1
|
Andreß JC, Böck MC, Höfner G, Wanner KT. Synthesis and biological evaluation of α- and β-hydroxy substituted amino acid derivatives as potential mGAT1–4 inhibitors. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02548-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractIn this study, we report the synthesis and biological evaluation of a variety of α- and β-hydroxy substituted amino acid derivatives as potential amino acid subunits in inhibitors of GABA uptake transporters (GATs). In order to ensure that the test compounds adopt a binding pose similar to that presumed for related larger GAT inhibitors, lipophilic residues were introduced either at the amino nitrogen atom or at the alcohol function. Several of the synthesized compounds were found to exhibit similar inhibitory activity at the GAT subtypes mGAT2, mGAT3, and mGAT4, respectively, as compared with the reference N-butylnipecotic acid. Hence, these compounds might serve as starting point for future developments of more complex GAT inhibitors.
Collapse
|
2
|
Zafar S, Jabeen I. Structure, Function, and Modulation of γ-Aminobutyric Acid Transporter 1 (GAT1) in Neurological Disorders: A Pharmacoinformatic Prospective. Front Chem 2018; 6:397. [PMID: 30255012 PMCID: PMC6141625 DOI: 10.3389/fchem.2018.00397] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
γ-Aminobutyric acid (GABA) Transporters (GATs) belong to sodium and chloride dependent-transporter family and are widely expressed throughout the brain. Notably, GAT1 is accountable for sustaining 75% of the synaptic GABA concentration and entails its transport to the GABAA receptors to initiate the receptor-mediated inhibition of post-synaptic neurons. Imbalance in ion homeostasis has been associated with several neurological disorders related to the GABAergic system. However, inhibition of the GABA uptake by these transporters has been accepted as an effective approach to enhance GABAergic inhibitory neurotransmission in the treatment of seizures in epileptic and other neurological disorders. Here, we reviewed computational methodologies including molecular modeling, docking, and molecular dynamic simulations studies to underscore the structure and function of GAT1 in the GABAergic system. Additionally, various SAR and QSAR methodologies have been reviewed to probe the 3D structural features of inhibitors required to modulate GATs activity. Overall, present review provides an overview of crucial role of GAT1 in GABAergic system and its modulation to evade neurological disorders.
Collapse
Affiliation(s)
| | - Ishrat Jabeen
- Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
3
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
4
|
Age- and sex-related characteristics of tonic GABA currents in the rat substantia nigra pars reticulata. Neurochem Res 2015; 40:747-57. [PMID: 25645446 DOI: 10.1007/s11064-015-1523-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.
Collapse
|
5
|
GABA metabolism and transport: effects on synaptic efficacy. Neural Plast 2012; 2012:805830. [PMID: 22530158 PMCID: PMC3316990 DOI: 10.1155/2012/805830] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022] Open
Abstract
GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.
Collapse
|
6
|
Jones SM, Palmer MJ. Pharmacological analysis of the activation and receptor properties of the tonic GABA(C)R current in retinal bipolar cell terminals. PLoS One 2011; 6:e24892. [PMID: 21949779 PMCID: PMC3174224 DOI: 10.1371/journal.pone.0024892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 11/29/2022] Open
Abstract
GABAergic inhibition in the central nervous system (CNS) can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABAA receptors (GABAARs) respectively. Retinal bipolar cells (BCs) exhibit a tonic current mediated by GABACRs in their axon terminal, in addition to synaptic GABAAR and GABACR currents, which strongly regulate BC output. The tonic GABACR current in BC terminals (BCTs) is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABACRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABACR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABACRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABACR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABACRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABACRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABAARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABACR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.
Collapse
Affiliation(s)
- Stefanie M. Jones
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
| | - Mary J. Palmer
- Neuroscience Group, Institute for Science and Technology in Medicine, Keele University, Keele, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Lehmann A, Antonsson M, Holmberg AA, Blackshaw LA, Brändén L, Bräuner-Osborne H, Christiansen B, Dent J, Elebring T, Jacobson BM, Jensen J, Mattsson JP, Nilsson K, Oja SS, Page AJ, Saransaari P, von Unge S. (R)-(3-amino-2-fluoropropyl) phosphinic acid (AZD3355), a novel GABAB receptor agonist, inhibits transient lower esophageal sphincter relaxation through a peripheral mode of action. J Pharmacol Exp Ther 2009; 331:504-12. [PMID: 19648470 DOI: 10.1124/jpet.109.153593] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) affects >10% of the Western population. Conventionally, GERD is treated by reducing gastric acid secretion, which is effective in most patients but inadequate in a significant minority. We describe a new therapeutic approach for GERD, based on inhibition of transient lower esophageal sphincter relaxation (TLESR) with a proposed peripherally acting GABA(B) receptor agonist, (R)-(3-amino-2-fluoropropyl)phosphinic acid (AZD3355). AZD3355 potently stimulated recombinant human GABA(B) receptors and inhibited TLESR in dogs, with a biphasic dose-response curve. In mice, AZD3355 produced considerably less central side effects than the prototypical GABA(B) receptor agonist baclofen but evoked hypothermia at very high doses (blocked by a GABA(B) receptor antagonist and absent in GABA(B)-/- mice). AZD3355 and baclofen differed markedly in their distribution in rat brain; AZD3355, but not baclofen, was concentrated in circumventricular organs as a result of active uptake (shown by avid intracellular sequestration) and related to binding of AZD3355 to native GABA transporters in rat cerebrocortical membranes. AZD3355 was also shown to be transported by all four recombinant human GABA transporters. AR-H061719 [(R/S)-(3-amino-2-fluoropropyl)phosphinic acid], (the racemate of AZD3355) inhibited the response of ferret mechanoreceptors to gastric distension, further supporting its peripheral site of action on TLESR. In summary, AZD3355 probably inhibits TLESR through stimulation of peripheral GABA(B) receptors and may offer a potential new approach to treatment of GERD.
Collapse
|
8
|
Larsen M, Holm R, Jensen KG, Brodin B, Nielsen CU. Intestinal gaboxadol absorption via PAT1 (SLC36A1): modified absorption in vivo following co-administration of L-tryptophan. Br J Pharmacol 2009; 157:1380-9. [PMID: 19594759 DOI: 10.1111/j.1476-5381.2009.00253.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Gaboxadol has been in development for treatment of chronic pain and insomnia. The clinical use of gaboxadol has revealed that adverse effects seem related to peak serum concentrations. The aim of this study was to investigate the mechanism of intestinal absorption of gaboxadol in vitro and in vivo. EXPERIMENTAL APPROACH In vitro transport investigations were performed in Caco-2 cell monolayers. In vivo pharmacokinetic investigations were conducted in beagle dogs. Gaboxadol doses of 2.5 mg.kg(-1) were given either as an intravenous injection (1.0 mL.kg(-1)) or as an oral solution (5.0 mL.kg(-1)). KEY RESULTS Gaboxadol may be a substrate of the human proton-coupled amino acid transporter, hPAT1 and it inhibited the hPAT1-mediated L-[(3)H]proline uptake in Caco-2 cell monolayers with an inhibition constant K(i) of 6.6 mmol.L(-1). The transepithelial transport of gaboxadol was polarized in the apical to basolateral direction, and was dependent on gaboxadol concentration and pH of the apical buffer solution. In beagle dogs, the absorption of gaboxadol was almost complete (absolute bioavailability, F(a), of 85.3%) and T(max) was 0.46 h. Oral co-administration with 2.5-150 mg.kg(-1) of the PAT1 inhibitor, L-tryptophan, significantly decreased the absorption rate constant, k(a), and C(max), and increased T(max) of gaboxadol, whereas the area under the curve and clearance of gaboxadol were constant. CONCLUSIONS AND IMPLICATIONS The absorption of gaboxadol across the luminal membrane of the small intestinal enterocytes is probably mediated by PAT1. This knowledge is useful for reducing gaboxadol absorption rates in order to decrease peak plasma concentrations.
Collapse
Affiliation(s)
- M Larsen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
9
|
Hart EJ, Powers-Lee SG. Mutation analysis of carbamoyl phosphate synthetase: does the structurally conserved glutamine amidotransferase triad act as a functional dyad? Protein Sci 2008; 17:1120-8. [PMID: 18458150 DOI: 10.1110/ps.073428008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Evolutionarily conserved triad glutamine amidotransferase (GAT) domains catalyze the cleavage of glutamine to yield ammonia and sequester the ammonia in a tunnel until delivery to a variety of acceptor substrates in synthetase domains of variable structure. Whereas a conserved hydrolytic triad (Cys/His/Glu) is observed in the solved GAT structures, the specificity pocket for glutamine is not apparent, presumably because its formation is dependent on the conformational change that couples acceptor availability to a greatly increased rate of glutamine cleavage. In Escherichia coli carbamoyl phosphate synthetase (eCPS), one of the best characterized triad GAT members, the Cys269 and His353 triad residues are essential for glutamine hydrolysis, whereas Glu355 is not critical for eCPS activity. To further define the glutamine-binding pocket and possibly identify an alternative member of the catalytic triad that is situated for this role in the coupled conformation, we have analyzed mutations at Gln310, Asn311, Asp334, and Gln351, four conserved, but not yet analyzed residues that might potentially function as the third triad member. Alanine substitution of Gln351, Asn311, and Gln310 yielded respective K(m) increases of 145, 27, and 15, suggesting that Gln351 plays a key role in glutamine binding in the coupled conformation, and that Asn311 and Gln310 make less significant contributions. None of the mutant k (cat) values varied significantly from those for wild-type eCPS. Combined with previously reported data on other conserved eCPS residues, these results strongly suggest that Cys269 and His353 function as a catalytic dyad in the GAT site of eCPS.
Collapse
Affiliation(s)
- Emily J Hart
- Department of Biology, Northeastern University, Boston, Massachusetts 02115-5000, USA
| | | |
Collapse
|
10
|
Kopec KK, McKenna BA, Pauletti D. A Homogeneous Assay to Assess GABA Transporter Activity. ACTA ACUST UNITED AC 2005; Chapter 1:Unit1.32. [PMID: 21953387 DOI: 10.1002/0471141755.ph0132s30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
McHugh EM, Zhu W, Milgram S, Mager S. The GABA transporter GAT1 and the MAGUK protein Pals1: interaction, uptake modulation, and coexpression in the brain. Mol Cell Neurosci 2004; 26:406-17. [PMID: 15234345 DOI: 10.1016/j.mcn.2004.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 02/04/2004] [Accepted: 03/16/2004] [Indexed: 12/30/2022] Open
Abstract
GABAergic signaling in the CNS is terminated in part through uptake of GABA by GABA transporters. We used the yeast two-hybrid system to identify proteins that associate with the carboxy-terminus of the neuronal GABA transporter GAT1. We found an interaction between GAT1 and the MAGUK protein Pals1. When coexpressed in COS-7 cells, Pals1 co-immunoprecipitates with GAT1. We demonstrate cellular coexpression of GAT1 and Pals1 in the mouse hippocampus and striatum. Functionally, coexpression of GAT1 and Pals1 in COS-7 cells increases [3H]-GABA uptake by GAT1. The mechanism underlying increased uptake is increased levels of GAT1 protein. We hypothesize that Pals1 contributes to the stability of the GAT1, thus promoting the expression level of the transporter protein. In the CNS, Pals1 may stabilize GAT1 at appropriate levels in specific GABAergic neurons.
Collapse
Affiliation(s)
- Ellen M McHugh
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
12
|
Axmacher N, Draguhn A. Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3. Neuroreport 2004; 15:329-34. [PMID: 15076763 DOI: 10.1097/00001756-200402090-00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vesicular transmitter release can be regulated by transmitter-gated ion channels at presynaptic axon terminals. The central inhibitory transmitter GABA acts on such presynaptic ionotropic receptors in various cells, including inhibitory interneurons. Here we report that GABA-mediated postsynaptic inhibitory currents in CA3 pyramidal cells of rat hippocampal slices are suppressed by agonists of GABAA receptors. The effect is present for both stimulus-induced and miniature IPSCs, indicating a reduction in the probability of vesicular release by presynaptic, action-potential-independent mechanisms. We conclude that the release of GABA from hippocampal CA3 interneurons is regulated by a negative feedback via presynaptic ionotropic GABA autoreceptors.
Collapse
Affiliation(s)
- Nikolai Axmacher
- Johannes-Müller-Institut für Physiologie, Humboldt Universität Berlin, Tucholskystr. 2, 10117 Berlin, Germany
| | | |
Collapse
|
13
|
Abstract
The presence, magnitude, and time course of GABA transporter currents were investigated in electrophysiologically characterized neocortical astrocytes in an in vitro slice preparation. On stimulation with a bipolar-tungsten stimulating electrode placed nearby, the majority of cells tested displayed long-lasting GABA transporter currents using both single and repetitive stimulation protocols. Using subtype-specific GABA transporter antagonists, long-lasting GABA transporter currents were identified in neocortical astrocytes that originated from at least two subtypes of GABA transporters: GAT-1 and GAT-2/3. These transporter currents displayed slow rise times and long decay times, contrasting the time course observed for glutamate transporter currents, and are indicative of a long extracellular time course of GABA as well as a role for glial GABA transporters during synaptic transmission.
Collapse
Affiliation(s)
- Gregory A Kinney
- Veterans Affairs Puget Sound Health Care System, Seattle, 98108, USA.
| | | |
Collapse
|
14
|
Sitte HH, Singer EA, Scholze P. Bi-directional transport of GABA in human embryonic kidney (HEK-293) cells stably expressing the rat GABA transporter GAT-1. Br J Pharmacol 2002; 135:93-102. [PMID: 11786484 PMCID: PMC1573110 DOI: 10.1038/sj.bjp.0704446] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Bi-directional GABA-transport was studied by performing uptake and superfusion experiments in human embryonic kidney 293 cells stably expressing the rat GABA transporter rGAT-1. 2. K(M) and V(max) values for [(3)H]-GABA uptake were 11.7+/-1.8 microM and 403+/-55 pmol min(-1) 10(-6) cells (n=9), respectively. 3. Kinetic analysis of outward transport was performed by pre-labelling the cells with increasing concentrations of [(3)H]-GABA and triggering outward transport with 333 microM GABA. Approximate apparent K(M) and V(max) values were 12 mM and 50 pmol min(-1) 10(-6) cells, respectively. 4. GABA re-uptake inhibitors (RI; e.g. tiagabine), as well as, substrates of the rGAT-1 (e.g. GABA, nipecotic acid) concentration dependently decreased [(3)H]-GABA uptake and increased efflux of [(3)H]-GABA from pre-labelled cells. The IC(50) values for inhibiting uptake and the EC(50) values for increasing efflux were significantly correlated (r(2)=0.99). 5. On superfusion, RI antagonized the efflux-enhancing effect of the substrates. The effect of the latter was markedly augmented in the presence of ouabain (100 microM), whereas the effect of RI remained unchanged. The most likely explanation for the release enhancing effect of RI is interruption of ongoing re-uptake. 6. The structural GABA-analogue 2,4-diamino-n-butyric acid (DABA) exhibited a bell-shaped concentration response curve on [(3)H]-GABA efflux with the maximum at 1 mM, and displayed a deviation from the sigmoidal inhibition curve in uptake experiments in the same concentration range. At concentrations below 1 mM, DABA inhibited [(3)H]-GABA uptake non-competitively, while at 1 mM and above the inhibition of uptake followed a competitive manner. 7. The results provide information of GABA inward and outward transport, and document a complex interaction of the rGAT-1 with its substrate DABA.
Collapse
Affiliation(s)
- Harald H Sitte
- Institute of Pharmacology, University of Vienna, 1090 Vienna, Austria
| | - Ernst A Singer
- Institute of Pharmacology, University of Vienna, 1090 Vienna, Austria
| | - Petra Scholze
- Institute of Pharmacology, University of Vienna, 1090 Vienna, Austria
- Institute of Pharmacology, University of Vienna, Waehringer Str. 13a, 1090 Vienna, Austria. E-mail:
| |
Collapse
|
15
|
Abstract
This review provides an overview of the distributions, properties and roles of amino acid transport systems in normal and pathological retinal tissues and discusses the roles of specific identified transporters in the mammalian retina. The retina is used in this context as a vehicle for describing neuronal and glial properties, which are in some, but not all cases comparable to those found elsewhere an the brain. Where significant departures are noted, these are discussed in the context of functional specialisations of the retina and its relationship to adjacent supporting tissues such as the retinal pigment epithelium. Specific examples are given where immunocytochemical labelling for amino acid transporters may yield inaccurate results, possibly because of activity-dependent conformation changes of epitopes in these proteins which render the epitopes more or less accessible to antibodies.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
16
|
Deken SL, Beckman ML, Boos L, Quick MW. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A. Nat Neurosci 2000; 3:998-1003. [PMID: 11017172 DOI: 10.1038/79939] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma membrane GABA transporters participate in neural signaling through re-uptake of neurotransmitter. The domains of the transporter that mediate GABA translocation and regulate transport are not well understood. In the present experiments, the N-terminal cytoplasmic domain of the GABA transporter GAT1 regulated substrate transport rates. This domain directly interacted with syntaxin 1A, a SNARE protein involved in both neurotransmitter release and modulation of calcium channels and cystic fibrosis transmembrane regulator (CFTR) chloride channels. The interaction resulted in a decrease in transporter transport rates. These data demonstrate that intracellular domains of the GABA and protein-protein interactions regulate substrate translocation, and identify a direct link between the machinery involved in transmitter release and re-uptake.
Collapse
Affiliation(s)
- S L Deken
- Department of Neurobiology, CIRC 446, University of Alabama at Birmingham, 1719 Sixth Avenue South, Birmingham, Alabama 35294-0021, USA
| | | | | | | |
Collapse
|
17
|
Law RM, Stafford A, Quick MW. Functional regulation of gamma-aminobutyric acid transporters by direct tyrosine phosphorylation. J Biol Chem 2000; 275:23986-91. [PMID: 10816599 DOI: 10.1074/jbc.m910283199] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine phosphorylation regulates multiple cell signaling pathways and functionally modulates a number of ion channels and receptors. Neurotransmitter transporters, which act to clear transmitter from the synaptic cleft, are regulated by multiple second messenger pathways that exert their effects, at least in part, by causing a redistribution of the transporter protein to or from the cell surface. To test the hypothesis that tyrosine phosphorylation affects transporter function and to determine its mechanism of action, we examined the regulation of the rat brain gamma-aminobutyric acid (GABA) transporter GAT1 expressed endogenously in hippocampal neurons and expressed heterologously in Chinese hamster ovary cells. Inhibitors of tyrosine kinases decreased GABA uptake; inhibitors of tyrosine phosphatases increased GABA uptake. The decrease in uptake seen with tyrosine kinase inhibitors was correlated with a decrease in tyrosine phosphorylation of GAT1 and resulted in a redistribution of the transporter from the cell surface to intracellular locations. A mutant GAT1 construct that was refractory to tyrosine phosphorylation could not be regulated by tyrosine kinase inhibitors. Activators of protein kinase C, which are known to cause a redistribution of GAT1 from the cell surface, were additive to the effects of tyrosine kinase inhibitors suggesting that multiple signaling pathways control transporter redistribution. Application of brain-derived neurotrophic factor, which activates receptor tyrosine kinases, up-regulated GAT1 function suggesting one potential trigger for the cellular regulation of GAT1 signaling by tyrosine phosphorylation. These data support the hypothesis that transporter expression and function is controlled by the interplay of multiple cell signaling cascades.
Collapse
Affiliation(s)
- R M Law
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0021, USA
| | | | | |
Collapse
|
18
|
Gao X, McLean H, Caveney S, Donly C. Molecular cloning and functional characterization of a GABA transporter from the CNS of the cabbage looper, Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:609-623. [PMID: 10436937 DOI: 10.1016/s0965-1748(99)00039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA encoding a GABA transporter in the caterpillar Trichoplusia ni has been cloned and expressed in baculovirus-infected insect cells. The cDNA contains an ORF encoding a 608-residue protein, designated TrnGAT. Hydropathy analysis of the deduced amino acid sequence suggests 12 transmembrane domains, a structure similar to that of all other cloned Na+/Cl(-)-dependent GABA transporters. The deduced amino acid sequence shows high identity with a GABA transporter (MasGAT) expressed in the embryo of Manduca sexta. Expression of TrnGAT mRNA was detected only in the brain. Sf21 cells infected with recombinant baculovirus exhibited a 20- to 30-fold increase in [3H]GABA uptake compared to control-infected cells. Several blockers of GABA uptake were used to determine the pharmacological profile of TrnGAT. Although most similar to mammalian neuronal GABA transporter GAT-1 in its kinetic properties, stoichiometry of ionic dependence and pharmacological properties, TrnGAT may be distinguished from mammalian GAT-1 by the inability of cyclic GABA analogues, such as nipecotic acid and its derivatives, to inhibit GABA uptake by the insect protein. The unique pharmacology of TrnGAT suggests that the GABA transport system in the lepidopteran CNS could be a useful target in the future development of rapidly-acting neuroactive agents used to control agriculturally-important insects.
Collapse
Affiliation(s)
- X Gao
- Department of Zoology, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
19
|
Bernstein EM, Quick MW. Regulation of gamma-aminobutyric acid (GABA) transporters by extracellular GABA. J Biol Chem 1999; 274:889-95. [PMID: 9873028 DOI: 10.1074/jbc.274.2.889] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Aminobutyric acid (GABA) transporters on neurons and glia at or near the synapse function to remove GABA from the synaptic cleft. Recent evidence suggests that GABA transporter function can be regulated, although the initial triggers for such regulation are not known. One hypothesis is that transporter function is modulated by extracellular GABA concentration, thus providing a feedback mechanism for the control of neurotransmitter levels at the synapse. To test this hypothesis, GABA uptake assays were performed on primary dissociated rat hippocampal cultures that endogenously express GABA transporters and on mammalian cells stably expressing the cloned rat brain GABA transporter GAT1. In both experimental systems, extracellular GABA induces chronic changes in GABA transport that occur in a dose-dependent and time-dependent manner. In addition to GABA, ACHC and nipecotic acid, both substrates of GAT1, up-regulate transport; GAT1 transport inhibitors that are not transporter substrates down-regulate transport. These changes occur in the presence of blockers of both GABAA and GABAB receptors, occur in the presence of protein synthesis inhibitors, and are not influenced by intracellular GABA. Surface biotinylation experiments reveal that the increase in transport is correlated with an increase in surface transporter expression. This increase in surface expression is due, at least in part, to a slowing of GAT1 internalization in the presence of extracellular GABA. These data suggest that the GABA transporter fine-tunes its function in response to extracellular GABA and would act to maintain a constant level of neurotransmitter at the synaptic cleft.
Collapse
Affiliation(s)
- E M Bernstein
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0021, USA
| | | |
Collapse
|
20
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 588] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
21
|
Abstract
Syntaxin 1A inhibits GABA uptake of an endogenous GABA transporter in neuronal cultures from rat hippocampus and in reconstitution systems expressing the cloned rat brain GABA transporter GAT1. Evidence of interactions between syntaxin 1A and GAT1 comes from three experimental approaches: botulinum toxin cleavage of syntaxin 1A, syntaxin 1A antisense treatments, and coimmunoprecipitation of a complex containing GAT1 and syntaxin 1A. Protein kinase C (PKC), shown previously to modulate GABA transporter function, exerts its modulatory effects by regulating the availability of syntaxin 1A to interact with the transporter, and a transporter mutant that fails to interact with syntaxin 1A is not regulated by PKC. These results suggest a new target for regulation by syntaxin 1A and a novel mechanism for controlling the machinery involved in both neurotransmitter release and reuptake.
Collapse
|
22
|
Zeevalk GD, Nicklas WJ. Activity at the GABA transporter contributes to acute cellular swelling produced by metabolic impairment in retina. Vision Res 1997; 37:3463-70. [PMID: 9425523 DOI: 10.1016/s0042-6989(97)00184-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of the GABA transporter in acute toxicity in chick retina due to metabolic inhibition was investigated by the use of several substrate (nipecotic acid, THPO) and nonsubstrate (SKF 89976A, NO711) GABA transport inhibitors. Metabolic stress-induced acute toxicity in the retina is characterized by swelling of distinct populations of retinal neurons and selective release of GABA into the medium. Inhibitor concentrations were based on that needed to attenuate 14C-GABA uptake at its approximate KM concentration by > or = 70%. Under basal conditions, substrate, but not nonsubstrate, inhibitors increased extracellular GABA, but did not cause histological swelling per se. Under conditions of glycolytic inhibition, nonsubstrate, but not substrate, inhibitors significantly attenuated acute toxicity. Metabolic stress-induced acute toxicity was not altered by the GABA agonist muscimol, nor did muscimol reverse the protective effects of nonsubstrate transport inhibitors, suggesting that an increase in extracellular GABA during metabolic stress was not a component of the acute phase of toxicity. The results indicate that during metabolic inhibition, activity at the GABA transporter contributes to acute cellular swelling.
Collapse
Affiliation(s)
- G D Zeevalk
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neurology, Piscataway 08854, USA
| | | |
Collapse
|
23
|
Wilson CL, Maidment NT, Shomer MH, Behnke EJ, Ackerson L, Fried I, Engel J. Comparison of seizure related amino acid release in human epileptic hippocampus versus a chronic, kainate rat model of hippocampal epilepsy. Epilepsy Res 1996; 26:245-54. [PMID: 8985704 DOI: 10.1016/s0920-1211(96)00057-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent microdialysis studies of excitatory and inhibitory amino acid release associated with paroxysmal hippocampal activity have found significant increases in the hippocampus of epileptic patients, but minimal or variable increases in animal models. One possible reason for the difference is that the animal models employed in these studies have not adequately reflected the pathophysiology of human epilepsy. The present study sought to verify the amino acid release reported in human epileptic hippocampus and then employs animal studies using a chronic rat model of epilepsy, in which rats exhibit spontaneous seizure activity 3 to 4 months after injection of kainic acid into the hippocampus. In agreement with earlier reports, we found increases in glutamate, aspartate and GABA during seizures in human hippocampus. In addition we found increases in taurine which have not previously been reported. The chronic rat model shows increases in the same amino acids as in the human epileptic hippocampus, both during spontaneous seizures and stimulation evoked after-discharges (ADs). In contrast, minimal increases are elicited by hippocampal stimulation in control (non-kainate injected) animals. These results correlate with the degree of mossy fiber reorganization found in the dentate gyrus of kainate rats or epileptic humans.
Collapse
Affiliation(s)
- C L Wilson
- Department of Neurology, UCLA School of Medicine 90024, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Zeevalk GD, Nicklas WJ. Attenuation of excitotoxic cell swelling and GABA release by the GABA transport inhibitor SKF 89976A. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 29:27-36. [PMID: 8887938 DOI: 10.1007/bf02815191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute excitotoxicity in the chick retina is characterized by cellular swelling and the subsequent selective release of GABA. In order to understand the source of GABA release, embryonic day 15 retina were incubated with 1 mM glutamate for 30 min in the presence or absence of the GABA transport inhibitor SKF 89976A (1-100 microM). SKF 89976A dose-dependently attentuated glutamate-induced GABA release (IC50, 39 microM). Histological examination of retina showed that SKF 89976A greatly reduced cellular swelling caused by glutamate exposure. Interaction of SKF 89976A with glutamate receptors was ruled out as a possible reason for protection vs acute glutamate excitotoxicity, since SKF 89976A had no effect on glutamate receptor-induced 22Na+ influx. In contrast, the NMDA antagonist, MK-801, significantly blocked glutamate-evoked 22NA+ uptake. These studies indicate that reversal of the GABA transporter contributes to the bulk of GABA release during acute excitotoxicity in retina. Further, a net effect of the presence of SKF 89976A during glutamate exposure is reduction in cellular swelling. It is not clear at present if attenuation of swelling is mediated specifically by an interaction with the GABA transporter or by a nonspecific or indirect effect of SKF 89976A.
Collapse
Affiliation(s)
- G D Zeevalk
- Department of Neurology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
25
|
Ribak CE, Tong WM, Brecha NC. GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 1996; 367:595-606. [PMID: 8731228 DOI: 10.1002/(sici)1096-9861(19960415)367:4<595::aid-cne9>3.0.co;2-#] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study evaluates the distribution of two high affinity gamma-aminobutyric acid (GABA) transporters (GAT-1 and GAT-3) in the rat hippocampus using immunocytochemistry and affinity purified antibodies. GAT-1 immunoreactivity was prominent in punctate structures and axons in all layers of the dentate gyrus. In Ammon's horn, immunoreactive processes were concentrated around the somata of pyramidal cells, particularly at their basal regions. The apical and basal dendritic fields of pyramidal cells also displayed numerous GAT-1 immunoreactive punctate structures and axons. The zone of termination of the mossy fibers that includes both the hilus of the dentate gyrus and stratum lucidum of the CA3 area was the lightest immunolabeled region of the hippocampal complex. Electron microscopic preparations demonstrated that GAT-1 immunoreactive axon terminals form symmetric synapses with somata, axon initial segments, and dendrites of granule and pyramidal cells in the dentate gyrus and Ammon's horn, respectively. Immunoreactivity was localized to the plasma membrane and the cytoplasm of axon terminals. The somata of previously described local circuit neurons in the dentate gyrus and Ammon's horn contained GAT-1 immunoreactivity associated with the Golgi complex. Light, diffuse GAT-3 immunoreactivity was present throughout the hippocampal formation. Thin, astrocytic glial processes displayed GAT-1 and GAT-3 immunoreactivity. This localization of GAT-1 and GAT-3 indicates that they are involved in the uptake of GABA from the extracellular space into GABAergic axon terminals and astrocytes.
Collapse
Affiliation(s)
- C E Ribak
- Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA.
| | | | | |
Collapse
|