 ± 409.56 vs. 6,818.02 ± 628.78 ng/ml (P < 0.01) and 0.09 ± 0.03 vs. 0.15 ± 0.19 EU/ml (P < 0.05), respectively. We found plasma melatonin was significantly lower in the AD group, and lower melatonin levels correlated with increased intestinal permeability and a marker of endotoxemia. Our study suggests the suppression of melatonin in AD may promote gut leakiness and endotoxemia.
Collapse
Affiliation(s)
- Garth R. Swanson
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Annika Gorenz
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Maliha Shaikh
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Vishal Desai
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Christopher Forsyth
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Louis Fogg
- 4Community, Systems and Mental Health Nursing, Rush University, Chicago, Illinois
| | - Helen J. Burgess
- 2Departments of Behavioral Sciences and Internal Medicine, Rush University Medical Center, Chicago, Illinois;
| | - Ali Keshavarzian
- 1Department of Digestive Diseases, Rush University Medical Center, Chicago, Illinois; ,3Departments of Pharmacology, Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, Illinois; and
| |
Collapse
|
30
|
Brower KJ. Assessment and treatment of insomnia in adult patients with alcohol use disorders. Alcohol 2015; 49:417-27. [PMID: 25957855 DOI: 10.1016/j.alcohol.2014.12.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/03/2014] [Indexed: 11/25/2022]
Abstract
Insomnia in patients with alcohol dependence has increasingly become a target of treatment due to its prevalence, persistence, and associations with relapse and suicidal thoughts, as well as randomized controlled studies demonstrating efficacy with behavior therapies and non-addictive medications. This article focuses on assessing and treating insomnia that persists despite 4 or more weeks of sobriety in alcohol-dependent adults. Selecting among the various options for treatment follows a comprehensive assessment of insomnia and its multifactorial causes. In addition to chronic, heavy alcohol consumption and its effects on sleep regulatory systems, contributing factors include premorbid insomnia; co-occurring medical, psychiatric, and other sleep disorders; use of other substances and medications; stress; environmental factors; and inadequate sleep hygiene. The assessment makes use of history, rating scales, and sleep diaries as well as physical, mental status, and laboratory examinations to rule out these factors. Polysomnography is indicated when another sleep disorder is suspected, such as sleep apnea or periodic limb movement disorder, or when insomnia is resistant to treatment. Sobriety remains a necessary, first-line treatment for insomnia, and most patients will have some improvement. If insomnia-specific treatment is needed, then brief behavioral therapies are the treatment of choice, because they have shown long-lasting benefit without worsening of drinking outcomes. Medications work faster, but they generally work only as long as they are taken. Melatonin agonists; sedating antidepressants, anticonvulsants, and antipsychotics; and benzodiazepine receptor agonists each have their benefits and risks, which must be weighed and monitored to optimize outcomes. Some relapse prevention medications may also have sleep-promoting activity. Although it is assumed that treatment for insomnia will help prevent relapse, this has not been firmly established. Therefore, insomnia and alcohol dependence might be best thought of as co-occurring disorders, each of which requires its own treatment.
Collapse
|
31
|
Chronobiology of ethanol: animal models. Alcohol 2015; 49:311-9. [PMID: 25971539 DOI: 10.1016/j.alcohol.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 01/08/2023]
Abstract
Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders.
Collapse
|
32
|
Hasler BP, Soehner AM, Clark DB. Sleep and circadian contributions to adolescent alcohol use disorder. Alcohol 2015; 49:377-87. [PMID: 25442171 DOI: 10.1016/j.alcohol.2014.06.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/16/2022]
Abstract
Adolescence is a time of marked changes across sleep, circadian rhythms, brain function, and alcohol use. Starting at puberty, adolescents' endogenous circadian rhythms and preferred sleep times shift later, often leading to a mismatch with the schedules imposed by secondary education. This mismatch induces circadian misalignment and sleep loss, which have been associated with affect dysregulation, increased drug and alcohol use, and other risk-taking behaviors in adolescents and adults. In parallel to developmental changes in sleep, adolescent brains are undergoing structural and functional changes in the circuits subserving the pursuit and processing of rewards. These developmental changes in reward processing likely contribute to the initiation of alcohol use during adolescence. Abundant evidence indicates that sleep and circadian rhythms modulate reward function, suggesting that adolescent sleep and circadian disturbance may contribute to altered reward function, and in turn, alcohol involvement. In this review, we summarize the relevant evidence and propose that these parallel developmental changes in sleep, circadian rhythms, and neural processing of reward interact to increase risk for alcohol use disorder (AUD).
Collapse
Affiliation(s)
- Brant P Hasler
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Adriane M Soehner
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh School of Medicine, 3811 O'Hara Street, Pittsburgh, PA 15213, USA
| |
Collapse
|
33
|
Thakkar MM, Sharma R, Sahota P. Alcohol disrupts sleep homeostasis. Alcohol 2015; 49:299-310. [PMID: 25499829 DOI: 10.1016/j.alcohol.2014.07.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/14/2023]
Abstract
Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired sleep homeostasis. In conclusion, we suggest that alcohol may disrupt sleep homeostasis to cause sleep disruptions.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA.
| | - Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
34
|
Rosenwasser AM, McCulley WD, Fecteau M. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access. Alcohol 2014; 48:647-55. [PMID: 25281289 DOI: 10.1016/j.alcohol.2014.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/12/2014] [Accepted: 07/01/2014] [Indexed: 01/13/2023]
Abstract
Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian period, and show further that the development of chronobiological tolerance to ethanol may vary by sex and genotype.
Collapse
Affiliation(s)
- Alan M Rosenwasser
- Department of Psychology, University of Maine, Orono, ME 04469, USA; School of Biology and Ecology, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| | | | - Matthew Fecteau
- Department of Psychology, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
35
|
Abstract
Substance use disorders (SUD) are common and individuals who suffer from them are prone to relapse. One of the most common consequences of the use of and withdrawal from substances of abuse is sleep disturbance. Substances of abuse affect sleep physiology, including the neurotransmitter systems that regulate the sleep-wake system. Emerging research now highlights an interactive effect between sleep disorders and substance use. New findings in alcohol and sleep research have utilized sophisticated research designs and expanded the scope of EEG and circadian rhythm analyses. Research on marijuana and sleep has progressed with findings on the effects of marijuana withdrawal on objective and subjective measures of sleep. Treatment studies have focused primarily on sleep in alcohol use disorders. Therapies for insomnia in cannabis disorders are needed. Future research is poised to further address mechanisms of sleep disturbance in alcoholics and the effect of medical marijuana on sleep and daytime functioning.
Collapse
|
36
|
Logan RW, Williams WP, McClung CA. Circadian rhythms and addiction: mechanistic insights and future directions. Behav Neurosci 2014; 128:387-412. [PMID: 24731209 DOI: 10.1037/a0036268] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug-induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Wilbur P Williams
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
37
|
Abstract
Approximately one-third of patients with epilepsy continue to have seizures despite antiepileptic therapy. Many seizures occur in diurnal, sleep/wake, circadian, or even monthly patterns. The relationship between biomarkers and state changes is still being investigated, but early results suggest that some of these patterns may be related to endogenous circadian patterns whereas others may be related to wakefulness and sleep or both. Chronotherapy, the application of treatment at times of greatest seizure susceptibility, is a technique that may optimize seizure control in selected patients. It may be used in the form of differential dosing, as preparations designed to deliver sustained or pulsatile drug delivery or in the form of 'zeitgebers' that shift endogenous rhythms. Early trials in epilepsy suggest that chronopharmacology may provide improved seizure control compared with conventional treatment in some patients. The present article reviews chronopharmacology in the treatment of epilepsy as well as future treatment avenues.
Collapse
Affiliation(s)
- Sriram Ramgopal
- Division of Epilepsy and Clinical Neurophysiology, Harvard Medical School, Fegan 9, Boston, MA USA
- Department of Neurology, Children’s Hospital Boston, 300 Longwood Ave, Boston, MA 02115 USA
| | - Sigride Thome-Souza
- Division of Epilepsy and Clinical Neurophysiology, Harvard Medical School, Fegan 9, Boston, MA USA
- Department of Neurology, Children’s Hospital Boston, 300 Longwood Ave, Boston, MA 02115 USA
- Psychiatry Department of Clinics Hospital of Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Harvard Medical School, Fegan 9, Boston, MA USA
- Department of Neurology, Children’s Hospital Boston, 300 Longwood Ave, Boston, MA 02115 USA
| |
Collapse
|
38
|
Rosenwasser AM, Fixaris MC. Chronobiology of alcohol: studies in C57BL/6J and DBA/2J inbred mice. Physiol Behav 2013; 110-111:140-7. [PMID: 23313401 DOI: 10.1016/j.physbeh.2013.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/02/2012] [Accepted: 01/06/2013] [Indexed: 12/18/2022]
Abstract
Human alcoholics display dramatic disruptions of circadian rhythms that may contribute to the maintenance of excessive drinking, thus creating a vicious cycle. While clinical studies cannot establish direct causal mechanisms, recent animal experiments have revealed bidirectional interactions between circadian rhythms and ethanol intake, suggesting that the chronobiological disruptions seen in human alcoholics are mediated in part by alterations in circadian pacemaker function. The present study was designed to further explore these interactions using C57BL/6J (B6) and DBA/2J (D2) inbred mice, two widely employed strains differing in both circadian and alcohol-related phenotypes. Mice were maintained in running-wheel cages with or without free-choice access to ethanol and exposed to a variety of lighting regimens, including standard light-dark cycles, constant darkness, constant light, and a "shift-lag" schedule consisting of repeated light-dark phase shifts. Relative to the standard light-dark cycle, B6 mice showed reduced ethanol intake in both constant darkness and constant light, while D2 mice showed reduced ethanol intake only in constant darkness. In contrast, shift-lag lighting failed to affect ethanol intake in either strain. Access to ethanol altered daily activity patterns in both B6 and D2 mice, and increased activity levels in D2 mice, but had no effects on other circadian parameters. Thus, the overall pattern of results was broadly similar in both strains, and consistent with previous observations that chronic ethanol intake alters circadian activity patterns while environmental perturbation of circadian rhythms modulates voluntary ethanol intake. These results suggest that circadian-based interventions may prove useful in the management of alcohol use disorders.
Collapse
|
39
|
Voigt RM, Forsyth CB, Keshavarzian A. Circadian disruption: potential implications in inflammatory and metabolic diseases associated with alcohol. Alcohol Res 2013; 35:87-96. [PMID: 24313168 PMCID: PMC3860420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circadian rhythms are a prominent and critical feature of cells, tissues, organs, and behavior that help an organism function most efficiently and anticipate things such as food availability. Therefore, it is not surprising that disrupted circadian rhythmicity, a prominent feature of modern-day society, promotes the development and/or progression of a wide variety of diseases, including inflammatory, metabolic, and alcohol-associated disorders. This article will discuss the influence of interplay between alcohol consumption and circadian rhythmicity and how circadian rhythm disruption affects immune function and metabolism as well as potential epigenetic mechanisms that may be contributing to this phenomenon.
Collapse
|
40
|
Adan A, Archer SN, Hidalgo MP, Di Milia L, Natale V, Randler C. Circadian typology: a comprehensive review. Chronobiol Int 2012; 29:1153-75. [PMID: 23004349 DOI: 10.3109/07420528.2012.719971] [Citation(s) in RCA: 839] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The interest in the systematic study of the circadian typology (CT) is relatively recent and has developed rapidly in the two last decades. All the existing data suggest that this individual difference affects our biological and psychological functioning, not only in health, but also in disease. In the present study, we review the current literature concerning the psychometric properties and validity of CT measures as well as individual, environmental and genetic factors that influence the CT. We present a brief overview of the biological markers that are used to define differences between CT groups (sleep-wake cycle, body temperature, cortisol and melatonin), and we assess the implications for CT and adjustment to shiftwork and jet lag. We also review the differences between CT in terms of cognitive abilities, personality traits and the incidence of psychiatric disorders. When necessary, we have emphasized the methodological limitations that exist today and suggested some future avenues of work in order to overcome these. This is a new field of interest to professionals in many different areas (research, labor, academic and clinical), and this review provides a state of the art discussion to allow professionals to integrate chronobiological aspects of human behavior into their daily practice.
Collapse
Affiliation(s)
- Ana Adan
- Department of Psychiatry and Clinical Psychobiology, School of Psychology, University of Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|