1
|
Berrellez-Reyes F, Schiavo B, Gonzalez-Grijalva B, Angulo-Molina A, Meza-Figueroa D. Characterization of soot and crystalline atmospheric ultrafine particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125314. [PMID: 39547557 DOI: 10.1016/j.envpol.2024.125314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The extraction and characterization of atmospheric ultrafine particles (UFPs) is critical to understanding environmental health and climate dynamics. This study uses an aqueous extraction method to characterize the size distribution, shape, and composition of atmospheric UFPs. We propose a combined use of techniques rarely implemented in air quality analysis, such as atomic force microscopy (AFM), with more conventional methods, such as Transmission Electron microscopy (TEM) and Dynamic Light Scattering (DLS). DLS results indicate a hydrodynamic diameter range from 117 to 1069 nm and a polydispersity index of 0.3-0.79. The high polydispersity reflects the complexity of UFPs agglomeration processes. AFM identified NPs ranging from 10 to 25 nm; topographic images show soot and crystalline structures. High-resolution TEM analysis measured the interplanar distances of crystalline UFPs, showing the presence of calcium carbonates. TEM-EDS identified soot and crystalline particles with variable composition, from Si-enriched NPs to Ca-F-Cl-Na-Si, carbonates, chlorides, and Zn-Ti-enriched nanosilica. These findings provide valuable insights into the physicochemical properties of atmospheric dust, contributing to our knowledge and the potential implications for human health and the environment.
Collapse
Affiliation(s)
- Francisco Berrellez-Reyes
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| | - Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
2
|
Jang E, Park KT, Yoon YJ, Jang KS, Kim MS, Kim K, Chung HY, Mazzola M, Cappelletti D, Lee BY. Seasonal dynamics of airborne biomolecules influence the size distribution of Arctic aerosols. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100458. [PMID: 39175511 PMCID: PMC11339251 DOI: 10.1016/j.ese.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Organic matter is crucial in aerosol-climate interactions, yet the physicochemical properties and origins of organic aerosols remain poorly understood. Here we show the seasonal characteristics of submicron organic aerosols in Arctic Svalbard during spring and summer, emphasizing their connection to transport patterns and particle size distribution. Microbial-derived organic matter (MOM) and terrestrial-derived organic matter (TOM) accounted for over 90% of the total organic mass in Arctic aerosols during these seasons, comprising carbohydrate/protein-like and lignin/tannin-like compounds, respectively. In spring, aerosols showed high TOM and low MOM intensities due to biomass-burning influx in the central Arctic. In contrast, summer exhibited elevated MOM intensity, attributed to the shift in predominant atmospheric transport from the central Arctic to the biologically active Greenland Sea. MOM and TOM were associated with Aitken mode particles (<100 nm diameter) and accumulation mode particles (>100 nm diameter), respectively. This association is linked to the molecular size of biomolecules, impacting the number concentrations of corresponding aerosol classes. These findings highlight the importance of considering seasonal atmospheric transport patterns and organic source-dependent particle size distributions in assessing aerosol properties in the changing Arctic.
Collapse
Affiliation(s)
- Eunho Jang
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Ki-Tae Park
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- Department of Environmental Sciences and Biotechnology, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jun Yoon
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Kyoung-Soon Jang
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Min Sung Kim
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Korea Basic Science Institute (KBSI), Cheongju, 28119, Republic of Korea
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyun Young Chung
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
| | - Mauro Mazzola
- National Research Council of Italy, Institute of Polar Sciences (CNR-ISP), Via Gobetti 101, Bologna, 40129, Italy
| | - David Cappelletti
- National Research Council of Italy, Institute of Polar Sciences (CNR-ISP), Via Gobetti 101, Bologna, 40129, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia, 06123, Italy
| | - Bang Yong Lee
- Korea Polar Research Institute (KOPRI), Incheon, 21990, Republic of Korea
- University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
3
|
Chen J, Zhang D, Fu Y, Wang J, Cui X, Qu-Zong CR, Zhang Q, Jin C, Duo B. Microscopic and spectroscopic analysis of atmospheric iron-containing single particles in Lhasa, Tibet. J Environ Sci (China) 2024; 141:40-50. [PMID: 38408833 DOI: 10.1016/j.jes.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 02/28/2024]
Abstract
The Tibetan Plateau, known as the "Third Pole", is currently in a state of perturbation caused by intensified human activity. In this study, 56 samples were obtained at the five sampling sites in typical area of Lhasa city and their physical and chemical properties were investigated by TEM/EDS, STXM, and NEXAFS spectroscopy. After careful examination of 3387 single particles, the results showed that Fe should be one of the most frequent metal elements. The Fe-containing single particles in irregular shape and micrometer size was about 7.8% and might be mainly from local sources. Meanwhile, the Fe was located on the subsurface of single particles and might be existed in the form of iron oxide. Interestingly, the core-shell structure of iron-containing particles were about 38.8% and might be present as single-, dual- or triple-core shell structure and multi-core shell structure with the Fe/Si ratios of 17.5, 10.5, 2.9 and 1.2, respectively. Meanwhile, iron and manganese were found to coexist with identical distributions in the single particles, which might induce a synergistic effect between iron and manganese in catalytic oxidation. Finally, the solid spherical structure of Fe-containing particles without an external layer were about 53.4%. The elements of Fe and Mn were co-existed, and might be presented as iron oxide-manganese oxide-silica composite. Moreover, the ferrous and ferric forms of iron might be co-existed. Such information can be valuable in expanding our understanding of Fe-containing particles in the Tibetan Plateau atmosphere.
Collapse
Affiliation(s)
- Junyu Chen
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Daobin Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yiran Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jinhu Wang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Ci-Ren Qu-Zong
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chan Jin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
| | - Bu Duo
- School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
4
|
Cheng PP, Yu F, Chen SJ, Feng X, Jia ZH, Hu SH, Cui XL, Zhou YY, Niu Q, Liang LM, Wang M, Song LJ, He XL, Xiong L, Xiang F, Wang X, Ma WL, Ye H. PM2.5 exposure-induced senescence-associated secretory phenotype in airway smooth muscle cells contributes to airway remodeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123674. [PMID: 38458517 DOI: 10.1016/j.envpol.2024.123674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Fine particulate matter (PM2.5) has been linked to increased severity and incidence of airway diseases, especially chronic obstructive pulmonary disease (COPD) and asthma. Airway remodeling is an important event in both COPD and asthma, and airway smooth muscle cells (ASMCs) are key cells which directly involved in airway remodeling. However, it was unclear how PM2.5 affected ASMCs. This study investigates the effects of PM2.5 on airway smooth muscle and its mechanism. We first showed that inhaled particulate matter was distributed in the airway smooth muscle bundle, combined with increased airway smooth muscle bundle and collagen deposition in vivo. Then, we demonstrated that PM2.5 induced up-regulation of collagen-I and alpha-smooth muscle actin (α-SMA) expression in rat and human ASMCs in vitro. Next, we found PM2.5 led to rat and human ASMCs senescence and exhibited senescence-associated secretory phenotype (SASP) by autophagy-induced GATA4/TRAF6/NF-κB signaling, which contributed to collagen-I and α-SMA synthesis as well as airway smooth muscle remodeling. Together, our results provided evidence that SASP induced by PM2.5 in airway smooth muscle cells prompted airway remodeling.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Shuai-Jun Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Feng
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zi-Heng Jia
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shi-He Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Lin Cui
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Ya Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Respiratory Diseases of National Health Commission of China, Wuhan, China.
| |
Collapse
|
5
|
Sidwell A, Smith SC, Roper C. A comparison of fine particulate matter (PM 2.5) in vivo exposure studies incorporating chemical analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:422-444. [PMID: 36351256 DOI: 10.1080/10937404.2022.2142345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complex, variable mixtures present in fine particulate matter (PM2.5) have been well established, and associations between chemical constituents and human health are expanding. In the past decade, there has been an increase in PM2.5 toxicology studies that include chemical analysis of samples. This investigation is a crucial component for identifying the causal constituents for observed adverse health effects following exposure to PM2.5. In this review, investigations of PM2.5 that used both in vivo models were explored and chemical analysis with a focus on respiratory, cardiovascular, central nervous system, reproductive, and developmental toxicity was examined to determine if chemical constituents were considered in the interpretation of the toxicity findings. Comparisons between model systems, PM2.5 characteristics, endpoints, and results were made. A vast majority of studies observed adverse effects in vivo following exposure to PM2.5. While limited, investigations that explored connections between chemical components and measured endpoints noted significant associations between biological measurements and a variety of PM2.5 constituents including elements, ions, and organic/elemental carbon, indicating the need for such analysis. Current limitations in available data, including relatively scarce statistical comparisons between collected toxicity and chemical datasets, are provided. Future progress in this field in combination with epidemiologic research examining chemical composition may support regulatory standards of PM2.5 to protect human health.
Collapse
Affiliation(s)
- Allie Sidwell
- Department of Biology, University of Mississippi, Mississippi, MS, USA
| | - Samuel Cole Smith
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| | - Courtney Roper
- Department of Bio-Molecular Sciences, University of Mississippi, Mississippi, MS, USA
| |
Collapse
|
6
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, Quintana-Belmares R, García-Cuellar CM. Particulate matter (PM 10) destabilizes mitotic spindle through downregulation of SETD2 in A549 lung cancer cells. CHEMOSPHERE 2022; 295:133900. [PMID: 35134396 DOI: 10.1016/j.chemosphere.2022.133900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Air pollution represents an environmental problem, impacting negatively in human health. Particulate matter of 10 μm or less in diameter (PM10) is related to pulmonary diseases, including lung cancer. Mitotic spindle is made up by chromosome-microtubule (MT) interactions, where SETD2 plays an important role in MT stability. SETD2 binds and activates α-TUBULIN sub-unit and promotes MT polymerization. Alongside this mechanism, the spindle assembly checkpoint (SAC) senses the adequate mitotic progression through proteins such as BUBR1, AURORA B and SURVIVIN. Alterations in MT dynamics as well as in SAC cause aneuploidy and chromosomal instability, a common phenotype in cancer cells. In this study, we evaluated the effect of PM10 in the expression and protein levels of SETD2, as well as the effect in the expression and protein levels of SAC and mitotic components involved in chromosomal segregation/mitosis, using the A549 lung cancer cell line. A549 cell cultures were exposed to PM10 (10 μg/cm2) for 24 h to evaluate the expression and protein levels of SETD2 (SETD2), TUBA1A (α-TUBULIN), CCNB1 (CYCLIN B1), BUB1B (BUBR1), AURKB (AURORA B) and BIRC5 (SURVIVIN). We observed that PM10 decreases the expression and protein levels of SETD2, α-TUBULIN and BUBR1 and increases the levels of AURORA B and SURVIVIN in A549 cells, compared with non-treated cells. PM10 also caused a decrease in mitotic index and in the percentage of cells in G2/M when compared with control group. Co-localization of SETD2/α -TUB was lower in PM10-treated cells in comparison with non-treated cells. Finally, micronuclei (MN) frequency was higher in PM10-treated cells in contrast with non-treated cells, being whole chromosomes more common in PM10-treated MN than in non-treated MN. Our results suggest that PM10 causes missegregation and aneuploidy through downregulation of SETD2 and SAC components, inducing aneuploidy and predisposing to the generation of chromosomal instability in transformed cells.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla CP, 54090, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Raúl Quintana-Belmares
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan CP, 14080, Ciudad de México, Mexico.
| |
Collapse
|
7
|
Khoshkam Z, Habibi-Rezaei M, Hassanvand MS, Aftabi Y, Seyedrezazadeh E, Amiri-Sadeghan A, Zarredar H, Roshangar L, Gholampour A, Moosavi-Movahedi AA. The oxidative and neurotoxic potentials of the ambient PM 2.5 extracts: The efficient multi-solvent extraction method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152291. [PMID: 34902406 DOI: 10.1016/j.scitotenv.2021.152291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/05/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
The health effects of ambient air particulate matter with a diameter of ≤2.5 μm (PM2.5) on the central nervous system are well known and the induced oxidative stress has been shown as their main neuropathologic outcome. Ambient air PM2.5 sampling methods mostly use air sampler systems that collect PM2.5 on filters, which is followed by a PM2.5 extraction approach. Inefficient extraction may lead to compositional bias and unreal interpretation of the results. This study aimed to compare our proposed multi-solvent extraction (MSE) approach for PM2.5 extraction with a conventional aqueous extraction (AqE) method using the analysis of oxidative effects and cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Ambient PM2.5 samples were collected from an urban traffic location in Tehran city, the capital of Iran, using a high-volume sampler. The developed MSE method was proved to have superior advantages over the AqE method including an increased extraction efficiency (as much as 96 against 48% for PMms and PMaq, respectively), and decreased artifacts and compositional biases. Ambient PM2.5, besides PMms and PMaq were analyzed for water-soluble ions, metals, and major elements. Dithiothreitol, ascorbic acid, lipid peroxidation, and cell viability assays on SH-SY5Y cells represented the significantly higher oxidative potential for PMms compared to PMaq. The increased cytotoxicity may occur because of the increased oxidative potential of PMms and possibly is associated with higher efficiency of the MSE over the AqE method for removal of total redox-active PM components.
Collapse
Affiliation(s)
- Zahra Khoshkam
- College of Science, University of Tehran, Tehran, Iran; Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Habibi-Rezaei
- College of Science, University of Tehran, Tehran, Iran; Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417466191, Iran.
| | - Mohammad Sadegh Hassanvand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Aftabi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Amiri-Sadeghan
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Gholampour
- Department of Environmental Health Engineering, School of Public Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
8
|
Punniyamurthy A, Sharma S, Kaur K, Nahar Saikia U, Khaiwal R, Sharma S, Verma I. PM 2.5 mediated alterations in the in vitro human granuloma and its effect on reactivation of mycobacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14497-14508. [PMID: 34611809 DOI: 10.1007/s11356-021-16799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Exposure to particulate matter pollutant PM2.5 diminishes the immune response to mycobacterial antigens relevant to contain the infection in the granuloma, thus leading to reactivation of latent bacilli. The present study was therefore designed based on the hypothesis that exposure to PM2.5 affects the granuloma formation and reactivation of latent mycobacterial bacilli contained in the granuloma. For the sampling of PM2.5, based on initial standardisations, Teflon filter was selected over the quartz filter. Two different approaches were used to study the effect of PM2.5 on the human PBMC granuloma formed by Mycobacterium bovis BCG at multiplicity of infection (MOI) 0.1. In the first approach, granuloma formed in the presence of PM2.5 was loosely packed and ill-defined with significant downregulation of dormancy-associated mycobacterial genes, upregulation of reactivation-associated rpfB gene along with a significant increase in TNFα level without any change in the bacterial load in terms of CFUs. In the second approach, preformed human PBMC granuloma using M. bovis BCG was treated with PM2.5 that resulted in the disruption of granuloma architecture along with downregulation of not only dormancy-associated genes but also reactivation-associated rpfB gene of mycobacterial bacilli recovered from granuloma. However, there was no significant change in the host cytokine levels. Therefore, it can be inferred that PM2.5 can modulate the granuloma formation in vitro as well as mycobacterial gene expression in the granuloma with a possible role in the reactivation of latent bacilli.
Collapse
Affiliation(s)
| | - Sumedha Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Khushpreet Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravindra Khaiwal
- Department of Community Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
9
|
Samaee SM, Molaei R, Yokel RA, Pazokian H. Laser irradiation as a novel alternative to detach intact particulate matter collected on air filters. CHEMOSPHERE 2022; 286:131713. [PMID: 34375831 DOI: 10.1016/j.chemosphere.2021.131713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Airborne particulate matter (PM) is collected on specific filters. For subsequent testing, the PM should be detached intact from the filter. Liquid extraction (LE), the standard method to detach PM from air filter surfaces, is challenging and can be tedious. Laser irradiation has been used to characterize PM on filters, but not to detach PM from filters for subsequent testing. A feasibility study was conducted to assess the potential of laser irradiation to detach PM from air filters. Laser-detached PM was deposited on a pre-weighed glass plate. PM detachment and collection were conducted in a single step. PM-coated air filters were subjected to visual inspection, gravimetric assessment of captured PM, and spectroscopic scanning (ATR-FTIR, SEM-EDS, and XRD) before and after laser irradiation. Laser irradiation PM detachment efficiency was up to 78 %. Functional groups, elements, and minerals of PM collected on filter surfaces disappeared or significantly decreased after irradiation, demonstrating detachment, without suffering a change in their nature. No evidence of filter fragments was found in the detached PM. Laser irradiation was i) an easy, ii) rapid, and iii) single step procedure that iv) detached PM, v) didn't detach filter fragments, vi) didn't change PM composition, and vii) is amenable to automation and high throughput. Laser irradiation to detach PM from air filters as an alternative to LE is worthy of further study and development.
Collapse
Affiliation(s)
- Seyed-Mohammadreza Samaee
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, 165, Iran.
| | - Rahim Molaei
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, 165, Iran
| | - Robert A Yokel
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - Hedieh Pazokian
- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| |
Collapse
|
10
|
Pivato A, Amoruso I, Formenton G, Di Maria F, Bonato T, Vanin S, Marion A, Baldovin T. Evaluating the presence of SARS-CoV-2 RNA in the particulate matters during the peak of COVID-19 in Padua, northern Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147129. [PMID: 33894607 PMCID: PMC8050405 DOI: 10.1016/j.scitotenv.2021.147129] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 05/18/2023]
Abstract
The airborne transmission of SARS-CoV-2, the etiologic agent of the current COVID-19 pandemic, has been hypothesized as one of the primary routes of transmission. Current data suggest a low probability of airborne transmission of the virus in open environments and a higher probability in closed ones, particularly in hospitals or quarantine facilities. However, the potential diffusion of the virus in open environments, especially using particulate matter (PM) as a transport carrier, generated concern in the exposed populations. Several authors found a correlation between the exceeding of the PM10 concentration limits in some Italian cities and the prevalence of Covid-19 cases detected in those areas. This study investigated the potential presence of SARS-COV-2 RNA on a representative series of PM samples collected in the province of Padua in Northeastern Italy during the first wave of COVID pandemic. Forty-four samples of PM2.5 and PM10 were collected between February 24 and March 9, 2020 and analyzed with RT-qPCR for SARS-CoV-2 RNA. The experimental results did not indicate the presence of SARS-CoV-2 RNA in the outdoor PMs, thus confirming the low probability of virus airborne transmission through PM.
Collapse
Affiliation(s)
- A Pivato
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padua, Italy
| | - I Amoruso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Hygiene and Public Health Unit, University of Padua, Italy.
| | - G Formenton
- Environmental Agency of Veneto Region (ARPAV), Mestre, VE, Italy
| | - F Di Maria
- Dipartimento di Ingegneria, University of Perugia, Italy
| | - T Bonato
- Società Estense Servizi Ambientali (S.E.S.A. S.p.A.), Este, PD, Italy
| | - S Vanin
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV), University of Genova, Italy
| | - A Marion
- Department of Industrial Engineering (DII), University of Padua, Italy
| | - T Baldovin
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Hygiene and Public Health Unit, University of Padua, Italy
| |
Collapse
|
11
|
Honda A, Okuda T, Nagao M, Miyasaka N, Tanaka M, Takano H. PM2.5 collected using cyclonic separation causes stronger biological responses than that collected using a conventional filtration method. ENVIRONMENTAL RESEARCH 2021; 198:110490. [PMID: 33220242 DOI: 10.1016/j.envres.2020.110490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Evaluation of the health effects of particulate matter with aerodynamic dias. ≤ 2.5 μm (PM2.5) should reflect realistic condition in ambient atmosphere. However, using conventional filtration methods, only extracts from PM2.5 collected on the filter can be analyzed and not the particle itself. Cyclonic separation is a technique that enables the direct analysis of the effects of the crude "powder form" of PM2.5 on respiratory health. Airway epithelial cells and antigen-presenting cells were exposed to PM2.5 collected during the same period using a conventional filtration method or cyclonic separation. PM2.5 collected using cyclonic separation led to a higher secretion of interleukins 6 and 8 (IL-6, IL-8) from airway epithelial cells, and IL-6, IL-1β, tumor necrosis factor-α (TNF-α) secretion, cluster of differentiation 86 (CD86), and dendritic and epithelial cells 205 (DEC205) expression on antigen-presenting cells, compared with the effects of filter-collected PM2.5. Furthermore, PM2.5 collected using cyclonic separation increased inflammatory cytokine levels and induced lung inflammation in vivo. These results suggest that crude PM2.5 collected using cyclonic separation causes stronger biological responses than filter-collected PM2.5. Hence, PM2.5 collected using cyclonic separation can be utilized for a reliable evaluation of the health effects of ambient PM2.5.
Collapse
Affiliation(s)
- Akiko Honda
- Graduate School of Global Environmental Studies, Kyoto University, Japan; Graduate School of Engineering, Kyoto University, Japan.
| | - Tomoaki Okuda
- Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Megumi Nagao
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Natsuko Miyasaka
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Michitaka Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Japan; Graduate School of Engineering, Kyoto University, Japan
| |
Collapse
|
12
|
Pietrogrande MC, Bacco D, Trentini A, Russo M. Effect of filter extraction solvents on the measurement of the oxidative potential of airborne PM 2.5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:29551-29563. [PMID: 33565023 PMCID: PMC8222022 DOI: 10.1007/s11356-021-12604-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Solvent extraction of PM2.5 samples collected on the filter is a preliminary step for assessing the PM2.5 oxidative potential (OP) using cell-free assays, as the dithiothreitol (DTT) and the ascorbic acid (AA) assays. In this study, we evaluated the effect of the solvent choice by extracting ambient PM2.5 samples with different solvents: methanol, as organic solvent, and two aqueous buffers, i.e., phosphate buffer (PB) and Gamble's solution (G), as a lung fluid surrogate solution. Both the measured volume-based OPVDTT and OPVAA responses varied for the different extraction methods, since methanol extraction generated the lowest values and phosphate buffer the highest. Although all the tested solvents produced intercorrelated OPVDTT values, the phosphate buffer resulted the most useful for OPDTT assessment, as it provided the most sensible measure (nearly double values) compared with other extractions. The association of the measured OPV values with PM chemical composition suggested that oxidative properties of the investigated PM2.5 samples depend on both transition metals and quinones, as also supported by additional experimental measurements on standard solutions of redox-active species.
Collapse
Affiliation(s)
- Maria Chiara Pietrogrande
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19 - 44121, Ferrara, Italy.
| | - Dimitri Bacco
- Emilia Romagna Regional Agency for Prevention, Environment and Energy, ARPAE, Via Po 5 - 40139, Bologna, Italy
| | - Arianna Trentini
- Emilia Romagna Regional Agency for Prevention, Environment and Energy, ARPAE, Via Po 5 - 40139, Bologna, Italy
| | - Mara Russo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19 - 44121, Ferrara, Italy
| |
Collapse
|
13
|
Kumar P, Kalaiarasan G, Porter AE, Pinna A, Kłosowski MM, Demokritou P, Chung KF, Pain C, Arvind DK, Arcucci R, Adcock IM, Dilliway C. An overview of methods of fine and ultrafine particle collection for physicochemical characterisation and toxicity assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143553. [PMID: 33239200 DOI: 10.1016/j.scitotenv.2020.143553] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Particulate matter (PM) is a crucial health risk factor for respiratory and cardiovascular diseases. The smaller size fractions, ≤2.5 μm (PM2.5; fine particles) and ≤0.1 μm (PM0.1; ultrafine particles), show the highest bioactivity but acquiring sufficient mass for in vitro and in vivo toxicological studies is challenging. We review the suitability of available instrumentation to collect the PM mass required for these assessments. Five different microenvironments representing the diverse exposure conditions in urban environments are considered in order to establish the typical PM concentrations present. The highest concentrations of PM2.5 and PM0.1 were found near traffic (i.e. roadsides and traffic intersections), followed by indoor environments, parks and behind roadside vegetation. We identify key factors to consider when selecting sampling instrumentation. These include PM concentration on-site (low concentrations increase sampling time), nature of sampling sites (e.g. indoors; noise and space will be an issue), equipment handling and power supply. Physicochemical characterisation requires micro- to milli-gram quantities of PM and it may increase according to the processing methods (e.g. digestion or sonication). Toxicological assessments of PM involve numerous mechanisms (e.g. inflammatory processes and oxidative stress) requiring significant amounts of PM to obtain accurate results. Optimising air sampling techniques are therefore important for the appropriate collection medium/filter which have innate physical properties and the potential to interact with samples. An evaluation of methods and instrumentation used for airborne virus collection concludes that samplers operating cyclone sampling techniques (using centrifugal forces) are effective in collecting airborne viruses. We highlight that predictive modelling can help to identify pollution hotspots in an urban environment for the efficient collection of PM mass. This review provides guidance to prepare and plan efficient sampling campaigns to collect sufficient PM mass for various purposes in a reasonable timeframe.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Gopinath Kalaiarasan
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Alexandra E Porter
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Alessandra Pinna
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Michał M Kłosowski
- Department of Materials, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Room 1310, Boston, MA 02115, USA
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Christopher Pain
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - D K Arvind
- Centre for Speckled Computing, School of Informatics, University of Edinburgh, Edinburgh, Scotland EH8 9AB, United Kingdom
| | - Rossella Arcucci
- Data Science Institute, Department of Computing, Imperial College London, London SW7 2BU, United Kingdom
| | - Ian M Adcock
- National Heart & Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Claire Dilliway
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
14
|
Lan Y, Ng CT, Ong CN, Yu LE, Bay BH. Transcriptomic analysis identifies dysregulated genes and functional networks in human small airway epithelial cells exposed to ambient PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111702. [PMID: 33396033 DOI: 10.1016/j.ecoenv.2020.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Cellular models exhibiting human physiological features of pseudostratified columnar epithelia, provide a more realistic approach for elucidating detailed mechanisms underlying PM2.5-induced pulmonary toxicity. In this study, we characterized the barrier and mucociliary functions of differentiated human small airway epithelial cells (SAECs), cultured at the air-liquid interface (ALI). Due to the presence of mucociliary protection, particle internalization was reduced, with a concomitant decrease in cytotoxicity in differentiated S-ALI cells, as compared to conventional submerged SAEC cultures. After 24-hour exposure to PM2.5 surrogates, 117 up-regulated genes and 156 down-regulated genes were detected in S-ALI cells, through transcriptomic analysis using the Affymetrix Clariom™ S Human Array. Transcription-level changes in >60 signaling pathways, were revealed by functional annotation of the 273 differentially expressed genes, using the PANTHER Gene List Analysis. These pathways are involved in multiple cellular processes, that include inflammation and apoptosis. Exposure to urban PM2.5 led to complex responses in airway epithelia, including a net induction of downstream pro-inflammatory and pro-apoptotic responses. Collectively, this study highlights the importance of using the more advanced ALI model rather than the undifferentiated submerged model, to avoid over-assessment of inhaled particle toxicity in human. The results of our study also suggest that reduction of ambient PM2.5 concentrations would have a protective effect on respiratory health in humans.
Collapse
Affiliation(s)
- Yang Lan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
15
|
Kang WS, Choi H, Jang G, Lee KH, Kim E, Kim KJ, Jeong GY, Kim JS, Na CS, Kim S. Long-Term Exposure to Urban Particulate Matter on the Ocular Surface and the Incidence of Deleterious Changes in the Cornea, Conjunctiva and Retina in Rats. Int J Mol Sci 2020; 21:E4976. [PMID: 32674521 PMCID: PMC7404123 DOI: 10.3390/ijms21144976] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
We investigated the time-dependent deleterious ocular changes induced by urban particulate matter (UPM) in vitro and in vivo. UPM treatment decreased human corneal epithelial cell migration and survival. Fluorescein scores were consistently increased by UPM application for 16 weeks. One week of rest at 2 or 4 weeks led to a recovery trend, whereas two weeks of rest at 8 weeks induced no change. UPM treatment decreased the tear film break-up time at 2 weeks, which was thereafter maintained until 16 weeks. No changes were found after periods of rest. UPM-treated eyes exhibited greater corneal epithelium thickness than normal eyes at 2 weeks, which recovered to normal at 4 and 8 weeks and was significantly decreased at 16 weeks. Apoptotic cell number in the epithelium was increased at 2 weeks, which remained constant except at 8 weeks. IL-6 expression in the cornea of the right eye continually increased for 16 weeks, and significant recovery was only observed at 8 weeks after 2 weeks of rest. Ocular pressure was significantly increased in the right eye at 12 and 16 weeks. Topical UPM application to the eye induced deleterious changes to various closely related parts of the eye.
Collapse
Affiliation(s)
- Wan Seok Kang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Hakjoon Choi
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Goeun Jang
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Ki Hoon Lee
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Eun Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Kyeong Jo Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Gil-Yeon Jeong
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Jin Seok Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, 185 Geonjae-ro, Naju-si, Jeollanam-do 58245, Korea;
| | - Sunoh Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (W.S.K.); (H.C.); (G.J.); (K.H.L.); (E.K.); (K.J.K.); (G.-Y.J.); (J.S.K.)
| |
Collapse
|
16
|
Blaskievicz PH, Silva AMC, Fernandes V, Junior OBP, Shimoya-Bittencourt W, Ferreira SMB, da Silva CAL. Atmospheric Pollution Exposure Increases Disease Activity of Systemic Lupus Erythematosus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1984. [PMID: 32197296 PMCID: PMC7143911 DOI: 10.3390/ijerph17061984] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that high levels of air pollutants may increase activity of systemic lupus erythematosus (SLE). The aim of this study is to analyze the association between pollutants originating from the Brazilian Legal Amazon and SLE activity. This is a retrospective longitudinal cohort study with patients with SLE in the General Hospital in Cuiabá, Brazil. The association with SLE activity was measured using the SLE disease activity index (SLEDAI) and data on air quality-PM2.5 and CO, published on the websites of the State Department of Environment and the Center for Weather Forecasting and Climate Studies. To assess the effect of daily concentrations of pollutants on SLEDAI scores, the generalized estimation equation (GEE) model was used. A total of 32 female patients were assessed, in 96 doctor's appointments. The average SLEDAI score was 6 points (±5.05). GEE showed an association of disease activity with both higher rates of wildfires (p = 0.021) and average CO rate (p = 0.013), but there was no statistical association between particulate levels and SLE activity. The results suggest that variations in air pollution are associated with the activity of autoimmune rheumatic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristhiane Almeida Leite da Silva
- Master’s Program in Environment and Health, University of Cuiabá, Cuiabá 78065-700, Brazil; (P.H.B.); (A.M.C.S.); (V.F.); (O.B.P.J.); (W.S.-B.); (S.M.B.F.)
| |
Collapse
|
17
|
Hadei M, Aboosaedi Z, Naddafi K. Carcinogenic risks and chemical composition of particulate matter recovered by two methods: wet and dry extraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:213. [PMID: 32133548 DOI: 10.1007/s10661-020-8156-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Wet and dry extraction methods are two main methods used in toxicological in vitro and in vivo studies to recover particulate matter (PM) from filter papers. The aim of this study was to extract PM by wet and dry extraction methods and compare the elemental content and carcinogenic risks of extracts. PM10 samples were collected using fiberglass filters and a high-volume air sampler. For wet extraction, the method involved agitation in water, sonication in water bath, and agitation again. For dry extraction, the filters were sonicated and the PM was recovered using sweeping by a brush. Elemental composition of extracts was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). Excess lifetime cancer risks (ELCR) of As, Cd, Cr, Ni, and Pb in extracts were estimated. The average recovery efficiency (%) of dry and wet extraction methods were 36.8% and 58.5%, respectively. The average elemental concentration that resulted from dry and wet methods was calculated to be 2.27 and 1.26 μg/m3, respectively. The total ELCR of all heavy metals in both methods exceeds the 1 × 10-6 limit. However, the total ELCR of heavy metals that resulted from the dry method was higher than that from the wet method. In conclusion, the dry method showed to be more effective to recover a representative extract from the filter. This can ultimately lead to a realistic and robust response in toxicological studies. However, a toxicological comparison between the extracts of these two methods is required.
Collapse
Affiliation(s)
- Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Aboosaedi
- Department of Environmental Health, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Enghelab Square, Tehran, Iran.
| |
Collapse
|
18
|
Ding J, Guan Y, Cong Y, Chen L, Li YF, Zhang L, Zhang L, Wang J, Bai R, Zhao Y, Chen C, Wang L. Single-Particle Analysis for Structure and Iron Chemistry of Atmospheric Particulate Matter. Anal Chem 2019; 92:975-982. [DOI: 10.1021/acs.analchem.9b03913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Ding
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lili Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jian Wang
- Canadian Light Source and University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Thimmulappa RK, Chattopadhyay I, Rajasekaran S. Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7120104 DOI: 10.1007/978-981-32-9366-3_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Globally, respiratory diseases are major cause of disability and mortality, and more alarmingly, it disproportionately affects developing countries, which is largely attributed to poor quality of air. Tobacco smoke and emissions from combustion of fossil fuel and biomass fuel are the major airborne pollutants affecting human lung health. Oxidative stress is the dominant driving force by which the airborne pollutants exert their toxicity in lungs and cause respiratory diseases. Most airborne pollutants are associated with intrinsic oxidative potential and, additionally, stimulate endogenous production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Elevated ROS and RNS in lungs modulate redox signals and cause irreversible damage to critical biomolecules (lipids, proteins and DNA) and initiate various pathogenic cellular process. This chapter provides an insight into oxidative stress-linked pathogenic cellular process such as lipid peroxidation, inflammation, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, epigenetic changes, profibrotic signals and mucus hypersecretion, which drive the development and progression of lung diseases. Lungs are associated with robust enzymatic and non-enzymatic (GSH, ascorbic acid, uric acid, vitamin E) antioxidant defences. However, sustained production of free radicals due to continuous exposures to airborne pollutants overwhelms lung antioxidant defences and causes oxidative injury. Preclinical studies have demonstrated the critical roles and therapeutic potential of upregulating lung antioxidants for intervention of respiratory diseases; however, so far clinical benefits in antioxidant supplementation trials have been minimal and conflicting. Antioxidants alone may not be effective in treatment of respiratory diseases; however it could be a promising adjunctive therapy.
Collapse
|
20
|
Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, Herrera LA, García-Cuellar CM. Airborne particulate matter induces mitotic slippage and chromosomal missegregation through disruption of the spindle assembly checkpoint (SAC). CHEMOSPHERE 2019; 235:794-804. [PMID: 31280048 DOI: 10.1016/j.chemosphere.2019.06.232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Particulate matter (PM) is a risk factor for lung cancer development and chromosomal missegregation and cell cycle disruptions are key cellular events that trigger tumorigenesis. We aimed to study the effect of PM10 (PM with an aerodynamic diameter ≤10 μm) on mitotic arrest and chromosomal segregation, evaluating the spindle assembly checkpoint (SAC) protein dynamics in the human lung A549 adenocarcinoma cell line. For this purpose, synchronized cells were exposed to PM10 for 24 h to obtain the frequency of micronucleated (MN) and trinucleated (TN) cells. Then, the efficiency of the mitotic arrest after PM10 exposure was analyzed. To elucidate the effect of PM10 in chromosomal segregation, the levels and subcellular localization of essential SAC proteins were evaluated. Results indicated that A549 cells exposed to PM10 exhibited an increase in MN and TN cells and a decrease in mitotic indexes and G2/M phase. A549 cells treated with PM10 showed reduced protein levels of MDC1 and NEK2 (38% and 35% respectively), which is required for MAD2 recruitment to kinetochores, MAD2 and BUBR1, effectors of the SAC (25% and 18% respectively), and CYCLIN B1, required during G2/M phase (35%). Besides, PM10 exposure increase the levels of AURORA B and SURVIVIN, required for SAC activation through chromosome-microtubule attachment errors (85% and 74% respectively). We suggest that PM10 causes mitotic slippage due to alterations in MAD2 localization. Thus, PM10 causes inadequate chromosomal segregation and deficient mitotic arrest by altering SAC protein levels, predisposing A549 cells to chromosomal instability, a common feature observed in cancer.
Collapse
Affiliation(s)
- Miguel Santibáñez-Andrade
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, CP 54090, Tlalnepantla, Estado de México, Mexico
| | - Rocío Morales-Bárcenas
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080 México, DF, Mexico.
| |
Collapse
|
21
|
Effects of fine particulate matter on the ocular surface: An in vitro and in vivo study. Biomed Pharmacother 2019; 117:109177. [PMID: 31387168 DOI: 10.1016/j.biopha.2019.109177] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 11/22/2022] Open
Abstract
Exposure to ambient fine particulate matter (fine PM) pollution has been previously associated with ocular surface diseases. But, to the best of our knowledge, the in vivo long-term effects of fine PM on the ocular surface have not been investigated. We aimed to evaluate the effects of fine PM on cultured human corneal epithelial (HCE) cells and on the ocular surfaces of mice, with standard reference material of fine PM(SRM 2786). We applied fine PM suspension to the eyes of C57BL/6 mice for up to 6 months. In vivo examinations, including tear secretion, tear film break-up time (TBUT) and corneal fluorescein staining, were performed in the 3rd and 6th month. At the end of the in vivo study, the corneal histological changes and conjunctival goblet cells were examined by staining, and cytokines in tissue were also detected. In addition, HCE cells were treated with fine PM for 12 h and 24 h. Then, cell apoptosis and reactive oxygen species (ROS) formation was detected. We found that fine PM damages the mouse eye in a dose- and time-dependent manner. In mice, the tear secretion and tear film break-up time were significantly reduced, along with the development of corneal epithelial damage, apoptosis of conjunctival epithelial cells and hypoplasia of conjunctival goblet cells. In addition, IL-18, IL-22, IL-23 and MCP-1 were increased in both conjunctiva and cornea of the fine PM-treated animals. Furthermore, increased apoptosis and ROS production were observed in time- and dose-dependent manner in HCE cells after fine PM exposure for 12 h and 24 h. Our results indicate that fine PM is cytotoxic to both HCE cells and the ocular surface. Long-term topical application of fine PM suspension in mice results in ocular surface changes that are similar to those observed with dry eye.
Collapse
|
22
|
Giorio C, Bortolini C, Kourtchev I, Tapparo A, Bogialli S, Kalberer M. Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure photoionisation high-resolution mass spectrometry. CHEMOSPHERE 2019; 224:786-795. [PMID: 30851530 DOI: 10.1016/j.chemosphere.2019.02.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants of high concern for public health. In the atmosphere they undergo oxidation, mainly through reactions with ·OH and NOx to produce nitro- and oxygenated (oxy-) derivatives. In this study, we developed a new method for the detection of particle-bound PAHs, nitro-PAHs and oxy-PAHs using direct infusion into an atmospheric pressure photoionisation high-resolution mass spectrometer (APPI-HRMS). Method optimisation was done by testing different source temperatures, gas flow rates, mobile phases and dopants. Samples were extracted with methanol, concentrated by evaporation and directly infused in the APPI source after adding toluene as dopant. Acquisition was performed in both polarity modes. The method was applied to target analysis of seasonal PM2.5 samples from an urban background site in Padua (Italy), in the Po Valley, in which a series of PAHs, nitro- and oxy-PAHs were detected. APPI-HRMS was then used for non-target analysis of seasonal PM2.5 samples and results compared with nano-electrospray ionisation (nanoESI) HRMS. The results showed that, when samples were characterised by highly oxidised organic compounds, including S-containing compounds, like in summer samples, APPI did not bring any additional information with respect to nanoESI in negative polarity (nanoESI(-)). Conversely, for winter samples, APPI(-) could detect a series of aromatic and poly-aromatic compounds, mainly oxidised and nitrogenated aromatics, that were not otherwise detected with nanoESI.
Collapse
Affiliation(s)
- Chiara Giorio
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy.
| | - Claudio Bortolini
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Ivan Kourtchev
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Andrea Tapparo
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Sara Bogialli
- Department of Chemical Sciences, University of Padua, Via Marzolo 1, Padova, 35131, Italy
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| |
Collapse
|
23
|
Roper C, Delgado LS, Barrett D, Massey Simonich SL, Tanguay RL. PM 2.5 Filter Extraction Methods: Implications for Chemical and Toxicological Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:434-442. [PMID: 30507171 PMCID: PMC6652177 DOI: 10.1021/acs.est.8b04308] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Toxicology research into the global public health burden of fine particulate matter (PM2.5) exposures frequently requires extraction of PM2.5 from filters. A standardized method for these extractions does not exist, leading to inaccurate interlaboratory comparisons. It is largely unknown how different filter extraction methods might impact the composition and bioactivity of the resulting samples. We characterized the variation in these metrics by using equal portions of a single PM2.5 filter, with each portion undergoing a different extraction method. Significant differences were observed between extraction methods for concentrations of elements and polycyclic aromatic hydrocarbons (PAHs) for the PM2.5 tested following its preparation for biological response studies. Importantly, the chemical profiles differed from those observed when we used standard protocols for chemical characterization of the ambient sample, demonstrating that extraction can alter both chemical component amounts and species profiles of the extracts. The impact of these chemical differences on sensitive end points of zebrafish development was investigated. Significant differences in the percent incidence and timing of mortality were associated with the PM2.5 extraction method. This research highlights the importance of and rationale for considering the extraction method when interlaboratory comparisons of PM2.5 toxicology research are made.
Collapse
Affiliation(s)
- Courtney Roper
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Lisandra Santiago Delgado
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Damien Barrett
- Department of Microbiology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
- Department of Chemistry , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology , Oregon State University , Corvallis , Oregon 97331 , United States
| |
Collapse
|
24
|
Vilas Boas DS, Matsuda M, Toffoletto O, Garcia MLB, Saldiva PHN, Marquezini MV. Workers of São Paulo city, Brazil, exposed to air pollution: Assessment of genotoxicity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:18-24. [DOI: 10.1016/j.mrgentox.2018.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
25
|
Wei T, Tang M. Biological effects of airborne fine particulate matter (PM 2.5) exposure on pulmonary immune system. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:195-201. [PMID: 29734103 DOI: 10.1016/j.etap.2018.04.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 05/21/2023]
Abstract
Airborne fine particulate matter (PM2.5) attracts more and more attention due to its environmental effects. The immune system appears to be a most sensitive target organ for the environmental pollutants. Inhaled PM2.5 can deposit in different compartments in the respiratory tract and interact with epithelial cells and resident immune cells. Exposed to PM2.5 can induce local or systematic inflammatory responses. This review focus on the effects of respiratory tract exposed to PM2.5. Firstly, we introduced the major emission sources, basic characteristics of PM2.5 and discussed its immunoadjuvant potential. Secondly, we elaborated the immune cells in the respiratory tract and the deposition of PM2.5 regarding the structural characteristics of the respiratory tract. Furthermore, we summarized the in vivo/vitro studies that revealed the immunotoxic effects of PM2.5 exposure to pulmonary cellular effectors and explored the contribution of PM2.5 exposure to the Th1/Th2 balance.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing 210009, PR China; Jiangsu key Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
26
|
Wu Y, Guo Y, Song H, Liu W, Yang Y, Liu Y, Sang N, Zuo YY, Liu S. Oxygen content determines the bio-reactivity and toxicity profiles of carbon black particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:207-214. [PMID: 29276956 DOI: 10.1016/j.ecoenv.2017.12.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 05/05/2023]
Abstract
In spite of the considerable efforts invested to understand the environmental health and safety (EHS) impacts of ultrafine particles, such as the representative PM2.5, there are still significant knowledge gaps to be filled. No conclusive understandings have been obtained about the physicochemical determinants in accounting for differential adverse outcomes. Here we compared the cytotoxicity of four carbon black (CB) particles with similar physicochemical properties except for their oxygen contents (C824455 < C1864 < Printex U < SB4A). We found that these four CB particles manifested in vitro and in vivo cytotoxicity reversely related to their oxygen contents, namely a hierarchy of cytotoxicity: C824455 > C1864 > Printex U > SB4A. Among these CB particles, the most significant lung injury (e.g. collapses and inflammation) and macrophagic activation were found for C824455 and C1864, in particular for C824455. All these differences in toxicity profiles, including in vitro and in vivo cytotoxicity, pro-inflammatory effects and direct damages to the lung epithelia, should be (at least partially) ascribed to the oxygen content in these CB particles that in turn determined their transformation, i.e. the different aggregation states. Nonetheless, PM2.5 likewise caused severe in vivo and in vitro toxicities to the lung cells and macrophages. This study thus offers more insights into the structure-activity relationship (SAR) and opens a new avenue to elucidate the physicochemical determinants in evoking lung injuries by ultrafine airborne particles.
Collapse
Affiliation(s)
- Yakun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yifan Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Haoyang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi Yang
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Yajun Liu
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing 100035, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yi Y Zuo
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
27
|
Baysal A, Saygin H, Ustabasi GS. Interaction of PM2.5 airborne particulates with ZnO and TiO 2 nanoparticles and their effect on bacteria. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 190:34. [PMID: 29264728 DOI: 10.1007/s10661-017-6408-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
A significant knowledge gap in nanotechnology is the absence of standardized protocols for examining and comparison the effect of metal oxide nanoparticles on different environment media. Despite the large number of studies on ecotoxicity of nanoparticles, most of them disregard the particles physicochemical transformation under real exposure conditions and interaction with different environmental components like air, soil, water, etc. While one of the main exposure ways is inhalation and/or atmosphere for human and environment, there is no investigation between airborne particulates and nanoparticles. In this study, some metal oxide nanoparticle (ZnO and TiO2) transformation and behavior in PM2.5 air particulate media were examined and evaluated by the influence on nanoparticle physicochemical properties (size, surface charge, surface functionalization) and on bacterium (Gram-positive Bacillus subtilis, Staphylococcus aureus/Gram-negative Escherichia coli, Pseudomonas aeruginosa bacteria) by testing in various concentrations of PM2.5 airborne particulate media to contribute to their environmental hazard and risk assessment in atmosphere. PM2.5 airborne particulate media affected their toxicity and physicochemical properties when compared the results obtained in controlled conditions. ZnO and TiO2 surfaces were functionalized mainly with sulfoxide groups in PM2.5 air particulates. In addition, tested particles were not observed to be toxic in controlled conditions. However, these were observed inhibition in PM2.5 airborne particulates media by the exposure concentration. These observations and dependence of the bacteria viability ratio explain the importance of particulate matter-nanoparticle interaction.
Collapse
Affiliation(s)
- Asli Baysal
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey.
| | - Hasan Saygin
- Application and Research Center for Advanced Studies, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Gul Sirin Ustabasi
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| |
Collapse
|
28
|
Roper C, Chubb LG, Cambal L, Tunno B, Clougherty JE, Fattman C, Mischler SE. Association of IL-6 with PM 2.5 Components: Importance of Characterizing Filter-Based PM 2.5 Following Extraction. WATER, AIR, AND SOIL POLLUTION 2017; 228:43. [PMID: 28989204 PMCID: PMC5628506 DOI: 10.1007/s11270-016-3219-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Filter-based toxicology studies are conducted to establish the biological plausibility of the well-established health impacts associated with fine particulate matter (PM2.5) exposure. Ambient PM2.5 collected on filters is extracted into solution for toxicology applications, but frequently, characterization is nonexistent or only performed on filter-based PM2.5, without consideration of compositional differences that occur during the extraction processes. To date, the impact of making associations to measured components in ambient instead of extracted PM2.5 has not been investigated. Filter-based PM2.5 was collected at locations (n = 5) and detailed characterization of both ambient and extracted PM2.5 was performed. Alveolar macrophages (AMJ2-C11) were exposed (3, 24, and 48 h) to PM2.5 and the pro-inflammatory cytokine interleukin (IL)-6 was measured. IL-6 release differed significantly between PM2.5 collected from different locations; surprisingly, IL-6 release was highest following treatment with PM2.5 from the lowest ambient concentration location. IL-6 was negatively correlated with the sum of ambient metals analyzed, as well as with concentrations of specific constituents which have been previously associated with respiratory health effects. However, positive correlations of IL-6 with extracted concentrations indicated that the negative associations between IL-6 and ambient concentrations do not accurately represent the relationship between inflammation and PM2.5 exposure. Additionally, seven organic compounds had significant associations with IL-6 release when considering ambient concentrations, but they were not detected in the extracted solution. Basing inflammatory associations on ambient concentrations that are not necessarily representative of in vitro exposures creates misleading results; this study highlights the importance of characterizing extraction solutions to conduct accurate health impact research.
Collapse
Affiliation(s)
- Courtney Roper
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Lauren G Chubb
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA, Office of Mine Safety and Health Research, National Institute for Occupational Safety and Health, Pittsburgh, PA, USA
| | - Leah Cambal
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brett Tunno
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Cheryl Fattman
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Steven E Mischler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA, Office of Mine Safety and Health Research, National Institute for Occupational Safety and Health, Pittsburgh, PA, USA
| |
Collapse
|