1
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
2
|
Salsinha AS, Socodato R, Rodrigues A, Vale-Silva R, Relvas JB, Pintado M, Rodríguez-Alcalá LM. Potential of omega-3 and conjugated fatty acids to control microglia inflammatory imbalance elicited by obesogenic nutrients. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159331. [PMID: 37172801 DOI: 10.1016/j.bbalip.2023.159331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
High-fat diet-induced obesity detrimentally affects brain function by inducing chronic low-grade inflammation. This neuroinflammation is, at least in part, likely to be mediated by microglia, which are the main immune cell population in the brain. Microglia express a wide range of lipid-sensitive receptors and their activity can be modulated by fatty acids that cross the blood-brain barrier. Here, by combining live cell imaging and FRET technology we assessed how different fatty acids modulate microglia activity. We demonstrate that the combined action of fructose and palmitic acid induce Ikβα degradation and nuclear translocation of the p65 subunit nuclear factor kB (NF-κB) in HCM3 human microglia. Such obesogenic nutrients also lead to reactive oxygen species production and LynSrc activation (critical regulators of microglia inflammation). Importantly, short-time exposure to omega-3 (EPA and DHA), CLA and CLNA are sufficient to abolish NF-κB pathway activation, suggesting a potential neuroprotective role. Omega-3 and CLA also show an antioxidant potential by inhibiting reactive oxygen species production, and the activation of LynSrc in microglia. Furthermore, using chemical agonists (TUG-891) and antagonists (AH7614) of GPR120/FFA4, we demonstrated that omega-3, CLA and CLNA inhibition of the NF-κB pathway is mediated by this receptor, while omega-3 and CLA antioxidant potential occurs through different signaling mechanisms.
Collapse
Affiliation(s)
- A S Salsinha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Socodato
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - A Rodrigues
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - R Vale-Silva
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - J B Relvas
- Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal; Department of Neurobiology and Neurological Disease, Glial Cell Biology Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| | - L M Rodríguez-Alcalá
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Rua de Diogo Botelho, 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
3
|
Fu F, Yang X, Zheng M, Zhao Q, Zhang K, Li Z, Zhang H, Zhang S. Role of Transmembrane 4 L Six Family 1 in the Development and Progression of Cancer. Front Mol Biosci 2020; 7:202. [PMID: 33015133 PMCID: PMC7461813 DOI: 10.3389/fmolb.2020.00202] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022] Open
Abstract
Transmembrane 4 L six family 1 (TM4SF1) is a protein with four transmembrane domains that belongs to the transmembrane 4 L six family members (TM4SFs). Structurally, TM4SF1 consists of four transmembrane domains (TM1-4), N- and C-terminal intracellular domains, two extracellular domains, a smaller domain between TM1 and TM2, and a larger domain between TM3 and TM4. Within the cell, TM4SF1 is located at the cell surface where it transmits extracellular signals into the cytoplasm. TM4SF1 interacts with tetraspanins, integrin, receptor tyrosine kinases, and other proteins to form tetraspanin-enriched microdomains. This interaction affects the pro-migratory activity of the cells, and thus it plays important roles in the development and progression of cancer. TM4SF1 has been shown to be overexpressed in many malignant tumors, including gliomas; malignant melanomas; and liver, prostate, breast, pancreatic, bladder, colon, lung, gastric, ovarian, and thyroid cancers. TM4SF1 promotes the migration and invasion of cancer cells by inducing epithelial-mesenchymal transition, self-renewal ability, tumor angiogenesis, invadopodia formation, and regulating the related signaling pathway. TM4SF1 is an independent prognostic indicator and biomarker in several cancers. It also promotes drug resistance, which is a major cause of therapeutic failure. These characteristics make TM4SF1 an attractive target for antibody-based immunotherapy. Here, we review the many functions of TM4SF1 in malignant tumors, with the aim to understand the interaction between its expression and the biological behaviors of cancer and to supply a basis for exploring new therapeutic targets.
Collapse
Affiliation(s)
- Fangmei Fu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Qi Zhao
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kexin Zhang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Zugui Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
4
|
Chen C, Zhou S, Meng Q. A molecular docking study of Rhizoma Atractylodis and Rhizoma Atractylodis Macrocephalae herbal pair with respect to type 2 diabetes mellitus. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Cao R, Wang G, Qian K, Chen L, Ju L, Qian G, Wu CL, Dan HC, Jiang W, Wu M, Xiao Y, Wang X. TM4SF1 regulates apoptosis, cell cycle and ROS metabolism via the PPARγ-SIRT1 feedback loop in human bladder cancer cells. Cancer Lett 2018; 414:278-293. [PMID: 29175458 DOI: 10.1016/j.canlet.2017.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/05/2023]
Abstract
Transmembrane-4-L-Six-Family-1 (TM4SF1) is a member of the L6 family and functions as a signal transducer to regulate cell development, growth and motility. Here we show that TM4SF1 is strongly upregulated in human muscle invasive bladder cancer (MIBC) tissues, corroborating the bioinformatical results of transcriptome analysis. Moreover, tissue microarray (TMA) shows significant correlations (p < 0.05) between high expression of TM4SF1 and T stage, TNM stage, lymph node metastasis status and survival rate of MIBC patients, indicating a positive association between TM4SF1 expression and poorer prognosis. Furthermore, in vitro and in vivo studies indicate that the proliferation of human bladder cancer (BCa) cells is significantly suppressed by knockdown of TM4SF1 (p < 0.05). Functionally, the reduction of TM4SF1 could induce cell cycle arrest and apoptosis possibly via the upregulation of reactive oxygen species (ROS) in BCa cells. In addition, these observations could be recovered by treatment with GW9662 (antagonist of PPARγ) and resveratrol (activator of SIRT1). Taken together, our results suggest that high expression of TM4SF1 predicts poor prognosis of MIBC.
Collapse
Affiliation(s)
- Rui Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Urology, The Fifth Hospital of Wuhan, Wuhan, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- College of Life Science, Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Han C Dan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Wei Jiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Min Wu
- College of Life Science, Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Plissonnier ML, Fauconnet S, Bittard H, Mougin C, Rommelaere J, Lascombe I. Cell death and restoration of TRAIL-sensitivity by ciglitazone in resistant cervical cancer cells. Oncotarget 2017; 8:107744-107762. [PMID: 29296202 PMCID: PMC5746104 DOI: 10.18632/oncotarget.22632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Known activators of the Peroxisome Proliferator-Activated Receptor γ (PPARγ), thiazolidinediones (TZD) induce apoptosis in a variety of cancer cells through dependent and/or independent mechanisms of the receptor. We tested a panel of TZD (Rosiglitazone, Pioglitazone, Ciglitazone) to shed light on their potential therapeutic effects on three cervical cancer cell lines (HeLa, Ca Ski, C-33 A). In these cells, only ciglitazone triggered apoptosis through PPARγ-independent mechanisms and in particular via both extrinsic and intrinsic pathways in Ca Ski cells containing Human PapillomaVirus (HPV) type 16. It also inhibits cervical cancer xenograft development in nude mice. Ciglitazone kills cervical cancer cells by activating death receptor signalling pathway, caspase cascade and BH3 interacting-domain death agonist (Bid) cleavage through the up-regulation of Death Receptor 4 (DR4)/DR5 and soluble and membrane-bound TNF related apoptosis inducing ligand (TRAIL). Importantly, the drug let TRAIL-resistant Ca Ski cells to respond to TRAIL through the downregulation of cellular FLICE-Like Inhibitory Protein (c-FLIP) level. For the first time, we revealed that ciglitazone is able to decrease E6 viral oncoprotein expression known to block TRAIL pathway and this was associated with cell death. Our results highlight the capacity of ciglitazone to restore TRAIL sensitivity and to prevent E6 blocking action to induce apoptosis in cervical cancer cells.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Cancer Research Center of Lyon, INSERM U1052, Lyon F-69424, France
| | - Sylvie Fauconnet
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Urology, University Hospital of Besançon, Besançon F-25030, France
| | - Hugues Bittard
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Urology, University Hospital of Besançon, Besançon F-25030, France
| | - Christiane Mougin
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France.,Department of Pathology, University Hospital of Besançon, Besançon F-25030, France
| | - Jean Rommelaere
- German Cancer Research Center Tumor Virology F010, Heidelberg 69120, Germany
| | - Isabelle Lascombe
- EA3181, Université Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon F-25030, France
| |
Collapse
|
7
|
Silveira LS, Pimentel GD, Souza CO, Biondo LA, Teixeira AAS, Lima EA, Batatinha HAP, Rosa Neto JC, Lira FS. Effect of an acute moderate-exercise session on metabolic and inflammatory profile of PPAR-α knockout mice. Cell Biochem Funct 2017; 35:510-517. [DOI: 10.1002/cbf.3308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/23/2017] [Accepted: 09/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Loreana S. Silveira
- Exercise and Immunometabolism Research Group, Department of Physical Education; Universidade Estadual Paulista; Presidente Prudente SP Brazil
| | - Gustavo D. Pimentel
- Clinical and Sports Nutrition Research Laboratory (Labince); Nutrition Faculty (FANUT)-Federal University of Goiás (UFG); Goiânia GO Brazil
| | - Camila O. Souza
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Luana A. Biondo
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Alexandre Abílio S. Teixeira
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Edson A. Lima
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Helena A. P. Batatinha
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - José C. Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Fábio S. Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education; Universidade Estadual Paulista; Presidente Prudente SP Brazil
| |
Collapse
|
8
|
Božić B, Rogan J, Poleti D, Rančić M, Trišović N, Božić B, Ušćumlić G. Synthesis, characterization and biological activity of 2-(5-arylidene-2,4-dioxotetrahydrothiazole-3-yl)propanoic acid derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
9
|
Chang HK, Kim DS, Chae JJ, Kim M, Myong JP, Lee KH, Lee MW, Park TC. Inhibition of ERK activity enhances the cytotoxic effect of peroxisome proliferator-activated receptor γ (PPARγ) agonists in HeLa cells. Biochem Biophys Res Commun 2016; 482:843-848. [PMID: 27888104 DOI: 10.1016/j.bbrc.2016.11.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/21/2016] [Indexed: 12/27/2022]
Abstract
In this study, we examined whether the peroxisome proliferator-activated receptor γ (PPARγ) agonists, ciglitazone (CGZ) and troglitazone (TGZ), induce cell death in human cervical cancer HeLa cells. The cells were treated with a range of CGZ or TGZ doses for 24 or 48 h. Low concentrations of CGZ (≤10 μM) or TGZ (≤20 μM) had no effect on cell viability whereas higher doses induced cell death in a time- and dose-dependent manner as evidenced by the detection of activated caspase-3 and PARP cleavage. Treatment with the PPARγ antagonist GW9662 followed by PPARγ agonists did not increase CGZ- or TGZ-induced cell death, indicating that PPARγ agonists induced HeLa cell death independently of PPARγ. Moreover, ERK1/2 activation was observed at a CGZ concentration of 25 μM and a TGZ concentration of 35 μM, both of which induced cell death. To elucidate the role of ERK1/2 activated by the two PPARγ agonists, the effect of U0126, an inhibitor of ERK1/2, on PPARγ-agonist-induced cell death was examined. Treatment with 10 or 20 μM U0126 followed by CGZ or TGZ induced the down-regulation of ERK1/2 activity and a decrease in Bcl-2 expression accompanied by the collapse of mitochondrial membrane potential, which in turn significantly enhanced CGZ- or TGZ-induced apoptotic cell death. Our results suggest that PPARγ agonists are capable of inducing apoptotic cell death in HeLa cells independently of PPARγ and that inhibition of ERK1/2 activity offers a strategy to enhance the cytotoxicity of PPARγ agonists in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ha Kyun Chang
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jung Jun Chae
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minsun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jun-Pyo Myong
- Department of Occupational & Environmental Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun Ho Lee
- Department of Obstetrics and Gynecology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| | - Tae Chul Park
- Department of Obstetrics and Gynecology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Duan K, Sun Y, Zhang X, Zhang T, Zhang W, Zhang J, Wang G, Wang S, Leng L, Li H, Wang N. Identification and characterization of transcript variants of chicken peroxisome proliferator-activated receptor gamma. Poult Sci 2015; 94:2516-27. [PMID: 26286997 DOI: 10.3382/ps/pev229] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma regulates adipogenesis. The genomic structure of the chicken peroxisome proliferator-activated receptor gamma (cPPARγ) gene has not been fully characterized, and only one cPPARγ gene mRNA sequence has been reported in genetic databases. Using 5' rapid amplification of cDNA ends, we identified five different cPPARγ mRNAs that are transcribed from three transcription initiation sites. The open reading frame analysis showed that these five cPPARγ transcript variants (cPPARγ1 to 5) could encode two cPPARγ protein isoforms (cPPARγ1 and cPPARγ2), which differ only in their N-terminal region. Quantitative real-time RT-PCR analysis showed that, of these five cPPARγ transcript variants, cPPARγ1 was ubiquitously highly expressed in various chicken tissues, including adipose tissue, liver, kidney, spleen and duodenal; cPPARγ2 was exclusively highly expressed in adipose tissue; cPPARγ3 was highly expressed in adipose tissue, kidney, spleen and liver; cPPARγ4 and cPPARγ5 were ubiquitously weakly expressed in all the tested tissues, and comparatively, cPPARγ5 was highly expressed in adipose tissue, heart, liver and kidney. The comparison of the expression of the five cPPARγ transcript variants showed that adipose tissue cPPARγ1 expression was significantly higher in the fat line than in the lean line from 2 to 7 wk of age (P < 0.05 or P < 0.01). Adipose tissue cPPARγ3 expression was significantly higher in the fat line than in the lean line at 3, 5 and 6 wk of age (P < 0.01, P < 0.05), but lower at 4 wk of age (P < 0.05). Adipose tissue cPPARγ5 expression was significantly higher in the fat line than in the lean line at 3, 4, and 6 wk of age (P < 0.01) and at 2 and 7 wk of age (P < 0.05). This is the first report of transcript variants and protein isoforms of cPPARγ gene. Our findings provided a foundation for future investigations of the function and regulation of cPPARγ gene in adipose tissue development.
Collapse
Affiliation(s)
- Kui Duan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yingning Sun
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Xiaofei Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tianmu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Wenjian Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guihua Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shouzhi Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province. College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
11
|
Jin Y, Liu K, Peng J, Wang C, Kang L, Chang N, Sun H. Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS-NF-κB signal pathway. Toxicol Lett 2015; 232:149-158. [PMID: 25305479 DOI: 10.1016/j.toxlet.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022]
Abstract
AIM Polysaccharides were extracted from Rhizoma Dioscoreae Nipponicae to investigate whether Rhizoma Dioscoreae Nipponicae polysaccharides (RDNP) can act as an antioxidant and PPARγ agonist to protect HUVECs from H2O2-induced injury. METHODS HUVECs (human umbilical vein endothelial cells) were treated with RDNP in the presence/absence of H2O2. Kits and Fenton reaction were used to produce free radicals. Reagent kits of LDH, MDA, SOD, T-AOC and GSH-Px were used to evaluate the cell injuries and the antioxidant activity of RDNP. Intracellular reactive oxygen species (ROS) generation was detected by 2', 7'-dichlorofluorescein diacetate (DCFH-DA). Western blot was used to evaluate the protein expression of Nox4, p22phox, NF-κB/p65, phospho-NF-κB/p65, IκB as well as PPARγ, ICAM-1 and VCAM-1. Real time quantitative reverse transcriptive polymerase chain reaction (qRT-PCR) was used to confirm the expressions of Nox4, p22phox, ICAM-1 and VCAM-1 mRNA. RESULTS RDNP inhibited the production of superoxide anion radical, hydroxyl radical and the lipid peroxidation both in hepatic cells and red blood cells (RBC). It also reduced LDH and MDA levels and enhanced intracellular SOD, T-AOC as well as GSH-Px activities in H2O2-treated HUVECs. Furthermore, RDNP could inhibit ROS generation, Nox4, p22phox, NF-κB/p65, phospho-NF-κB/p65, ICAM-1 and VCAM-1 expression, and it could also inhibit IκB degradation and activate PPARγ expression in HUVECs. CONCLUSIONS RDNP could protect HUVECs from H2O2-induced injury through interfering PPARγ-NADPH oxidase/ROS-NF-κB pathway. This study will provide new pharmacological evidence that RDNP has positive significance for prevention and treatment of atherosclerosis (AS).
Collapse
Affiliation(s)
- Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunko District, Dalian 116044 China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunko District, Dalian 116044 China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunko District, Dalian 116044 China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunko District, Dalian 116044 China
| | - Li Kang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunko District, Dalian 116044 China
| | - Ning Chang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunko District, Dalian 116044 China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunko District, Dalian 116044 China.
| |
Collapse
|
12
|
Moezi L, Janahmadi Z, Amirghofran Z, Nekooeian AA, Dehpour AR. The increased gastroprotective effect of pioglitazone in cholestatic rats: role of nitric oxide and tumour necrosis factor alpha. Int J Exp Pathol 2014; 95:78-85. [PMID: 24456333 DOI: 10.1111/iep.12067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 11/19/2013] [Indexed: 12/13/2022] Open
Abstract
The prevalence of gastric ulcers is high in cholestatic patients, but the exact mechanism of this increased frequency remains uncertain. It has been shown that pioglitazone accelerates the healing of pre-existing gastric ulcers. The present study was designed to investigate the effect of pioglitazone, on the gastric mucosal lesions in cholestatic rats. Cholestasis was induced by surgical ligation of common bile duct and sham-operated rats served as control. Different groups of sham and cholestatic animals received solvent or pioglitazone (5, 15, 30 mg/kg) for 7 days. On the day eight rats were killed after oral ethanol administration and the area of gastric lesions was measured. The serums of rats were also collected to determine serum levels of tumour necrosis factor alpha (TNF-α), IL-1β and bilirubin. The ethanol-induced gastric mucosal damage was significantly more severe in cholestatic rats than sham-operated ones. Pretreatment with pioglitazone dose-dependently attenuated gastric lesions induced by ethanol in both sham and cholestatic rats, but this effect was more prominent in cholestatic ones. The effect of pioglitazone was associated with a significant fall in serum levels of TNF-α in cholestatic rats. L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor, and decreased pioglitazone-induced gastroprotective effect in cholestatic rats, while aminoguanidine, a selective inducible NOS inhibitor, potentiated pioglitazone-induced gastroprotective effect in the cholestatic rats. Chronic treatment with pioglitazone exerts an enhanced gastroprotective effect on the stomach ulcers of cholestatic rats compared to sham rats probably due to constitutive NOS induction and/or inducible NOS inhibition and attenuating release of TNF-α.
Collapse
Affiliation(s)
- Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
13
|
Li CC, Yang HT, Hou YC, Chiu YS, Chiu WC. Dietary fish oil reduces systemic inflammation and ameliorates sepsis-induced liver injury by up-regulating the peroxisome proliferator-activated receptor gamma-mediated pathway in septic mice. J Nutr Biochem 2013; 25:19-25. [PMID: 24314861 DOI: 10.1016/j.jnutbio.2013.08.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/15/2013] [Accepted: 08/21/2013] [Indexed: 12/28/2022]
Abstract
This study investigated the effect of dietary fish oil on systemic inflammation and hepatic injury in mice with polymicrobial sepsis. Male ICR mice were assigned to a control group (C, n=30) and a fish oil group (FO, n=30). Mice in the C group were fed a semi-purified diet with 10% soybean oil, and those in the FO group were fed a fish oil diet (2.5% fish oil+7.5% soybean oil; w/w). Three weeks later, sepsis was induced by cecal ligation and puncture (CLP), and mice were sacrificed at 0, 6 and 24 h after CLP, respectively. Results showed that compared with C group, the FO group had lower plasma levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and nitrite at 6 and 24 h after CLP. Also, peritoneal lavage fluid concentrations of TNF-α and prostaglandin (PG) E2 were significantly lower at 24 h in the FO than in the C group. The FO group had lower myeloperoxidase activities at 6 h after CLP in various organs. Plasma aminotransferase and alanine aminotransferase activities revealed significantly decreased in the FO group. The DNA-binding activity of peroxisome proliferators-activated receptor gamma (PPARγ) and mRNA expression of I kappaB alpha (IκBα) were up-regulated while nuclear factor (NF)-κB p65 DNA-binding activity, inducible nitric oxide synthase protein expression and the concentration of nitrotyrosine were significantly decreased in the FO group in liver after CLP. These results indicate that dietary fish oil administration may attenuate systemic inflammation and up-regulate hepatic PPARγ DNA-binding activity, which may consequently have ameliorated liver injury in these septic mice.
Collapse
Affiliation(s)
- Cheng-Chung Li
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
| | | | | | | | | |
Collapse
|
14
|
A PPARγ ligand present in Actinidia fruit (Actinidia chrysantha) is identified as dilinolenoyl galactosyl glycerol. Biosci Rep 2013; 33:BSR20120110. [PMID: 23548247 PMCID: PMC3654553 DOI: 10.1042/bsr20120110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Activity-guided fractionation of Actinidia fruit species, including Kiwifruit, has identified DLGG (dilinolenoyl galactosyl glycerol) as a potent PPARγ (peroxisome-proliferator-activated receptor γ) ligand. DLGG is a type of MGDG (monogalactosyl diacylglycerol) and is present in all chloroplasts, and therefore all green fruits and vegetables. PPARγ is a ligand-activated transcription factor that regulates glucose metabolism and inflammation. An ethyl acetate extract of Actinidia chrysantha was fractionated by HPLC and the PPARγ-binding activity was detected by FP (fluorescence polarization). Linoleic and α-linolenic acids in A. chrysantha were readily detected as PPARγ ligands. Slow-binding PPARγ ligands were detected in several hydrophobic fractions. High-resolution MS identified DLGG as one of these ligands and confirmed that its binding is non-covalent. DLGG is a slow-binding PPARγ ligand with an IC50 of 1.64 μM, ±0.093 achieved after 45 min equilibration. DLGG is the first example of a form of DAG (diacylglycerol) that is a PPARγ ligand. In addition, DLGG is the first reported glycolipid ligand for PPARγ and also the first non-covalent, slow-binding PPARγ ligand.
Collapse
|
15
|
Rovito D, Giordano C, Vizza D, Plastina P, Barone I, Casaburi I, Lanzino M, De Amicis F, Sisci D, Mauro L, Aquila S, Catalano S, Bonofiglio D, Andò S. Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCF-7 breast cancer cells. J Cell Physiol 2013; 228:1314-22. [DOI: 10.1002/jcp.24288] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 11/08/2012] [Indexed: 11/09/2022]
|
16
|
Lee MW, Kim DS, Kim HR, Kim HJ, Yang JM, Ryu S, Noh YH, Lee SH, Son MH, Jung HL, Yoo KH, Koo HH, Sung KW. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist, independently of PPARγ in human glioma cells. Biochem Biophys Res Commun 2011; 417:552-7. [PMID: 22177955 DOI: 10.1016/j.bbrc.2011.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 μM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 μM CGZ effectively induced cell death after pretreatment with 30 μM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (<30 μM) were sufficient to induce cell death, although higher concentrations of CGZ (≥30 μM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse.
Collapse
Affiliation(s)
- Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
PPARgamma Agonists: Potential as Therapeutics for Neovascular Retinopathies. PPAR Res 2011; 2008:164273. [PMID: 18509499 PMCID: PMC2396446 DOI: 10.1155/2008/164273] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 03/12/2008] [Accepted: 04/10/2008] [Indexed: 01/16/2023] Open
Abstract
The angiogenic, neovascular proliferative retinopathies, proliferative diabetic retinopathy (PDR), and age-dependent macular degeneration (AMD) complicated by choroidal neovascularization (CNV), also termed exudative or “wet” AMD, are common causes of blindness. The antidiabetic thiazolidinediones (TZDs), rosiglitazone, and troglitazone are PPARγ agonists with demonstrable antiproliferative, and anti-inflammatory effects, in vivo, were shown to ameliorate PDR and CNV in rodent models, implying the potential efficacy of TZDs for treating proliferative retinopathies in humans. Activation of the angiotensin II type 1 receptor (AT1-R) propagates proinflammatory and proliferative pathogenic determinants underlying PDR and CNV. The antihypertensive dual AT1-R blocker (ARB), telmisartan, recently was shown to activate PPARγ and improve glucose and lipid metabolism and to clinically improve PDR and CNV in rodent models. Therefore, the TZDs and telmisartan, clinically approved antidiabetic and antihypertensive drugs, respectively, may be efficacious for treating and attenuating PDR and CNV humans. Clinical trials are needed to test these possibilities.
Collapse
|
18
|
In vivo and in vitro evidence that PPARγ ligands are antagonists of leptin signaling in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1030-40. [PMID: 21704006 DOI: 10.1016/j.ajpath.2011.04.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/30/2011] [Accepted: 04/22/2011] [Indexed: 12/19/2022]
Abstract
Obesity is a major risk factor for the development and progression of breast cancer. Leptin, a cytokine mainly produced by adipocytes, plays a crucial role in mammary carcinogenesis and is elevated in hyperinsulinemia and insulin resistance. The antidiabetic thiazolidinediones inhibit leptin gene expression through ligand activation of the peroxisome proliferator-activated receptor-γ (PPARγ) and exert antiproliferative and apoptotic effects on breast carcinoma. In this study, we investigated the ability of PPARγ ligands to counteract leptin stimulatory effects on breast cancer growth in either in vivo or in vitro models. The results show that activation of PPARγ prevented the development of leptin-induced MCF-7 tumor xenografts and inhibited the increased cell-cell aggregation and proliferation observed on leptin exposure. PPARγ ligands abrogated the leptin-induced up-regulation of leptin gene expression and its receptors in breast cancer. PPARγ-mediated repression of leptin gene involved the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors corepressors on the glucocorticoid responsive element site in the leptin gene expression regulatory region in the presence of glucocorticoid receptor and PPARγ. In addition, PPARγ ligands inhibited leptin signaling mediated by MAPK/STAT3/Akt phosphorylation and counteracted leptin stimulatory effect on estrogen signaling. These findings suggest that PPARγ ligands may have potential therapeutic benefits in the treatment of breast cancer.
Collapse
|
19
|
Yuan X, Yan S, Zhao J, Shi D, Yuan B, Dai W, Jiao B, Zhang W, Miao M. Lipid metabolism and peroxisome proliferator-activated receptor signaling pathways participate in late-phase liver regeneration. J Proteome Res 2011; 10:1179-90. [PMID: 21192688 DOI: 10.1021/pr100960h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver regeneration (LR) is of great clinical significance in various liver-associated diseases. LR proceeds along a sequence of three distinct phases: priming/initiation, proliferation, and termination. Compared with the recognition of the first two phases, little is known about LR termination and structure/function reorganization. A combination of "omics" techniques, along with bioinformatics, may provide new insights into the molecular mechanism of the late-phase LR. Gene, protein, and metabolite profiles of the rat liver were determined by cDNA microarray, two-dimensional electrophoresis, and HPLC-MS analysis. Pathway enrichment analysis was performed to identify the pathways: 427 differentially expressed genes extracted from the microarray experiment revealed two expression patterns representing the early and late phase of LR. Functionally, the genes expressing at a higher level at the early phase than at the late phase were mainly involved in the response to stress, proliferation, and resistance to apoptosis, while those expressing at a lower level at the early phase than at the late phase were mainly engaged in lipid metabolism. Compared with the sham-operation control (SH) group, 5 proteins in the 70% partial hepatectomy (70%PHx) group were upregulated at the protein level, and 3 proteins were downregulated at 168 h after the 70%PHx. E-FABP, an upregulated fatty acid binding protein, was found to be involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The metabolomic data confirmed the enhancement of lipid metabolism by the detection of the intermediate and final metabolites. We've concluded that increased lipid metabolism and activated PPAR signaling pathways play important roles in late-phase LR.
Collapse
Affiliation(s)
- Xing Yuan
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Galli A, Ceni E, Mello T, Polvani S, Tarocchi M, Buccoliero F, Lisi F, Cioni L, Ottanelli B, Foresta V, Mastrobuoni G, Moneti G, Pieraccini G, Surrenti C, Milani S. Thiazolidinediones inhibit hepatocarcinogenesis in hepatitis B virus-transgenic mice by peroxisome proliferator-activated receptor gamma-independent regulation of nucleophosmin. Hepatology 2010; 52:493-505. [PMID: 20683949 DOI: 10.1002/hep.23669] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Antidiabetic thiazolidinediones (TZD) have in vitro antiproliferative effect in epithelial cancers, including hepatocellular carcinoma (HCC). The effective anticancer properties and the underlying molecular mechanisms of these drugs in vivo remain unclear. In addition, the primary biological target of TZD, the ligand-dependent transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma), is up-regulated in HCC and seems to provide tumor-promoting responses. The aim of our study was to evaluate whether chronic administration of TZD may affect hepatic carcinogenesis in vivo in relation to PPARgamma expression and activity. The effect of TZD oral administration for 26 weeks was tested on tumor formation in PPARgamma-expressing and PPARgamma-deficient mouse models of hepatic carcinogenesis. Proteomic analysis was performed in freshly isolated hepatocytes by differential in gel electrophoresis and mass spectrometry analysis. Identified TZD targets were confirmed in cultured PPARgamma-deficient hepatocytes. TZD administration in hepatitis B virus (HBV)-transgenic mice (TgN[Alb1HBV]44Bri) reduced tumor incidence in the liver, inhibiting hepatocyte proliferation and increasing apoptosis. PPARgamma deletion in hepatocytes of HBV-transgenic mice (Tg[HBV]CreKOgamma) did not modify hepatic carcinogenesis but increased the TZD antitumorigenic effect. Proteomic analysis identified nucleophosmin (NPM) as a TZD target in PPARgamma-deficient hepatocytes. TZD inhibited NPM expression at protein and messenger RNA levels and decreased NPM promoter activity. TZD inhibition of NPM was associated with the induction of p53 phosphorylation and p21 expression. CONCLUSION These findings suggest that chronic administration of TZD has anticancer activity in the liver via inhibition of NPM expression and indicate that these drugs might be useful for HCC chemoprevention and treatment.
Collapse
Affiliation(s)
- Andrea Galli
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Botton T, Puissant A, Bahadoran P, Annicotte JS, Fajas L, Ortonne JP, Gozzerino G, Zamoum T, Tartare-Deckert S, Bertolotto C, Ballotti R, Rocchi S. In vitro and in vivo anti-melanoma effects of ciglitazone. J Invest Dermatol 2009; 129:1208-18. [PMID: 19177142 DOI: 10.1038/jid.2008.346] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Activation of PPARgamma by synthetic ligands, thiazolidinediones, inhibits the proliferation of cancer cells. In this report, focusing our attention on ciglitazone, we show that ciglitazone inhibits melanoma growth by inducing apoptosis and cell-cycle arrest, whereas normal melanocytes are resistant to ciglitazone. In melanoma cells, ciglitazone-induced apoptosis is associated with caspase activations and a loss of mitochondrial membrane potential. Induction of cell-cycle arrest by ciglitazone is associated with changes in expression of key cell-cycle regulators such as p21, cyclin D1, and pRB hypophosphorylation. Cell-cycle arrest occurs at low ciglitazone concentrations and through a PPARgamma-dependent pathway, whereas the induction of apoptosis is caused by higher ciglitazone concentrations and independently of PPARgamma. These results allow an effective molecular dissociation between proapoptotic effects and growth inhibition evoked by ciglitazone in melanoma cells. Finally, we show that in vivo treatment of nude mice by ciglitazone dramatically inhibits human melanoma xenograft development. The data presented suggest that ciglitazone might be a better candidate for clinical trials in melanoma treatment than the thiazolidinediones currently used in the treatment of type 2 diabetes, such as rosiglitazone, which is devoid of a proapoptotic PPARgamma-independent function.
Collapse
Affiliation(s)
- Thomas Botton
- INSERM, U895, Biologie et Pathologie des Cellules Mélanocytaires: de la Pigmentation Cutanée au Mélanome, Nice, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ciglitazone ameliorates lung inflammation by modulating the inhibitor kappaB protein kinase/nuclear factor-kappaB pathway after hemorrhagic shock. Crit Care Med 2008; 36:2849-57. [PMID: 18828195 DOI: 10.1097/ccm.0b013e318187810e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Peroxisome proliferator-activated receptor-gamma is a ligand-activated transcription factor. Ciglitazone, a peroxisome proliferator-activated receptor-gamma ligand, has been shown to provide beneficial effects in experimental models of sepsis and ischemia/reperfusion injury. We investigated the effects of ciglitazone on lung inflammation after severe hemorrhage. DESIGN Prospective, laboratory study, rodent model of hemorrhagic shock. SETTING University hospital laboratory. SUBJECTS Male rats. INTERVENTIONS Hemorrhagic shock was induced by withdrawing blood to a mean arterial pressure of 50 mm Hg. At 3 hrs after hemorrhage, rats were rapidly resuscitated by returning their shed blood. At the time of resuscitation and every hour thereafter, animals received ciglitazone (10 mg/kg) or vehicle intraperitoneally. Heart rate and mean arterial pressure were measured throughout the experiment. Plasma and lung tissue were collected for analysis up to 3 hrs after resuscitation. MEASUREMENTS AND MAIN RESULTS Ciglitazone treatment ameliorated mean arterial pressure, reduced lung injury, significantly blunted lung neutrophil infiltration, and lowered plasma interleukin-6, interleukin-10, and monocyte chemoattractant protein-1 levels. In a time course analysis, vehicle-treated rats had a significant increase in nuclear factor-kappaB DNA binding, which was preceded by increased inhibitor kappaB protein kinase activity and inhibitor kappaB alpha degradation in the lung. Treatment with ciglitazone significantly reduced inhibitor kappaB protein kinase activity and inhibitor kappaB alpha degradation and completely inhibited nuclear factor-kappaB DNA binding. This reduction of inhibitor kappaB protein kinase activity afforded by ciglitazone appeared to be a consequence of a physical interaction between peroxisome proliferator-activated receptor-gamma and increased inhibitor kappaB protein kinase. CONCLUSION Ciglitazone ameliorates the inflammatory response and may reduce lung injury after hemorrhagic shock. These protective effects appear to be mediated through inhibition of the inhibitor kappaB protein kinase/nuclear factor-kappaB pathway.
Collapse
|
25
|
Yamamoto Y, Ono T, Dhar DK, Yamanoi A, Tachibana M, Tanaka T, Nagasue N. Role of peroxisome proliferator-activated receptor-gamma (PPARgamma) during liver regeneration in rats. J Gastroenterol Hepatol 2008; 23:930-7. [PMID: 18565023 DOI: 10.1111/j.1440-1746.2008.05370.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, is widely expressed in adipocytes and other tissues, including the liver. Several reports have shown that PPARgamma activation induced cell-cycle arrest and apoptosis in tumor cells. We investigated the role of the PPARgamma/ligand system and the effect of the PPARgamma agonist during liver regeneration. METHODS Expression of PPARgamma and serum levels of 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) by enzyme immunoassay were evaluated in rats following partial hepatectomy (PH group). Further, the effect of the PPARgamma agonist, pioglitazone, on liver regeneration (PH + PGZ group) was evaluated by proliferating cell nuclear antigen labeling index, relative liver weight, and expression of cell-cycle regulators. RESULTS The number of PPARgamma-stained hepatocytes decreased at 24 h (PH, 15.8 +/- 2.2%; sham, 35.5 +/- 2.4%; P < 0.001) and increased in the late phase of liver regeneration compared to the sham-operated group (P < 0.001 at 48-120 h). The peaks of serum 15d-PGJ2 (627.0 +/- 91.1 pg/ml) and PPARgamma expression (90.6 +/- 3.1%) coincided in the late phase of liver regeneration. Also, oral administration of pioglitazone inhibited hepatocyte proliferation, in terms of the proliferating cell nuclear antigen (PCNA) labeling index and p27 expression during the late phase of liver regeneration, and caused a transient reduction in liver mass when compared to the PH group. CONCLUSIONS These results indicate that the PPARgamma/ligand system may be one of the key negative regulators of hepatocyte proliferation and may be responsible for the inhibition of liver growth in the late phase of liver regeneration.
Collapse
Affiliation(s)
- Yoshio Yamamoto
- Department of Digestive and General Surgery, Faculty of Medicine, Shimane University, Enyacho, Izumo, Japan.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tiwari S, Blasi ER, Heyen JR, McHarg AD, Ecelbarger CM. Time course of AQP-2 and ENaC regulation in the kidney in response to PPAR agonists associated with marked edema in rats. Pharmacol Res 2008; 57:383-92. [DOI: 10.1016/j.phrs.2008.03.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 03/27/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
|
27
|
Garcia-Macedo R, Sanchez-Muñoz F, Almanza-Perez JC, Duran-Reyes G, Alarcon-Aguilar F, Cruz M. Glycine increases mRNA adiponectin and diminishes pro-inflammatory adipokines expression in 3T3-L1 cells. Eur J Pharmacol 2008; 587:317-21. [PMID: 18499099 DOI: 10.1016/j.ejphar.2008.03.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 02/27/2008] [Accepted: 03/10/2008] [Indexed: 01/09/2023]
Abstract
Obesity and type 2 diabetes course with chronic low-grade inflammation, where adiponectin is down-regulated and pro-inflammatory markers, like interleukin (IL)-6, tumor necrosis factor alpha (TNF-alpha), and C-reactive protein (CRP), are up-regulated. A treatment option to improve the micro- and macro-complications in type 2 diabetes is the use of glycine, which has been demonstrated previously to increase the expression of anti-inflammatory cytokine IL-10 in monocytes and down-regulate the expression of TNF-alpha in monocytes and Kupffer cells. Recently, our group demonstrated that glycine decreases the pro-inflammatory plasmatic cytokines in type 2 diabetes. The aim of this study was to test the effect of glycine on adipokines expression in 3T3-L1 cells. Cells were grown and differentiated in the presence of 10 mM glycine. After 2 days of confluence, cells were differentiated to adipocytes in the same medium supplemented with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine. The RNA was extracted at days 0 and 8 of differentiation (fibroblasts and mature adipocyte phenotypes, respectively). The expression of PPAR-gamma (peroxisome proliferator-activated receptor-gamma), adiponectin, resistin, IL-6 and TNF-alpha were analyzed by real-time PCR. We demonstrated that when 3T3-L1 cells were treated with glycine, IL-6, resistin and TNF-alpha mRNA expression was decreased, but surprisingly adiponectin and PPAR-gamma were up-regulated. In all cases the values were statistically significant (P<0.05) between glycine treatment and controls. These results show that glycine improves the pro-inflammatory profile and up-regulates adiponectin gene expression. Therefore, glycine could be useful as a modulator of the pro-inflammatory state observed in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Rebeca Garcia-Macedo
- Unidad de Investigacion Medica en Bioquimica, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico, D.F., Mexico.
| | | | | | | | | | | |
Collapse
|
28
|
Zingarelli B, Fan H, Ashton S, Piraino G, Mangeshkar P, Cook JA. Peroxisome proliferator activated receptor gamma is not necessary for the development of LPS-induced tolerance in macrophages. Immunology 2007; 124:51-7. [PMID: 18028370 DOI: 10.1111/j.1365-2567.2007.02734.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peroxisome proliferator activated receptor-gamma (PPARgamma) has been reported to exert anti-inflammatory properties in endotoxic shock and sepsis. One phenomenon that alters the inflammatory response to endotoxin [lipopolysaccharide (LPS)] is endotoxin tolerance, which is caused by previous exposure to endotoxin. Here, we investigate whether changes in endogenous PPARgamma function regulate this phenomenon using three different models of LPS-induced tolerance in macrophages. In a first in vitro model, previous LPS exposure of murine J774.2 macrophages suppressed tumour necrosis factor-alpha (TNF-alpha) release in response to subsequent LPS challenge. Treatment of J774.2 cells with the PPARgamma inhibitor GW9662 did not alter tolerance induction because these cells were still hyporesponsive to the secondary LPS challenge. In a second ex vivo model, primary rat peritoneal macrophages from LPS-primed rats exhibited suppression of thromboxane B2 and TNF-alpha production, while maintaining nitrite production in response to in vitro LPS challenge. Pretreatment of rats with the PPARgamma inhibitor GW9662 in vivo failed to alter the tolerant phenotype of these primary macrophages. In a third ex vivo model, primary peritoneal macrophages with conditional deletion of PPARgamma were harvested from LPS-primed Cre-lox mice (Cre+/+ PPARgamma-/-) and exhibited significant suppression of TNF-alpha production in response to in vitro LPS challenge. Furthermore, both LPS-primed PPARgamma-deficient Cre+/+ PPARgamma-/- mice and wild-type Cre-/- PPARgamma+/+ mice exhibited reduced plasma TNF-alpha levels in response to a high dose of LPS in vivo. These data demonstrate that PPARgamma does not play a role in the LPS-induced tolerant phenotype in macrophages.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Zhou M, Wu R, Dong W, Jacob A, Wang P. Endotoxin downregulates peroxisome proliferator-activated receptor-gamma via the increase in TNF-alpha release. Am J Physiol Regul Integr Comp Physiol 2007; 294:R84-92. [PMID: 17989144 DOI: 10.1152/ajpregu.00340.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is anti-inflammatory in a cell-based system and in animal models of endotoxemia. We have shown that PPAR-gamma gene expression is downregulated in macrophages after lipopolysaccharide (LPS) stimulation. However, it remains unknown whether hepatic PPAR-gamma is altered in sepsis and, if so, whether LPS directly downregulates PPAR-gamma. To study this, rats were subjected to sepsis by cecal ligation and puncture (CLP). Hepatic tissues were harvested at 5, 10, and 20 h after CLP. PPAR-gamma gene expression and protein levels were determined by RT-PCR and Western blot analysis, respectively. The results showed that PPAR-gamma gene expression decreased at 10 and 20 h and that its proteins levels were reduced at 20 h after CLP. PPAR-gamma levels were also decreased in animals that were administered LPS. To determine the direct effects of LPS on PPAR-gamma downregulation, LPS binding agent polymyxin B (PMB) was administered intramuscularly after CLP. The administration of PMB significantly reduced plasma levels of endotoxin, but it did not prevent the downregulation of PPAR-gamma expression. We found that circulating levels of TNF-alpha still remained significantly elevated in PMB-treated septic animals. We, therefore, hypothesize that the decrease of PPAR-gamma expression is TNF-alpha dependent. To investigate this, Kupffer cells (KCs) were isolated from normal rats and stimulated with LPS or TNF-alpha. TNF-alpha significantly attenuated PPAR-gamma gene expression in KCs. Although LPS decreased PPAR-gamma in KCs, the downregulatory effect of LPS was blocked by the addition of TNF-alpha-neutralizing antibodies. Furthermore, the administration of TNF-alpha-neutralizing antibodies to animals before the onset of sepsis prevented the downregulation of PPAR-gamma in sepsis. We, therefore, conclude that LPS downregulates PPAR-gamma expression during sepsis via an increase in TNF-alpha release.
Collapse
Affiliation(s)
- Mian Zhou
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center and The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
30
|
Zingarelli B, Hake PW, Mangeshkar P, O'Connor M, Burroughs TJ, Piraino G, Denenberg A, Wong HR. DIVERSE CARDIOPROTECTIVE SIGNALING MECHANISMS OF PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR-γ LIGANDS, 15-DEOXY-Δ12,14-PROSTAGLANDIN J2 AND CIGLITAZONE, IN REPERFUSION INJURY. Shock 2007; 28:554-63. [PMID: 17589386 DOI: 10.1097/shk.0b013e31804f56b9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a nuclear receptor that regulates diverse biological functions including inflammation. The PPARgamma ligands have been reported to exert cardioprotective effects and attenuate myocardial reperfusion injury. Here, we examined the molecular mechanisms of their anti-inflammatory effects. Male Wistar rats were subjected to myocardial ischemia and reperfusion and were treated with the PPAR-gamma ligands, 15-deoxy-Delta-prostaglandin J2 (15d-PGJ2) or ciglitazone, or with vehicle only, in the absence or presence of the selective PPAR-gamma antagonist GW-9662. In vehicle-treated rats, myocardial injury was associated with elevated tissue activity of myeloperoxidase, indicating infiltration of neutrophils, and elevated plasma levels of creatine kinase and tumor necrosis factor-alpha. These events were preceded by activation of the nuclear factor-kappaB pathway. The PPAR-gamma DNA binding was also increased in the heart after reperfusion. Treatment with ciglitazone or 15d-PGJ2 reduced myocardial damage and neutrophil infiltration and blunted creatine kinase levels and cytokine production. The beneficial effects of both ligands were associated with enhancement of PPAR-gamma DNA binding and reduction of nuclear factor-kappaB activation. Treatment with 15d-PGJ2, but not ciglitazone, enhanced DNA binding of heat shock factor 1 and upregulated the expression of the cardioprotective heat shock protein 70. Treatment with 15d-PGJ2, but not ciglitazone, also induced a significant increase in nuclear phosphorylation of the prosurvival kinase Akt. The cardioprotection afforded by ciglitazone was attenuated by the PPAR-gamma antagonist GW-9662. In contrast, GW-9662 did not affect the beneficial effects afforded by 15d-PGJ2. Thus, our data suggest that treatment with these chemically unrelated PPAR-gamma ligands results in diverse anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, The University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Harrington WW, S. Britt C, G. Wilson J, O. Milliken N, G. Binz J, C. Lobe D, R. Oliver W, C. Lewis M, M. Ignar D. The Effect of PPARalpha, PPARdelta, PPARgamma, and PPARpan Agonists on Body Weight, Body Mass, and Serum Lipid Profiles in Diet-Induced Obese AKR/J Mice. PPAR Res 2007; 2007:97125. [PMID: 17710237 PMCID: PMC1940322 DOI: 10.1155/2007/97125] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/08/2007] [Accepted: 03/03/2007] [Indexed: 12/19/2022] Open
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR) alpha, delta, and gamma subtypes increases expression of genes involved in fatty acid transport and oxidation and alters adiposity in animal models of obesity and type-2 diabetes. PPARpan agonists which activate all three receptor subtypes have antidiabetic activity in animal models without the weight gain associated with selective PPARgamma agonists. Herein we report the effects of selective PPAR agonists (GW9578, a PPARalpha agonist, GW0742, a PPARdelta agonist, GW7845, a PPARgamma agonist), combination of PPARalpha and delta agonists, and PPARpan (PPARalpha/gamma/delta) activators (GW4148 or GW9135) on body weight (BW), body composition, food consumption, fatty acid oxidation, and serum chemistry of diet-induced obese AKR/J mice. PPARalpha or PPARdelta agonist treatment induced a slight decrease in fat mass (FM) while a PPARgamma agonist increased BW and FM commensurate with increased food consumption. The reduction in BW and food intake after cotreatment with PPARalpha and delta agonists appeared to be synergistic. GW4148, a PPARpan agonist, induced a significant and sustained reduction in BW and FM similar to an efficacious dose of rimonabant, an antiobesity compound. GW9135, a PPARpan agonist with weak activity at PPARdelta, induced weight loss initially followed by rebound weight gain reaching vehicle control levels by the end of the experiment. We conclude that PPARalpha and PPARdelta activations are critical to effective weight loss induction. These results suggest that the PPARpan compounds may be expected to maintain the beneficial insulin sensitization effects of a PPARgamma agonist while either maintaining weight or producing weight loss.
Collapse
Affiliation(s)
- W. Wallace Harrington
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - Christy S. Britt
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - Joan G. Wilson
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - Naphtali O. Milliken
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - Jane G. Binz
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - David C. Lobe
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - William R. Oliver
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - Michael C. Lewis
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| | - Diane M. Ignar
- Department of Metabolic Diseases, GlaxoSmithKline Research, Research Triangle Park, NC 27709, USA
| |
Collapse
|
32
|
Ghose R, Mulder J, von Furstenberg RJ, Thevananther S, Kuipers F, Karpen SJ. Rosiglitazone attenuates suppression of RXRalpha-dependent gene expression in inflamed liver. J Hepatol 2007; 46:115-23. [PMID: 17107731 PMCID: PMC1847570 DOI: 10.1016/j.jhep.2006.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 08/23/2006] [Accepted: 09/09/2006] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS A recently determined target of lipopolysaccharide (LPS) and cytokine signaling in liver is the central Type II nuclear receptor (NR) heterodimer partner, retinoid X receptor alpha (RXRalpha). We sought to determine if Rosiglitazone (Rosi), a peroxisome proliferator activated receptor gamma (PPARgamma) agonist with anti-inflammatory properties, can attenuate LPS and cytokine-induced molecular suppression of RXRalpha-regulated genes. METHODS In vivo, mice were gavage-fed Rosi for 3 days, prior to intraperitoneal injection of LPS, followed by harvest of liver and serum. In vitro, HepG2 cells were treated with IL-1beta, +/- short-term Rosi pretreatment. RNA was analyzed by quantitative RT-PCR, while nuclear and cytoplasmic proteins were analyzed by immunoblotting and gel shifts. RESULTS Rosi attenuated LPS-mediated suppression of RNA levels of several Type II NR-regulated genes, including bile acid transporters and the major drug metabolizing enzyme, Cyp3a11, without affecting cytokine expression, suggesting a novel, direct anti-inflammatory effect in hepatocytes. Rosi suppressed the inflammation-induced nuclear export of RXRalpha, in both LPS-injected mice and IL-1beta-treated HepG2 cells, leading to maintenance of nuclear RXRalpha levels and heterodimer binding activity. CONCLUSIONS Rosi directly attenuates the suppressive effects of inflammation-induced cell signaling on nuclear RXRalpha levels in liver.
Collapse
Affiliation(s)
- Romi Ghose
- Texas Children's Liver Center/Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Piraino G, Cook JA, O'Connor M, Hake PW, Burroughs TJ, Teti D, Zingarelli B. Synergistic effect of peroxisome proliferator activated receptor-gamma and liver X receptor-alpha in the regulation of inflammation in macrophages. Shock 2006; 26:146-53. [PMID: 16878022 DOI: 10.1097/01.shk.0000223121.03523.69] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) and liver X receptor-alpha (LXRalpha) are nuclear ligand-activated transcription factors, which regulate lipid metabolism and inflammation. Murine J774.2 macrophages were stimulated with Escherichia coli lipopolysaccharide (concentration, 10 microg/mL) with or without the PPARgamma ligand, 15-deoxy-Delta prostaglandin J2 (15d-PGJ2), or the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317 (concentration range, 0.01-10 micromol/L), alone or in combination. Nitric oxide (NO) metabolites and tumor necrosis factor alpha production, inducible NO synthase expression, and mitochondrial respiration were measured. When added to the cells as single agents, 15d-PGJ2, 22(R)-hydroxycholesterol, or T0901317 reduced the lipopolysaccharide-induced NO and tumor necrosis factor alpha production and the inducible NO synthase expression, and partially maintained mitochondrial respiration in a concentration-dependent manner. When added to the cells in combination at suboptimal concentrations, 15d-PGJ2 with 22(R)-hydroxycholesterol, or 15d-PGJ2 with T0901317, exerted anti-inflammatory effects similar to much higher concentrations (10,000-fold to 100,000-fold) of each ligand alone. The anti-inflammatory effects of these ligands, alone or in combination, were associated with reduction of nuclear factor-kappaB activation and with enhancement of PPARgamma DNA binding. LXRalpha expression was upregulated in response to 15d-PGJ2 and to the LXRalpha ligands when added alone or in combination. Immunoprecipitation experiments revealed that PPARgamma interacted with LXRalpha. Our data demonstrate that the PPARgamma ligand, 15d-PGJ2, and the LXRalpha ligands, 22(R)-hydroxycholesterol and T0901317, although binding to different nuclear receptors (i.e., PPARgamma and LXRalpha, respectively), affect mediator production through common cell signaling events and exert a synergistic potentiation in a combined treatment at suboptimal concentrations. Thus, our data suggest that PPARgamma and LXRalpha may interact in controlling the inflammatory response in macrophages.
Collapse
Affiliation(s)
- Giovanna Piraino
- Cincinnati Children's Hospital Medical Center, Division of Critical Care Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Zingarelli B, Cook JA. Peroxisome proliferator-activated receptor-gamma is a new therapeutic target in sepsis and inflammation. Shock 2005; 23:393-9. [PMID: 15834303 DOI: 10.1097/01.shk.0000160521.91363.88] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor with pleiotropic effects on lipid metabolism, inflammation, and cell proliferation. PPARgamma forms a heterodimer with the retinoid X receptor and upon ligand-activation binds to the PPAR response element in the promoter of genes to allow transcription. The class of insulin-sensitizing drugs known as thiazolidinediones have been identified as specific PPARgamma agonists that have allowed the characterization of many genes regulated by PPARgamma. Thiazolidinediones include rosiglitazone, pioglitazone, troglitazone, and ciglitazone. In addition to these synthetic agonists, cyclopentenone prostaglandins of the J2 series have been identified as natural ligands for PPARgamma. Several in vitro and in vivo studies have demonstrated that pharmacological activation of PPARgamma by 15-deoxy-Delta(12,14)-PGJ2 (15d-PGJ2) or thiazolidinediones has anti-inflammatory effects. This article provides an overview of the role of PPARgamma in regulating the inflammatory response and emphasizes the potential efficacy of PPARgamma ligands as novel therapeutic approaches beyond diabetes in sepsis, inflammation, and reperfusion injury.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and the College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA.
| | | |
Collapse
|
36
|
Komar CM. Peroxisome proliferator-activated receptors (PPARs) and ovarian function--implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reprod Biol Endocrinol 2005; 3:41. [PMID: 16131403 PMCID: PMC1266036 DOI: 10.1186/1477-7827-3-41] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/30/2005] [Indexed: 01/22/2023] Open
Abstract
The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors involved in varied and diverse processes such as steroidogenesis, angiogenesis, tissue remodeling, cell cycle, apoptosis, and lipid metabolism. These processes are critical for normal ovarian function, and all three PPAR family members--alpha, delta, and gamma, are expressed in the ovary. Most notably, the expression of PPARgamma is limited primarily to granulosa cells in developing follicles, and is regulated by luteinizing hormone (LH). Although much has been learned about the PPARs since their initial discovery, very little is known regarding their function in ovarian tissue. This review highlights what is known about the roles of PPARs in ovarian cells, and discusses potential mechanisms by which PPARs could influence ovarian function. Because PPARs are activated by drugs currently in clinical use (fibrates and thiazolidinediones), it is important to understand their role in the ovary, and how manipulation of their activity may impact ovarian physiology as well as ovarian pathology.
Collapse
Affiliation(s)
- Carolyn M Komar
- Department of Animal Science, Iowa State University, 2356 Kildee Hall, Ames, IA 50011, USA.
| |
Collapse
|
37
|
Han S, Rivera HN, Roman J. Peroxisome proliferator-activated receptor-gamma ligands inhibit alpha5 integrin gene transcription in non-small cell lung carcinoma cells. Am J Respir Cell Mol Biol 2005; 32:350-9. [PMID: 15677767 DOI: 10.1165/rcmb.2004-0345oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We previously showed that fibronectin stimulates the growth of non-small cell lung carcinoma (NSCLC) cells through integrin alpha5beta1-dependent signals. We also demonstrated that peroxisome proliferator-activated receptor (PPAR)gamma ligands inhibit lung carcinoma cell growth. Because alpha5beta1 activation elicits cellular signals linked to cell survival and regulation of cell cycle progression, we studied the effects of PPARgamma ligands on its expression. We found that PPARgamma ligands decreased mRNA and protein expression of the alpha5 subunit of the alpha5beta1 heterodimer in NSCLC; this was associated with reduced NSCLC adhesion to fibronectin. The suppressive effect of the PPARgamma ligands BRL 49653 and GW1929, but not PGJ(2), on alpha5 gene expression were reversed by GW9662, an antagonist of PPARgamma. GW1929 activated the extracellular regulated kinase (Erk), and an inhibitor of the Erk pathway (PD98095) prevented its effect on alpha5. PPARgamma ligands also reduced alpha5 gene promoter activity, and this was blocked by Erk antisense oligonucleotides. PPARgamma ligands GW1929 and BRL49653 inhibited AP-1 DNA binding, whereas 15d-PGJ(2) inhibited Sp1 DNA binding; both effects were blocked by Erk antisense oligonucleotides. GW1929 partially blocked fibronectin-induced NSCLC cell growth, but did not affect cell growth induced by epidermal growth factor. These results suggest that PPARgamma ligands inhibit alpha5 expression in NSCLC through Erk-related signals.
Collapse
Affiliation(s)
- ShouWei Han
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Whitehead Bioresearch Building, 615 Michael Street, Suite 205-M, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
38
|
Elchalal U, Humphrey RG, Smith SD, Hu C, Sadovsky Y, Nelson DM. Troglitazone attenuates hypoxia-induced injury in cultured term human trophoblasts. Am J Obstet Gynecol 2004; 191:2154-9. [PMID: 15592306 DOI: 10.1016/j.ajog.2004.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to test the hypothesis that the thiazolidinedione troglitazone, a peroxisome proliferator activated receptor-gamma ligand, attenuates hypoxia-induced trophoblast injury. STUDY DESIGN Cytotrophoblasts from 4 term human placentas were cultured in the presence or absence of 10 mumol/L troglitazone in either 20% oxygen (standard conditions) or 1% oxygen (hypoxic conditions) for variable periods before cell harvest. Medium beta-human chorionic gonadotropin and human placental lactogen were analyzed by enzyme-linked immunosorbent assay. Apoptosis was quantified by cytokeratin-18 cleavage products staining; p53 expression was examined by Western blot analysis. RESULTS beta-human chorionic gonadotropin and human placental lactogen levels were >/=2-fold higher in troglitazone-exposed cells at 16 hours of hypoxia, compared with vehicle control cells ( P <.05). The apoptotic index was reduced by >/=30% ( P <.001), and the expression of p53 was 2-fold lower ( P <.02) in troglitazone-exposed cells under hypoxia for </=16 hours but not different after >24 hours of low oxygen. CONCLUSION Troglitazone attenuates the influence of acute hypoxia on cultured term human trophoblasts.
Collapse
Affiliation(s)
- Uriel Elchalal
- Departments of Obstetrics and Gynecology and Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
39
|
Sabichi AL, Subbarayan V, Llansa N, Lippman SM, Menter DG. Peroxisome Proliferator-Activated Receptor-γ Suppresses Cyclooxygenase-2 Expression in Human Prostate Cells. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.1704.13.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
Recent studies have found that cyclooxygenase-2 (COX-2) protein expression was low and inducible with cytokines in prostate cancer cells (in the absence of serum) and that, in contrast, COX-2 expression was high in normal prostate epithelial cells (EC). Peroxisome proliferator-activated receptor-γ (PPAR-γ) was expressed at high levels in the prostate cancer cell line PC-3 but not in ECs. In contrast to previous findings by others, PPAR-γ ligands did not induce PPAR-γ expression in EC or PC-3. The present study examined the relationship between PPAR-γ and COX-2 expression patterns in EC and PC-3 in the presence and absence of serum and/or the PPAR-γ agonist 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). We also evaluated the effects that the forced expression of PPAR-γ1 and PPAR-γ2 had on COX-2 in ECs. We found that expression of PPAR-γ and COX-2 protein was inversely correlated in ECs and PC-3. Low COX-2 expression in PC-3 was up-regulated by serum, and 15d-PGJ2 blocked serum-induced COX-2 expression and activity in a dose-dependent manner. 15d-PGJ2 had no effect on COX-2 expression in ECs or PPAR-γ expression in either cell type. However, forced expression of PPAR-γ1 or PPAR-γ2 in ECs suppressed the high level of endogenous COX-2. This effect was not isoform specific and was augmented by 15d-PGJ2. The present study showed that PPAR-γ activation can be an important regulator of COX-2 in prostate cells and may be an important target for prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Anita L. Sabichi
- Department of Clinical Cancer Prevention, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Vemparala Subbarayan
- Department of Clinical Cancer Prevention, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Norma Llansa
- Department of Clinical Cancer Prevention, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Scott M. Lippman
- Department of Clinical Cancer Prevention, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - David G. Menter
- Department of Clinical Cancer Prevention, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
40
|
Abstract
Diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as alpha-linoleic acid, eicosapentaenoic acid, and docosahexaenoic acid, are associated with decreased incidence and severity of coronary heart disease. Similarly, conjugated linoleic acids (CLAs), which are found in meat and dairy products, have beneficial effects against atherosclerosis, diabetes, and obesity. The effects of n3-PUFAs and CLAs are in contrast to fatty acids with virtually identical structures, such as linoleic acid and arachidonic acid (ie, n-6 PUFAs). This article discusses the possibility that cognate receptors exist for fatty acids or their metabolites that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with coronary heart disease. Three nuclear receptors are emphasized as fatty acid receptors that respond to dietary and endogenous ligands: peroxisome proliferator activated receptors, retinoid X receptors, and liver X receptors.
Collapse
Affiliation(s)
- John P Vanden Heuvel
- Department of Veterinary Sciences and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
41
|
Khan SA, Vanden Heuvel JP. Role of nuclear receptors in the regulation of gene expression by dietary fatty acids (review). J Nutr Biochem 2004; 14:554-67. [PMID: 14559106 DOI: 10.1016/s0955-2863(03)00098-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long chain fatty acids, derived either from endogenous metabolism or by nutritional sources play significant roles in important biological processes of membrane structure, production of biologically active compounds, and participation in cellular signaling processes. Recently, the structure of dietary fatty acids has become an important issue in human health because ingestion of saturated fats (containing triglycerides composed of saturated fatty acids) is considered harmful, while unsaturated fats are viewed as beneficial. It is important to note that the molecular reason for this dichotomy still remains elusive. Since fatty acids are important players in development of pathology of cardiovascular and endocrine system, understanding the key molecular targets of fatty acids, in particular those that discriminate between saturated and unsaturated fats, is much needed. Recently, insights have been gained on several fatty acid-activated nuclear receptors involved in gene expression. In other words, we can now envision long chain fatty acids as regulators of signal transduction processes and gene regulation, which in turn will dictate their roles in health and disease. In this review, we will discuss fatty acid-mediated regulation of nuclear receptors. We will focus on peroxisome proliferators-activated receptors (PPARs), liver X receptors (LXR), retinoid X receptors (RXRs), and Hepatocyte Nuclear Factor alpha (HNF-4alpha), all of which play pivotal roles in dietary fatty acid-mediated effects. Also, the regulation of gene expression by Conjugated Linoleic Acids (CLA), a family of dienoic fatty acids with a variety of beneficial effects, will be discussed.
Collapse
Affiliation(s)
- Seher A Khan
- Department of Veterinary Science and Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA 16802, USA
| | | |
Collapse
|
42
|
Gerisch B, Antebi A. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 2004; 131:1765-76. [PMID: 15084461 DOI: 10.1242/dev.01068] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In response to the environment, the nematode C. elegans must choose between arrest at a long-lived alternate third larval stage, the dauer diapause, or reproductive development. This decision may ultimately be mediated by daf-9, a cytochrome P450 related to steroidogenic hydroxylases and its cognate nuclear receptor daf-12, implying organism-wide coordination by lipophilic hormones. Accordingly, here we show that daf-9(+) works cell non-autonomously to bypass diapause, and promote gonadal outgrowth. Among daf-9-expressing cells, the hypodermis is most visibly regulated by environmental inputs, including dietary cholesterol. On in reproductive growth, off in dauer, hypodermal daf-9 expression is strictly daf-12 dependent, suggesting feedback regulation. Expressing daf-9 constitutively in hypodermis rescues dauer phenotypes of daf-9, as well as insulin/IGF receptor and TGFbeta mutants, revealing that daf-9 is an important downstream point of control within the dauer circuits. This study illuminates how endocrine networks integrate environmental cues and transduce them into adaptive life history choices.
Collapse
Affiliation(s)
- Birgit Gerisch
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | | |
Collapse
|
43
|
Zhang C, Baker DL, Yasuda S, Makarova N, Balazs L, Johnson LR, Marathe GK, McIntyre TM, Xu Y, Prestwich GD, Byun HS, Bittman R, Tigyi G. Lysophosphatidic acid induces neointima formation through PPARgamma activation. ACTA ACUST UNITED AC 2004; 199:763-74. [PMID: 15007093 PMCID: PMC2212723 DOI: 10.1084/jem.20031619] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neointimal lesions are characterized by accumulation of cells within the arterial wall and are a prelude to atherosclerotic disease. Here we report that a brief exposure to either alkyl ether analogs of the growth factor–like phospholipid lysophosphatidic acid (LPA), products generated during the oxidative modification of low density lipoprotein, or to unsaturated acyl forms of LPA induce progressive formation of neointima in vivo in a rat carotid artery model. This effect is completely inhibited by the peroxisome proliferator-activated receptor (PPAR)γ antagonist GW9662 and mimicked by PPARγ agonists Rosiglitazone and 1-O-hexadecyl-2-azeleoyl-phosphatidylcholine. In contrast, stearoyl-oxovaleryl phosphatidylcholine, a PPARα agonist and polypeptide epidermal growth factor, platelet-derived growth factor, and vascular endothelial growth factor failed to elicit neointima. The structure-activity relationship for neointima induction by LPA analogs in vivo is identical to that of PPARγ activation in vitro and disparate from that of LPA G protein–coupled receptor activation. Neointima-inducing LPA analogs up-regulated the CD36 scavenger receptor in vitro and in vivo and elicited dedifferentiation of cultured vascular smooth muscle cells that was prevented by GW9662. These results suggest that selected LPA analogs are important novel endogenous PPARγ ligands capable of mediating vascular remodeling and that activation of the nuclear transcription factor PPARγ is both necessary and sufficient for neointima formation by components of oxidized low density lipoprotein.
Collapse
MESH Headings
- Analysis of Variance
- Anilides/pharmacology
- Animals
- Arteriosclerosis/chemically induced
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- Calmodulin-Binding Proteins/metabolism
- Carotid Artery Diseases/chemically induced
- Cells, Cultured
- DNA Primers
- Disease Models, Animal
- Growth Substances/metabolism
- Ligands
- Lipoproteins, LDL/metabolism
- Lysophospholipids/toxicity
- Male
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Rosiglitazone
- Structure-Activity Relationship
- Thiazolidinediones/toxicity
- Time Factors
- Transcription Factors/agonists
- Transcription Factors/antagonists & inhibitors
Collapse
Affiliation(s)
- Chunxiang Zhang
- University of Tennessee Health Science Center, Vascular Biology Center of Excellence, Memphis 38163, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Damcott CM, Moffett SP, Feingold E, Barmada MM, Marshall JA, Hamman RF, Ferrell RE. Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor gamma interactively influence insulin sensitivity and body composition in males. Metabolism 2004; 53:303-9. [PMID: 15015141 DOI: 10.1016/j.metabol.2003.10.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes are closely related, multifactorial metabolic conditions characterized by alterations in energy metabolism and glucose homeostasis, respectively. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-dependent transcription factor that regulates genes involved in lipid and glucose homeostasis, including the adipocyte-specific fatty acid-binding protein (FABP4). In turn, FABP4 binds fatty acids and transports them to the nucleus where the FABP4/fatty acid complex activates PPARgamma in a positive feedback loop. In this study, we tested the hypothesis that the polymorphisms, FABP4-376 and PPARgamma Pro12Ala, interactively influence insulin sensitivity and body composition in nondiabetic, Hispanic and non-Hispanic white males (n = 314) participating in the San Luis Valley Diabetes Study (SLVDS). Although the individual sites were not statistically significantly associated with any of the outcomes, we found statistically significant interaction terms in 2-way analysis of covariance (ANCOVA) models for homeostasis model assessment of insulin resistance (HOMA-IR) (P =.014) and lean mass (P =.019). While the PPARgamma Pro12Ala site was the only statistically significant predictor of fat mass in the 2-way model (P =.012), the FABP4 and PPARgamma main effect terms individually became stronger when considered in one model compared with the analysis of each polymorphism separately. These findings provide evidence that FABP4 and PPARgamma work together to influence a biologic pathway affecting insulin sensitivity and body composition, illustrating the importance of investigating the joint effect of genes in determining susceptibility for complex disease.
Collapse
Affiliation(s)
- Coleen M Damcott
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zingarelli B, Sheehan M, Hake PW, O'Connor M, Denenberg A, Cook JA. Peroxisome Proliferator Activator Receptor-γ Ligands, 15-Deoxy-Δ12,14-Prostaglandin J2 and Ciglitazone, Reduce Systemic Inflammation in Polymicrobial Sepsis by Modulation of Signal Transduction Pathways. THE JOURNAL OF IMMUNOLOGY 2003; 171:6827-37. [PMID: 14662889 DOI: 10.4049/jimmunol.171.12.6827] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peroxisome proliferator activator receptor-gamma (PPARgamma) is a nuclear receptor that controls the expression of several genes involved in metabolic homeostasis. We investigated the role of PPARgamma during the inflammatory response in sepsis by the use of the PPARgamma ligands, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and ciglitazone. Polymicrobial sepsis was induced by cecal ligation and puncture in rats and was associated with hypotension, multiple organ failure, and 50% mortality. PPARgamma expression was markedly reduced in lung and thoracic aorta after sepsis. Immunohistochemistry showed positive staining for nitrotyrosine and poly(ADP-ribose) synthetase in thoracic aortas. Plasma levels of TNF-alpha, IL-6, and IL-10 were increased. Elevated activity of myeloperoxidase was found in lung, colon, and liver, indicating a massive infiltration of neutrophils. These events were preceded by degradation of inhibitor kappaBalpha (IkappaBalpha), activation of IkappaB kinase complex, and c-Jun NH(2)-terminal kinase and, subsequently, activation of NF-kappaB and AP-1 in the lung. In vivo treatment with ciglitazone or 15d-PGJ(2) ameliorated hypotension and survival, blunted cytokine production, and reduced neutrophil infiltration in lung, colon, and liver. These beneficial effects of the PPARgamma ligands were associated with the reduction of IkappaB kinase complex and c-Jun NH(2)-terminal kinase activation and the reduction of NF-kappaB and AP-1 DNA binding in the lung. Furthermore, treatment with ciglitazone or 15d-PGJ(2) up-regulated the expression of PPARgamma in lung and thoracic aorta and abolished nitrotyrosine formation and poly(ADP-ribose) expression in aorta. Our data suggest that PPARgamma ligands attenuate the inflammatory response in sepsis through regulation of the NF-kappaB and AP-1 pathways.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Troglitazone, the first of the thiazolidinediones, caused severe hepatotoxicity including liver failure in several patients. It appears, however, that the thiazolidinediones as a class are not as hepatotoxic as troglitazone. Comparative data at comparable dates of usage indicate that pioglitazone and rosiglitazone are not significant hepatotoxins. This is further supported by experimental data that demonstrate that troglitazone, alone among the thiazolidinediones, is toxic in hepatocyte cell culture. All of the thiazolidinediones cause ALT elevations; however, ALT monitoring for hepatotoxicity does not appear to prevent serious liver disease nor reduce patient risk.
Collapse
Affiliation(s)
- Keith G Tolman
- Division of Gastroenterology, Department of Internal Medicine, University of Utah School of Medicine, 30 N 1900 E RM 4R118 SOM Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
47
|
Bollheimer LC, Kagerbauer SM, Buettner R, Kemptner DM, Palitzsch KD, Schölmerich J, Hügl SR. Synergistic effects of troglitazone and oleate on the translatability of preproinsulin mRNA from INS-1 cells. Biochem Pharmacol 2002; 64:1629-36. [PMID: 12429352 DOI: 10.1016/s0006-2952(02)01352-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glitazones are known to modulate fatty acid-induced effects on insulin secretion in the pancreatic beta-cell. The present study focused on combined effects of troglitazone and oleate on preproinsulin (PPI) biosynthesis. Insulin-producing INS-1 cells were incubated for 4 hr at 11.2mM glucose in the presence (O(+)) or absence (O(-)) of 200 microM oleate with (T(+)) or without (T(-)) 10 microM troglitazone. After cell lysis, cytoplasmic RNA was extracted and employed for Northern blotting and corresponding in vitro translation. Compared with untreated controls (CTRL=O(-)/T(-)), the cellular content of PPI-mRNA from cells which had been simultaneously treated by troglitazone and oleate (O(+)/T(+)) was significantly diminished (O(+)/T(+)=75+/-10% x CTRL; P=0.015). The PPI-mRNA content from those cells which had been exclusively exposed either to oleate (O(+)/T(-)) or troglitazone (O(-)/T(+)) did not significantly differ from that of the untreated controls. In spite of that decreased PPI-mRNA content, in vitro translation revealed the highest yield of newly synthesized PPI in RNA samples from those cells which had been simultaneously exposed to oleate and troglitazone before (O(+)/T(+)=1.6+/-0.3 x CTRL; P=0.01). It is concluded that troglitazone and oleate synergistically affect the translational rate at the level of the PPI-mRNA molecule.
Collapse
Affiliation(s)
- L Cornelius Bollheimer
- Department of Internal Medicine I, University of Regensburg, 93042, Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Willi SM, Kennedy A, Wallace P, Ganaway E, Rogers NL, Garvey WT. Troglitazone antagonizes metabolic effects of glucocorticoids in humans: effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids, and leptin. Diabetes 2002; 51:2895-902. [PMID: 12351424 DOI: 10.2337/diabetes.51.10.2895] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glucocorticoids induce insulin resistance in humans, whereas thiazolidinediones enhance insulin sensitivity. Although the effects of glucocorticoids and thiazolidinediones have been assessed in isolation, interaction between these drugs, which both act as ligands for nuclear receptors, has been less well studied. Therefore, we examined the metabolic effects of dexamethasone and troglitazone, alone and in combination, for the first time in humans. A total of 10 healthy individuals with normal glucose tolerance (age 40 +/- 11 years, BMI 31 +/- 6.1 kg/m(2)) were sequentially studied at baseline, after 4 days of dexamethasone (4 mg/day), after 4-6 weeks on troglitazone alone (400 mg/day), and again after 4 days of dexamethasone added to troglitazone. Key metabolic variables included glucose tolerance assessed by blood glucose and insulin responses to an oral glucose tolerance test (OGTT), insulin sensitivity evaluated via hyperinsulinemic-euglycemic clamp, free fatty acids (FFAs) and FFA suppressibility by insulin during the clamp study, and fasting serum leptin. Dexamethasone drastically impaired glucose tolerance, with fasting and 2-h OGTT insulin values increasing by 2.3-fold (P < 0.001) and 4.4-fold (P < 0.001) over baseline values, respectively. The glucocorticoid also induced a profound state of insulin resistance, with a 34% reduction in maximal glucose disposal rates (GDRs; P < 0.001). Troglitazone alone increased GDRs by 20% over baseline (P = 0.007) and completely prevented the deleterious effects of dexamethasone on glucose tolerance and insulin sensitivity, as illustrated by a return of OGTT glucose and insulin values and maximal GDR to near-baseline levels. Insulin-mediated FFA suppressibility (FFA decline at 30 min during clamp/FFA at time 0) was also markedly reduced by dexamethasone (P = 0.002). Troglitazone had no effect per se, but it was able to normalize FFA suppressibility in subjects coadministered dexamethasone. Futhermore, the magnitudes of response of FFA suppressibility and GDR to dexamethasone were proportionate. The same was true for the reversal of dexamethasone-induced insulin resistance by troglitazone, but not in response to troglitazone alone. Leptin levels were increased 2.2-fold above baseline by dexamethasone. Again, troglitazone had no effect per se but blocked the dexamethasone-induced increase in leptin. Subjects experienced a 1.7-kg weight gain while taking troglitazone but no other untoward effects. We conclude that in healthy humans, thiazolidinediones antagonize the action of dexamethasone with respect to multiple metabolic effects. Specifically, troglitazone reverses both glucocorticoid-induced insulin resistance and impairment of glucose tolerance, prevents dexamethasone from impairing the antilipolytic action of insulin, and blocks the increase in leptin levels induced by dexamethasone. Even though changes in FFA suppressibility were correlated with dexamethasone-induced insulin resistance and its reversal by troglitazone, a cause-and-effect relationship cannot be established. However, the data suggest that glucocorticoids and thiazolidinediones exert fundamentally antagonistic effects on human metabolism in both adipose and muscle tissues. By preventing or reversing insulin resistance, troglitazone may prove to be a valuable therapeutic agent in the difficult clinical task of controlling diabetes in patients receiving glucocorticoids.
Collapse
Affiliation(s)
- Steven M Willi
- Department of Pediatrics, Medical University of South Carolina, Charleston 29425, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Galli A, Crabb DW, Ceni E, Salzano R, Mello T, Svegliati-Baroni G, Ridolfi F, Trozzi L, Surrenti C, Casini A. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology 2002; 122:1924-40. [PMID: 12055599 DOI: 10.1053/gast.2002.33666] [Citation(s) in RCA: 346] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS The ligand-dependent transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) is expressed in hepatic stellate cells (HSC), and its transcriptional activity is reduced during cell transdifferentiation in culture. PPARgamma transcriptional activation decreases platelet-derived growth factor-induced proliferation and inhibits alpha-smooth muscle actin expression in cultured HSC. The aim of our study was to evaluate whether oral administration of synthetic PPARgamma ligands, thiazolidinediones (TZD), might affect collagen deposition in animal models of liver fibrosis. METHODS The effect of 2 TZD (pioglitazone or rosiglitazone) was tested on liver fibrosis induced in rats by either toxin administration (dimethylnitrosamine or carbon tetrachloride) or bile duct ligation. In vivo PPARgamma activation was evaluated by gel shift assay using nuclear extracts from HSC isolated from control and treated rats. RESULTS Oral administration of TZD reduced extracellular matrix deposition and HSC activation in both toxic and cholestatic models of liver fibrosis. PPARgamma-specific DNA binding was significantly impaired in nuclear extracts of HSC isolated from fibrotic rats compared with HSC from control rats. TZD administration restored PPARgamma DNA binding in HSC nuclei. In vitro, TZD-induced PPARgamma activation inhibited collagen and fibronectin synthesis induced by transforming growth factor (TGF)-beta1 in human HSC, as measured by enzyme-linked immunosorbent assay and Northen blotting. TZD also reduced the TGF-beta1-induced activity of a 3.5-kilobase procollagen type I promoter transfected in human HSC. CONCLUSIONS These findings indicate that PPARgamma activation in HSC retards fibrosis in vivo and suggest the use of TZD for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Andrea Galli
- Gastroenterology Unit, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhou J, Wilson KM, Medh JD. Genetic analysis of four novel peroxisome proliferator activated receptor-gamma splice variants in monkey macrophages. Biochem Biophys Res Commun 2002; 293:274-83. [PMID: 12054596 PMCID: PMC2775714 DOI: 10.1016/s0006-291x(02)00138-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator activated receptor-gamma (PPAR-gamma) is abundantly expressed in atherosclerotic lesions and is implicated in atherogenesis. The existence of three splice variants, PPAR-gamma 1, PPAR-gamma 2, and PPAR-gamma 3 has been established. Using monocyte-derived macrophages from cynomolgus monkeys, we demonstrate here the identification of two new PPAR-gamma exons, exon C and exon D, which splice together with already established exons A1, A2, and B in the 5(') terminal region to generate four novel PPAR-gamma subtypes, PPAR-gamma 4, -gamma 5, -gamma 6, and -gamma 7. PPAR-gamma 4 and gamma 5 were detected only in macrophages whereas gamma 6 and gamma 7 were expressed both in macrophages and adipose tissues. None of these novel isoforms were detected in muscle, kidney, and spleen from monkeys. We found sequences identical to exons C and D in the human genome database. These and all PPAR-gamma exons known to date are encoded by a single gene, located from region 10498 K to 10384 K on human chromosome 3. We cloned and expressed PPAR-gamma 1, PPAR-gamma 4, and PPAR-gamma 5 proteins in yeast using the expression vector pPICZB. As expected, all recombinant proteins showed a molecular weight of approximately 50 kDa. We also investigated the effect of a high-fat diet on the level of macrophage PPAR-gamma expression in monkeys. RT-PCR showed a significant increase in total PPAR-gamma and ABCA1 mRNA levels in macrophages of fat-fed monkeys (n=7) compared to those maintained on a normal diet (n=2). However, none of the novel isoforms seemed to be induced by fat-feeding. We used tetracycline-responsive expression vectors to obtain moderate expression of PPAR-gamma 4 and -gamma 5 in CHO cells. In these cells, expression of PPAR-gamma 5 but not -gamma 4 repressed the expression of ABCA1. Neither isoform modulated the expression of lipoprotein lipase. Our results suggest that individual PPAR-gamma isoforms may be responsible for unique tissue-specific biological effects and that PPAR-gamma 4 and -gamma 5 may modulate macrophage function and atherogenesis.
Collapse
Affiliation(s)
- Jiming Zhou
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
- Department of Biotechnology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Katina M. Wilson
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Jheem D. Medh
- Department of Biotechnology, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Chemistry, Sc3112B, California State University at Northridge, 18111 Nordhoff Street, Northridge, CA 91330-8262, USA
- Corresponding author. Fax: +1-818-677-4068. (J.D. Medh)
| |
Collapse
|