1
|
Kofler M, Hallett M, Iannetti GD, Versace V, Ellrich J, Téllez MJ, Valls-Solé J. The blink reflex and its modulation - Part 1: Physiological mechanisms. Clin Neurophysiol 2024; 160:130-152. [PMID: 38102022 PMCID: PMC10978309 DOI: 10.1016/j.clinph.2023.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
The blink reflex (BR) is a protective eye-closure reflex mediated by brainstem circuits. The BR is usually evoked by electrical supraorbital nerve stimulation but can be elicited by a variety of sensory modalities. It has a long history in clinical neurophysiology practice. Less is known, however, about the many ways to modulate the BR. Various neurophysiological techniques can be applied to examine different aspects of afferent and efferent BR modulation. In this line, classical conditioning, prepulse and paired-pulse stimulation, and BR elicitation by self-stimulation may serve to investigate various aspects of brainstem connectivity. The BR may be used as a tool to quantify top-down modulation based on implicit assessment of the value of blinking in a given situation, e.g., depending on changes in stimulus location and probability of occurrence. Understanding the role of non-nociceptive and nociceptive fibers in eliciting a BR is important to get insight into the underlying neural circuitry. Finally, the use of BRs and other brainstem reflexes under general anesthesia may help to advance our knowledge of the brainstem in areas not amenable in awake intact humans. This review summarizes talks held by the Brainstem Special Interest Group of the International Federation of Clinical Neurophysiology at the International Congress of Clinical Neurophysiology 2022 in Geneva, Switzerland, and provides a state-of-the-art overview of the physiology of BR modulation. Understanding the principles of BR modulation is fundamental for a valid and thoughtful clinical application (reviewed in part 2) (Gunduz et al., submitted).
Collapse
Affiliation(s)
- Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria.
| | - Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, USA.
| | - Gian Domenico Iannetti
- University College London, United Kingdom; Italian Institute of Technology (IIT), Rome, Italy.
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy.
| | - Jens Ellrich
- Friedrich-Alexander-University Erlangen-Nuremberg, Germany.
| | | | - Josep Valls-Solé
- IDIBAPS (Institut d'Investigació August Pi i Sunyer), University of Barcelona, Spain.
| |
Collapse
|
2
|
Efferent and afferent connections of supratrigeminal neurons conveying orofacial muscle proprioception in rats. Brain Struct Funct 2021; 227:111-129. [PMID: 34611777 DOI: 10.1007/s00429-021-02391-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
The supratrigeminal nucleus (Su5) is a key structure for controlling jaw movements; it receives proprioceptive sensation from jaw-closing muscle spindles (JCMSs) and sends projections to the trigeminal motor nucleus (Mo5). However, the central projections and regulation of JCMS proprioceptive sensation are not yet fully understood. Therefore, we aimed to reveal the efferent and afferent connections of the Su5 using neuronal tract tracings. Anterograde tracer injections into the Su5 revealed that the Su5 sends contralateral projections (or bilateral projections with a contralateral predominance) to the Su5, basilar pontine nuclei, pontine reticular nucleus, deep mesencephalic nucleus, superior colliculus, caudo-ventromedial edge of the ventral posteromedial thalamic nucleus, parafascicular thalamic nucleus, zona incerta, and lateral hypothalamus, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) to the intertrigeminal region, trigeminal oral subnucleus, dorsal medullary reticular formation, and hypoglossal nucleus as well as the Mo5. Retrograde tracer injections into the Su5 demonstrated that the Su5 receives bilateral projections with a contralateral predominance (or contralateral projections) from the primary and secondary somatosensory cortices, granular insular cortex, and Su5, and ipsilateral projections (or bilateral projections with an ipsilateral predominance) from the dorsal peduncular cortex, bed nuclei of stria terminalis, central amygdaloid nucleus, lateral hypothalamus, parasubthalamic nucleus, trigeminal mesencephalic nucleus, parabrachial nucleus, juxtatrigeminal region, trigeminal oral and caudal subnuclei, and dorsal medullary reticular formation. These findings suggest that the Su5, which receives JCMS proprioception, has efferent and afferent connections with multiple brain regions that are involved in emotional and autonomic functions as well as orofacial motor functions.
Collapse
|
3
|
Driessen AK. Vagal Afferent Processing by the Paratrigeminal Nucleus. Front Physiol 2019; 10:1110. [PMID: 31555145 PMCID: PMC6722180 DOI: 10.3389/fphys.2019.01110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 12/26/2022] Open
Abstract
The paratrigeminal nucleus is an obscure region in the dorsal lateral medulla, which has been best characterized as a collection of interstitial cells located in the dorsal tip of the spinal trigeminal tract. The paratrigeminal nucleus receives afferent input from the vagus, trigeminal, spinal, and glossopharyngeal nerves, which contribute to its long-known roles in the baroreceptor reflex and nociceptive processing. More recently, studies have shown that this region is also involved in the processing of airway-derived sensory information. Notably, these studies highlight an underappreciated complexity in the neuronal content and circuit connectivity of the paratrigeminal nucleus. However, much remains to be understood about how paratrigeminal processing of vagal afferents is altered in disease. The aim of the present review is to provide an update of the current understanding of vagal afferent processing in the paratrigeminal nucleus and to explore how dysregulation at this site may contribute to vagal sensory neural dysfunction during disease.
Collapse
Affiliation(s)
- Alexandria K Driessen
- School of Biomedical Science, Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
García-Magro N, Martin YB, Negredo P, Avendaño C. The greater occipital nerve and its spinal and brainstem afferent projections: A stereological and tract-tracing study in the rat. J Comp Neurol 2018; 526:3000-3019. [PMID: 30080243 DOI: 10.1002/cne.24511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022]
Abstract
The neuromodulation of the greater occipital nerve (GON) has proved effective to treat chronic refractory neurovascular headaches, in particular migraine and cluster headache. Moreover, animal studies have shown convergence of cervical and trigeminal afferents on the same territories of the upper cervical and lower medullary dorsal horn (DH), the so-called trigeminocervical complex (TCC), and recent studies in rat models of migraine and craniofacial neuropathy have shown that GON block or stimulation alter nociceptive processing in TCC. The present study examines in detail the anatomy of GON and its central projections in the rat applying different tracers to the nerve and quantifying its ultrastructure, the ganglion neurons subserving GON, and their innervation territories in the spinal cord and brainstem. With considerable intersubject variability in size, GON contains on average 900 myelinated and 3,300 unmyelinated axons, more than 90% of which emerge from C2 ganglion neurons. Unmyelinated afferents from GON innervates exclusively laminae I-II of the lateral DH, mostly extending along segments C2-3 . Myelinated fibers distribute mainly in laminae I and III-V of the lateral DH between C1 and C6 and, with different terminal patterns, in medial parts of the DH at upper cervical segments, and ventrolateral rostral cuneate, paratrigeminal, and marginal part of the spinal caudal and interpolar nuclei. Sparse projections also appear in other locations nearby. These findings will help to better understand the bases of sensory convergence on spinomedullary systems, a critical pathophysiological factor for pain referral and spread in severe painful craniofacial disorders.
Collapse
Affiliation(s)
- Nuria García-Magro
- Autonoma University of Madrid, Medical School, Department of Anatomy, Histology & Neuroscience, Madrid, Spain
| | - Yasmina B Martin
- Francisco de Vitoria University (UFV), Department of Anatomy, Faculty of Health Sciences, Madrid, Spain
| | - Pilar Negredo
- Autonoma University of Madrid, Medical School, Department of Anatomy, Histology & Neuroscience, Madrid, Spain
| | - Carlos Avendaño
- Autonoma University of Madrid, Medical School, Department of Anatomy, Histology & Neuroscience, Madrid, Spain
| |
Collapse
|
5
|
Driessen AK, Farrell MJ, Dutschmann M, Stanic D, McGovern AE, Mazzone SB. Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits. Brain Struct Funct 2018; 223:4005-4022. [PMID: 30116890 DOI: 10.1007/s00429-018-1732-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/04/2018] [Indexed: 01/06/2023]
Abstract
Sensory neurons of the jugular vagal ganglia innervate the respiratory tract and project to the poorly studied medullary paratrigeminal nucleus. In the present study, we used neuroanatomical tracing, pharmacology and physiology in guinea pig to investigate the paratrigeminal neural circuits mediating jugular ganglia-evoked respiratory reflexes. Retrogradely traced laryngeal jugular ganglia neurons were largely (> 60%) unmyelinated and expressed the neuropeptide substance P and calcitonin gene-related peptide, although a population (~ 30%) of larger diameter myelinated jugular neurons was defined by the expression of vGlut1. Within the brainstem, vagal afferent terminals were confined to the caudal two-thirds of the paratrigeminal nucleus. Electrical stimulation of the laryngeal mucosa evoked a vagally mediated respiratory slowing that was mimicked by laryngeal capsaicin application. These laryngeal reflexes were modestly reduced by neuropeptide receptor antagonist microinjections into the paratrigeminal nucleus, but abolished by ionotropic glutamate receptor antagonists. D,L-Homocysteic acid microinjections into the paratrigeminal nucleus mimicked the laryngeal-evoked respiratory slowing, whereas capsaicin microinjections evoked a persistent tachypnoea that was insensitive to glutamatergic inhibition but abolished by neuropeptide receptor antagonists. Extensive projections from paratrigeminal neurons were anterogradely traced throughout the pontomedullary respiratory column. Dual retrograde tracing from pontine and ventrolateral medullary termination sites, as well as immunohistochemical staining for calbindin and neurokinin 1 receptors, supported the existence of different subpopulations of paratrigeminal neurons. Collectively, these data provide anatomical and functional evidence for at least two types of post-synaptic paratrigeminal neurons involved in respiratory reflexes, highlighting an unrecognised complexity in sensory processing in this region of the brainstem.
Collapse
Affiliation(s)
- Alexandria K Driessen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Michael J Farrell
- Department of Medical Imaging and Radiation Sciences, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Mathias Dutschmann
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Davor Stanic
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alice E McGovern
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stuart B Mazzone
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
6
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
7
|
McCulloch PF, Warren EA, DiNovo KM. Repetitive Diving in Trained Rats Still Increases Fos Production in Brainstem Neurons after Bilateral Sectioning of the Anterior Ethmoidal Nerve. Front Physiol 2016; 7:148. [PMID: 27148082 PMCID: PMC4838619 DOI: 10.3389/fphys.2016.00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/05/2016] [Indexed: 12/19/2022] Open
Abstract
This research was designed to investigate the role of the anterior ethmoidal nerve (AEN) during repetitive trained diving in rats, with specific attention to activation of afferent and efferent brainstem nuclei that are part of this reflexive response. The AEN innervates the nose and nasal passages and is thought to be an important component of the afferent limb of the diving response. Male Sprague-Dawley rats (N = 24) were trained to swim and dive through a 5 m underwater maze. Some rats (N = 12) had bilateral sectioning of the AEN, others a Sham surgery (N = 12). Twelve rats (6 AEN cut and 6 Sham) had 24 post-surgical dive trials over 2 h to activate brainstem neurons to produce Fos, a neuronal activation marker. Remaining rats were non-diving controls. Diving animals had significantly more Fos-positive neurons than non-diving animals in the caudal pressor area, ventral medullary dorsal horn, ventral paratrigeminal nucleus, nucleus tractus solitarius, rostral ventrolateral medulla, Raphe nuclei, A5, Locus Coeruleus, and Kölliker-Fuse area. There were no significant differences in brainstem Fos labeling in rats diving with and without intact AENs. Thus, the AENs are not required for initiation of the diving response. Other nerve(s) that innervate the nose and nasal passages, and/or suprabulbar activation of brainstem neurons, may be responsible for the pattern of neuronal activation observed during repetitive trained diving in rats. These results help define the central neuronal circuitry of the mammalian diving response.
Collapse
Affiliation(s)
- Paul F McCulloch
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Erik A Warren
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| | - Karyn M DiNovo
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University Downers Grove, IL, USA
| |
Collapse
|
8
|
Ciriello J, Caverson MM. Effect of estrogen on vagal afferent projections to the brainstem in the female. Brain Res 2016; 1636:21-42. [PMID: 26835561 DOI: 10.1016/j.brainres.2016.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
The effects of 17β-estradiol (E) on the distribution and density of brainstem projections of small or large diameter primary vagal afferents were investigated in Wistar rats using transganglionic transport of wheat germ agglutinin- (WGA; preferentially transported by non-myelinated afferent C-fibers; 2%), or cholera toxin B-subunit- (CTB, 5%; preferentially transported by large myelinated afferent A-fibers) conjugated horseradish peroxidase (HRP) in combination with the tetramethylbenzidine method in age matched ovariectomized (OVX) only or OVX and treated with E (OVX+E; 30 pg/ml plasma) females for 12 weeks. Additionally, these projections were compared to aged matched males. Unilateral microinjection of WGA-HRP into the nodose ganglion resulted in dense anterograde labeling bilaterally, with an ipsilateral predominance in several subnuclei of the nucleus of the solitary tract (NTS) and in area postrema that was greatest in OVX+E animals compared to OVX only and males. Moderately dense anterograde labeling was also observed in paratrigeminal nucleus (PAT) of the OVX+E animals. CTB-HRP produced less dense anterograde labeling in the NTS complex, but had a wider distribution within the brainstem including the area postrema, dorsal motor nucleus of the vagus, PAT, the nucleus ambiguus complex and ventrolateral medulla in all groups. The distribution of CTB-HRP anterograde labeling was densest in OVX+E, less dense in OVX only females and least dense in male rats. Little, if any, labeling was found within PAT in males using either WGA-or CTB-HRP. Taken together, these data suggest that small, non-myelinated (WGA-labeled) and large myelinated (CTB-labeled) diameter vagal afferents projecting to brainstem autonomic areas are differentially affected by circulating levels of estrogen. These effects of estrogen on connectivity may contribute to the sex differences observed in central autonomic mechanisms between gender, and in females with and without estrogen.
Collapse
Affiliation(s)
- John Ciriello
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada.
| | - Monica M Caverson
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada
| |
Collapse
|
9
|
Matthews DW, Deschênes M, Furuta T, Moore JD, Wang F, Karten HJ, Kleinfeld D. Feedback in the brainstem: an excitatory disynaptic pathway for control of whisking. J Comp Neurol 2015; 523:921-42. [PMID: 25503925 DOI: 10.1002/cne.23724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 11/03/2014] [Accepted: 12/08/2014] [Indexed: 12/30/2022]
Abstract
Sensorimotor processing relies on hierarchical neuronal circuits to mediate sensory-driven behaviors. In the mouse vibrissa system, trigeminal brainstem circuits are thought to mediate the first stage of vibrissa scanning control via sensory feedback that provides reflexive protraction in response to stimulation. However, these circuits are not well defined. Here we describe a complete disynaptic sensory receptor-to-muscle circuit for positive feedback in vibrissa movement. We identified a novel region of trigeminal brainstem, spinal trigeminal nucleus pars muralis, which contains a class of vGluT2+ excitatory projection neurons involved in vibrissa motor control. Complementary single- and dual-labeling with traditional and virus tracers demonstrate that these neurons both receive primary inputs from vibrissa sensory afferent fibers and send monosynaptic connections to facial nucleus motoneurons that directly innervate vibrissa musculature. These anatomical results suggest a general role of disynaptic architecture in fast positive feedback for motor output that drives active sensation.
Collapse
Affiliation(s)
- David W Matthews
- Graduate Program in Neuroscience, University of California, San Diego, La Jolla, CA, 92093, USA; Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Lavezzi AM, Mehboob R, Matturri L. Developmental alterations of the spinal trigeminal nucleus disclosed by substance P immunohistochemistry in fetal and infant sudden unexplained deaths. Neuropathology 2011; 31:405-13. [PMID: 21276082 DOI: 10.1111/j.1440-1789.2010.01190.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the immunohistochemical expression of substance P (SP) in the brainstems of 56 subjects aged from 17 gestational weeks to 10 post natal months, who died of unknown (sudden unexplained fetal deaths and SIDS) and known causes (controls). The goals of this study were: (i) to obtain basic information about the expression of SP during the first phases of human nervous system development; (ii) to evaluate whether there are alterations of this neuromodulator in victims of sudden death; and (iii) to verify any correlation with maternal cigarette smoking. Immunohistochemistry demonstrated SP immunoreactivity in the caudal trigeminal nucleus area, with a progressive increase in the density of SP-positive fibers of the corresponding tract during normal development from fetal life to the first post natal months. Delineation of the structure of the human trigeminal nucleus, little investigated so far, provided essential data on its morphologic and functional development. Instead, a negative or low SP expression was detectable in the fibers of this tract in a wide subset of SIDS victims and, conversely, a high SP-expression in a wide subset of sudden fetal deaths. We postulate, on the basis of these results, that SP has a functional importance in the early phases of central nervous system development and in the regulation of autonomic functions. In addition, the observation of a significant correlation between sudden unexplained death, altered SP staining and maternal smoking leads us to suggest a close relation between the absorption of cigarette smoke in utero and a decreased functional activity of the trigeminal nucleus, that can trigger sudden death of the fetus during pregnancy or of the infant in the first months of life.
Collapse
Affiliation(s)
- Anna M Lavezzi
- Lino Rossi Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Surgical, Reconstructive and Diagnostic Sciences, University of Milan, Milan, Italy.
| | | | | |
Collapse
|
12
|
Hollandsworth MP, DiNovo KM, McCulloch PF. Unmyelinated fibers of the anterior ethmoidal nerve in the rat co-localize with neurons in the medullary dorsal horn and ventrolateral medulla activated by nasal stimulation. Brain Res 2009; 1298:131-44. [PMID: 19732757 DOI: 10.1016/j.brainres.2009.08.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/19/2009] [Indexed: 11/18/2022]
Abstract
The anterior ethmoidal nerve (AEN) innervates the nasal passages and external nares, and serves as the afferent limb of the nasopharyngeal and diving responses. However, although 65% of the AEN is composed of unmyelinated fibers, it has not been determined whether this afferent signal is carried by unmyelinated or myelinated fibers. We used the transganglionic tracers WGA-HRP, IB4-HRP, and CTB-HRP to trace the central projections of the AEN of the rat. Interpretation of the labeling patterns suggests that AEN unmyelinated fibers project primarily to the ventral tip of the ipsilateral medullary dorsal horn (MDH) at the level of the area postrema. Other unmyelinated projections were to the ventral paratrigeminal nucleus and ventrolateral medulla, specifically the Bötzinger and RVLM/C1 regions. Myelinated AEN fibers projected to the ventral paratrigeminal and mesencephalic trigeminal nuclei. Stimulating the nasal passages of urethane-anesthetized rats with ammonia vapors produced the nasopharyngeal response that included apnea, bradycardia and an increase in arterial blood pressure. Central projections of the AEN co-localized with neurons within both MDH and RVLM/C1 that were activated by nasal stimulation. Within the ventral MDH the density of AEN terminal projections positively correlated with the rostral-caudal location of activated neurons, especially at and just caudal to the obex. We conclude that unmyelinated AEN terminal projections are involved in the activation of neurons in the MDH and ventrolateral medulla that participate in the nasopharyngeal response in the rat. We also found that IB4-HRP was a much less robust tracer than WGA-HRP.
Collapse
Affiliation(s)
- Michael P Hollandsworth
- Department of Physiology, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA
| | | | | |
Collapse
|
13
|
Pinto ML, Olyntho-Tokunaga HHV, Souccar C, Schoorlemmer GHM, Lapa RDCRDS. The interstitial system of the trigeminal spinal tract projects to the red nucleus in mice. Somatosens Mot Res 2009; 24:221-5. [DOI: 10.1080/08990220701802950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Loss of neuronal projections in the dystrophin-deficient mdx mouse is not progressive. Brain Res 2008; 1224:127-32. [PMID: 18603229 DOI: 10.1016/j.brainres.2008.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 05/14/2008] [Accepted: 05/17/2008] [Indexed: 11/22/2022]
Abstract
Lack of dystrophin is known to reduce several cerebral fiber systems. To investigate if the loss of fibers is progressive, we analyzed projections of the trigeminal sensory system to the red nucleus in 3, 6, and 12 month old dystrophin-deficient mdx mice. The retrograde tracer fluorogold was injected in the magnocellular part of the red nucleus, and the number of labeled neurons in the oral part of the spinal trigeminal nucleus (Sp5O) was counted. We found that the number of labeled Sp5O neurons was reduced by 50% in mdx mice compared to age-matched control mice. The number of labeled Sp5O neurons did not change significantly between 3 and 12 months neither in mdx nor in control mice. In addition, the number of labeled neurons in the interstitial system of the trigeminal nerve was reduced by 43% in mdx mice. We conclude that fiber loss did not continue beyond the age of 3 months. Our data suggest that lack of full-length dystrophin impairs neuronal migration or axonal outgrowth, or increases neuronal death during fetal or early life.
Collapse
|
15
|
Alioto OE, Lindsey CJ, Koepp J, Caous CA. Sensory sciatic nerve afferent inputs to the dorsal lateral medulla in the rat. Auton Neurosci 2008; 140:80-7. [PMID: 18514588 DOI: 10.1016/j.autneu.2008.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/11/2008] [Accepted: 04/15/2008] [Indexed: 12/18/2022]
Abstract
Investigations show the paratrigeminal nucleus (Pa5) as an input site for sensory information from the sciatic nerve field. Functional or physical disruption of the Pa5 alters behavioral and somatosensory responses to nociceptive hindpaw stimulation or sciatic nerve electrostimulation (SNS), both contralateral to the affected structure. The nucleus, an input site for cranial and spinal nerves, known for orofacial nociceptive sensory processing, has efferent connections to structures associated with nociception and cardiorespiratory functions. This study aimed at determining the afferent sciatic pathway to dorsal lateral medulla by means of a neuronal tract-tracer (biocytin) injected in the iliac segment of the sciatic nerve. Spinal cord samples revealed bilateral labeling in the gracile and pyramidal or cuneate tracts from survival day 2 (lumbar L1/L2) to day 8 (cervical C2/C3 segments) following biocytin application. From day 10 to day 20 medulla samples showed labeling of the contralateral Pa5 to the injection site. The ipsilateral paratrigeminal nucleus showed labeling on day 10 only. The lateral reticular nucleus (LRt) showed fluorescent labeled terminal fibers on day 12 and 14, after tracer injection to contralateral sciatic nerve. Neurotracer injection into the LRt of sciatic nerve-biocytin-treated rats produced retrograde labeled neurons soma in the Pa5 in the vicinity of biocytin labeled nerve terminals. Therefore, Pa5 may be considered one of the first sites in the brain for sensory/nociceptive inputs from the sciatic nerve. Also, the findings include Pa5 and LRt in the neural pathway of the somatosympathetic pressor response to SNS and nocifensive responses to hindpaw stimulation.
Collapse
|
16
|
Ma WL, Zhang WB, Xiong KH, Guo F. Visceral and orofacial somatic afferent fiber terminals converge onto the same neuron in paratrigeminal nucleus: An electron microscopic study in rats. Auton Neurosci 2007; 131:45-9. [PMID: 16962830 DOI: 10.1016/j.autneu.2006.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/17/2006] [Accepted: 06/26/2006] [Indexed: 01/02/2023]
Abstract
The paratrigeminal nucleus (Pa5) receives visceral sensory inputs through the vagus (X) and glossopharyngeal (IX) nerves and somatic sensory inputs through the trigeminal (V) nerve. In the present study, transganglionic transport of the WGA-HRP and Wallerian degeneration was used to identify whether two kinds of primary afferent fiber terminals converge onto a single neuron in the Pa5 at the utrastructural level. It was found that HRP-labeled and degenerated terminals originating from the IX and/or X nerves and infraorbital nerve formed asymmetrical synapses with unlabeled dendrites in the Pa5. Furthermore, approximately 7% (43/630) HRP-labeled and 31% (43/137) degenerated terminals formed synaptic connections with the same dendritic profiles simultaneously in the dorsal division of the Pa5. These results may provide a neuroanatomical substrate for integration of viscerosomatic sensory inputs associated with visceral and cardiovascular reflexes in the Pa5.
Collapse
Affiliation(s)
- Wen-Ling Ma
- Department of Anatomy and K K Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, P R China.
| | | | | | | |
Collapse
|
17
|
Pinto ML, de Cássia Machado R, Schoorlemmer GHM, Colombari E, de Cássia Ribeiro da Silva Lapa R. Topographic organization of the projections from the interstitial system of the spinal trigeminal tract to the parabrachial nucleus in the rat. Brain Res 2006; 1113:137-45. [PMID: 16934783 DOI: 10.1016/j.brainres.2006.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 07/05/2006] [Accepted: 07/05/2006] [Indexed: 11/25/2022]
Abstract
Neurons in the paratrigeminal nucleus are known to project to the parabrachial region, but both these areas are heterogeneous, and the subnuclei that account for these connections are not known. To characterize better these projections, we injected small amounts of fluorogold or latex beads labeled with rhodamine or fluorescein into the parabrachial area in the rat and evaluated the retrograde transport of tracer to the paratrigeminal nucleus and neighboring regions. The results show that the rostral part of the paratrigeminal nucleus projects to the medial subnucleus of the parabrachial nucleus. The intermediary part of the paratrigeminal nucleus projects to both the external lateral and to the external medial subnuclei of the parabrachial nucleus. The caudal part of the paratrigeminal nucleus projects to the ventral lateral subnucleus of the parabrachial nucleus. The dorsal paramarginal nucleus projects to the external lateral and the extreme lateral subnuclei of the parabrachial nucleus. Lamina I and II of the spinal trigeminal nucleus also project to the external lateral and the extreme lateral subnuclei of the parabrachial nucleus. In conclusion, the rostral, intermediate, and caudal parts of the paratrigeminal nucleus and the dorsal paramarginal nucleus each have clearly different projection patterns and presumably have different functions.
Collapse
Affiliation(s)
- Magali Luci Pinto
- Department of Histology, Universidade Federal de São Paulo, Rua Botucatu, 740, Edificio Lemos Torres, 2(o) andar, 04023-062 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
18
|
Ogawa A, Meng ID, Ren K, Imamura Y, Iwata K. Differential responses of rostral subnucleus caudalis and upper cervical dorsal horn neurons to mechanical and chemical stimulation of the parotid gland in rats. Brain Res 2006; 1106:123-133. [PMID: 16854383 DOI: 10.1016/j.brainres.2006.05.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 05/11/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
Blockage of the salivary duct can produce pain and inflammation from the build up of saliva in the parotid gland. The processing of parotid inflammation-induced pain, however, is poorly understood. The purpose of this study was to clarify the functional involvement of the trigeminal subnucleus interpolaris/caudalis transition region (Vi/Vc) and upper cervical spinal cord (C1/C2) in processing nociceptive input relevant to parotitis. The effect of capsaicin-induced parotitis was examined on a total of 37 nociceptive neurons isolated from the Vi/Vc (n = 23) and C1/C2 (n = 14) regions. Eight of 23 Vi/Vc neurons responded to mechanical distention of the parotid gland, whereas no C1/C2 neurons responded to the parotid distention. Receptive field characteristics in all neurons were examined following capsaicin injections into the parotid gland. Mechanical and cold responses increased significantly in C1/C2 but not Vi/Vc neurons following capsaicin. Receptive field sizes also increased in C1/C2 but not Vi/Vc neurons. At the Vi/Vc transition region, pinch-evoked activity increased in neurons receiving convergent inputs from the parotid gland and facial skin when compared to non-convergent neurons. The present data indicate that the hyperalgesia and referred pain associated with parotitis may result from sensitization of C1/C2, but not Vi/Vc nociceptive neurons.
Collapse
Affiliation(s)
- Akiko Ogawa
- Department of Oral Diagnosis, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Oral Diagnosis, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Ian D Meng
- Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan; Department of Physiology, College of Osteopathic Medicine, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA
| | - Ke Ren
- Department of Physiology, College of Osteopathic Medicine, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA; Department of Biomedical Sciences, University of Maryland Dental School, Baltimore, Maryland 21201, USA
| | - Yoshiki Imamura
- Department of Oral Diagnosis, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Koichi Iwata
- Department of Physiology, School of Dentistry, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
19
|
Saxon DW, Hopkins DA. Ultrastructure and synaptology of the paratrigeminal nucleus in the rat: primary pharyngeal and laryngeal afferent projections. Synapse 2006; 59:220-34. [PMID: 16385507 DOI: 10.1002/syn.20233] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The paratrigeminal nucleus (PTN) receives primary afferent projections from the aerodigestive tract and orofacial regions and plays a role in the integration of visceral and somatic information. This study describes the fine structure of the rat PTN and the synaptology of primary afferent projections from the pharynx and larynx. Injections of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) or cholera toxin-HRP (CT-HRP) were made into the wall of the pharynx or larynx to label primary afferent axon terminals. Light microscopic observations demonstrated that afferent axons terminated bilaterally in overlapping fields in the PTN. Electron microscopic observations of the PTN revealed that there were three distinct classes of neurons, based on morphology and axosomatic contacts. The most abundant neurons, Type 1, were fusiform in shape and received very few or no axosomatic contacts. Type 2 neurons contained prominent Nissl substance (rough endoplasmic reticulum) and few axosomatic contacts, while Type 3 neurons had many axosomatic synapses. Terminals containing round, clear vesicles and forming asymmetric contacts (round asymmetric, RA) with dendrites were the predominant synaptic type in the PTN. Primary afferent terminals from the pharynx and larynx were of the RA type and formed synaptic contacts with small-diameter (<1 microm) dendrites. Visceral primary afferent inputs from the pharynx and larynx overlap with trigeminal somatic afferents in the PTN and have similar synaptic morphology. The results support the concept that the PTN provides an anatomical substrate for mediating viscerovisceral and somatovisceral reflexes via efferent connections with autonomic centers in the brainstem.
Collapse
Affiliation(s)
- Dale W Saxon
- Department of Anatomy, Faculty of Medicine, Indiana University, Evansville Center for Medical Education, Evansville, Indiana 47712, USA
| | | |
Collapse
|
20
|
Rybka EJ, McCulloch PF. The anterior ethmoidal nerve is necessary for the initiation of the nasopharyngeal response in the rat. Brain Res 2006; 1075:122-32. [PMID: 16466647 DOI: 10.1016/j.brainres.2005.12.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/22/2005] [Accepted: 12/27/2005] [Indexed: 11/21/2022]
Abstract
Stimulation of the nasal passages with ammonia vapors can initiate a nasopharyngeal response that resembles the diving response. This response consists of a sympathetically mediated increase in peripheral vascular resistance, parasympathetically mediated bradycardia and an apnea. The current study investigated the role of the anterior ethmoidal nerve (AEN) in the nasopharyngeal response in the rat, as it is thought that the AEN provides the main sensory innervation of the nasal passages. When both AENs were intact, nasal stimulation caused significant bradycardia, hypertension, and apnea and produced Fos label ventrally within the ipsilateral medullary dorsal horn (MDH) and paratrigeminal nucleus just caudal to the obex. This labeling presumably represents activation of second-order trigeminal neurons. When only one AEN was intact, the nasopharyngeal response was slightly attenuated, and a similar pattern of Fos labeling was only seen in the trigeminal nucleus ipsilateral to the intact AEN. The trigeminal labeling contralateral to the intact AEN was significantly reduced. When both AENs were cut, the nasopharyngeal response to nasal stimulation consisted of only a slight apnea and an increase in arterial pressure; the resultant Fos labeling within the trigeminal nucleus was significantly reduced. Cutting both AENs but not stimulating the nasal passages also produced some Fos labeling within the trigeminal nucleus. These findings suggest that a single AEN can provide sufficient afferent input to initiate the cardiorespiratory changes consistent with the nasopharyngeal response. We conclude that the AEN provides a unique afferent contribution that is capable of producing the diving response.
Collapse
Affiliation(s)
- E J Rybka
- Department of Physiology, Midwestern University, 555 31st Street, Downers Grove IL 60515, USA
| | | |
Collapse
|
21
|
Ashwell KWS, Hardman CD, Paxinos G. Cyto- and chemoarchitecture of the sensory trigeminal nuclei of the echidna, platypus and rat. J Chem Neuroanat 2005; 31:81-107. [PMID: 16198535 DOI: 10.1016/j.jchemneu.2005.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/09/2005] [Accepted: 08/22/2005] [Indexed: 10/25/2022]
Abstract
We have examined the cyto- and chemoarchitecture of the trigeminal nuclei of two monotremes using Nissl staining, enzyme reactivity for cytochrome oxidase, immunoreactivity for calcium binding proteins and non-phosphorylated neurofilament (SMI-32 antibody) and lectin histochemistry (Griffonia simplicifolia isolectin B4). The principal trigeminal nucleus and the oralis and interpolaris spinal trigeminal nuclei were substantially larger in the platypus than in either the echidna or rat, but the caudalis subnucleus was similar in size in both monotremes and the rat. The numerical density of Nissl stained neurons was higher in the principal, oralis and interpolaris nuclei of the platypus relative to the echidna, but similar to that in the rat. Neuropil immunoreactivity for parvalbumin was particularly intense in the principal trigeminal, oralis and interpolaris subnuclei of the platypus, but the numerical density of parvalbumin immunoreactive neurons was not particularly high in these nuclei of the platypus. Neuropil immunoreactivity for calbindin and calretinin was relatively weak in both monotremes, although calretinin immunoreactive somata made up a large proportion of neurons in the principal, oralis and interpolaris subnuclei of the echidna. Distribution of calretinin immunoreactivity and Griffonia simplicifolia B4 isolectin reactivity suggested that the caudalis subnucleus of the echidna does not have a clearly defined gelatinosus region. Our findings indicate that the trigeminal nuclei of the echidna do not appear to be highly specialized, but that the principal, oralis and interpolaris subnuclei of the platypus trigeminal complex are highly differentiated, presumably for processing of tactile and electrosensory information from the bill.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, New South Wales, Sydney 2052, Australia.
| | | | | |
Collapse
|
22
|
Ma WL, Zhang WB, Feng G, Cai YL. Calbindin D28k-containing neurons in the paratrigeminal nucleus receive convergent nociceptive information and project to nucleus of the solitary tract in rat. Brain Res 2005; 1038:132-40. [PMID: 15757629 DOI: 10.1016/j.brainres.2005.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 12/21/2004] [Accepted: 01/01/2005] [Indexed: 11/21/2022]
Abstract
The paratrigeminal nucleus (PTN) receives orofacial somatic and visceral afferent fibers and contains many calbindin-D28k neurons (CB-containing neurons) that project to nucleus of the solitary tract (NTS). In the present study, retrograde and transganglionic tracing methods combined with immunofluorescence histochemistry and confocal laser scanning microscopy were used. After Fluoro-gold (FG) injection into the unilateral NTS, 74.4% FG-labeled neurons of ipsilateral PTN were double-labeled with CB. Furthermore, 41.0% and 32.5% FG/CB double-labeled neurons co-existed with Fos induced by nociceptive stimulation of the lips and the upper alimentary tract, respectively. In the PTN unilateral to FG injection site, 26.6% CB-LI neurons were double-labeled with PAG, 61.5% and 79.0% CB/PAG double-labeled neurons were triple-labeled with FG and Fos, and 22.9% FG/CB double-labeled neurons were triple-labeled with PAG, 84.3% FG/PAG double-labeled neurons expressed Fos induced by the upper alimentary tract stimulation. In the intact animals, 62.8% CB-LI neurons and 88.3% PAG-LI neurons co-existed with GABA(B)R, respectively. In addition, some terminals from the inferior alveolar nerve (IAN) were closely apposed to CB/Fos double-labeled or CB single-labeled neurons. These results suggested that CB-containing neurons in the PTN receive the nociceptive information converge from the orofacial area and visceral organs, and comprising the glutamatergic excitatory transmission pathway from the PTN to the NTS. This pathway might be modulated by GABA via the GABA(B) receptor.
Collapse
Affiliation(s)
- Wen-Ling Ma
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an 710032, PR China.
| | | | | | | |
Collapse
|
23
|
Lapa RCRS, Watanabe I. Synaptic contacts established by inferior alveolar nerve fibres in the paratrigeminal nucleus: an electron microscopic study in the rat. Arch Oral Biol 2005; 50:73-9. [PMID: 15598419 DOI: 10.1016/j.archoralbio.2004.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 11/19/2022]
Abstract
A quantitative evaluation of the types of synaptic contacts from afferent fibres in the paratrigeminal nucleus after partial pulpectomy was compared with that after transection of the inferior alveolar nerve (IAN), using transganglionic degeneration. Degenerating terminals with a marked increase in axoplasmic electron opacity were observed bilaterally in the paratrigeminal nucleus of rats submitted to either partial pulpectomy or IAN transection. The total number of degenerating terminals observed after partial pulpectomy was 53% of that for IAN transection. This suggests a considerable contribution of tooth pulp afferent fibres in the total number of synaptic contacts in the intermediate and caudal parts of the paratrigeminal nucleus. In both the partial pulpectomy and IAN-transected groups, the majority of these synapses formed single asymmetric contacts with intermediate and distal dendritic segments, and accounted for 74% of all classified contacts. The remaining 26% of contacts occurred with proximal dendritic segments, dendritic spines, perikaryon, normal terminals and double post-synaptic elements. There was no statistically significant difference in the number of synaptic contacts for each type of synapse, with the exception of contacts with dendritic spines in the contralateral side, between the partially pulpectomised and IAN-transected groups.
Collapse
Affiliation(s)
- R C R S Lapa
- Department of Histology, Federal University of Sao Paulo, Rua Botucatu 740, 04023-062 Sao Paulo, SP, Brazil
| | | |
Collapse
|
24
|
Balan Júnior A, Caous CA, Yu YG, Lindsey CJ. Barosensitive neurons in the rat tractus solitarius and paratrigeminal nucleus: a new model for medullary, cardiovascular reflex regulation. Can J Physiol Pharmacol 2004; 82:474-84. [PMID: 15389294 DOI: 10.1139/y04-054] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The nucleus of the solitary tract (NTS), a termination site for primary afferent fibers from baroreceptors and other peripheral cardiovascular receptors, contains blood pressure-sensitive neurons, some of which have rhythmic activity locked to the cardiac cycle, making them key components of the central pathway for cardiovascular regulation. The paratrigeminal nucleus (Pa5), a small collection of medullary neurons in the dorsal lateral spinal trigeminal tract, like the NTS, receives primary somatosensory inputs of glossopharyngeal, vagal, and other nerves. Recent studies show that the Pa5 has efferent connections to the rostroventrolateral reticular nucleus (RVL), NTS, and ambiguus nucleus, suggesting that its structure may play a role in the baroreceptor reflex modulation. In the present study, simultaneous recording from multiple single neurons in freely behaving rats challenged with i.v. phenylephrine administration, showed that 83% of NTS units and 72% of Pa5 units were baroreceptor sensitive. Whereas most of the baroreceptor-sensitive NTS and Pa5 neurons (86 and 61%, respectively) increased firing rate during the ascending phase of the pressor response, about 16% of Pa5 and NTS baroreceptor-sensitive neurons had a decreased firing rate. On one hand, the decrease in firing rate occurred during the ascending phase of the pressor response, indicating sensitivity to rapid changes in arterial pressure. On the other hand, the increases in neuron activity in the Pa5 or NTS occurred during the entire pressor response to phenylephrine. Cross-correlational analysis showed that 71% of Pa5 and 93% of NTS baroreceptor-activated neurons possessed phasic discharge patterns locked to the cardiac cycle. These findings suggest that the Pa5, like the NTS, acts as a terminal for primary afferents in the medullary-baroreflex or cardiorespiratory-reflex pathways.Key words: cardiovascular reflexes, baroreflex response, arterial blood pressure, multiple single unit recording.
Collapse
Affiliation(s)
- Antonio Balan Júnior
- Department of Biophysics, Escola Paulista de Medicine, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
25
|
Caous CA, Balan A, Lindsey CJ. Bradykinin microinjection in the paratrigeminal nucleus triggers neuronal discharge in the rat rostroventrolateral reticular nucleus. Can J Physiol Pharmacol 2004; 82:485-92. [PMID: 15389295 DOI: 10.1139/y04-088] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A small collection of neurons in the dorsal lateral medulla, the paratrigeminal nucleus (Pa5), projects directly to the rostroventrolateral reticular nucleus (RVL). Bradykinin (BK) microinjections in the Pa5 produce marked pressor responses. Also, the Pa5 is believed to be a component of the neuronal substrates of the somatosensory response and the baroreflex arc. Considering the developing interest in the functional physiology of the Pa5, the present study was designed to characterize RVL neuronal activity in response to BK microinjections in the Pa5 as well as to phenylephrine-induced blood pressure increases in freely behaving rats. Of the 46 discriminated RVL neurons, 82% responded with a 180% mean increase in firing rate after BK application to the paratrigeminal nucleus, before the onset of the blood pressure increase. Thirty (79%) of the RVL BK-excited neurons were baroreceptor-inhibited units that responded with a 30% decrease in firing rate in response to a phenylephrine-produced increase of blood pressure. Twenty-seven (71%) units of the latter population displayed cardiac-cycle-locked rhythmic activity. The findings demonstrate a BK-stimulated functional connection between the Pa5 and RVL that may represent the neural pathway in the BK-mediated pressor response. This pathway may be relevant to baroreflex mechanisms since it relates to cardiovascular pressure-sensitive neurons.Key words: bradykinin, arterial blood pressure, ensemble neuron recording, RVL, baroreflex.
Collapse
Affiliation(s)
- Cristofer Andre Caous
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | | | | |
Collapse
|
26
|
Ro JY, Capra NF, Masri R. Contribution of peripheral n-methyl-d-aspartate receptors to c-fos expression in the trigeminal spinal nucleus following acute masseteric inflammation. Neuroscience 2004; 123:213-9. [PMID: 14667456 DOI: 10.1016/s0306-4522(03)00465-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, we examined the contribution of N-methyl-D-aspartate (NMDA) receptors on c-fos expression in the trigeminal brainstem nuclei following acute muscle inflammation. Mustard oil (MO; 20%, 30 microL) injected into the masseter muscle induced extensive peripheral edema and Fos-like immunoreactivity (Fos-LI) in several trigeminal brainstem areas including the subnucleus caudalis of the trigeminal spinal nucleus (Vc), the ventral and dorsal regions of the Vc/subnucleus interpolaris transition zone, and the paratrigeminal nucleus. In order to assess the effect of antagonizing NMDA receptors on MO-induced Fos-LI, rats were pre-treated with two different doses of i.v. MK-801 (0.3 mg/kg, 3 mg/kg), a non-competitive NMDA receptor antagonist, 30 min prior to MO injection. Additional groups of rats received MK-801 (0.3 mg/kg) directly in the masseter muscle or in the biceps muscle 5 min prior to MO injection. A higher dose of i.v. MK-801 (3 mg/kg) and MK-801 given locally into the masseter muscle (0.3 mg/kg) produced a significant reduction in total number of MO-induced Fos-LI. Further analyses revealed that pre-treatment with MK-801 (3 mg/kg i.v.) significantly reduced the Fos-LI all throughout the Vc. Only at the caudal Vc, there was a dose-dependent reduction of MO induced Fos-LI. Pre-treatment with masseteric MK-801 also significantly reduced the Fos-LI in the caudal Vc, with the effect greater than that produced by the same dose of MK-801 given intravenously. These results suggest that peripheral NMDA receptors contribute to nociceptive processing from craniofacial muscles.
Collapse
Affiliation(s)
- J Y Ro
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Baltimore, School of Dentistry, 666 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
27
|
Ro JY, Harriott A, Crouse U, Capra NF. Innocuous jaw movements increase c-fos expression in trigeminal sensory nuclei produced by masseter muscle inflammation. Pain 2003; 104:539-548. [PMID: 12927626 DOI: 10.1016/s0304-3959(03)00093-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Muscle tenderness and pain during movements are prominent symptoms associated with persistent jaw muscle pain. However, there is virtually no information on how trigeminal neurons respond to jaw movements (JM) or muscle palpation in the presence of muscle tissue injury or myositis. In this study, we investigated the effects of innocuous JM in the presence of acute masseteric inflammation on postsynaptic responses in the trigeminal brainstem nuclei by examining the expression of c-fos. In one group of rats, unilateral injections of an inflammatory substance, mustard oil (MO: 20%, 25 microl) were made into a masseter muscle. In another group, controlled and systematic JM were provided following MO injection. Three additional groups of rats were used to control for anesthetic, JM, and injection procedure. MO injected in the masseter muscle induced a high level of Fos protein expression in four principal trigeminal regions: the subnucleus caudalis (Vc), the ventral and dorsal regions of the Vc/Vi (subnucleus interpolaris) transition zone, and the paratrigeminal nucleus (PTN). Movements following MO injection consistently produced a significantly greater level of Fos expression in all these areas, especially in the Vc/Vi transition region and caudal Vc on the ipsilateral side. Importantly, movements also induced a significantly greater level of Fos expression in the caudal Vc on the contralateral side. The present results provide the first documentation that innocuous JM in the presence of muscle inflammation significantly increase the MO-induced c-fos expression in the trigeminal brainstem nuclei, which may explain the greater pain experienced during movement of inflamed or injured muscles.
Collapse
Affiliation(s)
- Jin Y Ro
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Baltimore School of Dentistry, 666 W. Baltimore Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
28
|
Abstract
The paratrigeminal nucleus (Pa5) is a small collection of medullary neurons localized in the dorsal lateral spinal trigeminal tract. Electrophysiological and anatomical studies showed functional Pa5 efferent connections to the rostroventrolateral reticular nucleus (RVL) and the nucleus of the solitary tract (NTS), both well-studied components of the baroreflex arch. Similarly to the NTS, the main site for termination of cardiovascular peripheral afferents, the Pa5 receives primary sensory inputs of glossopharyngeal and vagus nerves, which suggests that the Pa5 may play a role in the baroreceptor reflex modulation. Simultaneous recording from multiple single neurons in 10 freely behaving rats showed that 37% of recorded Pa5 neurons altered firing rates (35% increased and 2% decreased) during the peak arterial blood pressure response to i.v. phenylephrine. Forty two percent of the 84 identified Pa5 baroreceptor-excited neurons showed high correlation to cardiac cycle denoting the synchronous phasicity to fast changes of blood pressure. Autocorrelation analysis revealed that 48 pressure-sensitive and 55 nonpressure-sensitive neurons have periodical activities which were not directly linked to cardiac cycle. We suggest that the Pa5, a yet unknown component of the baroreflex pathway, may relay baroreceptor information to the NTS and by passing other components of the baroreceptor reflex arch, directly to sympathetic premotor neurons in the RVL.
Collapse
Affiliation(s)
- Yun-Guo Yu
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Caixa Postal 20.388, CEP 04023-062, São Paulo, SP, Brazil
| | | |
Collapse
|
29
|
Yu YG, Caous CA, Balan AC, Rae GA, Lindsey CJ. Cardiovascular responses to sciatic nerve stimulation are blocked by paratrigeminal nucleus lesion. Auton Neurosci 2002; 98:70-4. [PMID: 12144045 DOI: 10.1016/s1566-0702(02)00035-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The paratrigeminal nucleus (Pa5) receives primary sensory inputs from the vagus, glossopharyngeal, and trigeminal nerves and has efferent projections to the nucleus of the solitary tract (NTS), rostroventrolateral reticular nucleus (RVL), as well as to the nucleus ambiguus (Amb), lateral reticular (LRt), parabrachial (PB) and ventral posteromedial thalamic (VPM) nuclei, suggesting that it may play a significant role in cardiovascular responses to nociceptive stimuli. The aim of the present study was to evaluate the effects of unilateral lesions of the Pa5 on cardiovascular alterations induced by afferent somatic sensory nerve stimulation (SNS), also known as the somatosympathetic reflex (SSR). Cardiovascular responses were recorded in rats following either sham operation or unilateral lesions of the Pa5 with ibotenic acid. Mean arterial blood pressure (MAP) increased after SNS, which in sham-lesioned animals raised from 95 +/- 4 to 115 +/- 2 mmHg. Ipsilateral Pa5 lesion did not significantly reduce the pressor response to SNS (from 91 +/- 7 to 107 +/- 4 mmHg increase of baseline MAP). On the other hand, contralateral Pa5 lesion significantly reduced the response to SNS (from 99 +/- 5, to 104 +/- 2 mmHg). Sciatic nerve stimulation did not alter heart rate (HR) neither did ipsi- or contralateral Pa5 lesion HR baseline response level. These findings support a crucial role for the Pa5 in cardiovascular regulation, by relaying SSR input evoked by peripheral nerve stimulation.
Collapse
Affiliation(s)
- Yun-Guo Yu
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
30
|
de Sousa Buck H, Caous CA, Lindsey CJ. Projections of the paratrigeminal nucleus to the ambiguus, rostroventrolateral and lateral reticular nuclei, and the solitary tract. Auton Neurosci 2001; 87:187-200. [PMID: 11476279 DOI: 10.1016/s1566-0702(00)00259-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The paratrigerminal nucleus (Pa5), a constituent of the spinal interstitial system, was linked to the pressor effect caused by bradykinin injected in the dorsal lateral medulla of the rat. The nucleus receives primary afferent sensory fibers contained in branches of the trigeminal, glossopharyngeal and vagus nerves. In this investigation connections of the paratrigeminal nucleus to other medullary structures were studied with the use of retrograde and anterograde neuronal tracers. Fluorescent light microscopy analyses of medullary sections of rats injected with the retrograde transport tracer Fluoro-gold in the nucleus of the solitary tract (NTS) or in the pressor area of the rostral ventrolateral medulla (RVLM) revealed labeled neuronal cell bodies in the ipsi- and contralateral Pa5. FluoroGold microinjections in the caudal ventrolateral medulla (CVLM) did not produce fluorescent labeling of Pa5 neurons. Microinjection of the anterograde transport neuronal tracer biocytin in the Pa5 produced bilateral labeling of the solitary tract (sol). rostroventrolateral reticular nucleus (RVL), ambiguus nucleus (Amb), lateral reticular nucleus (LRt) and ipsilateral parabrachial nuclei, but not the contralateral Pa5. Confocal laser microscopy showed fluorescence labeling of fibers and presumptive terminal varicosities in the NTS, RVL, Amb and LRt. The present findings showing the paratrigeminal nucleus interposed between sensory afferent and stuctures associated to cardiovascular and respiratory functions, suggest that the structure may act as a medullary relay nucleus for sensory stimuli directly connecting primary afferents to structures mediating cardiovascular and respiratory reflexes.
Collapse
Affiliation(s)
- H de Sousa Buck
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | | | | |
Collapse
|
31
|
Meng ID, Hu JW, Bereiter DA. Parabrachial area and nucleus raphe magnus inhibition of corneal units in rostral and caudal portions of trigeminal subnucleus caudalis in the rat. Pain 2000; 87:241-251. [PMID: 10963904 DOI: 10.1016/s0304-3959(00)00289-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cornea has been used extensively as a means to selectively stimulate trigeminal nociceptive neurons. The aim of this study was to determine the effects of descending modulatory control pathways on corneal unit activity by comparing the effects of conditioning stimulation of the pontine parabrachial area (PBA CS) and nucleus raphe magnus (NRM CS). Electrical stimulation of the cornea at A- and C-fiber intensities was used to activate neurons in two regions of the trigeminal spinal nucleus, the subnucleus interpolaris/caudalis transition (Vi/Vc, 'rostral units') and laminae I-II at the subnucleus caudalis/cervical cord transition (Vc/C1, 'caudal units'), in chloralose-anesthetized rats. Corneal units were further classified according to convergent cutaneous receptive field properties and PBA projection status. None of 48 rostral and 23/28 caudal units projected to the ipsilateral or contralateral PBA. PBA CS inhibited the cornea-evoked responses (<75% change from control) of approximately 65% of rostral and caudal units regardless of neuronal class. For rostral corneal units, PBA CS inhibited A- and C-fiber input equally (15+/-3 and 18+/-14% of control, respectively), whereas among caudal units, A-fiber input was inhibited more than C-fiber input (26+/-5 and 64+/-12% of control, respectively, P<0.01). The magnitude of NRM CS inhibition on cornea-evoked activity of both rostral and caudal units was not different from that seen after PBA CS. Glutamate microinjections into PBA also inhibited rostral and caudal corneal units (6/9 tested). These results indicate that corneal input to rostral and caudal units is modified by activation of descending controls from the PBA and NRM. The significance for processing corneal sensory information is discussed in terms of functional differences between rostral and caudal neurons.
Collapse
Affiliation(s)
- Ian D Meng
- Department of Neuroscience, Brown University/Rhode Island Hospital, Providence, RI 02903, USA Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada Department of Surgery, Neuroendocrine Laboratory, Brown University/Rhode Island Hospital, Providence, RI 02903-4970, USA
| | | | | |
Collapse
|
32
|
Hirata H, Takeshita S, Hu JW, Bereiter DA. Cornea-responsive medullary dorsal horn neurons: modulation by local opioids and projections to thalamus and brain stem. J Neurophysiol 2000; 84:1050-61. [PMID: 10938327 DOI: 10.1152/jn.2000.84.2.1050] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously, it was determined that microinjection of morphine into the caudal portion of subnucleus caudalis mimicked the facilitatory effects of intravenous morphine on cornea-responsive neurons recorded at the subnucleus interpolaris/caudalis (Vi/Vc) transition region. The aim of the present study was to determine the opioid receptor subtype(s) that mediate modulation of corneal units and to determine whether opioid drugs affected unique classes of units. Pulses of CO(2) gas applied to the cornea were used to excite neurons at the Vi/Vc ("rostral" neurons) and the caudalis/upper cervical spinal cord transition region (Vc/C1, "caudal" neurons) in barbiturate-anesthetized male rats. Microinjection of morphine sulfate (2.9-4.8 nmol) or the selective mu receptor agonist D-Ala, N-Me-Phe, Gly-ol-enkephalin (DAMGO; 1.8-15.0 pmol) into the caudal transition region enhanced the response in 7 of 27 (26%) rostral units to CO(2) pulses and depressed that of 10 units (37%). Microinjection of a selective delta ([D-Pen(2,5)] (DPDPE); 24-30 pmol) or kappa receptor agonist (U50488; 1.8-30.0 pmol) into the caudal transition region did not affect the CO(2)-evoked responses of rostral units. Caudal units were inhibited by local DAMGO or DPDPE but were not affected by U50,488H. The effects of DAMGO and DPDPE were reversed by naloxone (0.2 mg/kg iv). Intravenous morphine altered the CO(2)-evoked activity in a direction opposite to that of local DAMGO in 3 of 15 units, in the same direction as local DAMGO but with greater magnitude in 4 units, and in the same direction with equal magnitude as local DAMGO in 8 units. CO(2)-responsive rostral and caudal units projected to either the thalamic posterior nucleus/zona incerta region (PO/ZI) or the superior salivatory/facial nucleus region (SSN/VII). However, rostral units not responsive to CO(2) pulses projected only to SSN/VII and caudal units not responsive to CO(2) projected only to PO/ZI. It was concluded that the circuitry for opioid analgesia in corneal pain involves multiple sites of action: inhibition of neurons at the caudal transition region, by intersubnuclear connections to modulate rostral units, and by supraspinal sites. Local administration of opioid agonists modulated all classes of corneal units. Corneal stimulus modality was predictive of efferent projection status for rostral and caudal units to sensory thalamus and reflex areas of the brain stem.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Blinking/drug effects
- Blinking/physiology
- Carbon Dioxide/pharmacology
- Cornea/innervation
- Efferent Pathways/physiology
- Electrophysiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalins/pharmacology
- Facial Nerve/cytology
- Male
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/physiology
- Microinjections
- Morphine/pharmacology
- Posterior Horn Cells/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, mu/agonists
- Stimulation, Chemical
- Thalamus/cytology
- Trigeminal Caudal Nucleus/cytology
- Trigeminal Caudal Nucleus/drug effects
- Trigeminal Caudal Nucleus/physiology
Collapse
Affiliation(s)
- H Hirata
- Department of Surgery, Brown University School of Medicine/Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
33
|
Sessle BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 11:57-91. [PMID: 10682901 DOI: 10.1177/10454411000110010401] [Citation(s) in RCA: 462] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper reviews the recent advances in knowledge of brainstem mechanisms related to craniofacial pain. It also draws attention to their clinical implications, and concludes with a brief overview and suggestions for future research directions. It first describes the general organizational features of the trigeminal brainstem sensory nuclear complex (VBSNC), including its input and output properties and intrinsic characteristics that are commensurate with its strategic role as the major brainstem relay of many types of somatosensory information derived from the face and mouth. The VBSNC plays a crucial role in craniofacial nociceptive transmission, as evidenced by clinical, behavioral, morphological, and electrophysiological data that have been especially derived from studies of the relay of cutaneous nociceptive afferent inputs through the subnucleus caudalis of the VBSNC. The recent literature, however, indicates that some fundamental differences exist in the processing of cutaneous vs. other craniofacial nociceptive inputs to the VBSNC, and that rostral components of the VBSNC may also play important roles in some of these processes. Modulatory mechanisms are also highlighted, including the neurochemical substrate by which nociceptive transmission in the VBSNC can be modulated. In addition, the long-term consequences of peripheral injury and inflammation and, in particular, the neuroplastic changes that can be induced in the VBSNC are emphasized in view of the likely role that central sensitization, as well as peripheral sensitization, can play in acute and chronic pain. The recent findings also provide new insights into craniofacial pain behavior and are particularly relevant to many approaches currently in use for the management of pain and to the development of new diagnostic and therapeutic procedures aimed at manipulating peripheral inputs and central processes underlying nociceptive transmission and its control within the VBSNC.
Collapse
Affiliation(s)
- B J Sessle
- Faculty of Dentistry, University of Toronto, Ontario, Canada
| |
Collapse
|
34
|
Chapter VII Brain kallikrein–kinin system: from receptors to neuronal pathways and physiological functions. HANDBOOK OF CHEMICAL NEUROANATOMY 2000. [DOI: 10.1016/s0924-8196(00)80009-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Zhou Q, Imbe H, Dubner R, Ren K. Persistent Fos protein expression after orofacial deep or cutaneous tissue inflammation in rats: implications for persistent orofacial pain. J Comp Neurol 1999; 412:276-91. [PMID: 10441756 DOI: 10.1002/(sici)1096-9861(19990920)412:2<276::aid-cne7>3.0.co;2-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study was designed to systematically examine the effects of persistent orofacial tissue injury on prolonged neuronal activation in the trigeminal nociceptive pathways by directly comparing the effects of orofacial deep vs. cutaneous tissue inflammation on brainstem Fos protein expression, a marker of neuronal activation. Complete Freund's adjuvant (CFA) was injected unilaterally into the rat temporomandibular joint (TMJ) or perioral (PO) skin to produce inflammation in deep or cutaneous tissues, respectively. Rats were perfused 2 hours, 24 hours, 3 days, or 10 days following CFA injection. The TMJ and PO inflammation-induced Fos expression paralleled the intensity and course of inflammation over the 10-day observation period, suggesting that the increase in intensities and persistence of Fos protein expression may be associated with a maintained increase in peripheral input. Compared to PO CFA injection, the injection of CFA into the TMJ produced a significantly stronger inflammation associated with a greater Fos expression. In TMJ- but not in PO-inflamed rats, Fos-like immunoreactivity (LI) spread from superficial to deep upper cervical dorsal horn as the inflammation persisted and there was a dominant ipsilateral Fos-labeling in the paratrigeminal nucleus. Common to TMJ and PO inflammation, Fos-LI was induced in the trigeminal subnuclei interpolaris and caudalis, C1-2 dorsal horn, and other medullary nuclei. Substantial bilateral Fos-LI was found in the interpolaris-caudalis trigeminal transition zone. Further analysis revealed that Fos-LI in the ventral transition zone was equivalent bilaterally, whereas Fos-LI in the dorsal transition zone was predominantly ipsilateral to the inflammation. The differential induction of Fos expression suggests that an increase in TMJ C-fiber input after inflammation and robust central neuronal hyperexcitability contribute to persistent pain associated with temporomandibular disorders.
Collapse
Affiliation(s)
- Q Zhou
- Department of Oral and Craniofacial Biological Sciences, University of Maryland Dental School, Baltimore, Maryland 21201-1586, USA
| | | | | | | |
Collapse
|
36
|
Chattipakorn SC, Light AR, Willcockson HH, Närhi M, Maixner W. The effect of fentanyl on c-fos expression in the trigeminal brainstem complex produced by pulpal heat stimulation in the ferret. Pain 1999; 82:207-215. [PMID: 10467925 DOI: 10.1016/s0304-3959(99)00046-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that Fos-like immunoreactivity (Fos-LI) is evoked in the brainstem of ferrets following stimulation of pulpal A delta and C fibers originating from the maxillary canine. This study evaluated the effects of the mu-opioid receptor agonist fentanyl on Fos expression evoked by noxious thermal stimulation of the right maxillary and mandibular canines in pentobarbital/chloral hydrate anesthetized adult male ferrets. Pulpal heating evoked Fos expression in two distinct regions of the spinal trigeminal nuclear complex: the transitional region between subnucleus interpolaris and caudalis (Vi/Vc) and within the subnucleus caudalis (Vc). More Fos positive cells were expressed in both regions ipsilateral to the site of stimulation compared with the contralateral side (P < 0.05, ANOVA). Pretreatment with fentanyl significantly and dose-dependently suppressed the number of Fos positive cells in both the Vi/Vc transitional region and Vc (P < 0.05, ANOVA). The suppressive effect of fentanyl on Fos expression was blocked by the intravenous administration of naloxone, an opioid antagonist, indicating a specific opioid receptor effect. In addition, opioid receptor antagonism with naloxone alone enhanced Fos expression in Vi/Vc and Vc in response to heat stimulation. The administration of naloxone without heat stimulation failed to evoke Fos expression in Vi/ Vc and Vc. These findings suggest that the activation of trigeminal Vi/Vc and Vc neurons by noxious dental heat stimulation is controlled by a naloxone sensitive endogenous opioid system as indicated by Fos expression. Collectively, these results suggest that neuronal populations in Vi/Vc and Vc regions may contribute to pain responses to noxious dental stimulation and these responses can be modulated by both endogenous and exogenous opioids.
Collapse
Affiliation(s)
- Siriporn C Chattipakorn
- Dental Research Center, Room 109, University of North Carolina, Chapel Hill, NC 27599-7455, USA Department of Cell and Molecular Physiology, UNC-Chapel Hill, Chapel Hill, NC 27599-7455, USA Institution of Dentistry, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
37
|
Imbe H, Ren K. Orofacial deep and cutaneous tissue inflammation differentially upregulates preprodynorphin mRNA in the trigeminal and paratrigeminal nuclei of the rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:87-97. [PMID: 10101236 DOI: 10.1016/s0169-328x(99)00040-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Preprodynorphin (PPD) and preproenkephalin (PPE) gene expression in a rat model of orofacial inflammation were examined in order to further characterize the neurochemical mechanisms underlying orofacial inflammation and hyperalgesia. Deep and cutaneous orofacial inflammation was produced by a unilateral injection of complete Freund's adjuvant (CFA) into the rat temporomandibular joint (TMJ) or perioral skin (PO), respectively. RNA blot analysis of the tissues including the spinal trigeminal complex revealed that the PPD mRNA level ipsilateral to TMJ inflammation was increased by 56.5+/-14.7% (n=4) when compared to the Naive group, and was significantly greater than the contralateral PPD mRNA level (p<0.05). The distribution of neurons that exhibited PPD mRNA after inflammation was localized by in situ hybridization (naive approximately 0). In TMJ-inflamed rats (n=6) PPD mRNA-positive neurons were found ipsilaterally in the medial portion of laminae I-II of the upper cervical dorsal horn (4.5+/-0.3), the dorsal portion of the subnucleus caudalis and caudal subnucleus interpolaris (5.2+/-0.3), and the paratrigeminal nucleus (6.4+/-1.2). A very localized induction of PPD mRNA was also identified in a group of neurons in the intermediate portion of the subnucleus caudalis (2.4+/-0.4) in PO-inflamed rats (n=6). The distribution of these PPD mRNA-positive neurons was somatotopically relevant to the site of injury. There were no significant changes in PPE mRNA expression in both TMJ- and PO-inflamed rats. These results indicate that TMJ inflammation resulted in a more intense and widespread increase in PPD mRNA expression when compared to PO inflammation. These changes may contribute to persistent central hyperexcitability and pain associated with temporomandibular disorders.
Collapse
Affiliation(s)
- H Imbe
- Department of Oral and Craniofacial Biological Sciences, School of Dentistry, University of Maryland, Rm 5A26, 666 West Baltimore St., Baltimore, MD 21201-1586, USA
| | | |
Collapse
|
38
|
Saxon DW, Hopkins DA. Efferent and collateral organization of paratrigeminal nucleus projections: An anterograde and retrograde fluorescent tracer study in the rat. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981207)402:1<93::aid-cne7>3.0.co;2-a] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
Meng ID, Hu JW, Bereiter DA. Differential effects of morphine on corneal-responsive neurons in rostral versus caudal regions of spinal trigeminal nucleus in the rat. J Neurophysiol 1998; 79:2593-602. [PMID: 9582231 DOI: 10.1152/jn.1998.79.5.2593] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The initial processing of corneal sensory input in the rat occurs in two distinct regions of the spinal trigeminal nucleus, at the subnucleus interpolaris/caudalis transition (Vi/Vc) and in laminae I-II at the subnucleus caudalis/spinal cord transition (Vc/C1). Extracellular recording was used to compare the effects of morphine on the evoked activity of corneal-responsive neurons located in these two regions. Neurons also were characterized by cutaneous receptive field properties and parabrachial area (PBA) projection status. Electrical corneal stimulation-evoked activity of most (10/13) neurons at the Vi/Vc transition region was increased [146 +/- 16% (mean +/- SE) of control, P < 0.025] after systemic morphine and reduced after naloxone. None of the Vi/Vc corneal units were inhibited by morphine. By contrast, all corneal neurons recorded at the Vc/C1 transition region displayed a naloxone-reversible decrease (55 +/- 10% of control, P < 0.001) in evoked activity after morphine. None of 13 Vi/Vc corneal units and 7 of 8 Vc/C1 corneal units tested projected to the PBA. To determine if the Vc/C1 transition acted as a relay for the effect of intravenous morphine on corneal stimulation-evoked activity of Vi/Vc units, morphine was applied topically to the dorsal brain stem surface overlying the Vc/C1 transition. Local microinjection of morphine at the Vc/C1 transition increased the evoked activity of 4 Vi/Vc neurons, inhibited that of 2 neurons, and did not affect the remaining 12 corneal neurons tested. In conclusion, the distinctive effects of morphine on Vi/Vc and Vc/C1 neurons support the hypothesis that these two neuronal groups contribute to different aspects of corneal sensory processing such as pain sensation, autonomic reflex responses, and recruitment of descending controls.
Collapse
Affiliation(s)
- I D Meng
- Department of Neuroscience, Brown University/Rhode Island Hospital, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
40
|
Armstrong CL, Hopkins DA. Neurochemical organization of paratrigeminal nucleus projections to the dorsal vagal complex in the rat. Brain Res 1998; 785:49-57. [PMID: 9526042 DOI: 10.1016/s0006-8993(97)01322-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The paratrigeminal nucleus, located in the spinal trigeminal tract rostral to the obex, is important in the integration of visceral and somatosensory afferent information and may modulate autonomic function through its projections to the dorsal vagal complex. Anterograde and retrograde neuroanatomical tracers were used in conjunction with immunohistochemistry to determine the neurochemical organization of the efferent pathway from the paratrigeminal nucleus to the dorsal vagal complex in the rat. Double-labelling studies demonstrated that leu-enkephalin, 28-kDa calbindin, and neuronal nitric oxide synthase were present in neurons in the paratrigeminal nucleus that project to the dorsal vagal complex. The results of this study are consistent with the hypothesis that neurochemically distinct pathways from the paratrigeminal nucleus are involved in the sensory modulation of autonomic function.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
41
|
Bon K, Lantéri-Minet M, Menétrey D. Involvement of the dorsal paratrigeminal nucleus in visceral pain-related phenomena. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1997; 320:607-13. [PMID: 9337996 DOI: 10.1016/s0764-4469(97)85693-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyclophosphamide is an antitumor agent that generates evolving cystitis through the release of toxic urinary by-products, mostly acrolein, that attack the bladder walls. Using c-fos expression, which permits quantitative analysis of neural activity, we demonstrated that the paratrigeminal nucleus is involved in processing the inputs that this disease generates. c-Fos staining in the paratrigeminal nucleus increases regularly reaching a plateau over the 4 h postinjection period during which the disease develops. The degree of staining is directly correlated with that of the subnucleus medialis of the nucleus of the solitary tract, which is one of the main structures that processes cystitis-related inputs at the supraspinal level.
Collapse
Affiliation(s)
- K Bon
- Unité 161, Institut national de la santé et de la recherche médicale, 2, Paris, France
| | | | | |
Collapse
|
42
|
Bon K, Lantéri-Minet M, Menétrey D. Involvement of the dorsal paratrigeminal nucleus in visceral pain-related phenomena. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1997; 320:533-9. [PMID: 9309254 DOI: 10.1016/s0764-4469(97)84708-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyclophosphamide is an antitumor agent that generates evolving cystitis through the release of toxic urinary by-products, mostly acrolein, that attack the bladder walls. Using c-fos expression, which permits quantitative analysis of neural activity, we demonstrated that the paratrigeminal nucleus is involved in processing the inputs that this disease generates. c-Fos staining in the paratrigeminal nucleus increases regularly reaching a plateau over the 4 h postinjection period during which the disease develops. The degree of staining is directly correlated with that of the subnucleus medialis of the nucleus of the solitary tract, which is one of the main structures that processes cystitis-related inputs at the supraspinal level.
Collapse
Affiliation(s)
- K Bon
- Unit 161, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | |
Collapse
|
43
|
Lindsey CJ, Buck HS, Fior-Chadi DR, Lapa RC. Pressor effect mediated by bradykinin in the paratrigeminal nucleus of the rat. J Physiol 1997; 502 ( Pt 1):119-29. [PMID: 9234201 PMCID: PMC1159576 DOI: 10.1111/j.1469-7793.1997.119bl.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. The participation of the paratrigeminal nucleus (Pa5) in the pressor response produced by bradykinin in the dorsolateral medulla of rats was investigated. The microinjection of 6 pmol of bradykinin directly over the paratrigeminal nucleus of unanaesthetized rats produced a significant increase in arterial pressure and a moderate increase in heart rate. 2. Bradykinin microinjections in different sites surrounding the Pa5 compromising the external cuneate nucleus, the trigeminal nucleus, the lateral and ventral spinal trigeminal tract and the dorsal trigeminal tract rostral and caudal to the Pa5 did not elicit significant pressor responses. In contrast, microinjections in the paratrigeminal nucleus produced pressor effects. Injections in the dorsolateral medulla directly over the paratrigeminal nucleus produced larger responses than when injections were made in the nucleus. Saline injections in the different nuclei did not produce pressor effects. 3. Neurochemical lesioning of the Pa5, with microinjections of ibotenic acid in the Pa5, abolished the pressor response to bradykinin injected over the lesioned nucleus. The effect was present, however, when bradykinin was injected on the contralateral side to the lesion, over the intact nucleus of the same animal. Pretreatment with capsaicin (injected in the lateral cerebral ventricle), which causes selective degeneration of afferent sensory fibres, did not alter the pressor effect of bradykinin injected over the paratrigeminal nucleus. 4. Dose-related responses were produced by different concentrations of bradykinin (0.6-1.8 pmol) microinjected over the nucleus. The bradykinin receptor antagonist HOE 140, injected over the paratrigeminal nucleus 30 min earlier, abolished the pressor response caused by bradykinin. 5. Low doses of bradykinin injected in or directly over the paratrigeminal nucleus increased arterial pressure and caused a small increase in heart rate by stimulating kinin receptors of the paratrigeminal nucleus in the dorsolateral medulla of awake and unrestrained rats. The pattern of the response was consistent with that of sympathetic stimulation. The paratrigeminal nucleus, which receives primary afferents and projects to the nucleus tractus solitarii and the rostral ventral lateral medulla, may be positioned as relay nucleus possibly connecting sensory input to structures that regulate blood pressure.
Collapse
Affiliation(s)
- C J Lindsey
- Department of Biophysics, Escola Paylista de Medicina, Universidade Federal de São Paulo, Brazil.
| | | | | | | |
Collapse
|
44
|
Meng ID, Hu JW, Benetti AP, Bereiter DA. Encoding of corneal input in two distinct regions of the spinal trigeminal nucleus in the rat: cutaneous receptive field properties, responses to thermal and chemical stimulation, modulation by diffuse noxious inhibitory controls, and projections to the parabrachial area. J Neurophysiol 1997; 77:43-56. [PMID: 9120584 DOI: 10.1152/jn.1997.77.1.43] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To determine whether corneal input is processed similarly at rostral and caudal levels of the spinal trigeminal nucleus, the response properties of second-order neurons at the transition between trigeminal subnucleus interpolaris and subnucleus caudalis (Vi/Vc) and at the transition between subnucleus caudalis and the cervical spinal cord (Vc/C1) were compared. Extracellular single units were recorded in 68 Sprague-Dawley rats under chloralose or urethan/chloralose anesthesia. Neurons that responded to electrical stimulation of the cornea at the Vi/Vc transition region (n = 61) and at laminae I/II of the Vc/C1 transition region (n = 33) were classified regarding 1) corneal mechanical threshold; 2) cutaneous mechanoreceptive field, if present; 3) electrical input characteristics (A and/or C fiber); 4) response to thermal stimulation; 5) response to the small-fiber excitant, mustard oil (MO), applied to the cornea; 6) diffuse noxious inhibitory controls (DNIC); and 7) projection status to the contralateral parabrachial area (PBA). On the basis of cutaneous receptive field properties, neurons were classified as low-threshold mechanoreceptive (LTM), wide dynamic range (WDR), nociceptive specific (NS), or deep nociceptive (D). All neurons recorded at the Vc/C1 transition region were either WDR (n = 19) or NS (n = 14). In contrast, 54% of the Vi/Vc neurons had no cutaneous receptive field. Of those Vi/Vc neurons that had a cutaneous receptive field, 57% were LTM, 25% were WDR, and 18% were D. All Vc/ C1 neurons responded to noxious thermal and MO stimulation. Only 22 of 47 and 13 of 19 Vi/Vc corneal units responded to thermal or MO stimulation, respectively. At the Vc/C1 transition region, 12 of 17 neurons demonstrated DNIC, whereas at the Vi/Vc transition region, DNIC was present in only 4 of 26 neurons. Of 15 Vc/C1 corneal units, 12 could be antidromically activated from the contralateral PBA (average latency 6.29 ms, range 1.8-26 ms). None of 22 Vi/Vc corneal units tested could be antidromically activated from the PBA. These findings suggest that neurons in laminae I/II at the Vc/C1 transition and at the Vi/Vc transition process corneal input differently. Neurons in laminae I/II at the Vc/C1 transition process corneal afferent input consistent with that from other orofacial regions. Corneal-responsive neurons at the Vi/Vc transition region may be important in motor reflexes or in recruitment of descending antinociceptive controls.
Collapse
Affiliation(s)
- I D Meng
- Department of Neuroscience, Brown University/Rhode Island Hospital, Providence 02903, USA
| | | | | | | |
Collapse
|
45
|
Saxon DW, Beitz AJ. Induction of NADPH-diaphorase/nitric oxide synthase in the brainstem trigeminal system resulting from cerebellar lesions. J Comp Neurol 1996; 371:41-71. [PMID: 8835718 DOI: 10.1002/(sici)1096-9861(19960715)371:1<41::aid-cne3>3.0.co;2-l] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent evidence indicates that NADPH-diaphorase (NADPH-d) and nitric oxide synthase (NOS) can be induced in cerebellar afferent neurons following mechanical, thermal, or chemical damage to the cerebellar cortex (Saxon and Beitz [1994] Neuroreport 5:809-812). The present study reports on the induction of NADPH-d/NOS in neurons of the brainstem trigeminal complex (BVC). Three groups of rats were used: Group I received a unilateral glass micropipette lesion into the vermal/paravermal region of the cerebellar cortex, group II received a concurrent injection of fluoro-gold along with the pipette lesion, and in group III the cerebellar cortex on one side was aspirated. Following survival times of 7-120 days, animals were processed for NADPH-d histochemistry. All three groups showed projection-specific induction of NADPH-d in different regions of the brainstem trigeminal complex. Induced neurons were distributed throughout the ipsilateral subnucleus interpolaris, principal trigeminal nucleus, and intertrigeminal nucleus. Subnucleus oralis contained a small number of induced neurons localized to the ipsilateral dorsomedial portion of the subnucleus. Projection-specific induction was confirmed by the presence of neurons double-labeled for NADPH-d and Fluoro-Gold. Although the functional consequences of NADPH-d/NOS induction remain to be elucidated, the induction of these enzymes in precerebellar neurons suggests that nitric oxide may play a role in the neuronal response to target specific lesions.
Collapse
Affiliation(s)
- D W Saxon
- Department of Vet/Pathobiology, University of Minnesota, St. Paul 55108, USA
| | | |
Collapse
|
46
|
Meng ID, Bereiter DA. Differential distribution of Fos-like immunoreactivity in the spinal trigeminal nucleus after noxious and innocuous thermal and chemical stimulation of rat cornea. Neuroscience 1996; 72:243-54. [PMID: 8730721 DOI: 10.1016/0306-4522(95)00541-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Corneal afferent nerves project to two spatially distinct sites within the spinal trigeminal nucleus: the subnucleus interpolaris/caudalis transition and the subnucleus caudalis/upper cervical spinal cord transition. The role of these two regions in processing corneal input is uncertain. To determine if neurons in these regions encode different features of an applied corneal stimulus, immunoreactivity for the immediate early gene protein product, Fos, was quantified in barbiturate-anesthetized rats. Intensity was varied across thermal (thermal probe 5, 35, 42, 52 degrees C; radiant heat of approximately 45 degrees C) stimuli and compared with that seen after mustard oil (5 microliters, 20%) or mineral oil application. All stimuli increased the number of Fos-positive neurons located at the ventrolateral pole of the subnucleus interpolaris/caudalis transition compared with unstimulated controls. By contrast, only 52 degrees C thermal probe and mustard oil produced an additional peak of Fos-positive neurons within the superficial laminae at the subnucleus caudalis/cervical cord transition. Further, the magnitudes of the bimodal peaks of Fos produced by 52 degrees C thermal probe and mustard oil stimuli were different quantitatively. Mustard oil caused a greater Fos response at the subnucleus interpolaris/caudalis transition than 52 degrees C thermal probe stimulation, whereas the opposite was true at the subnucleus caudalis/cervical cord transition. Double-labeling revealed that Fos immunoreactive neurons within the spinal trigeminal nucleus were restricted to regions densely labeled for calcitonin gene-related peptide. These results indicate that select features of corneal stimuli such as modality are encoded differently by neurons in the trigeminal subnucleus interpolaris/caudalis transition compared with those located in the subnucleus caudalis/cervical cord transition. It is likely that neurons in these two brainstem regions subserve different aspects of corneal sensation.
Collapse
Affiliation(s)
- I D Meng
- Department of Neuroscience, Brown University/Rhode Island Hospital, Providence 02903, USA
| | | |
Collapse
|
47
|
Abstract
Injections of cholera toxin B-chain conjugated to horseradish peroxidase into individual peripheral branches of the trigeminal nerve or into the trigeminal ganglion showed that an ascending trigeminal tract (TTA) terminated in distinct ventral and dorsal divisions of the principal sensory nucleus (PrVv and PrVd, respectively), and a descending tract (TTD) terminated within pars oralis, pars interpolaris, and pars caudalis divisions of the nucleus of TTD (nTTD) and within the dorsal horn of the first six cervical spinal segments. In PrVd, mandibular, ophthalmic, and maxillary projections were predominantly located dorsally, ventrally, and medially, respectively. In nTTD, mandibular projections lay dorsomedially, ophthalmic projections lay ventrolaterally, and maxillary projections lay in between. At caudal medullary and spinal levels, mandibular projections were situated medially, ophthalmic projections were situated laterally, and maxillary projections were situated centrally. The terminations within the dorsal horn were most dense in laminae III and IV and were least dense in lamina II, with laminae III-IV also receiving topographically organised contralateral projections. Extratrigeminal projections were mainly to the external cuneate nucleus by way of a lateral descending trigeminal tract (lTTD; Dubbeldam and Karten [1978] J. Comp. Neurol. 180:661-678) and to the region of the tract of Lissauer and lamina I of the dorsal horn. Other projections were to a region medial to the apex of pars interpolaris, to the nuclei ventrolateralis anterior (Vla) and presulcalis anterior (Pas) of the solitary complex, and sparsely to the lateral reticular formation (plexus of Horsley) ventral to TTD. No projections were seen to the trigeminal motor nuclei or to the cerebellum.
Collapse
Affiliation(s)
- J M Wild
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand.
| | | |
Collapse
|
48
|
Hathaway CB, Hu JW, Bereiter DA. Distribution of Fos-like immunoreactivity in the caudal brainstem of the rat following noxious chemical stimulation of the temporomandibular joint. J Comp Neurol 1995; 356:444-56. [PMID: 7642805 DOI: 10.1002/cne.903560311] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Central expression of the protooncogene c-fos was used to examine areas receiving noxious sensory input from the rat temporomandibular joint (TMJ). Fos-like immunoreactivity (Fos-LI) in the caudal brainstem was visualized 2 hours after unilateral injection of the small-fiber-specific excitant/inflammatory irritant mustard oil into the TMJ region. Control animals received injection of either mustard oil into the subcutaneous fascia overlying the masseter muscle or mineral oil vehicle into the TMJ region. In all groups, Fos-LI was consistently observed ipsilaterally in the spinal trigeminal nucleus and cervical dorsal horn and, bilaterally, in the nucleus of the solitary tract and the ventrolateral medulla. The expression of Fos-LI ipsilaterally in the paratrigeminal nucleus was variable. Within the trigeminal sensory complex, Fos-LI was restricted to subnucleus caudalis and the caudal portions of subnucleus interpolaris near the level of the obex. Approximately 12% of Fos-LI cells in subnucleus caudalis and in the cervical dorsal horn were found in laminae III-VI. Compared to TMJ mustard oil injection, mineral oil injection produced less Fos-LI at all rostrocaudal levels, whereas subcutaneous mustard oil injection produced less Fos-LI in caudal subnucleus caudalis but similar amounts in the cervical dorsal horn. Neither of these injections yielded significant ipsilateral responses in subnucleus caudalis, indicating that Fos-LI in this region following TMJ mustard oil injection could be ascribed solely to small-fiber stimulation in the deep TMJ region. The wide rostrocaudal distribution of Fos-LI within the caudal brainstem reflects the distribution of TMJ-responsive nociceptive neurons that may underlie the spread and referral of pain from the TMJ region.
Collapse
Affiliation(s)
- C B Hathaway
- Department of Surgery, Brown University, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
49
|
Abstract
We studied the effects of bilateral vagotomy and step pulmonary inflations (5, 10, 15 mmHg, i.e., 0.66, 1.33, 2 kKPa) on sneeze reflex in ketamine-anaesthetized cats. Bilateral vagotomy lengthens the duration of preparatory inspiration and diminishes the amplitude of expiratory activities in sneeze. In contrast, 5 mmHg pulmonary inflation facilitates the sneeze. It shortens the inspiratory preparation and increases the frequency of sneeze attacks. At 10 mmHg pulmonary inflations, inspiration is inhibited and only expiratory thrust occurs. At 15 mmHg pulmonary inflations, vagal afferent stimulations inhibit the sneeze.
Collapse
Affiliation(s)
- J M Macron
- Laboratoire de Neurophysiologie, CNRS URA 1331, Faculté de Médecine, Université de Picardie, Amiens, France
| | | | | |
Collapse
|
50
|
Panneton WM, Johnson SN, Christensen ND. Trigeminal projections to the peribrachial region in the muskrat. Neuroscience 1994; 58:605-25. [PMID: 7513388 DOI: 10.1016/0306-4522(94)90085-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The anterograde and retrograde transport of wheat germ agglutinin-horseradish peroxidase was used to study the trigeminoperibrachial pathway in the muskrat after injections of tracer into either the medullary dorsal horn or the dorsolateral pons. After injections into the medullary dorsal horn, labeled fibers ascended into the ipsilateral dorsolateral pons via the spinal trigeminal tract, within the neuropil of the trigeminal sensory complex and within the reticular formation adjacent to the spinal trigeminal nucleus. At caudal levels of the ipsilateral peribrachial area, dense terminal-like label distributed in the Kölliker-Fuse nucleus continued into the lateral parabrachial nucleus. At intermediate levels ipsilaterally, the Kölliker-Fuse nucleus again was labeled densely, as were areas analogous to the external lateral and external medial subnuclei of the parabrachial nucleus in the rat. A thin band of label along the ventral spinocerebellar tract outlined an unlabeled area in the central portion of the lateral parabrachial nucleus. Rostrally near the pontomesencephalic junction, the area designated the superior lateral subnucleus in the hamster was labeled, while sparser label was present more dorsally. Contralateral to the injections, caudal and intermediate levels of the peribrachial area contained only scant reaction product. However, the rostral area of the superior lateral subnucleus was labeled densely via fibers ascending in the trigeminothalamic tract. Injections made just rostral to the obex and either centered in or including the dorsal or ventral paratrigeminal nuclei produced similar labeling at caudal and intermediate levels of the peribrachial area. An exception, however, was that the caudal medial parabrachial nucleus was also labeled after the dorsal paratrigeminal injection. Also, only scant label was found in the rostral third of the dorsolateral pons on either side after these injections. Both trigeminothalamic and trigeminolemniscal pathways were labeled contralaterally after these injections. These trigeminal projections to the dorsolateral pons were compared to the projections from the nucleus tractus solitarii and the ventrolateral medulla. Numerous trigeminal neurons were labeled retrogradely after injections of wheat germ agglutinin-horseradish peroxidase into the dorsolateral pons. In the medullary dorsal horn, they were found almost exclusively in laminae I and V. Labeled neurons in lamina I were especially prominent in rostral ventral levels of the medullary dorsal horn. Labeled cells in lamina I were continuous with others found in the displaced band of substantia gelatinosa at the interface of the subnucleus caudalis and subnucleus interpolaris, as well as with those found in the ventral and dorsal paratrigeminal nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W M Panneton
- Department of Anatomy and Neurobiology, St Louis University School of Medicine, MO 63104
| | | | | |
Collapse
|