1
|
Nahm WJ, Falanga V. The Adverse Impact of Tyrosine Kinase Inhibitors on Wound Healing and Repair. Int Wound J 2025; 22:e70513. [PMID: 40251464 PMCID: PMC12008022 DOI: 10.1111/iwj.70513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/20/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) can treat various cancers, primarily through their antiangiogenic effects. However, as angiogenesis is crucial for successful wound healing, TKIs may adversely impact wound repair. This review analysed all 63 FDA-approved TKIs and identified evidence for wound healing and repair implications in 24 agents. The primary mechanism contributing to impaired wound healing appears to be the inhibition of vascular endothelial growth factor receptors, with secondary targets, such as epidermal growth factor receptors and platelet-derived growth factor receptors, potentially playing a role. Information from safety package inserts, preclinical studies, case reports and clinical trials suggests that these TKIs can cause delayed or impaired wound healing. The safety information generally recommends discontinuing treatment for at least one to 2 weeks before elective surgery and resuming treatment only after adequate wound healing has occurred. Neoadjuvant therapy with TKIs may be feasible if sufficient time is allowed between the cessation of the TKI and the onset of surgery. As the use of TKIs continues to increase, healthcare professionals should be aware of their potential impact on wound healing and take appropriate precautions to minimise the risk of wound-related complications.
Collapse
Affiliation(s)
- William J. Nahm
- New York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Vincent Falanga
- Department of DermatologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Department of Biochemistry & Cell BiologyBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| |
Collapse
|
2
|
Zhang X, Chao P, Zhang L, Lu J, Yang A, Jiang H, Lu C. Integrating network pharmacology, molecular docking and simulation approaches with machine learning reveals the multi-target pharmacological mechanism of Berberis integerrima against diabetic nephropathy. J Biomol Struct Dyn 2025; 43:2092-2108. [PMID: 38379386 DOI: 10.1080/07391102.2023.2294165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/02/2023] [Indexed: 02/22/2024]
Abstract
Diabetic nephropathy (DN) is one of the most feared complications of diabetes and key cause of end-stage renal disease (ESRD). Berberis integerrima has been widely used to treat diabetic complications, but exact molecular mechanism is yet to be discovered. Data on active ingredients of B. integerrima and target genes of both diabetic nephropathy and B.integerrima were obtained from public databases. Common results between B. integerrima and DN targets were used to create protein-protein interaction (PPI) network using STRING database and exported to Cytoscape software for the selection of hub genes based on degree of connectivity. Future, PPI network between constituents and overlapping targets was created using Cytoscape to investigate the network pharmacological effects of B. integerrima on DN. KEGG pathway analysis of core genes exposed their involvement in excess glucose-activated signaling pathway. Then, expression of core genes was validated through machine learning classifiers. Finally, PyRx and AMBER18 software was used for molecular docking and simulation. We found that Armepavine, Berberine, Glaucine, Magnoflorine, Reticuline, Quercetin inhibits the growth of diabetic nephropathy by affecting ICAM1, PRKCB, IKBKB, KDR, ALOX5, VCAM1, SYK, TBXA2R, LCK, and F3 genes. Machine learning revealed SYK and PRKCB as potential genes that could use as diagnostic biomarkers against DN. Furthermore, docking and simulation analysis showed the binding affinity and stability of the active compound with target genes. Our study revealed that B. integerrima has preventive effect on DN by acting on glucose-activated signaling pathways. However, experimental studies are needed to reveal biosafety profiles of B. integerrima in DN.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peng Chao
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Lei Zhang
- Department of Endocrine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jinyu Lu
- Xinjiang Medical University, Urumqi, China
| | - Aiping Yang
- Department of Traditional Chinese Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Hong Jiang
- Department of Nephrology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Department of Nephrology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Zhao X, Sun J, Zhang Z, Chen M, Gong T, He G, Li Y, Liu H, Li F, Li X, Zhou H, Wang X, Hong M, Lei L, Yin H, Luo X, Li Y, Fan S, Guo X, Shi MM, Su W, Zhang L, Han B, Zhang F. Sovleplenib in patients with primary or secondary warm autoimmune haemolytic anaemia: results from phase 2 of a randomised, double-blind, placebo-controlled, phase 2/3 study. Lancet Haematol 2025; 12:e97-e108. [PMID: 39799953 DOI: 10.1016/s2352-3026(24)00344-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Spleen tyrosine kinase inhibitors are potential treatment options for warm autoimmune haemolytic anaemia. This study aimed to assess the preliminary efficacy and safety of sovleplenib-an oral spleen tyrosine kinase inhibitor-in patients with warm autoimmune haemolytic anaemia in China. Here we report on the phase 2 results. METHODS This randomised, double-blind, placebo-controlled, phase 2 part from the phase 2/3 study was conducted at 13 centres in China. Eligible patients, aged 18-75 years, with an Eastern Cooperative Oncology Group (ECOG) performance status of no more than 2, had primary or secondary warm autoimmune haemolytic anaemia (stable underlying disease not requiring drug intervention) with no response to previous glucocorticoid treatment, haemoglobin of less than 100 g/L with active haemolysis, and a positive direct antiglobulin test. The study comprised two periods; patients were randomly assigned (3:1) to receive sovleplenib or placebo at 300 mg orally once a day in the 8-week double-blind period. Upon completion, all patients entered an open-label treatment period for at least 16 weeks and received sovleplenib 300 mg once a day until 24 weeks after the last patient was randomly assigned. The primary endpoint for phase 2 of the trial was overall haemoglobin response rate (haemoglobin ≥100 g/L with an increase of ≥20 g/L from baseline at least once, and haemoglobin not affected by rescue therapy, such as red blood cell transfusions, intravenous immunoglobulin, and glucocorticoids) by week 24. Efficacy analyses in the 0-8 week double-blind period included all patients who were randomly assigned, analysed by intention-to-treat. Safety analysis in the double-blind period included patients in the intention-to-treat population who received at least one dose of the study medication. This phase 2/3 study is registered with ClinicalTrials.gov, NCT05535933, and the phase 3 part is ongoing. FINDINGS Between Sept 26, 2022, and May 9, 2023, 34 patients were screened and 21 patients (four [19%] male and 17 [81%] female) were enrolled in the study and randomly assigned to receive either sovleplenib (n=16) or placebo (n=5). All 21 patients completed the 0-8-week double-blind treatment and entered the open-label treatment period. The overall haemoglobin response rate was 67% (14 of 21 patients) by week 24, and durable haemoglobin response rate was 48% (ten of 21 patients) by week 24. During the 0-8-week double-blind treatment, 13 (81%) of 16 patients in the sovleplenib group versus five (100%) of five patients taking placebo reported treatment-emergent adverse events (TEAEs), and four (25%) of 16 patients versus four (80%) of five patients reported grade 3 adverse events. Although all 21 patients had a TEAE during the 24-week treatment with sovleplenib, only seven (33%) patients had grade 3 events. The most common grade 3 TEAE was anaemia (four [19%] patients), which was not related to treatment. There were no grade 4 or 5 TEAEs. INTERPRETATION Sovleplenib treatment achieved an encouraging overall haemoglobin response in Chinese patients with warm autoimmune haemolytic anaemia and was well tolerated. The phase 3 part of the study (ESLIM-02) is currently ongoing to further substantiate the efficacy and safety of sovleplenib in this setting. FUNDING HUTCHMED.
Collapse
Affiliation(s)
- Xin Zhao
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital Southern Medical University, Guangzhou, China
| | - Zhihua Zhang
- Department of Hematology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Miao Chen
- Department of Hematology, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Tiejun Gong
- Hematology Ward III, Harbin the First Hospital, Harbin, China
| | - Guangsheng He
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yingmei Li
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Li
- Department of Hematology, Jiangxi Clinical Research Center for Hematologic Disease, Jiangxi Provincial Key Laboratory of Hematological Diseases, The First Affiliated Hospital, Jiangxi Medical College, Nanchang, China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hu Zhou
- Department of Hematology, Henan Cancer Hospital/The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoqin Wang
- Department of Hematology, Affiliated Huashan Hospital of Fudan University, Shanghai, China
| | - Mei Hong
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Lei
- HUTCHMED Limited, Shanghai, China
| | | | - Xian Luo
- HUTCHMED Limited, Shanghai, China
| | - Yang Li
- HUTCHMED Limited, Shanghai, China
| | | | | | | | | | - Liansheng Zhang
- Hematology Ward II, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Bing Han
- Department of Hematology, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Fengkui Zhang
- National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
4
|
Liu Y, Chen J, Li X, Fan Y, Peng C, Ye X, Wang Y, Xie X. Natural products targeting RAS by multiple mechanisms and its therapeutic potential in cancer: An update since 2020. Pharmacol Res 2025; 212:107577. [PMID: 39756556 DOI: 10.1016/j.phrs.2025.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025]
Abstract
RAS proteins, as pivotal signal transduction molecules, are frequently mutated and hyperactivated in various human cancers, closely associated with tumor cell proliferation, survival, and metastasis. Despite extensive research on RAS targeted therapies, developing effective RAS inhibitors remains a significant challenge. Natural products, endowed with unique chemical structures and diverse biological activities through long-term natural selection, have emerged as a vital resource for discovering novel RAS-targeted therapeutic drugs. This review focuses on the latest advancements in targeting RAS with natural products and categorizes these natural products based on their mechanisms of action. Additionally, we discuss the challenges faced by these natural products during clinical translation, including issues related to pharmacokinetics. Strategies such as combination therapy, structural optimization, and drug delivery systems are anticipated to enhance efficacy and overcome these challenges.
Collapse
Affiliation(s)
- Yanqing Liu
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China.
| | - Jie Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaochun Ye
- Department of Pharmacy, the Thirteenth People's Hospital of Chongqing, Chongqing Geriatrics Hospital, Chongqing 400053, China
| | - Yingshuang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing 400021, China.
| |
Collapse
|
5
|
Zhao M, Zou Y, Chen W, Wu D, Xian C, Yang H, Tan J, Di W, Wu W, Wang D. Fasciola gigantica Recombinant Abelson Tyrosine Protein Kinase (r FgAbl) Regulates Various Functions of Buffalo Peripheral Blood Mononuclear Cells. Animals (Basel) 2025; 15:179. [PMID: 39858178 PMCID: PMC11758316 DOI: 10.3390/ani15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Fasciola gigantica can modulate host immune mechanisms through excretory-secretory products (ESP). As one of the components of ESP, it is unknown whether Abelson tyrosine protein kinase (Abl) is involved in parasite-host immune interaction. To investigate the immunoregulatory function of Abl in Fasciola gigantica, we cloned and expressed the Fasciola gigantica Abl protein and assessed its effect on specific immune functions of buffalo peripheral blood mononuclear cells (PBMCs). Recombinant F. gigantica Abelson tyrosine protein kinase (rFgAbl) was expressed in Escherichia coli. Western blot analysis was performed to assess the reactivity of anti-rFgAbl antibodies with rFgAbl, serum from F. gigantica-infected buffalo, and excretion and secretion products of F. gigantica. Immunohistochemical analysis was conducted to determine the localization of FgAbl in tissues from larval stages and adult worms of F. gigantica. Furthermore, immunofluorescence analysis was utilized to evaluate the binding ability of the rFgAbl protein to buffalo peripheral blood mononuclear cells (PBMCs), as well as to investigate the effects of varying concentrations of rFgAbl protein (5, 10, 20, 40, and 80 μg/mL) on the functional responses of PBMCs. Anti-rFgAbl antibodies specifically recognize rFgAbl, serum from buffalo infected with F. gigantica, and FgESP. rFgAbl is localized in the cecum and capsule of juvenile worms, as well as in the testis and viellaria of adult worms. Additionally, rFgAbl enhances cell proliferation, migration, nitric oxide (NO) production, and phagocytosis, while also increasing the transcription levels of cytokines (IFN-γ, IL-12, TNF-α, IL-4, IL-10, and TGF-β). The results indicate that rFgAbl can influence the immune function of PBMCs. Further investigation into the immunomodulatory properties of the rFgAbl protein will enhance our understanding of the immune interaction mechanisms between trematodes and their hosts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongying Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (M.Z.); (Y.Z.); (W.C.); (D.W.); (C.X.); (H.Y.); (J.T.); (W.D.); (W.W.)
| |
Collapse
|
6
|
Li X, Lin Y, Lin S, Huang J, Ruan Z. Advancements in understanding cardiotoxicity of EGFR- TKIs in non-small cell lung cancer treatment and beyond. Front Pharmacol 2024; 15:1404692. [PMID: 39211774 PMCID: PMC11357958 DOI: 10.3389/fphar.2024.1404692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) are a class of oral targeted anticancer drugs that have been demonstrated to significantly inhibit tumor progression and improve clinical prognosis in patients diagnosed with EGFR-mutated tumors, particularly in those with non-small cell lung cancer. However, the sustained usage of EGFR-TKIs may cause potential cardiotoxicity, thus limiting their applicability. The primary objective of this review is to systematically analyze the evolving landscape of research pertaining to EGFR-TKI-induced cardiotoxicity and elucidate its underlying mechanisms, such as PI3K signaling pathway inhibition, ion channel blockade, oxidative stress, inflammatory responses, and apoptosis. Additionally, the review includes an exploration of risk assessment for cardiotoxicity induced by EGFR-TKIs, along with management and response strategies. Prospective research directions are outlined, emphasizing the need for more accurate predictors of cardiotoxicity and the development of innovative intervention strategies. In summation, this review consolidates recent research advances, illuminates the risks associated with EGFR-TKI-induced cardiac toxicity and presents crucial insights for refining clinical dosage protocols, optimizing patient management strategies, and unraveling the intricate mechanisms governing EGFR-TKI-induced cardiotoxicity.
Collapse
Affiliation(s)
| | | | | | | | - Zhongbao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
7
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Thawornkuno C, Srisuksai K, Simanon N, Adisakwattana P, Ampawong S, Boonyuen U, Limpanont Y, Chusongsang P, Chusongsang Y, Kiangkoo N, Reamtong O. A reanalysis and integration of transcriptomics and proteomics datasets unveil novel drug targets for Mekong schistosomiasis. Sci Rep 2024; 14:12969. [PMID: 38839835 PMCID: PMC11153569 DOI: 10.1038/s41598-024-63869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis, caused by Schistosoma trematodes, is a significant global health concern, particularly affecting millions in Africa and Southeast Asia. Despite efforts to combat it, the rise of praziquantel (PZQ) resistance underscores the need for new treatment options. Protein kinases (PKs) are vital in cellular signaling and offer potential as drug targets. This study focused on focal adhesion kinase (FAK) as a candidate for anti-schistosomal therapy. Transcriptomic and proteomic analyses of adult S. mekongi worms identified FAK as a promising target due to its upregulation and essential role in cellular processes. Molecular docking simulations assessed the binding energy of FAK inhibitors to Schistosoma FAK versus human FAK. FAK inhibitor 14 and PF-03814735 exhibited strong binding to Schistosoma FAK with minimal binding for human FAK. In vitro assays confirmed significant anti-parasitic activity against S. mekongi, S. mansoni, and S. japonicum, comparable to PZQ, with low toxicity in human cells, indicating potential safety. These findings highlight FAK as a promising target for novel anti-schistosomal therapies. However, further research, including in vivo studies, is necessary to validate efficacy and safety before clinical use. This study offers a hopeful strategy to combat schistosomiasis and reduce its global impact.
Collapse
Affiliation(s)
- Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Krittika Srisuksai
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nattapon Simanon
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nuttapohn Kiangkoo
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Giudice G, Chen H, Koutsandreas T, Petsalaki E. phuEGO: A Network-Based Method to Reconstruct Active Signaling Pathways From Phosphoproteomics Datasets. Mol Cell Proteomics 2024; 23:100771. [PMID: 38642805 PMCID: PMC11134849 DOI: 10.1016/j.mcpro.2024.100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
Signaling networks are critical for virtually all cell functions. Our current knowledge of cell signaling has been summarized in signaling pathway databases, which, while useful, are highly biased toward well-studied processes, and do not capture context specific network wiring or pathway cross-talk. Mass spectrometry-based phosphoproteomics data can provide a more unbiased view of active cell signaling processes in a given context, however, it suffers from low signal-to-noise ratio and poor reproducibility across experiments. While progress in methods to extract active signaling signatures from such data has been made, there are still limitations with respect to balancing bias and interpretability. Here we present phuEGO, which combines up-to-three-layer network propagation with ego network decomposition to provide small networks comprising active functional signaling modules. PhuEGO boosts the signal-to-noise ratio from global phosphoproteomics datasets, enriches the resulting networks for functional phosphosites and allows the improved comparison and integration across datasets. We applied phuEGO to five phosphoproteomics data sets from cell lines collected upon infection with SARS CoV2. PhuEGO was better able to identify common active functions across datasets and to point to a subnetwork enriched for known COVID-19 targets. Overall, phuEGO provides a flexible tool to the community for the improved functional interpretation of global phosphoproteomics datasets.
Collapse
Affiliation(s)
- Girolamo Giudice
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Haoqi Chen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Thodoris Koutsandreas
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, United Kingdom.
| |
Collapse
|
10
|
Karakatsanis NM, Hamey JJ, Wilkins MR. Taking Me away: the function of phosphorylation on histone lysine demethylases. Trends Biochem Sci 2024; 49:257-276. [PMID: 38233282 DOI: 10.1016/j.tibs.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Histone lysine demethylases (KDMs) regulate eukaryotic gene transcription by catalysing the removal of methyl groups from histone proteins. These enzymes are intricately regulated by the kinase signalling system in response to internal and external stimuli. Here, we review the mechanisms by which kinase-mediated phosphorylation influence human histone KDM function. These include the changing of histone KDM subcellular localisation or chromatin binding, the altering of protein half-life, changes to histone KDM complex formation that result in histone demethylation, non-histone demethylation or demethylase-independent effects, and effects on histone KDM complex dissociation. We also explore the structural context of phospho-sites on histone KDMs and evaluate how this relates to function.
Collapse
Affiliation(s)
- Nicola M Karakatsanis
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| | - Joshua J Hamey
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia
| | - Marc R Wilkins
- Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, Australia.
| |
Collapse
|
11
|
Balasooriya ER, Madhusanka D, López-Palacios TP, Eastmond RJ, Jayatunge D, Owen JJ, Gashler JS, Egbert CM, Bulathsinghalage C, Liu L, Piccolo SR, Andersen JL. Integrating Clinical Cancer and PTM Proteomics Data Identifies a Mechanism of ACK1 Kinase Activation. Mol Cancer Res 2024; 22:137-151. [PMID: 37847650 PMCID: PMC10831333 DOI: 10.1158/1541-7786.mcr-23-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/17/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Beyond the most common oncogenes activated by mutation (mut-drivers), there likely exists a variety of low-frequency mut-drivers, each of which is a possible frontier for targeted therapy. To identify new and understudied mut-drivers, we developed a machine learning (ML) model that integrates curated clinical cancer data and posttranslational modification (PTM) proteomics databases. We applied the approach to 62,746 patient cancers spanning 84 cancer types and predicted 3,964 oncogenic mutations across 1,148 genes, many of which disrupt PTMs of known and unknown function. The list of putative mut-drivers includes established drivers and others with poorly understood roles in cancer. This ML model is available as a web application. As a case study, we focused the approach on nonreceptor tyrosine kinases (NRTK) and found a recurrent mutation in activated CDC42 kinase-1 (ACK1) that disrupts the Mig6 homology region (MHR) and ubiquitin-association (UBA) domains on the ACK1 C-terminus. By studying these domains in cultured cells, we found that disruption of the MHR domain helps activate the kinase while disruption of the UBA increases kinase stability by blocking its lysosomal degradation. This ACK1 mutation is analogous to lymphoma-associated mutations in its sister kinase, TNK1, which also disrupt a C-terminal inhibitory motif and UBA domain. This study establishes a mut-driver discovery tool for the research community and identifies a mechanism of ACK1 hyperactivation shared among ACK family kinases. IMPLICATIONS This research identifies a potentially targetable activating mutation in ACK1 and other possible oncogenic mutations, including PTM-disrupting mutations, for further study.
Collapse
Affiliation(s)
- Eranga R. Balasooriya
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Dept. of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Deshan Madhusanka
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tania P. López-Palacios
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Riley J. Eastmond
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Dasun Jayatunge
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jake J. Owen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Jack S. Gashler
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Christina M. Egbert
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | | | - Lu Liu
- Department of Computer Science, North Dakota State University, Fargo, North Dakota
| | | | - Joshua L. Andersen
- The Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
12
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Ray SK, Jayashankar E, Kotnis A, Mukherjee S. Oxidative versus Reductive Stress in Breast Cancer Development and Cellular Mechanism of Alleviation: A Current Perspective with Anti-breast Cancer Drug Resistance. Curr Mol Med 2024; 24:205-216. [PMID: 36892117 DOI: 10.2174/1566524023666230309112751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Redox homeostasis is essential for keeping our bodies healthy, but it also helps breast cancer cells grow, stay alive, and resist treatment. Changes in the redox balance and problems with redox signaling can make breast cancer cells grow and spread and make them resistant to chemotherapy and radiation therapy. Reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and the oxidant defense system are out of equilibrium, which causes oxidative stress. Many studies have shown that oxidative stress can affect the start and spread of cancer by interfering with redox (reduction-oxidation) signaling and damaging molecules. The oxidation of invariant cysteine residues in FNIP1 is reversed by reductive stress, which is brought on by protracted antioxidant signaling or mitochondrial inactivity. This permits CUL2FEM1B to recognize its intended target. After the proteasome breaks down FNIP1, mitochondrial function is restored to keep redox balance and cell integrity. Reductive stress is caused by unchecked amplification of antioxidant signaling, and changes in metabolic pathways are a big part of breast tumors' growth. Also, redox reactions make pathways like PI3K, PKC, and protein kinases of the MAPK cascade work better. Kinases and phosphatases control the phosphorylation status of transcription factors like APE1/Ref-1, HIF-1, AP-1, Nrf2, NF-B, p53, FOXO, STAT, and - catenin. Also, how well anti-breast cancer drugs, especially those that cause cytotoxicity by making ROS, treat patients depends on how well the elements that support a cell's redox environment work together. Even though chemotherapy aims to kill cancer cells, which it does by making ROS, this can lead to drug resistance in the long run. The development of novel therapeutic approaches for treating breast cancer will be facilitated by a better understanding of the reductive stress and metabolic pathways in tumor microenvironments.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Erukkambattu Jayashankar
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
14
|
Shu L, Du C, Zuo Y. Abnormal phosphorylation of protein tyrosine in neurodegenerative diseases. J Neuropathol Exp Neurol 2023; 82:826-835. [PMID: 37589710 DOI: 10.1093/jnen/nlad066] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Neurodegenerative diseases, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis, are chronic disorders of the CNS that are characterized by progressive neuronal dysfunction. These diseases have diverse clinical and pathological features and their pathogenetic mechanisms are not yet fully understood. Currently, widely accepted hypotheses include the accumulation of misfolded proteins, oxidative stress from reactive oxygen species, mitochondrial dysfunction, DNA damage, neurotrophin dysfunction, and neuroinflammatory processes. In the CNS of patients with neurodegenerative diseases, a variety of abnormally phosphorylated proteins play important roles in pathological processes such as neuroinflammation and intracellular accumulation of β-amyloid plaques and tau. In recent years, the roles of abnormal tyrosine phosphorylation of intracellular signaling molecules regulated by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs) in neurodegenerative diseases have attracted increasing attention. Here, we summarize the roles of signaling pathways related to protein tyrosine phosphorylation in the pathogenesis of neurodegenerative diseases and the progress of therapeutic studies targeting PTKs and PTPs that provide theoretical support for future studies on therapeutic strategies for these devastating and important neurodegenerative diseases.
Collapse
Affiliation(s)
- Lijuan Shu
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology Intensive Care Unit, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chunfu Du
- Department of Neurosurgery, Ya'an People's Hospital, Ya'an, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University & The Research Units of West China (2018RU012), Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Rönnberg H. Signal Transduction Inhibitors. THERAPEUTIC STRATEGIES IN VETERINARY ONCOLOGY 2023:89-110. [DOI: 10.1079/9781789245820.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Seif SE, Mahmoud Z, Wardakhan WW, Abdou AM, Hassan RA. Design and synthesis of novel hexahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as potential anticancer agents with antiangiogenic activity via VEGFR-2 inhibition, and down-regulation of PI3K/AKT/mTOR signaling pathway. Drug Dev Res 2023; 84:839-860. [PMID: 37016480 DOI: 10.1002/ddr.22058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Accepted: 03/09/2023] [Indexed: 04/06/2023]
Abstract
New thieno[2,3-d]pyrimidine derivatives were designed and synthesized. The National Cancer Institute (NCI) evaluated the synthesized novel compounds against a panel of 60 tumor cell lines for their antiproliferative activity. Compounds 6b, 6f, and 6g showed potent anticancer activity at 10 µM dose, with mean GI of 20.86%, 76.41%, and 31.49%, respectively. Compound 6f was selected for five-dose concentrations evaluation. Compound 6f scored a submicromolar range of GI50 values against 10 cancer cell lines, indicating broad-spectrum and potent antiproliferative activity. Compound 6f TGI values were recorded in the cytostatic range of 4.02-95.1 µM. In comparison to sorafenib, the tested compounds 6b, 6f, and 6g inhibited VEGFR-2 with IC50 values of 0.290 ± 0.032, 0.066 ± 0.004, and 0.16 ± 0.006 µM, correspondingly. Compound 6f significantly reduced the total VEGFR-2 expression and its phosphorylation. Additionally, 6f reduced the phosphorylation of PI3K, Akt, and mTOR pathway proteins. Moreover, the migratory potential of HUVECs was significantly reduced, after 72 h of treatment with compound 6f, resulting in disrupted wound healing patterns which verified the angiogenesis suppression properties of compound 6f. Compound 6f increased the total apoptosis percentage by 21.27-fold compared to sorafenib, which caused a 24.11-fold increase in the total apoptosis percentage. This apoptotic activity was accompanied by a 7.81-fold increase in the level of apoptotic caspase-3. Furthermore, the cell cycle analysis revealed that the target derivative 6f reduced cellular proliferation and induced an arrest in HCT-15 colon cancer cell cycle at the S phase. Molecular modeling was used to determine the binding profile and affinity of derivative 6f toward the VEGFR-2 active site.
Collapse
Affiliation(s)
| | - Zeinab Mahmoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Jerin S, Harvey AJ, Lewis A. Therapeutic Potential of Protein Tyrosine Kinase 6 in Colorectal Cancer. Cancers (Basel) 2023; 15:3703. [PMID: 37509364 PMCID: PMC10377740 DOI: 10.3390/cancers15143703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
PTK6, a non-receptor tyrosine kinase, modulates the pathogenesis of breast and prostate cancers and is recognized as a biomarker of breast cancer prognosis. There are over 30 known substrates of PTK6, including signal transducers, transcription factors, and RNA-binding proteins. Many of these substrates are known drivers of other cancer types, such as colorectal cancer. Colon and rectal tumors also express higher levels of PTK6 than the normal intestine suggesting a potential role in tumorigenesis. However, the importance of PTK6 in colorectal cancer remains unclear. PTK6 inhibitors such as XMU-MP-2 and Tilfrinib have demonstrated potency and selectivity in breast cancer cells when used in combination with chemotherapy, indicating the potential for PTK6 targeted therapy in cancer. However, most of these inhibitors are yet to be tested in other cancer types. Here, we discuss the current understanding of the function of PTK6 in normal intestinal cells compared with colorectal cancer cells. We review existing PTK6 targeting therapeutics and explore the possibility of PTK6 inhibitory therapy for colorectal cancer.
Collapse
Affiliation(s)
- Samanta Jerin
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Amanda J Harvey
- Centre for Genome Engineering and Maintenance, Institute for Health Medicine and Environments, Brunel University London, Uxbridge UB8 3PH, UK
| | - Annabelle Lewis
- Centre for Genome Engineering and Maintenance, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
18
|
Xu K, Tang H, Xiong J, Ban X, Duan Y, Tu Y. Tyrosine kinase inhibitors and atherosclerosis: A close but complicated relationship. Eur J Pharmacol 2023:175869. [PMID: 37369295 DOI: 10.1016/j.ejphar.2023.175869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Targeted cancer therapies have revolutionized the treatment of the disease in the past decade. The tyrosine kinase inhibitor (TKI) class of drugs is a widely used option for treating various cancers. Despite numerous advances, clinical and experimental studies have demonstrated the atherosclerosis-inducing properties of these drugs that can cause adverse cardiovascular events. TKIs also have an atherosclerosis-preventing role in patients with cancer through different mechanisms under various conditions, suggesting that specific drugs play different roles in atherosclerosis regulation. Given these contradictory properties, this review summarizes the outcomes of previously performed clinical and basic experiments and shows how the targeted effects of novel TKIs affect atherosclerosis. Future collaborative efforts are warranted to enhance our understanding of the association between TKIs and atherosclerosis.
Collapse
Affiliation(s)
- Ke Xu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Hao Tang
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jie Xiong
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Xiaofang Ban
- Department of Cardiology, The Second Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Yuchen Duan
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yingfeng Tu
- Department of Cardiology, The First Hospital of Harbin Medical University, Youzheng Street 23#, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
19
|
Sun J, Fang ZY, Tao YN, Zhang YH, Zhang Y, Sun HY, Zhou Y, Wu YF. Design, Synthesis and Antitumor Activity of FAK/PLK1 Dual Inhibitors with Quinazolinone as the Skeleton. Chem Biodivers 2023; 20:e202300146. [PMID: 36919922 DOI: 10.1002/cbdv.202300146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/16/2023]
Abstract
Febrifugine is a kind of quinazolinone compound with high biological activity from a Chinese herb called Chang Shan (Dichroa febrifuga). Febrifugine and its derivatives possess extensive biological activities, some of which exhibited anti-tumor activities as FAK inhibitors. However, they are not very effective at inhibiting tumor metastasis, perhaps because tumors gain energy through compensatory activation of other signaling pathways that promote cell migration and invasion. Therefore, seventeen novel febrifugine derivatives with quinazolinone skeleton were designed, synthesized and acted as potential FAK/PLK1 dual inhibitors. These compounds were determined by 1 H-NMR, 13 C-NMR and MS. Most of the compounds exhibited good inhibitory activity against cancer cell lines by computer-assisted screening, antitumor activity test and FAK/PLK1 inhibitory activity test, wherein compound 3b was screened as a high-efficiency lead compound.
Collapse
Affiliation(s)
- Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Ze-Yu Fang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Yi-Nuo Tao
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Yi-Heng Zhang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Yao Zhang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Hai-Ya Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| | - Yang Zhou
- Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Yuan-Feng Wu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, P. R. China
| |
Collapse
|
20
|
Jampilek J, Kralova K. Insights into Lipid-Based Delivery Nanosystems of Protein-Tyrosine Kinase Inhibitors for Cancer Therapy. Pharmaceutics 2022; 14:2706. [PMID: 36559200 PMCID: PMC9783038 DOI: 10.3390/pharmaceutics14122706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
According to the WHO, cancer caused almost 10 million deaths worldwide in 2020, i.e., almost one in six deaths. Among the most common are breast, lung, colon and rectal and prostate cancers. Although the diagnosis is more perfect and spectrum of available drugs is large, there is a clear trend of an increase in cancer that ends fatally. A major advance in treatment was the introduction of gentler antineoplastics for targeted therapy-tyrosine kinase inhibitors (TKIs). Although they have undoubtedly revolutionized oncology and hematology, they have significant side effects and limited efficacy. In addition to the design of new TKIs with improved pharmacokinetic and safety profiles, and being more resistant to the development of drug resistance, high expectations are placed on the reformulation of TKIs into various drug delivery lipid-based nanosystems. This review provides an insight into the history of chemotherapy, a brief overview of the development of TKIs for the treatment of cancer and their mechanism of action and summarizes the results of the applications of self-nanoemulsifying drug delivery systems, nanoemulsions, liposomes, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles and nanostructured lipid carriers used as drug delivery systems of TKIs obtained in vitro and in vivo.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
21
|
Screening assays for tyrosine kinase inhibitors:A review. J Pharm Biomed Anal 2022; 223:115166. [DOI: 10.1016/j.jpba.2022.115166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
|
22
|
Behl T, Gupta A, Sehgal A, Albarrati A, Albratty M, Meraya AM, Najmi A, Bhatia S, Bungau S. Exploring protein tyrosine phosphatases (PTP) and PTP-1B inhibitors in management of diabetes mellitus. Biomed Pharmacother 2022; 153:113405. [DOI: 10.1016/j.biopha.2022.113405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022] Open
|
23
|
Ramos-Casals M, Flores-Chávez A, Brito-Zerón P, Lambotte O, Mariette X. Immune-related adverse events of cancer immunotherapies targeting kinases. Pharmacol Ther 2022; 237:108250. [DOI: 10.1016/j.pharmthera.2022.108250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
|
24
|
Petrazzuolo A, Maiuri MC, Zitvogel L, Kroemer G, Kepp O. Trial Watch: combination of tyrosine kinase inhibitors (TKIs) and immunotherapy. Oncoimmunology 2022; 11:2077898. [PMID: 35655707 PMCID: PMC9154809 DOI: 10.1080/2162402x.2022.2077898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The past decades witnessed the clinical employment of targeted therapies including but not limited to tyrosine kinase inhibitors (TKIs) that restrain a broad variety of pro-tumorigenic signals. TKIs can be categorized into (i) agents that directly target cancer cells, (ii) normalize angiogenesis or (iii) affect cells of the hematologic lineage. However, a clear distinction of TKIs based on this definition is limited by the fact that many TKIs designed to inhibit cancer cells have also effects on immune cells that are being discovered. Additionally, TKIs originally designed to target hematological cancers exhibit bioactivities on healthy cells of the same hematological lineage. TKIs have been described to improve immune recognition and cancer immunosurveillance, providing the scientific basis to combine TKIs with immunotherapy. Indeed, combination of TKIs with immunotherapy showed synergistic effects in preclinical models and clinical trials and some combinations of TKIs normalizing angiogenesis with immune checkpoint blocking antibodies have already been approved by the FDA for cancer therapy. However, the identification of appropriate drug combinations as well as optimal dosing and scheduling needs to be improved in order to obtain tangible progress in cancer care. This Trial Watch summarizes active clinical trials combining TKIs with various immunotherapeutic strategies to treat cancer patients.
Collapse
Affiliation(s)
- Adriana Petrazzuolo
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - M. Chiara Maiuri
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Faculty of Medicine, University Paris Saclay, Kremlin Bicêtre, France
- Gustave Roussy Cancer Campus (GRCC), Clinicobiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) Biotheris 1428, Villejuif, France
| | - Guido Kroemer
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Oliver Kepp
- Team “Metabolism, Cancer & Immunity”, Centre de Recherche des Cordeliers, INSERM UMRS1138, Université Paris Cité, Sorbonne Université, Paris, France
- Cell Biology and Metabolomics platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
25
|
Singh A, Mishra A. Investigation of molecular mechanism leading to gefitinib and osimertinib resistance against EGFR tyrosine kinase: molecular dynamics and binding free energy calculation. J Biomol Struct Dyn 2022:1-15. [PMID: 35510318 DOI: 10.1080/07391102.2022.2068650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tyrosine kinase (TK) is an important protein responsible for phosphorylation of variety of proteins that helps in signal transduction process in transferring signal to regulate various physiological and biochemical processes. Drugs inhibiting signal transduction pathways can be a very rational approach to inhibit cellular physiological and biochemical process. Tyrosine kinase inhibitors are a wide family of drugs that have been used successfully in cancer chemotherapy. Certain mutations around the catalytic cleft may cause conformational changes at binding site and leads to decrease in inhibitor sensitivity to TK mutants. EGFRT790M mutation is the first recognized acquired resistance after tyrosine kinase inhibitor therapy that leads to resistant to first generation TKI in about 50% of non-small cell lung carcinoma patients. Third generation EGFR-TKIs bind irreversibly to the C797, which is present in the ATP-binding pocket. The present work provides a molecular mechanism for understanding the Gefitinib and Osimertinib sensitivities with the EGFRWILD, EGFRL858R, EGFRT790M, EGFRT790M+C797S mutants using molecular modelling techniques. Changes in response against Gefitinib and Osimertinib were observed with the change of amino acids at the tyrosine kinase domain of EGFRWILD and its mutants (EGFRL858R, EGFRT790M, EGFRT790M+C797S). RMSD, RMSF and binding energies calculation well correlates with the change in clinical observation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
26
|
Demir M, Cizmecioglu O. ZAP70 Activation Compensates for Loss of Class IA PI3K Isoforms Through Activation of the JAK-STAT3 Pathway. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:391-404. [PMID: 35530641 PMCID: PMC9066532 DOI: 10.21873/cdp.10122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Tyrosine kinases have crucial functions in cell signaling and proliferation. The phosphatidylinositol 3-kinase (PI3K) pathway is frequently deregulated in human cancer and is an essential regulator of cellular proliferation. We aimed to determine which tyrosine kinases contribute to resistance elicited by PI3K silencing and inhibition. MATERIALS AND METHODS To mimic catalytic inactivation of p110α/β, specific p110α (BYL719) and p110β (KIN193) inhibitors were used in addition to genetic knock-out in in vitro assays. Cell viability was assessed using crystal violet staining, whereas cellular transformation ability was analyzed by soft-agar growth assays. RESULTS Activated zeta chain of T-cell receptor-associated protein kinase 70 (ZAP70) generated resistance to PI3K inhibition. This resistance was via activation of the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) axis. We demonstrated that activated ZAP70 has a high transforming capability associated with the formation of malignant phenotype in untransformed cells and has the potential to be a tumor-initiating factor in cancer cells. CONCLUSION ZAP70 may be a potent driver of proliferation and transformation in untransformed cells and is implicated in resistance to PI3K inhibitors in cancer cells.
Collapse
Affiliation(s)
- Melike Demir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
27
|
Shah A, Patel C, Parmar G, Patel A, Jain M. A concise review on tyrosine kinase targeted cancer therapy. CURRENT DRUG THERAPY 2022. [DOI: 10.2174/1574885517666220331104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The tyrosine kinase (TK) family is considered one of the important family members of the kinase family due to its important role in various cellular processes like cell growth, cell differentiation, apoptosis, etc. Mutation, overexpression, and dysfunction of tyrosine kinase receptors lead to the development of malignancy; thus, they are considered as one of the important targets for the development of anti-cancer molecules. The tyrosine kinase family is majorly divided into two classes; receptor and non-receptor tyrosine kinase. Both of the classes have an important role in the development of tumour cells. Currently, there are more than 40 FDA-approved tyrosine kinase inhibitors, which are used in the treatment of various types of cancers. Tyrosine kinase inhibitors mainly block the phosphorylation of tyrosine residue of the corresponding kinase substrate and so activation of downstream signalling pathways can be inhibited. The promising results of tyrosine kinase inhibitors in solid tumours provide a revolution in oncology research. In this article, we had summarized the role of some important members of the tyrosine kinase family in the development and progression of tumour cells and the significance of tyrosine kinase inhibitors in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Ashish Shah
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
- Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Chhagan Patel
- Shree Sarvajaink Pharmacy College, Mehsana, Gujarat India
| | - Ghanshaym Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth, Vadodara, Gujarat, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Anand, Gujarat, India
| | - Manav Jain
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| |
Collapse
|
28
|
Singh A, Saini R, Mishra A. Novel allosteric inhibitor to target drug resistance in EGFR mutant: molecular modelling and free energy approach. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2055012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
29
|
Singla RK, Behzad S, Khan J, Tsagkaris C, Gautam RK, Goyal R, Chopra H, Shen B. Natural Kinase Inhibitors for the Treatment and Management of Endometrial/Uterine Cancer: Preclinical to Clinical Studies. Front Pharmacol 2022; 13:801733. [PMID: 35264951 PMCID: PMC8899191 DOI: 10.3389/fphar.2022.801733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Endometrial cancer (EC) is the sixth most prevalent type of cancer among women. Kinases, enzymes mediating the transfer of adenosine triphosphate (ATP) in several signaling pathways, play a significant role in carcinogenesis and cancer cells’ survival and proliferation. Cyclin-dependent kinases (CDKs) are involved in EC pathogenesis; therefore, CDK inhibitors (CDKin) have a noteworthy therapeutic potential in this type of cancer, particularly in EC type 1. Natural compounds have been used for decades in the treatment of cancer serving as a source of anticancer bioactive molecules. Many phenolic and non-phenolic natural compounds covering flavonoids, stilbenoids, coumarins, biphenyl compounds, alkaloids, glycosides, terpenes, and terpenoids have shown moderate to high effectiveness against CDKin-mediated carcinogenic signaling pathways (PI3K, ERK1/2, Akt, ATM, mTOR, TP53). Pharmaceutical regimens based on two natural compounds, trabectedin and ixabepilone, have been investigated in humans showing short and midterm efficacy as second-line treatments in phase II clinical trials. The purpose of this review is twofold: the authors first provide an overview of the involvement of kinases and kinase inhibitors in the pathogenesis and treatment of EC and then discuss the existing evidence about natural products’ derived kinase inhibitors in the management of the disease and outline relevant future research.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.,IGlobal Research and Publishing Foundation, New Delhi, India
| | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | | | - Rupesh K Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Ambala, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Ambala, India
| | | | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Jena S, Parker LL. Fluorescence Lifetime Imaging Probes for Cell-Based Measurements of Enzyme Activity. Methods Mol Biol 2022; 2394:133-162. [PMID: 35094326 PMCID: PMC10041689 DOI: 10.1007/978-1-0716-1811-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Posttranslational modification (PTM) enzymes are important modulators of protein structure and function. They typically act by chemically modifying amino acids, often on side chain functional groups, to change the physiochemical landscape of the protein and thus its biophysical behavior. In particular, protein kinases are enzymes that transfer phosphate from ATP to serine, threonine, or tyrosine in protein substrates. They are key regulators of vital cellular pathways such as survival, proliferation, and apoptosis, and their dysregulation in the context of cancer has been widely investigated for the purpose of development of anticancer drugs. However, several critical questions pertaining to their physiology, such as heterogeneity of kinase signaling within and between cells, and other factors that may play into the mechanisms of drug resistance, remain unanswered. Many of the current strategies to measure kinase activity lack the scope, subcellular resolution, and real-time monitoring ability needed to obtain the type of information needed about their dynamics and localization in cells. While FRET-based biosensors are capable of dynamic single cell imaging, their applications can be limited by difficulties in multiplexing and the inherent inadequacies of steady state measurements. In this chapter, we describe our fluorescence lifetime imaging microscopy (FLIM) probe technology in which peptide kinase substrates, linked to cell-penetrating peptides and labeled with small molecule fluorophores, are used to report kinase activity through time-resolved fluorescence imaging to visualize and quantify changes to the probe's fluorescence lifetime. These can be multiplexed for more than one kinase at a time, and interpretation is not affected by differences in local intensity due to probe uptake and distribution or photobleaching. With careful choice of peptide substrate(s), fluorophore label, and imaging set-up, high specificity and spatiotemporal resolution can be achieved. Due to the mechanism by which the lifetime change occurs, this approach is compatible with other PTMs (such as acetylation, methylation), and so the considerations for kinase FLIM probe design described in this chapter should be broadly applicable for other PTMs as well.
Collapse
|
32
|
Zhang J, Liu W, Feng S, Zhong B. The possible role of SRMS in colorectal cancer by bioinformatics analysis. World J Surg Oncol 2021; 19:326. [PMID: 34781983 PMCID: PMC8594183 DOI: 10.1186/s12957-021-02431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a non-receptor tyrosine kinase that has been found to be overexpressed in various tumors. However, the role of SRMS in colorectal cancer (CRC) has not been well established. METHODS We evaluated the expression levels of SRMS in CRC using GEPIA, Oncomine, and HPA datasets. Survival information and gene expression data of CRC were obtained from The Cancer Genome Atlas (TCGA). Then, the association between SRMS and clinicopathological features was analyzed using UALCAN dataset. LinkedOmics was used to determine co-expression and functional networks associated with SRMS. Besides, we used TISIDB to assess the correlation between SRMS and immune signatures, including tumor-infiltrating immune cells and immunomodulators. Lastly, protein-protein interaction network (PPI) was established and the function enrichment analysis of the SRMS-associated immunomodulators and immune cell marker genes were performed using the STRING portal. RESULTS Compared to normal colorectal tissues, SRMS was found to be overexpressed in CRC tissues, which was correlated with a poor prognosis. In colon adenocarcinoma (COAD), the expression levels of SRMS are significantly correlated with pathological stages and nodal metastasis status. Functional network analysis suggested that SRMS regulates intermediate filament-based processes, protein autophosphorylation, translational initiation, and elongation signaling through pathways involving ribosomes, proteasomes, oxidative phosphorylation, and DNA replication. In addition, SRMS expression was correlated with infiltrating levels of CD4+ T cells, CD56dim, MEM B, Neutrophils, Th2, Th17, and Act DC. The gene ontology (GO) analysis of SRMS-associated immunomodulators and immune cell marker genes showed that they were mainly enriched in the immune microenvironment molecule-related signals. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these genes indicated that they are involved in multiple cancer-related pathways. CONCLUSIONS SRMS is a promising prognostic biomarker and potential therapeutic target for CRC patients. In particular, SRMS regulates CRC progression by modulating cytokine-cytokine receptor interaction, chemokines, IL-17, and intestinal immune networks for IgA production signaling pathways among others. However, more studies are needed to validate these findings.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Weidong Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Sisi Feng
- Department of Essential Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
| |
Collapse
|
33
|
Ferrao Blanco MN, Domenech Garcia H, Legeai-Mallet L, van Osch GJVM. Tyrosine kinases regulate chondrocyte hypertrophy: promising drug targets for Osteoarthritis. Osteoarthritis Cartilage 2021; 29:1389-1398. [PMID: 34284112 DOI: 10.1016/j.joca.2021.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/24/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is a major health problem worldwide that affects the joints and causes severe disability. It is characterized by pain and low-grade inflammation. However, the exact pathogenesis remains unknown and the therapeutic options are limited. In OA articular chondrocytes undergo a phenotypic transition becoming hypertrophic, which leads to cartilage damage, aggravating the disease. Therefore, a therapeutic agent inhibiting hypertrophy would be a promising disease-modifying drug. The therapeutic use of tyrosine kinase inhibitors has been mainly focused on oncology, but the Food and Drug Administration (FDA) approval of the Janus kinase inhibitor Tofacitinib in Rheumatoid Arthritis has broadened the applicability of these compounds to other diseases. Interestingly, tyrosine kinases have been associated with chondrocyte hypertrophy. In this review, we discuss the experimental evidence that implicates specific tyrosine kinases in signaling pathways promoting chondrocyte hypertrophy, highlighting their potential as therapeutic targets for OA.
Collapse
Affiliation(s)
- M N Ferrao Blanco
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - H Domenech Garcia
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - L Legeai-Mallet
- Université de Paris, INSERM U1163, Institut Imagine, Paris, France.
| | - G J V M van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
34
|
Bayazeid O, Rahman T. Correlation Analysis of Target Selectivity and Side Effects of FDA‐Approved Kinase Inhibitors**. ChemistrySelect 2021. [DOI: 10.1002/slct.202101367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Omer Bayazeid
- Department of Pharmacognosy Faculty of Pharmacy Hacettepe University, Sihhiye 06100 Ankara Turkey
| | - Taufiq Rahman
- Department of Pharmacology University of Cambridge Tennis Court Road Cambridge CB2 1PD UK
| |
Collapse
|
35
|
Wu K, Zhai X, Huang S, Jiang L, Yu Z, Huang J. Protein Kinases: Potential Drug Targets Against Schistosoma japonicum. Front Cell Infect Microbiol 2021; 11:691757. [PMID: 34277472 PMCID: PMC8282181 DOI: 10.3389/fcimb.2021.691757] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Schistosoma japonicum (S. japonicum) infection can induce serious organ damage and cause schistosomiasis japonica which is mainly prevalent in Asia and currently one of the most seriously neglected tropical diseases. Treatment of schistosomiasis largely depends on the drug praziquantel (PZQ). However, PZQ exhibits low killing efficacy on juvenile worms and the potential emergence of its drug resistance is a continual concern. Protein kinases (PKs) are enzymes that catalyze the phosphorylation of proteins and can participate in many signaling pathways in vivo. Recent studies confirmed the essential roles of PKs in the growth and development of S. japonicum, as well as in schistosome-host interactions, and researches have screened drug targets about PKs from S. japonicum (SjPKs), which provide new opportunities of developing new treatments on schistosomiasis. The aim of this review is to present the current progress on SjPKs from classification, different functions and their potential to become drug targets compared with other schistosomes. The efficiency of related protein kinase inhibitors on schistosomes is highlighted. Finally, the current challenges and problems in the study of SjPKs are proposed, which can provide future guidance for developing anti-schistosomiasis drugs and vaccines.
Collapse
Affiliation(s)
- Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Xingyu Zhai
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shuaiqin Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Zheng Yu
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
36
|
Mendoza FA, Piera-Velazquez S, Jimenez SA. Tyrosine kinases in the pathogenesis of tissue fibrosis in systemic sclerosis and potential therapeutic role of their inhibition. Transl Res 2021; 231:139-158. [PMID: 33422651 DOI: 10.1016/j.trsl.2021.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Systemic sclerosis (SSc) is an idiopathic autoimmune disease with a heterogeneous clinical phenotype ranging from limited cutaneous involvement to rapidly progressive diffuse SSc. The most severe SSc clinical and pathologic manifestations result from an uncontrolled fibrotic process involving the skin and various internal organs. The molecular mechanisms responsible for the initiation and progression of the SSc fibrotic process have not been fully elucidated. Recently it has been suggested that tyrosine protein kinases play a role. The implicated kinases include receptor-activated tyrosine kinases and nonreceptor tyrosine kinases. The receptor kinases are activated following specific binding of growth factors (platelet-derived growth factor, fibroblast growth factor, or vascular endothelial growth factor). Other receptor kinases are the discoidin domain receptors activated by binding of various collagens, the ephrin receptors that are activated by ephrins and the angiopoetin-Tie-2s receptors. The nonreceptor tyrosine kinases c-Abl, Src, Janus, and STATs have also been shown to participate in SSc-associated tissue fibrosis. Currently, there are no effective disease-modifying therapies for SSc-associated tissue fibrosis. Therefore, extensive investigation has been conducted to examine whether tyrosine kinase inhibitors (TKIs) may exert antifibrotic effects. Here, we review the role of receptor and nonreceptor tyrosine kinases in the pathogenesis of the frequently progressive cutaneous and systemic fibrotic alterations in SSc, and the potential of TKIs as SSc disease-modifying antifibrotic therapeutic agents.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A, Michel O, Gajewska-Naryniecka A, Przystupski D, Saczko J. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules 2021; 26:1850. [PMID: 33806009 PMCID: PMC8037978 DOI: 10.3390/molecules26071850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| |
Collapse
|
38
|
Zhang Z, Song J, Xie C, Pan J, Lu W, Liu M. Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS JOURNAL 2021; 23:29. [PMID: 33580411 DOI: 10.1208/s12248-021-00556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is a highly malignant tumor and one of the primary causes of cancer-related death. Because pancreatic cancer is difficult to diagnose in the early course of the disease, most patients present with advanced lesions at the time of diagnosis, and only 20% of patients are eligible for surgery. Consequently, drug treatment has become extremely important. At present, the main treatment regimens for pancreatic cancer are gemcitabine and the FORFIRINOX and MPACT regimens. However, none of these regimens substantially improves the prognosis of patients with pancreatic cancer. Extensive efforts have been dedicated to the study of pancreatic cancer in recent years. With the development and clinical application of biological targeted drugs, the biological targeted treatment of tumors has been widely accepted. Therefore, this article used relevant clinical trial data to summarize the research progress of traditional chemotherapy drugs and biological targeted drugs for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Pan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
39
|
The Seminiferous Epithelial Cycle of Spermatogenesis: Role of Non-receptor Tyrosine Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:1-20. [PMID: 34453729 DOI: 10.1007/978-3-030-77779-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-receptor tyrosine kinases (NRTKs) are implicated in various biological processes including cell proliferation, differentiation, survival, and apoptosis, as well as cell adhesion and movement. NRTKs are expressed in all mammals and in different cell types, with extraordinarily high expression in the testis. Their association with the plasma membrane and dynamic subcellular localization are crucial parameters in their activation and function. Many NRTKs are found in endosomal protein trafficking pathways, which suggests a novel mechanism to regulate the timely junction restructuring in the mammalian testis to facilitate spermiation and germ cell transport across the seminiferous epithelium.
Collapse
|
40
|
Guo T, Ma S. Recent Advances in the Discovery of Multitargeted Tyrosine Kinase Inhibitors as Anticancer Agents. ChemMedChem 2020; 16:600-620. [PMID: 33179854 DOI: 10.1002/cmdc.202000658] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Indexed: 12/18/2022]
Abstract
The treatment of cancer has been one of the most significant challenges for the medical field. Further research on the signal transduction pathway of tumor cells is driving the rapid development of antitumor agents targeting tyrosine kinases. However, most of the currently approved tyrosine kinase inhibitors based on the "single target/single drug" design are becoming less and less effective in the treatment of complex, heterogeneous, and multigenic cancers; this also results in resistance to chemotherapy. In contrast, multitargeted tyrosine kinase inhibitors (MT-TKIs) can effectively block multiple pathways of intracellular signal transduction. Therefore, they have therapeutic advantages over single-targeted inhibitors and have become a hotspot in antitumor drug research in recent years. This minireview summarizes recent advances in the discovery of MT-TKIs based on their chemical structures. In particular, we describe the kinase inhibitory and antitumor activity of promising compounds, as well as their structure - activity relationships (SARs).
Collapse
Affiliation(s)
- Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| |
Collapse
|
41
|
Ma N, Du H, Ma G, Yang W, Han Y, Hu Q, Xiao H. Characterization of the Immunomodulatory Mechanism of a Pleurotus eryngii Protein by Isobaric Tags for Relative and Absolute Quantitation Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13189-13199. [PMID: 32227945 DOI: 10.1021/acs.jafc.0c00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PEP 1b is a novel immunoregulatory protein isolated from Pleurotus eryngii, a popular edible mushroom. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) approach and bioinformatics analysis were used to characterize the PEP-1b-induced proteome alterations in Raw 264.7 macrophage cells, to comprehensively excavate the molecular mechanisms involved in the immunoregulatory effects of PEP 1b. In comparison to the control group, PEP 1b treatment significantly changed the expression of 292 proteins, including 191 upregulated and 101 downregulated proteins. Bioinformatics analysis showed that PEP-1b-regulated proteins were involved in 437 biological process domains, 131 cellular component domains, and 90 molecular function domains. Moreover, PEP 1b played the role of immunomodulator by mainly modulating the Rap1 signaling pathway, Wnt signaling pathway, Ras signaling pathway, and PI3K-Akt signaling pathway. Interestingly, PEP 1b regulated the proteins involved in the immune system, signal transduction, and transport processes, which were related to the immunoregulatory effects of PEP 1b. The western blotting analysis confirmed that the immune-boosting activities of PEP 1b were associated with modulating the expression of Sqstm1, Cox2, Rap1b, and Pyk2. The current research provided a comprehensive understanding of the immunoregulatory effects and molecular mechanisms involved in the PEP 1b supplementation.
Collapse
Affiliation(s)
- Ning Ma
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hengjun Du
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gaoxing Ma
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wenjian Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qiuhui Hu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
42
|
Baier A, Szyszka R. Compounds from Natural Sources as Protein Kinase Inhibitors. Biomolecules 2020; 10:biom10111546. [PMID: 33198400 PMCID: PMC7698043 DOI: 10.3390/biom10111546] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
The advantage of natural compounds is their lower number of side-effects when compared to most synthetic substances. Therefore, over the past several decades, the interest in naturally occurring compounds is increasing in the search for new potent drugs. Natural compounds are playing an important role as a starting point when developing new selective compounds against different diseases. Protein kinases play a huge role in several diseases, like cancers, neurodegenerative diseases, microbial infections, or inflammations. In this review, we give a comprehensive view of natural compounds, which are/were the parent compounds in the development of more potent substances using computational analysis and SAR studies.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Animal Physiology and Toxicology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland
- Correspondence:
| | - Ryszard Szyszka
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
43
|
Crowley EL, Nezamololama N, Papp K, Gooderham MJ. Abrocitinib for the treatment of atopic dermatitis. Expert Rev Clin Immunol 2020; 16:955-962. [PMID: 32969750 DOI: 10.1080/1744666x.2021.1828068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Janus kinase (JAK) inhibitors are emerging treatments in dermatology. Also known as JAKinibs, these agents target JAK-signal transducers and activators of transcription (JAK-STAT) pathway for intracellular signaling. Among the various immune-mediated inflammatory skin diseases that the JAK-STAT pathway plays a role in, atopic dermatitis (AD) is an important one. AD has a complex and multifactorial pathophysiology that is not fully understood. Immune dysregulation can result in epidermal barrier disruption and intensify atopic dermatitis. The newly developed abrocitinib (PF-04965842) selectively inhibits the JAK1 protein, which is believed to modulate cytokines involved in AD pathophysiology. AREAS COVERED This work is a review of the current literature related to abrocitinib, including the phase I, II, and III clinical trials, for the treatment of AD. Immunological considerations of abrocitinib and JAK inhibition are also explored. EXPERT OPINION Abrocitinib is among the first JAK inhibitors evaluated for the treatment of AD. Similar to other JAKinhibs that mechanistically block the signaling of several cytokines, abrocitinib possesses both positive and negative clinical attributes. Nonetheless, the risk-benefit profile of abrocitinib remains favorable. Up to 61% of AD patients achieve an EASI 75 response while a minority of responding patients experience mild to moderate symptoms related to tolerability.
Collapse
Affiliation(s)
- Erika L Crowley
- International Space University , Illkirch-Graffenstaden, France
| | | | - Kim Papp
- Probity Medical Research , Waterloo, ON, Canada.,K Papp Clinical Research , Waterloo, ON, Canada
| | - Melinda J Gooderham
- Skin Centre for Dermatology , Peterborough, ON, Canada.,Probity Medical Research , Waterloo, ON, Canada.,Department of Medicine, Queen's University , Kingston, ON, Canada
| |
Collapse
|
44
|
Epoxyquinophomopsins A and B from endophytic fungus Phomopsis sp. and their activity against tyrosine kinase. J Nat Med 2020; 75:217-222. [PMID: 33030695 DOI: 10.1007/s11418-020-01454-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/23/2020] [Indexed: 01/16/2023]
Abstract
Two new quinone derivatives, epoxyquinophomopsins A (1) and B (2), were purified from the EtOAc extract of endophytic fungus Phomopsis sp isolated from Morus cathayana. The structures of both compounds were determined based on 1D and 2D NMR and mass spectral data, as well as by x-ray diffraction analysis for 1. Compounds 1 and 2 were screened against eight receptor- (RTKs) and eight non-receptor tyrosine kinases (nRTKs). Both compounds showed strong inhibitory properties against Bruton's Tyrosine Kinase (nRTK) with their kinase activity were 19% and 20%, respectively. Only compound 1 that showed strong inhibitory properties against RTKs EGFR and HER-4 with its kinase activity were 16 and 15%, respectively. Thus, both compounds have potential as tyrosine kinase inhibitors.
Collapse
|
45
|
Nezamololama N, Crowley EL, Gooderham MJ, Papp K. Abrocitinib: a potential treatment for moderate-to-severe atopic dermatitis. Expert Opin Investig Drugs 2020; 29:911-917. [PMID: 32741227 DOI: 10.1080/13543784.2020.1804854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a common and debilitating dermatosis that often impacts the physical and psychological quality of life in children and adults. A limited number of treatment options are available for AD, and often these treatments result in an insufficient response or may be contraindicated for some patients. This treatment gap creates an increasing demand for alternative AD therapies. The Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway is known to play a critical role in the dysregulation of immune responses in AD. Inhibition of the JAK enzymes in the JAK-STAT pathway has shown potential for the treatment of this chronic skin condition. AREAS COVERED We review the evolving efficacy and safety profile of abrocitinib, an oral JAK1 inhibitor, in the treatment of AD based on the data available from phase I, II, and III clinical trials. EXPERT OPINION Evidence supports clinical efficacy, improved pruritus and an acceptable safety profile, making abrocitinib a viable alternative to conventional AD therapies. Pivotal phase III trials included subjects aged 12 years and above, providing a new mechanism of action for future treatment of adolescent and adult AD. Further investigations are required to have a thorough understanding of abrocitinib in the treatment of AD.
Collapse
Affiliation(s)
| | - Erika L Crowley
- Space Studies, International Space University , Illkirch-Graffenstaden, France
| | - Melinda J Gooderham
- Skin Centre for Dermatology , Peterborough, ON.,Department of Medicine, Queen's University , Kingston, ON.,Probity Medical Research , Waterloo, ON
| | - Kim Papp
- Probity Medical Research , Waterloo, ON.,K Papp Clinical Research , Waterloo, ON
| |
Collapse
|
46
|
Wang S, Zhou D, Xu Z, Song J, Qian X, Lv X, Luan J. Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect. Curr Drug Targets 2020; 20:1180-1202. [PMID: 30947670 DOI: 10.2174/1389450120666190402145325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022]
Abstract
The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Dexi Zhou
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing Song
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xueyi Qian
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
47
|
Hoemberger M, Pitsawong W, Kern D. Cumulative mechanism of several major imatinib-resistant mutations in Abl kinase. Proc Natl Acad Sci U S A 2020; 117:19221-19227. [PMID: 32719139 PMCID: PMC7431045 DOI: 10.1073/pnas.1919221117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the outstanding success of the cancer drug imatinib, one obstacle in prolonged treatment is the emergence of resistance mutations within the kinase domain of its target, Abl. We noticed that many patient-resistance mutations occur in the dynamic hot spots recently identified to be responsible for imatinib's high selectivity toward Abl. In this study, we provide an experimental analysis of the mechanism underlying drug resistance for three major resistance mutations (G250E, Y253F, and F317L). Our data settle controversies, revealing unexpected resistance mechanisms. The mutations alter the energy landscape of Abl in complex ways: increased kinase activity, altered affinity, and cooperativity for the substrates, and, surprisingly, only a modestly decreased imatinib affinity. Only under cellular adenosine triphosphate (ATP) concentrations, these changes cumulate in an order of magnitude increase in imatinib's half-maximal inhibitory concentration (IC50). These results highlight the importance of characterizing energy landscapes of targets and its changes by drug binding and by resistance mutations developed by patients.
Collapse
Affiliation(s)
- Marc Hoemberger
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University, Waltham, MA 02454
- HHMI, Brandeis University, Waltham, MA 02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA 02454;
- HHMI, Brandeis University, Waltham, MA 02454
| |
Collapse
|
48
|
Yaghoubi A, Khazaei M, Avan A, Hasanian SM, Cho WC, Soleimanpour S. p28 Bacterial Peptide, as an Anticancer Agent. Front Oncol 2020; 10:1303. [PMID: 32850408 PMCID: PMC7424061 DOI: 10.3389/fonc.2020.01303] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/23/2020] [Indexed: 12/09/2022] Open
Abstract
Cancer remains a major cause of morbidity and mortality irrespective of the type of conventional chemotherapy. Therefore, there is an urgent need for new and effective anticancer therapeutic agents. Bacterial proteins and their derivative peptides appear as a promising approach for cancer treatment. Several, including an amphipathic, α-helical, 28-amino acid peptide derived from azurin, a 128-amino acid copper-containing redox protein secreted from Pseudomonas aeruginosa, show clinical promise in the treatment of adult and pediatric solid tumors. The peptide, p28, is a post-translational, multi-target anticancer agent that preferentially enters a wide variety of solid tumor cells. Mechanistically, after entry, p28 has two major avenues of action. It binds to both wild-type and mutant p53 protein, inhibiting constitutional morphogenic protein 1 (Cop1)-mediated ubiquitination and proteasomal degradation of p53. This results in increased levels of p53, which induce cell-cycle arrest at G2/M and an eventual apoptosis that results in tumor cell shrinkage and death. In addition, p28 also preferentially enters nascent endothelial cells and decreases the phosphorylation of FAK and Akt inhibiting endothelial cell motility and migration. Here, we review the current basic and clinical evidence suggesting the potential of p28 as a cancer therapeutic peptide.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical, Sciences, Mashhad, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Pisani P, Airoldi M, Allais A, Aluffi Valletti P, Battista M, Benazzo M, Briatore R, Cacciola S, Cocuzza S, Colombo A, Conti B, Costanzo A, della Vecchia L, Denaro N, Fantozzi C, Galizia D, Garzaro M, Genta I, Iasi GA, Krengli M, Landolfo V, Lanza GV, Magnano M, Mancuso M, Maroldi R, Masini L, Merlano MC, Piemonte M, Pisani S, Prina-Mello A, Prioglio L, Rugiu MG, Scasso F, Serra A, Valente G, Zannetti M, Zigliani A. Metastatic disease in head & neck oncology. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2020; 40:S1-S86. [PMID: 32469009 PMCID: PMC7263073 DOI: 10.14639/0392-100x-suppl.1-40-2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The head and neck district represents one of the most frequent sites of cancer, and the percentage of metastases is very high in both loco-regional and distant areas. Prognosis refers to several factors: a) stage of disease; b) loco-regional relapses; c) distant metastasis. At diagnosis, distant metastases of head and neck cancers are present in about 10% of cases with an additional 20-30% developing metastases during the course of their disease. Diagnosis of distant metastases is associated with unfavorable prognosis, with a median survival of about 10 months. The aim of the present review is to provide an update on distant metastasis in head and neck oncology. Recent achievements in molecular profiling, interaction between neoplastic tissue and the tumor microenvironment, oligometastatic disease concepts, and the role of immunotherapy have all deeply changed the therapeutic approach and disease control. Firstly, we approach topics such as natural history, epidemiology of distant metastases and relevant pathological and radiological aspects. Focus is then placed on the most relevant clinical aspects; particular attention is reserved to tumours with distant metastasis and positive for EBV and HPV, and the oligometastatic concept. A substantial part of the review is dedicated to different therapeutic approaches. We highlight the role of immunotherapy and the potential effects of innovative technologies. Lastly, we present ethical and clinical perspectives related to frailty in oncological patients and emerging difficulties in sustainable socio-economical governance.
Collapse
Affiliation(s)
- Paolo Pisani
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Mario Airoldi
- Medical Oncology, Città della Salute e della Scienza, Torino, Italy
| | | | - Paolo Aluffi Valletti
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | | | - Marco Benazzo
- SC Otorinolaringoiatria, Fondazione IRCCS Policlinico “S. Matteo”, Università di Pavia, Italy
| | | | | | - Salvatore Cocuzza
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Italy
| | - Andrea Colombo
- ENT Unit, ASL AT, “Cardinal Massaja” Hospital, Asti, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Laura della Vecchia
- Unit of Otorhinolaryngology General Hospital “Macchi”, ASST dei Settelaghi, Varese, Italy
| | - Nerina Denaro
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
| | | | - Danilo Galizia
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Massimiliano Garzaro
- SCDU Otorinolaringoiatria, AOU Maggiore della Carità di Novara, Università del Piemonte Orientale, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Italy
- Polymerix S.r.L., Pavia, Italy
| | | | - Marco Krengli
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | | | - Giovanni Vittorio Lanza
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | | | - Maurizio Mancuso
- S.O.C. Chirurgia Toracica, Azienda Ospedaliera Nazionale “SS. Antonio e Biagio e Cesare Arrigo”, Alessandria, Italy
| | - Roberto Maroldi
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| | - Laura Masini
- Dipartimento Medico Specialistico ed Oncologico, SC Radioterapia Oncologica, AOU Maggiore della Carità, Novara, Italy
| | - Marco Carlo Merlano
- Oncology Department A.O.S. Croce & Carle, Cuneo, Italy
- Medical Oncology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo,Italy
| | - Marco Piemonte
- ENT Unit, University Hospital “Santa Maria della Misericordia”, Udine, Italy
| | - Silvia Pisani
- Immunology and Transplantation Laboratory Fondazione IRCCS Policlinico “S. Matteo”, Pavia, Italy
| | - Adriele Prina-Mello
- LBCAM, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin 8, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Luca Prioglio
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | | | - Felice Scasso
- Department of Otorhinolaryngology, ASL 3 “Genovese”, “Padre Antero Micone” Hospital, Genoa, Italy
| | - Agostino Serra
- University of Catania, Italy
- G.B. Morgagni Foundation, Catania, Italy
| | - Guido Valente
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Micol Zannetti
- Dipartimento di Medicina Traslazionale, Università del Piemonte Orientale, Novara, Italy
| | - Angelo Zigliani
- Department of Radiology, University of Brescia, ASST Spedali Civili Brescia, Italy
| |
Collapse
|
50
|
Mechanisms of Cardiovascular Toxicity of BCR-ABL1 Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Curr Hematol Malig Rep 2020; 15:20-30. [DOI: 10.1007/s11899-020-00560-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|