1
|
Kumar VP, Biswas S, Holmes-Hampton GP, Goesch T, Fahl W, Ghosh SP. PrC-210 Protects against Radiation-Induced Hematopoietic and Intestinal Injury in Mice and Reduces Oxidative Stress. Antioxidants (Basel) 2023; 12:1417. [PMID: 37507957 PMCID: PMC10376632 DOI: 10.3390/antiox12071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The development of safe, orally available, and effective prophylactic countermeasures to protect our warfighters is an unmet need because there is no such FDA-approved countermeasure available for use. Th 1-Propanethiol, 3-(methylamino)-2-((methylamino)methyl) (PrC-210), a synthetic small molecule, is a member of a new family of aminothiols designed to reduce toxicity while scavenging reactive oxygen species (ROS). Our study investigated the protective role of a single oral administration of PrC-210 against radiation-induced hematopoietic and intestinal injury in mice. Pre-treatment with PrC-210 significantly improved the survival of mice exposed to a lethal dose of radiation. Our findings indicated that the radioprotective properties of PrC-210 are achieved by accelerating the recovery of the hematopoietic system, stimulating bone marrow progenitor cells, and ameliorating additional biomarkers of hematopoietic injury. PrC-210 pre-treatment reduced intestinal injury in mice exposed to a lethal dose of radiation by restoring jejunal crypts and villi, reducing translocation of bacteria to the spleen, maintaining citrulline levels, and reducing the sepsis marker serum amyloid A (SAA) in serum. Finally, PrC-210 pre-treatment led to a significant reduction (~10 fold) of Nos2 expression (inducible nitric oxide) in the spleen and decreased oxidative stress by enhancing the antioxidant defense system. These data support the further development of PrC-210 to receive approval from the FDA to protect warfighters and first responders from exposure to the harmful effects of ionizing radiation.
Collapse
Affiliation(s)
- Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Shukla Biswas
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | | | - William Fahl
- Obvia Pharmaceuticals Ltd., Madison, WI 53705, USA
- Wisconsin Institutes for Medical Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| |
Collapse
|
2
|
Chen Y, Yang Y, Tang H, Zhang Z, Zhou X, Xu W. ROS-Responsive and pH-Sensitive Aminothiols Dual-Prodrug for Radiation Enteritis. Antioxidants (Basel) 2022; 11:antiox11112145. [PMID: 36358517 PMCID: PMC9686648 DOI: 10.3390/antiox11112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Radiation exposure can immediately trigger a burst of reactive oxygen species (ROS), which can induce severe cell death and long-term tissue damage. Therefore, instantaneous release of sufficient radioprotective drugs is vital to neutralize those accumulated ROS in IR-exposed areas. To achieve this goal, we designed, synthesized, and evaluated a novel oral ROS-responsive radioprotective compound (M1) with high biocompatibility and efficient ROS-scavenging ability to act as a promising oral drug for radiation protection. The compound is stably present in acidic environments and is hydrolyzed in the intestine to form active molecules rich in thiols. M1 can significantly remove cellular ROS and reduce DNA damage induced by γ-ray radiation. An in vivo experiment showed that oral administration of M1 effectively alleviates acute radiation-induced intestinal injury. Immunohistochemical staining showed that M1 improved cell proliferation, reduced cell apoptosis, and enhanced the epithelial integrity of intestinal crypts. This study provides a promising oral ROS-sensitive agent for acute intestinal radiation syndrome.
Collapse
|
3
|
Fahl WE, Cadarso M, Goesch TR. Significant Reduction of Total-Body Irradiation-Induced Death in Mice Treated with PrC-210 24 Hours Postirradiation. Radiat Res 2022; 198:263-270. [PMID: 35728266 DOI: 10.1667/rade-22-00036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
The search for radiation countermeasures that can serve as: i. a pre-exposure agent to protect against subsequent irradiation, and/or ii. a post-exposure agent to mitigate the development of Acute Radiation Syndrome after radiation exposure, remains a prominent goal of the U.S. Government. This study was undertaken to determine whether PrC-210, when administered once, 24 h postirradiation, would provide a survival benefit and would mitigate Acute Radiation Syndrome in mice that had received an otherwise 95-100% lethal radiation dose. Our results show that a single intraperitoneal dose of PrC-210 (0.3-0.4 MTD, 151-201 ug/gm body weight) administered 24 h postirradiation, conferred: i. a 45% survival advantage (P = 0.002) in outbred ICR mice and a 25% survival advantage (P = 0.037) in inbred C57Bl/6 mice, ii. a significant increase in body weight in surviving mice (P = 0.012), iii. a discernible protection of intestinal structure by MRI imaging of live mice, iv. visibly denser jejunal villi and surface epithelium and v. visible bone marrow population in PrC-210-treated mice versus saline controls. The ability of PrC-210 to suppress 100% of radiation-induced death when administered minutes before irradiation, or roughly half of this effect (45%) when administered 24 h postirradiation is noteworthy. Determining the multiple paths by which PrC-210 protection is conferred is a process; the results in this report showing protection of two of the major systems central to Acute Radiation Syndrome damage, is a good first step. This was the first study of PrC-210 administered postirradiation; it conferred substantial survival benefit and suppression of Acute Radiation Syndrome. This outcome supports the continued development of PrC-210 to protect humans exposed to ionizing radiation.
Collapse
Affiliation(s)
- William E Fahl
- Wisconsin Institutes for Medical Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin.,Obvia Pharmaceuticals Ltd., Madison, Wisconsin
| | - Michela Cadarso
- Wisconsin Institutes for Medical Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | | |
Collapse
|
4
|
Massa S, Pagliarello R, Cemmi A, Di Sarcina I, Bombarely A, Demurtas OC, Diretto G, Paolini F, Petzold HE, Bliek M, Bennici E, Del Fiore A, De Rossi P, Spelt C, Koes R, Quattrocchio F, Benvenuto E. Modifying Anthocyanins Biosynthesis in Tomato Hairy Roots: A Test Bed for Plant Resistance to Ionizing Radiation and Antioxidant Properties in Space. FRONTIERS IN PLANT SCIENCE 2022; 13:830931. [PMID: 35283922 PMCID: PMC8909381 DOI: 10.3389/fpls.2022.830931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Gene expression manipulation of specific metabolic pathways can be used to obtain bioaccumulation of valuable molecules and desired quality traits in plants. A single-gene approach to impact different traits would be greatly desirable in agrospace applications, where several aspects of plant physiology can be affected, influencing growth. In this work, MicroTom hairy root cultures expressing a MYB-like transcription factor that regulates the biosynthesis of anthocyanins in Petunia hybrida (PhAN4), were considered as a testbed for bio-fortified tomato whole plants aimed at agrospace applications. Ectopic expression of PhAN4 promoted biosynthesis of anthocyanins, allowing to profile 5 major derivatives of delphinidin and petunidin together with pelargonidin and malvidin-based anthocyanins, unusual in tomato. Consistent with PhAN4 features, transcriptomic profiling indicated upregulation of genes correlated to anthocyanin biosynthesis. Interestingly, a transcriptome reprogramming oriented to positive regulation of cell response to biotic, abiotic, and redox stimuli was evidenced. PhAN4 hairy root cultures showed the significant capability to counteract reactive oxygen species (ROS) accumulation and protein misfolding upon high-dose gamma irradiation, which is among the most potent pro-oxidant stress that can be encountered in space. These results may have significance in the engineering of whole tomato plants that can benefit space agriculture.
Collapse
Affiliation(s)
- Silvia Massa
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Riccardo Pagliarello
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | | | - Olivia Costantina Demurtas
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Gianfranco Diretto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Francesca Paolini
- 'Regina Elena' National Cancer Institute, HPV-UNIT, Department of Research, Advanced Diagnostic and Technological Innovation, Translational Research Functional Departmental Area, Rome, Italy
| | - H Earl Petzold
- School of Plants and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mattijs Bliek
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Elisabetta Bennici
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Antonella Del Fiore
- Department for Sustainability, Biotechnology and Agro-Industry Division - Agrifood Sustainability, Quality, and Safety Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Patrizia De Rossi
- Energy Efficiency Unit Department - Northern Area Regions Laboratory, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Cornelis Spelt
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald Koes
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Quattrocchio
- Department of Plant Development and (Epi)Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Eugenio Benvenuto
- Department for Sustainability, Biotechnology and Agro-Industry Division - Biotec Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
5
|
Design, Synthesis, and Biological Evaluation of a Novel Aminothiol Compound as Potential Radioprotector. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4714649. [PMID: 34471464 PMCID: PMC8405339 DOI: 10.1155/2021/4714649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
The risk of radiation damage has increased with the rapid development of nuclear technology and radiotherapy. Hence, research on radioprotective agents is of utmost importance. In the present study, a novel aminothiol compound 12, containing a linear alkylamino backbone and three terminal thiols, was synthesized. Owing to the appropriate capped groups in the chains, it has an improved permeability and oral bioavailability compared to other radioprotective agents. Oral administration of compound 12 improved the survival of mice that received lethal doses of γ-irradiation. Experimental results demonstrated that compound 12 not only mitigated total body irradiation-induced hematopoietic injury by increasing the frequencies of hematopoietic stem and progenitor cells but also prevented abdominal irradiation-induced intestinal injury by increasing the survival of Lgr5+ intestinal cells, lysozyme+ Paneth cells, and Ki67+ cells. In addition, compound 12 decreased oxidative stress by upregulating the expression of Nrf2 and NQO1 and downregulating the expression of NOX1. Further, compound 12 inhibited γ-irradiation-induced DNA damage and alleviated G2/M phase arrest. Moreover, compound 12 decreased the levels of p53 and Bax and increased the level of Bcl-2, demonstrating that it may suppress radiation-induced apoptosis via the p53 pathway. These results indicate that compound 12 has the possibility of preventing radiation injury and can be a potential radioprotector for clinical applications.
Collapse
|
6
|
Checker R, Patwardhan RS, Jayakumar S, Maurya DK, Bandekar M, Sharma D, Sandur SK. Chemical and biological basis for development of novel radioprotective drugs for cancer therapy. Free Radic Res 2021; 55:595-625. [PMID: 34181503 DOI: 10.1080/10715762.2021.1876854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ionizing radiation (IR) causes chemical changes in biological systems through direct interaction with the macromolecules or by causing radiolysis of water. This property of IR is harnessed in the clinic for radiotherapy in almost 50% of cancers patients. Despite the advent of stereotactic radiotherapy instruments and other advancements in shielding techniques, the inadvertent deposition of radiation dose in the surrounding normal tissue can cause late effects of radiation injury in normal tissues. Radioprotectors, which are chemical or biological agents, can reduce or mitigate these toxic side-effects of radiotherapy in cancer patients and also during radiation accidents. The desired characteristics of an ideal radioprotector include low chemical toxicity, high risk to benefit ratio and specific protection of normal cells against the harmful effects of radiation without compromising the cytotoxic effects of IR on cancer cells. Since reactive oxygen species (ROS) are the major contributors of IR mediated toxicity, plethora of studies have highlighted the potential role of antioxidants to protect against IR induced damage. However, owing to the lack of any clinically approved radioprotector against whole body radiation, researchers have shifted the focus toward finding alternate targets that could be exploited for the development of novel agents. The present review provides a comprehensive insight in to the different strategies, encompassing prime molecular targets, which have been employed to develop radiation protectors/countermeasures. It is anticipated that understanding such factors will lead to the development of novel strategies for increasing the outcome of radiotherapy by minimizing normal tissue toxicity.
Collapse
Affiliation(s)
- Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Sundarraj Jayakumar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, India
| |
Collapse
|
7
|
Zhang J, Li K, Zhang Q, Zhu Z, Huang G, Tian H. Polycysteine as a new type of radio-protector ameliorated tissue injury through inhibiting ferroptosis in mice. Cell Death Dis 2021; 12:195. [PMID: 33602915 PMCID: PMC7977147 DOI: 10.1038/s41419-021-03479-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Amifostine has been the only small molecule radio-protector approved by FDA for decades; however, the serious adverse effects limit its clinical use. To address the toxicity issues and maintain the good potency, a series of modified small polycysteine peptides had been prepared. Among them, compound 5 exhibited the highest radio-protective efficacy, the same as amifostine, but much better safety profile. To confirm the correlation between the radiation-protective efficacy and the DNA binding capability, each of the enantiomers of the polycysteine peptides had been prepared. As a result, the L-configuration compounds had obviously higher efficacy than the corresponding D-configuration enantiomers; among them, compound 5 showed the highest DNA binding capability and radiation-protective efficacy. To our knowledge, this is the first study that has proved their correlations using direct comparison. Further exploration of the mechanism revealed that the ionizing radiation (IR) triggered ferroptosis inhibition by compound 5 could be one of the pathways for the protection effect, which was different from amifostine. In summary, the preliminary result showed that compound 5, a polycysteine as a new type of radio-protector, had been developed with good efficacy and safety profile. Further study of the compound for potential use is ongoing.
Collapse
Affiliation(s)
- Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | - Kui Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | - Qianru Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | - Zhimei Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China
| | | | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, 300000, Tianjin, China.
| |
Collapse
|
8
|
Dreischmeier E, Fahl WE. Determination of plasma levels of the active thiol form of the direct-acting PrC-210 ROS-scavenger using a fluorescence-based assay. Anal Biochem 2021; 616:114100. [PMID: 33417842 DOI: 10.1016/j.ab.2021.114100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
PrC-210 is a direct-acting ROS-scavenger. It's active when administered orally, IV, or topically; it has none of the nausea/emesis nor hypotension side effects that have precluded human amifostine use. PrC-210 confers 100% survival to mice and rats that received an otherwise 100% lethal radiation dose and 36% reduction of ischemia-reperfusion-induced mouse myocardial infarct damage, and thus is a viable candidate to prevent human ROS-induced ischemia-reperfusion and ionizing radiation toxicities. We report the first assay for the pharmacologically active PrC-210 thiol in blood. PrC-210 has no double-bonds nor light absorption, so derivatizing the thiol with a UV-absorbing fluorochrome enables quantification. This assay: i) is done on the benchtop; it's read with a fluorescence plate reader, ii) provides linear product formation through 60 min, iii) quantifies μM to low mM rodent blood levels of PrC-210 that confer complete radioprotection, iv) accurately reflects PrC-210 thiol formation of mixed disulfides with other thiols in blood, and v) shows excellent between-day assay outcome with very low standard deviation and coefficient of variation. A fluorescence assay quantifying formation of a PrC-210 thiol-bimane adduct enables measurement of blood PrC-210 thiol. A blood assay will help in the development of PrC-210 for use in the human clinical setting.
Collapse
Affiliation(s)
- Emma Dreischmeier
- Wisconsin Institutes of Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | - William E Fahl
- Wisconsin Institutes of Medical Research, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Significant Improvement in Rat Kidney Cold Storage Using UW Organ Preservation Solution Supplemented With the Immediate-Acting PrC-210 Free Radical Scavenger. Transplant Direct 2020; 6:e578. [PMID: 33134502 PMCID: PMC7581037 DOI: 10.1097/txd.0000000000001032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion injury, including injury from warm- and cold-ischemia (CI) organ storage, remains a significant problem for all solid organ transplants. Suppressing CI damage would reduce delayed graft function and increase the donor organ pool size. PrC-210 has demonstrated superior prevention of damage in several preclinical studies as an immediate-acting free-radical scavenger. Here, we describe its profound efficacy in suppressing CI injury in a rat kidney model.
Collapse
|
10
|
Bicheru NS, Haidoiu C, Călborean O, Popa A, Porosnicu I, Hertzog R. Effect of Different Antioxidants on X-ray Induced DNA Double-strand Breaks Using γ-H2AX in Human Blood Lymphocytes. HEALTH PHYSICS 2020; 119:101-108. [PMID: 32483045 DOI: 10.1097/hp.0000000000001267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ionizing radiation exposure produces direct or indirect biological effects on genomic DNA. The latter are ionizing radiation mediated by induction of free radicals and oxygen species (ROS). The study was conducted to evaluate the dose-effect/time-effect of antioxidant treatments in reducing the induction of double-strand breaks in human blood lymphocytes. Human peripheral blood samples of 2 mL each from healthy donors were irradiated with 10 mGy after pre-incubation with different antioxidants (β-carotene, vitamin E, vitamin C, N-acetyl L-cysteine). In order to assess their efficiency as prophylactic therapy for irradiation, various concentrations and combinations of antioxidants, as well as different incubation times, have been evaluated. To assess double-strand breaks induced by ionizing radiation, the phosphorylated histone γ-H2AX has been used. A significant reduction (p < 0.001) in double-strand breaks studied with a γ-H2AX assay was observed with N-acetyl L-cysteine with a 1-h incubation time, followed by vitamin C, vitamin E, and β-carotene. The use of antioxidants, especially N-acetyl L-cysteine before irradiation, significantly decreased the occurrence of double-strand breaks, demonstrating the potential radiological protection for exposure to ionizing radiation.
Collapse
Affiliation(s)
| | | | | | - Adrian Popa
- Military Medical Research Center, Bucharest, Romania
| | - Ioana Porosnicu
- National Institute for Laser Plasma and Radiation Physics, Bucharest, Romania
| | - Radu Hertzog
- Military Medical Research Center, Bucharest, Romania
| |
Collapse
|
11
|
Fahl WE, Jermusek F, Guerin T, Albrecht DM, Fahl CJS, Dreischmeier E, Benedict C, Back S, Eickhoff J, Halberg RB. Impact of the PrC-210 Radioprotector Molecule on Cancer Deaths in p53-Deficient Mice. Radiat Res 2019; 193:88-94. [PMID: 31738662 DOI: 10.1667/rr15439.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced cancer is an ongoing and significant problem, with sources that include clinics worldwide in which 3.1 billion radiology exams are performed each year, as well as a variety of other scenarios such as space travel and nuclear cleanup. These radiation exposures are typically anticipated, and the exposure is typically well below 1 Gy. When radiation-induced (actually ROS-induced) DNA mutation is prevented, then so too are downstream radiation-induced cancers. Currently, there is no protection available against the effects of such <1 Gy radiation exposures. In this study, we address whether the new PrC-210 ROS-scavenger is effective in protecting p53-deficient (p53-/-) mice against X-ray-induced accelerated tumor mortality; this is the most sensitive radiation tumorigenesis model currently known. Six-day-old p53-/- pups received a single intraperitoneal PrC-210 dose [0.5 maximum tolerated dose (MTD)] or vehicle, and 25 min later, pups received 4.0 Gy X-ray irradiation. At 5 min postirradiation, blood was collected to quantify white blood cell c-H2AX foci. Over the next 250 days, tumor-associated deaths were recorded. Findings revealed that when administered 25 min before 4 Gy X-ray irradiation, PrC-210 reduced DNA damage (c-H2AX foci) by 40%, and in a notable coincidence, caused a 40% shift in tumor latency/incidence, and the 0.5 MTD PrC210 dose had no discernible toxicities in these p53-/- mice. Essentially, the moles of PrC-210 thiol within a single 0.5 MTD PrC-210 dose suppressed the moles of ROS generated by 40% of the 4 Gy X-ray dose administered to p53-/- pups, and in doing so, eliminated the lifetime leukemia/lymphoma risk normally residing "downstream" of that 40% of the 4 Gy dose. In conclusion: 1. PrC-210 is readily tolerated by the 6-day-old p53-/- mice, with no discernible lifetime toxicities; 2. PrC-210 does not cause the nausea, emesis or hypotension that preclude clinical use of earlier aminothiols; and 3. PrC-210 significantly increased survival after 4 Gy irradiation in the p53-/- mouse model.
Collapse
Affiliation(s)
| | | | - Thomas Guerin
- Department of Medicine, Department of Oncology, UW Carbone Cancer Center
| | - Dawn M Albrecht
- Department of Medicine, Department of Oncology, UW Carbone Cancer Center
| | | | | | | | - Susan Back
- Wisconsin Institutes for Medical Research
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Richard B Halberg
- Department of Medicine, Department of Oncology, UW Carbone Cancer Center
| |
Collapse
|
12
|
Abstract
Radiation therapy is one of the most commonly used treatments for cancer. Radiation modifiers are agents that alter tumor or normal tissue response to radiation, such as radiation sensitizers and radiation protectors. Radiation sensitizers target aspects of tumor molecular biology or physiology to enhance tumor cell killing after irradiation. Radioprotectors prevent damage of normal tissues selectively. Radiation modifiers remain largely investigational at present, with the promise that molecular characterization of tumors may enhance the capacity for successful clinical development moving forward. A variety of radiation modifiers are described.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10 CRC, Room B2-3500, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Singh VK, Seed TM. The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf 2019; 18:1077-1090. [PMID: 31526195 DOI: 10.1080/14740338.2019.1666104] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: A radiation countermeasure that can be used prior to radiation exposure to protect the population from the harmful effects of radiation exposure remains a major unmet medical need and is recognized as an important area for research. Despite substantial advances in the research and development for finding nontoxic, safe, and effective prophylactic countermeasures for the acute radiation syndrome (ARS), no such agent has been approved by the United States Food and Drug Administration (FDA). Area covered: Despite the progress made to improve the effectiveness of amifostine as a radioprotector for ARS, none of the strategies have resolved the issue of its toxicity/side effects. Thus, the FDA has approved amifostine for limited clinical indications, but not for non-clinical uses. This article reviews recent strategies and progress that have been made to move forward this potentially useful countermeasure for ARS. Expert opinion: Although the recent investigations have been promising for fielding safe and effective radiation countermeasures, additional work is needed to improve and advance drug design and delivery strategies to get FDA approval for broadened, non-clinical use of amifostine during a radiological/nuclear scenario.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
14
|
Hacker TA, Diarra G, Fahl BL, Back S, Kaufmann E, Fahl WE. Significant reduction of ischemia-reperfusion cell death in mouse myocardial infarcts using the immediate-acting PrC-210 ROS-scavenger. Pharmacol Res Perspect 2019; 7:e00500. [PMID: 31338199 PMCID: PMC6625532 DOI: 10.1002/prp2.500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/31/2019] [Accepted: 06/15/2019] [Indexed: 11/07/2022] Open
Abstract
Managing myocardial infarction (MI) to reduce cardiac cell death relies primarily on timely reperfusion of the affected coronary site, but reperfusion itself induces cell death through a toxic, ROS-mediated process. In this study, we determined whether the PrC-210 aminothiol ROS-scavenger could prevent ROS-induced damage in post-MI hearts. In a series of both in vitro and in vivo experiments, we show that: (a) in vitro, PrC-210 was the most potent and effective ROS-scavenger when functionally compared to eight of the most commonly studied antioxidants in the MI literature, (b) in vitro PrC-210 ROS-scavenging efficacy was both immediate (seconds) and long-lasting (hours), which would make it effective in both (1) real-time (seconds), as post-MI or cardiac surgery hearts are reperfused with PrC-210-containing blood, and (2) long-term (hours), as hearts are bathed with systemic PrC-210 after MI or surgery, (c) systemic PrC-210 caused a significant 36% reduction of mouse cardiac muscle death following a 45-minute cardiac IR insult; in a striking coincidence, the PrC-210 36% reduction in cardiac muscle death equals the 36% of the MI-induced cardiac cell death estimated 6 years ago by Ovize and colleagues to result from "reperfusion injury," (d) hearts in PrC-210-treated mice performed better than controls after heart attacks when functionally analyzed using echocardiography, and (e) the PrC-210 ROS-scavenging mechanism of action was corroborated by its ability to prevent >85% of the direct, H2O2-induced killing of neonate cardiomyocytes in cell culture. PrC-210 does not cause the nausea, emesis, nor hypotension that preclude clinical use of the WR-1065/amifostine aminothiol. PrC-210 is a highly effective ROS-scavenger that significantly reduces IR injury-associated cardiac cell death.
Collapse
Affiliation(s)
- Timothy A. Hacker
- Cardiovascular Physiology Core Facility, Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Gaoussou Diarra
- Cardiovascular Physiology Core Facility, Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Bryan L. Fahl
- Wisconsin Institutes for Medical ResearchUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Susan Back
- Wisconsin Institutes for Medical ResearchUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Erin Kaufmann
- Wisconsin Institutes for Medical ResearchUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - William E. Fahl
- Wisconsin Institutes for Medical ResearchUniversity of Wisconsin‐MadisonMadisonWisconsin
| |
Collapse
|
15
|
Significant Reduction of Murine Renal Ischemia-Reperfusion Cell Death Using the Immediate-Acting PrC-210 Reactive Oxygen Species Scavenger. Transplant Direct 2019; 5:e469. [PMID: 31334343 PMCID: PMC6616140 DOI: 10.1097/txd.0000000000000909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background. Ischemia-reperfusion (IR) injury remains a significant problem for all solid organ transplants; thus, an important unmet need in transplantation is the prevention of IR injury. PrC-210 has demonstrated superior prevention of reactive oxygen species damage in several preclinical studies as a free radical scavenger. Here, we describe its profound efficacy in suppressing IR injury in a murine model of kidney IR injury. Methods. C57/B6 mice underwent laparotomy with the left renal pedicle occluded for 30 minutes to induce IR injury. Right nephrectomy was performed at the time of surgery. Mice received a single systemic dose of the PrC-210, PrC-211, or PrC-252 aminothiols 20 minutes before IR injury. Twenty-four hours following IR injury, blood and kidney tissue were collected for analysis. Kidney caspase-3 level (a marker of cell death), direct histological analysis of kidneys, and serum blood urea nitrogen (BUN) were measured in animals to assess reactive oxygen species scavenger protective efficacies. Results. A single systemic PrC-210 dose 20 minutes before IR injury resulted in significant reductions in (1) IR-induced kidney caspase level (P < 0.0001); caspase was reduced to levels not significantly different than control caspase levels seen in unperturbed kidneys, (2) IR-induced renal tubular injury scores (P < 0.0001); brush border loss and tubular dilation were markedly reduced, and (3) serum BUN compared with control IR injury kidneys (P < 0.0001). The ranked protective efficacies of PrC-210 > PrC-211 >> PrC-252 paralleled previous radioprotection studies of the molecules. Conclusions. A single PrC-210 dose, minutes before the IR insult, profoundly reduced caspase, renal tubular injury, and serum BUN in mice exposed to standard kidney IR injury. These findings support further development of the PrC-210 molecule to suppress or prevent IR injury in organ transplant and other IR injury settings.
Collapse
|
16
|
Protective Effect of JXT Ethanol Extract on Radiation-Induced Hematopoietic Alteration and Oxidative Stress in the Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9017835. [PMID: 30510630 PMCID: PMC6230390 DOI: 10.1155/2018/9017835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/01/2018] [Accepted: 09/04/2018] [Indexed: 01/22/2023]
Abstract
This study aims at investigating the radioprotective effect of ethanol extract from Ji-Xue-Teng (JXT, Spatholobus suberectus) on radiation-induced hematopoietic alteration and oxidative stress in the liver. Mice were exposed to a single acute γ-radiation for the whole body at the dose of 6.0 Gy, then subjected to administration of amifostine (45 mg/kg) or JXT (40 g crude drug/kg) once a day for 28 consecutive days, respectively. Bone marrow cells and hemogram including white cells, red cells, platelet counts, and hemoglobin level were examined. The protein expression levels of pJAK2/JAK2, pSTAT5a/STAT5a, pSTAT5b/STAT5b, and Bcl-2 in bone marrow tissue; levels of reactive oxygen species (ROS); and the activity of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum and liver tissue were determined. At the end of the experiment, the effect of JXT on cell viability and G-CSF and G-CSFR levels in NFS-60 cells were tested by CCK-8 assay, ELISA, and flow cytometry. The results showed that the mice exposed to γ-radiation alone exhibited a typical hematopoietic syndrome. In contrast, at the end of the 28-day experiment, irradiated mice subjected to oral administration of JXT showed an obvious improvement on blood profile with reduced leucopenia, thrombocytopenia (platelet counts), RBC, and hemoglobin levels, as well as bone marrow cells. The expression of pJAK2/JAK2, pSTAT5a/STAT5a, and Bcl-2 in bone marrow tissue was increased after JXT treatment. The elevation of ROS was due to radiation-induced toxicity, but JXT significantly reduced the ROS level in serum and liver tissue, elevated endogenous SOD and GSH-PX levels, and reduced the MDA level in the liver. JXT could also increase cell viability and G-CSFR level in NFS-60 cells, which was similar to exogenous G-CSF. Our findings suggested that oral administration of JXT effectively facilitated the recovery of hematopoietic bone marrow damage and oxidative stress of the mice induced by γ-radiation.
Collapse
|
17
|
Brand M, Sommer M, Jermusek F, Fahl WE, Uder M. Reduction of X-ray-induced DNA damage in normal human cells treated with the PrC-210 radioprotector. Biol Open 2018; 7:bio.035113. [PMID: 30135082 PMCID: PMC6215412 DOI: 10.1242/bio.035113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of our study was to determine the protective efficacy of the PrC-210 aminothiol radioprotector against X-ray-induced DNA damage in normal human cells and to establish dose- and time-effect models for future PrC-210 use in humans. The PrC-210 structure has a branched structure which enables scavenging of reactive oxygen species (ROS) away from DNA. Normal human blood lymphocytes, fibroblasts and naked genomic DNA were exposed to PrC-210 seconds to hours prior to irradiation. Biological (γ-H2AX foci), chemical (8-oxo-deoxyguanosine) and physical (genomic DNA electrophoretic migration) DNA damage endpoints were scored to determine the ability of PrC-210 to suppress radiation-induced DNA damage. X-ray-induced γ-H2AX foci in blood lymphocytes were reduced by 80% after irradiation with 10, 50 and 100 mGy, and DNA double-strand breaks in fibroblasts were reduced by 60% after irradiation with 20 Gy. Additionally, we observed a reduction of 8-oxo-deoxyguanosine (an ROS-mediated, DNA damage marker) in human genomic DNA to background in a PrC-210 dose-dependent manner. PrC-210 also eliminated radiation-induced cell death in colony formation assays after irradiation with 1 Gy. The protective efficacy of PrC-210 in each of these assay systems supports its development as a radioprotector for humans in multiple radiation exposure settings. Summary: A new strategy is decribed, using a new radioprotector (PrC-210) to significantly reduce radiation-induced DNA damage.
Collapse
Affiliation(s)
- Michael Brand
- Department of Radiology, Maximiliansplatz 3, University of Erlangen, 91054 Erlangen, Germany
| | - Matthias Sommer
- Department of Radiology, Maximiliansplatz 3, University of Erlangen, 91054 Erlangen, Germany
| | - Frank Jermusek
- Wisconsin Institutes of Medical Research, University of Wisconsin-Madison, Madison, Wisconsin 53705 USA
| | - William E Fahl
- Wisconsin Institutes of Medical Research, University of Wisconsin-Madison, Madison, Wisconsin 53705 USA
| | - Michael Uder
- Department of Radiology, Maximiliansplatz 3, University of Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
18
|
Abdel-Magied N, Ahmed AG, Abo Zid N. Possible ameliorative effect of aqueous extract of date (Phoenix dactylifera) pits in rats exposed to gamma radiation. Int J Radiat Biol 2018; 94:815-824. [PMID: 29969364 DOI: 10.1080/09553002.2018.1492165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE To evaluate the radioprotective efficacy of date (Phoenix dactylifera) pits extract (DPE) against γ-irradiation-induced liver damage in the male albino rats. For this study, 30-day survival, dose reduction factor (DRF), antioxidant status and some biochemical changes in the serum and hepatic tissue were evaluated. MATERIALS AND METHODS To calculate 30-day survival, median lethal dose of 30 days (LD50/30) and DRF, DPE was orally administered to rats for 21 days before irradiation with different doses (5, 6, 8, 10 and 12 Gy) of γ-rays and the rats were observed for 30 days post-irradiation. To evaluate the radioprotective efficacy of DPE against γ-irradiation induced-liver tissue damage, animals were divided into four groups (eight animals in each group). (i) Control: rats not subjected to any treatment; (ii) DPE: DPE was orally administrated (1000 mg/kg body weight) for 21 days; (iii) RAD: rats' whole body exposed to 5 Gy of γ-rays; (iv) DPE + RAD: rats received DPE treatment for 21 days before γ-irradiation. Animals were sacrificed on the seventh day postexposure to radiation. RESULTS The results showed that pretreatment prior to irradiation with DPE resulted in a significantly higher 30-day survival rate of rats after exposure to different doses of γ-irradiation. Furthermore, DPE treatment resulted in a significant improvement in the hepatic redox state, manifested by a marked increase of superoxide dismutase (SOD) and catalase (CAT) activities and glutathione content associated with a significant decrease of malondialdehyde (MDA) level. In addition, DPE exhibited hepatoprotective effect evidenced by a marked increase in serum levels of insulin, testosterone, high-density lipoprotein-cholesterol (HDL-c) and hepatic glucose 6 phosphate dehydrogenase (G6PHD) activity associated with a significant decrease in serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (γ-GT), glucose, total cholesterol (TC), triglycerides (TG), low density-lipoprotein cholesterol (LDL-c) and hepatic glucose 6 phosphatase (G6Pase) activity, compared with irradiated group. Moreover, DPE showed positive modulation in the levels of hepatic metals [(iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn)]. CONCLUSIONS DPE treatment prior to gamma irradiation produced biochemical changes that could lead to a reduction in radiation-induced oxidative stress. Hence, we suggest that DPE may be useful as a new natural radioprotective agent.
Collapse
Affiliation(s)
- Nadia Abdel-Magied
- a Radiation Biology Department , National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority , Cairo , Egypt
| | - Amal G Ahmed
- a Radiation Biology Department , National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority , Cairo , Egypt
| | - Nahed Abo Zid
- a Radiation Biology Department , National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority , Cairo , Egypt
| |
Collapse
|
19
|
Jermusek F, Benedict C, Dreischmeier E, Brand M, Uder M, Jeffery JJ, Ranallo FN, Fahl WE. Significant Suppression of CT Radiation-Induced DNA Damage in Normal Human Cells by the PrC-210 Radioprotector. Radiat Res 2018; 190:133-141. [PMID: 29781766 DOI: 10.1667/rr14928.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While computed tomography (CT) is now commonly used and considered to be clinically valuable, significant DNA double-strand breaks (γ-H2AX foci) in white blood cells from adult and pediatric CT patients have been frequently reported. In this study to determine whether γ-H2AX foci and X-ray-induced naked DNA damage are suppressed by administration of the PrC-210 radioprotector, human blood samples were irradiated in a CT scanner at 50-150 mGy with or without PrC-210, and γ-H2AX foci were scored. X-ray-induced naked DNA damage was also studied, and the DNA protective efficacy of PrC-210 was compared against 12 other common "antioxidants." PrC-210 reduced CT radiation-induced γ-H2AX foci in white blood cells to near background ( P < 0.0001) at radiation doses of 50-150 mGy. PrC-210 was most effective among the 13 "antioxidants" in reducing naked DNA X-ray damage, and its addition at 30 s before an •OH pulse reduced to background the •OH insult that otherwise induced >95% DNA damage. A systemic PrC-210 dose known to confer 100% survival in irradiated mice had no discernible effect on micro-CT image signal-to-noise ratio and CT image integrity. PrC-210 suppressed DNA damage to background or near background in each of these assay systems, thus supporting its development as a radioprotector for humans in multiple radiation exposure settings.
Collapse
Affiliation(s)
| | | | | | - Michael Brand
- d Department of Radiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Uder
- d Department of Radiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Frank N Ranallo
- c Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | | |
Collapse
|
20
|
Mulinacci N, Valletta A, Pasqualetti V, Innocenti M, Giuliani C, Bellumori M, De Angelis G, Carnevale A, Locato V, Di Venanzio C, De Gara L, Pasqua G. Effects of ionizing radiation on bio-active plant extracts useful for preventing oxidative damages. Nat Prod Res 2018; 33:1106-1114. [PMID: 29607691 DOI: 10.1080/14786419.2018.1457663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Humans are exposed to ionizing radiations in medical radiodiagnosis and radiotherapy that cause oxidative damages and degenerative diseases. Airplane pilots, and even more astronauts, are exposed to a variety of potentially harmful factors, including cosmic radiations. Among the phytochemicals, phenols are particularly efficient in countering the oxidative stress. In the present study, different extracts obtained from plant food, plant by-products and dietary supplements, have been compared for their antioxidant properties before and after irradiation of 140 cGy, a dose absorbed during a hypothetical stay of three years in the space. All the dry extracts, characterized in terms of vitamin C and phenolic content, remained chemically unaltered and maintained their antioxidant capability after irradiation. Our results suggest the potential use of these extracts as nutraceuticals to protect humans from oxidative damages, even when these extracts must be stored in an environment exposed to cosmic radiations as in a space station.
Collapse
Affiliation(s)
- Nadia Mulinacci
- a Department of Neurofarba, Pharmaceutical and Nutraceutical Division , University of Florence , Sesto Fiorentino , Italy
| | - Alessio Valletta
- b Department of Environmental Biology , La Sapienza University of Rome , Rome , Italy
| | - Valentina Pasqualetti
- c Unit of Food Science and Human Nutrition, Department of Medicine , Campus Bio-Medico University of Rome , Rome , Italy
| | - Marzia Innocenti
- a Department of Neurofarba, Pharmaceutical and Nutraceutical Division , University of Florence , Sesto Fiorentino , Italy
| | - Camilla Giuliani
- a Department of Neurofarba, Pharmaceutical and Nutraceutical Division , University of Florence , Sesto Fiorentino , Italy
| | - Maria Bellumori
- a Department of Neurofarba, Pharmaceutical and Nutraceutical Division , University of Florence , Sesto Fiorentino , Italy
| | - Giulia De Angelis
- b Department of Environmental Biology , La Sapienza University of Rome , Rome , Italy
| | - Alessia Carnevale
- d Unit of Radiotherapy, Department of Medicine , Campus Bio-Medico University of Rome , Rome , Italy
| | - Vittoria Locato
- c Unit of Food Science and Human Nutrition, Department of Medicine , Campus Bio-Medico University of Rome , Rome , Italy
| | - Cristina Di Venanzio
- d Unit of Radiotherapy, Department of Medicine , Campus Bio-Medico University of Rome , Rome , Italy
| | - Laura De Gara
- c Unit of Food Science and Human Nutrition, Department of Medicine , Campus Bio-Medico University of Rome , Rome , Italy
| | - Gabriella Pasqua
- b Department of Environmental Biology , La Sapienza University of Rome , Rome , Italy
| |
Collapse
|
21
|
Cho J, Bing SJ, Kim A, Lee NH, Byeon SH, Kim GO, Jee Y. Beetroot (Beta vulgaris) rescues mice from γ-ray irradiation by accelerating hematopoiesis and curtailing immunosuppression. PHARMACEUTICAL BIOLOGY 2017; 55:306-319. [PMID: 27927068 PMCID: PMC6130760 DOI: 10.1080/13880209.2016.1237976] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Beetroot [Beta vulgaris Linné (Chenopodiaceae)], a vegetable usually consumed as a food or a medicinal plant in Europe, has been reported to have antioxidant and anti-inflammatory properties. Since the lymphohematopoietic system is the most sensitive tissue to ionizing radiation, protecting it from radiation damage is one of the best ways to decrease detrimental effects from radiation exposure. OBJECTIVE In this study, we evaluated the radio-protective effects of beetroot in hematopoietic stem cells (HSCs) and progenitor cells. MATERIALS AND METHODS Beetroot extract was administered at a dose of 400 mg/mouse per os (p.o.) three times into C57BL/6 mice and, at day 10 after γ-ray irradiation, diverse molecular presentations were measured and compared against non-irradiated and irradiated mice with PBS treatments. Survival of beetroot-fed and unfed irradiated animal was also compared. RESULTS Beetroot not only stimulated cell proliferation, but also minimized DNA damage of splenocytes. Beetroot also repopulated S-phase cells and increased Ki-67 or c-Kit positive cells in bone marrow. Moreover, beetroot-treated mice showed notable boosting of differentiation of HSCs into burst-forming units-erythroid along with increased production of IL-3. Also, beetroot-treated mice displayed enhancement in the level of hematocrit and hemoglobin as well as the number of red blood cell in peripheral blood. Beetroot diet improved survival rate of lethally exposed mice with a dose reduction factor (DRF) of 1.1. DISCUSSION AND CONCLUSION These results suggest that beetroot has the potency to preserve bone marrow integrity and stimulate the differentiation of HSCs against ionizing radiation.
Collapse
Affiliation(s)
- Jinhee Cho
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - So Jin Bing
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Areum Kim
- Department of Advanced Convergence Technology & Science, Jeju National University, Jeju, Republic of Korea
| | - Nam Ho Lee
- Department of Chemistry, Jeju National University, Jeju, Republic of Korea
| | - Sang-Hee Byeon
- Department of Chemistry, Jeju National University, Jeju, Republic of Korea
| | - Gi-Ok Kim
- Jeju Diversity Research Institute, Seogwipo, Republic of Korea
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
22
|
Kleiman NJ, Stewart FA, Hall EJ. Modifiers of radiation effects in the eye. LIFE SCIENCES IN SPACE RESEARCH 2017; 15:43-54. [PMID: 29198313 DOI: 10.1016/j.lssr.2017.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/05/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
World events, including the threat of radiological terrorism and the fear of nuclear accidents, have highlighted an urgent need to develop medical countermeasures to prevent or reduce radiation injury. Similarly, plans for manned spaceflight to a near-Earth asteroid or journey to Mars raise serious concerns about long-term effects of space radiation on human health and the availability of suitable therapeutic interventions. At the same time, the need to protect normal tissue from the deleterious effects of radiotherapy has driven considerable research into the design of effective radioprotectors. For more than 70 years, animal models of radiation cataract have been utilized to test the short and long-term efficacy of various radiation countermeasures. While some compounds, most notably the Walter Reed (WR) class of radioprotectors, have reported limited effectiveness when given before exposure to low-LET radiation, the human toxicity of these molecules at effective doses limits their usefulness. Furthermore, while there has been considerable testing of eye responses to X- and gamma irradiation, there is limited information about using such models to limit the injurious effects of heavy ions and neutrons on eye tissue. A new class of radioprotector molecules, including the sulfhydryl compound PrC-210, are reported to be effective at much lower doses and with far less side effects. Their ability to modify ocular radiation damage has not yet been examined. The ability to non-invasively measure sensitive, radiation-induced ocular changes over long periods of time makes eye models an attractive option to test the radioprotective and radiation mitigating abilities of new novel compounds.
Collapse
Affiliation(s)
- Norman J Kleiman
- Department of Environmental Health Sciences, Eye Radiation and Environmental Research Laboratory, Columbia University, Mailman School of Public Health, 722 West 168th St., 11th Floor, New York, NY 10032, USA.
| | - Fiona A Stewart
- Division of Biological Stress Response, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Eric J Hall
- Center for Radiological Research, Columbia University, College of Physicians and Surgeons, 630 W. 168th St., New York, NY 10032, USA
| |
Collapse
|
23
|
Singh VK, Garcia M, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part II. Countermeasures for limited indications, internalized radionuclides, emesis, late effects, and agents demonstrating efficacy in large animals with or without FDA IND status. Int J Radiat Biol 2017; 93:870-884. [DOI: 10.1080/09553002.2017.1338782] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Melissa Garcia
- Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
24
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
25
|
Kim W, Kang J, Lee S, Youn B. Effects of traditional oriental medicines as anti-cytotoxic agents in radiotherapy. Oncol Lett 2017; 13:4593-4601. [PMID: 28599460 DOI: 10.3892/ol.2017.6042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
The primary goal of radiotherapy in oncology is to enhance the efficacy of tumor cell death while decreasing damage to surrounding normal cells. Positive therapeutic outcomes may be accomplished by improved targeting, precisely targeting tumor cells or protecting normal cells against radiation-induced damage. The potential for antioxidants to decrease normal tissue damage induced by radiation has been investigated in animal models for a number of decades. In attempts for radioprotection, certain synthetic chemicals are suggested as antioxidants and normal tissue protectors against radiation-induced damage, but they have exhibited limitations in pharmacological application due to undesirable effects and high toxicities at clinical doses. The present review focuses on the radioprotective efficacy of traditional oriental medicines with the advantage of low toxicity at pharmacological doses and how such treatments may influence various harmful effects induced by radiation in vitro and in vivo. In addition, medicinal plants and their active constituents with biological activities that may be associated with alleviation of radiation-induced damage through antioxidant, anti-inflammatory, wound healing and immunostimulatory properties are discussed.
Collapse
Affiliation(s)
- Wanyeon Kim
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Biology Education, Korea National University of Education, Cheongju 28173, Republic of Korea
| | - Jihoon Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Buhyun Youn
- Department of Biological Sciences, Pusan National University, Busan 46241, Republic of Korea.,Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
26
|
Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective Agents: Strategies and Translational Advances. Med Res Rev 2016; 36:461-93. [PMID: 26807693 DOI: 10.1002/med.21386] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023]
Abstract
Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed.
Collapse
Affiliation(s)
- Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Ranjan
- Kansas University of Medical Center, Kansas City, KS, 66160
| | - Navrinder Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
27
|
Múčka V, Červenák J, Čuba V, Bláha P. Determination of the survival of yeast and bacteria under the influence of gamma or UV radiation in the presence of some scavengers of OH radicals. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3696-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Kma L. Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review. Asian Pac J Cancer Prev 2014; 15:2405-25. [DOI: 10.7314/apjcp.2014.15.6.2405] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|