1
|
Shakiba M, Faraji M, Jouybar S, Foroozandeh A, Bigham A, Abdouss M, Saidi M, Vatanpour V, Varma RS. Advanced nanofibers for water treatment: Unveiling the potential of electrospun polyacrylonitrile membranes. ENVIRONMENTAL RESEARCH 2025; 276:121403. [PMID: 40158874 DOI: 10.1016/j.envres.2025.121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/26/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The challenges pertaining to the potable water scarcity and pollution motivates us to envision innovative strategies. Industrial wastewater containing hazardous heavy metals, synthetic dyes, and oil exacerbates the pursuit of clean drinking water. Among the array of available technologies, electrospun nanofiber membranes have garnered attention due to their efficiency, high surface-to-volume ratio, cost-effectiveness, scalability, and multifunctionality. These membranes possess distinct physical and chemical attributes that position them as ideal solutions to water purification challenges. Their versatility enables effective contaminant removal through filtration, adsorption, and chemical interactions. Polyacrylonitrile (PAN) emerges as a frontrunner among electrospun polymers due to its affordability, remarkable physical and chemical characteristics, and the ease of production. Research efforts have been dedicated to the study of electrospun PAN membranes, exploring modifications in terms of the functionalization of PAN molecular chain, incorporation of appropriate nanoparticles, and composition with other functional polymers. Parameters such as functional groups, hydrophilicity, mechanical properties, porosity, pore structure, reusability, sustainability, zeta potential, and operational conditions significantly influence the performance of electrospun PAN membranes in treating the contaminated water. Despite progress, challenges surrounding fouling, toxicity, scalability, selectivity, and production costs ought to be addressed strategically to enhance their practicality and real-world viability. This review comprehensively scrutinizes the current landscape of available electrospun PAN membranes in water treatment encompassing diverse range of synthesized entities and experimental outcomes. Additionally, the review delves into various approaches undertaken to optimize the performance of electrospun PAN membranes while proposing potential strategies to overcome the existing hindrances. By carefully analyzing the parameters that impact the performance of these membranes, this overview offers invaluable guidelines for researchers and engineers, thus empowering them to design tailored electrospun nanofiber membranes for specific water purification applications. As the innovative research continues and strategic efforts address the current challenges, these membranes can play a pivotal role in enhancing water quality, mitigating water scarcity, and contributing to environmental sustainability. The widespread application of electrospun nanofiber membranes in water treatment has the potential to create a lasting positive impact on global water resources and the environment. A dedicated effort towards their implementation will undoubtedly mark a crucial step towards a more sustainable and water-secure future.
Collapse
Affiliation(s)
| | - Mehdi Faraji
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Shirzad Jouybar
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy.
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Majid Saidi
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Vahid Vatanpour
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Liu S, Wang Y, Xu C. Suppressive effects of lemon myrtle extract against the colonization and virulence factors of Candida spp. J Oral Biosci 2025:100657. [PMID: 40127778 DOI: 10.1016/j.job.2025.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 03/26/2025]
Abstract
OBJECTIVES Candida species (Candida spp.) are among the most common opportunistic pathogens inhabiting the oral cavity and frequently cause infection in immunocompromised individuals. Conventional antibiotic treatments for Candida infections face significant challenges, including the emergence of antimicrobial resistance. This highlights the urgent need for alternative therapeutic strategies, particularly those leveraging natural products. METHODS In this study, we evaluated the inhibitory effects of an aqueous lemon myrtle extract on the colonization and virulence of six Candida spp., including microbial adhesion, biofilm formation, extracellular polysaccharide production, hyphal production, and several invasion-associated virulence factors. RESULTS The extract significantly reduced Candida adhesion to hard surfaces and inhibited biofilm formation. Additionally, it suppressed the production of insoluble extracellular polysaccharides and various invasion-associated virulence factors, including phospholipase, ergosterol, protease, and hyphal formation. CONCLUSIONS These findings provide a better understanding of the potential role of lemon myrtle extract as a natural therapeutic agent for controlling Candida colonization and mitigating its invasive capabilities. This study provides a foundation for further exploration of lemon myrtle as a promising alternative for the management of Candida infections.
Collapse
Affiliation(s)
- Siyuan Liu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Yi Wang
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
3
|
Covato C, Pilipenco A, Scheberl A, Reimhult E, Subbiahdoss G. Osteoblasts win the race for the surface on DNA polyelectrolyte multilayer coatings against S. epidermidis but not against S. aureus. Colloids Surf B Biointerfaces 2024; 245:114336. [PMID: 39489986 DOI: 10.1016/j.colsurfb.2024.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Biomaterial-associated infections pose severe challenges in modern medicine. Previously, we reported that polyanionic DNA surface coatings repel bacterial adhesion and support osteoblast-like cell attachment in monoculture experiments, candidate for orthopaedic implant coatings. However, monocultures lack the influence of bacteria or bacterial toxins on osteoblast-like cell adhesion to biomaterial surfaces. In this study, co-culture of staphylococcus (S. epidermidis and S. aureus) and SaOS-2 osteosarcoma cells was studied on chitosan-DNA polyelectrolyte multilayer coated glass based on the concept of `the race for the surface`. Staphylococcus was first deposited onto the surface in a microfluidic chamber to mimic peri-operative contamination, and subsequently, SaOS-2 cells were seeded. Both staphylococcus and SaOS-2 cells were cultured together on the surfaces for 24 h under flow. The presence of S. epidermidis decreased SaOS-2 cell number on all surfaces after 24 h. However, the cells that adhered spread equally well in the presence of low virulent S. epidermidis. However, highly virulent S. aureus induced cell death of all adherent SaOS-2 cells on chitosan-DNA multilayer coated glass, a worse outcome than on uncoated glass. The outcome of our co-culture study highlights the limitations of monoculture models. It demonstrates the need for in vitro co-culture assays to meaningfully bridge the gap in lab testing of biomaterials and their clinical evaluations where bacterial infection can occur. The relative failure of cell-adhesive and bacteria-repelling DNA coatings in co-cultures also suggests the need to incorporate bactericidal in addition to non-adhesive functions to protect competitive cell spreading over a long period.
Collapse
Affiliation(s)
- Carmelo Covato
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Alina Pilipenco
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 18200, Czech Republic
| | - Andrea Scheberl
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Erik Reimhult
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria
| | - Guruprakash Subbiahdoss
- Department of Bionanosciences, Institute of Colloid and Biointerface Science, BOKU University, Muthgasse 11, Vienna 1190, Austria.
| |
Collapse
|
4
|
Deng J, Zhang W, Zhang L, Qin C, Wang H, Ling W. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. ENVIRONMENT INTERNATIONAL 2024; 191:108972. [PMID: 39180776 DOI: 10.1016/j.envint.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenkang Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Tarabal VS, Abud YKD, da Silva FG, da Cruz LF, Fontes GN, da Silva JA, Filho CBS, Sinisterra RD, Granjeiro JM, Granjeiro PA. Effect of DMPEI coating against biofilm formation on PVC catheter surface. World J Microbiol Biotechnol 2023; 40:6. [PMID: 37932532 DOI: 10.1007/s11274-023-03799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Urinary tract infections (UTIs) are a significant cause of morbidity in healthcare systems and are prominently associated with applying urethral catheters, particularly in surgeries. Polyvinyl chloride (PVC) is extensively utilized in the fabrication of catheters. Biofilms, complex polymeric constructions, provide a protective milieu for cell multiplication and the enhancement of antibiotic resistance. Strategies to counteract biofilm development on medical apparatuses' surfaces incorporate antimicrobial agents such as N,N-dodecyl, and methyl polyethylenimine (DMPEI). This research endeavored to characterize the morphology of PVC and PVC-DMPEI surfaces utilizing Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) and to gauge hydrophobicity through contact angle measurements. Employing Escherichia coli, Staphylococcus aureus, and Candida albicans in adhesion assays enabled the assessment of DMPEI's efficacy in preventing microbial adherence to PVC. Butanol successfully solubilized 2 mg.mL-1 DMPEI without altering the PVC structure. SEM results substantiated the formation of a DMPEI layer on the PVC surface, which led to decreased surface roughness, as validated by AFM, and increased hydrophilicity, as demonstrated by contact angle evaluations. E. coli, S. aureus, and C. albicans exhibited significant adhesion reduction, 89.3%, 94.3%, and 86.6% on PVC-DMPEI surfaces. SEM visualizations confirmed reduced cellular colonization on PVC-DMPEI and highlighted considerable morphological modifications in E. coli. Consequently, DMPEI films effectively minimize the adhesion of E. coli, S. aureus, and C. albicans on PVC surfaces. DMPEI, with its potential as a protective coating for innovative medical devices, promises to inhibit biofilm adherence effectively.
Collapse
Affiliation(s)
- Vinícius S Tarabal
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Yuri K D Abud
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
| | - Flávia G da Silva
- Chemistry Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Luisa F da Cruz
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Giselle N Fontes
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
| | - Jose A da Silva
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil
| | - Celso B S Filho
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
| | - Ruben D Sinisterra
- Chemistry Department, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Jose M Granjeiro
- National Institute of Metrology, Quality and Technology, Av. Nossa Sra. das Graças, 50 - Xerém, Duque de Caxias, RJ, 25250-020, Brazil
- Fluminense Federal University, R. Mario Santos Braga, 28 - Centro, Niteroi, RJ, 24020-150, Brazil
| | - Paulo A Granjeiro
- Campus Centro Oeste, Federal University of São João Del-Rei, Av. Sebastião Gonçalves Coelho, 400 Bairro Chanadour, Divinópolis, MG, 35501-296, Brazil.
| |
Collapse
|
6
|
Wang L, Wong YC, Correira JM, Wancura M, Geiger CJ, Webster SS, Touhami A, Butler BJ, O'Toole GA, Langford RM, Brown KA, Dortdivanlioglu B, Webb L, Cosgriff-Hernandez E, Gordon VD. The accumulation and growth of Pseudomonas aeruginosa on surfaces is modulated by surface mechanics via cyclic-di-GMP signaling. NPJ Biofilms Microbiomes 2023; 9:78. [PMID: 37816780 PMCID: PMC10564899 DOI: 10.1038/s41522-023-00436-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
Attachment of bacteria onto a surface, consequent signaling, and accumulation and growth of the surface-bound bacterial population are key initial steps in the formation of pathogenic biofilms. While recent reports have hinted that surface mechanics may affect the accumulation of bacteria on that surface, the processes that underlie bacterial perception of surface mechanics and modulation of accumulation in response to surface mechanics remain largely unknown. We use thin and thick hydrogels coated on glass to create composite materials with different mechanics (higher elasticity for thin composites; lower elasticity for thick composites) but with the same surface adhesivity and chemistry. The mechanical cue stemming from surface mechanics is elucidated using experiments with the opportunistic human pathogen Pseudomonas aeruginosa combined with finite-element modeling. Adhesion to thin composites results in greater changes in mechanical stress and strain in the bacterial envelope than does adhesion to thick composites with identical surface chemistry. Using quantitative microscopy, we find that adhesion to thin composites also results in higher cyclic-di-GMP levels, which in turn result in lower motility and less detachment, and thus greater accumulation of bacteria on the surface than does adhesion to thick composites. Mechanics-dependent c-di-GMP production is mediated by the cell-surface-exposed protein PilY1. The biofilm lag phase, which is longer for bacterial populations on thin composites than on thick composites, is also mediated by PilY1. This study shows clear evidence that bacteria actively regulate differential accumulation on surfaces of different stiffnesses via perceiving varied mechanical stress and strain upon surface engagement.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu-Chern Wong
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Joshua M Correira
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chris J Geiger
- Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA
| | | | - Ahmed Touhami
- Department of Physics and Astronomy University of Texas Rio Grande Valley, One West University Blvd, Brownsville, TX, 78520, USA
| | - Benjamin J Butler
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | | | - Richard M Langford
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Katherine A Brown
- Surfaces, Microstructure and Fracture Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Berkin Dortdivanlioglu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lauren Webb
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Vernita D Gordon
- Department of Physics, Center for Nonlinear Dynamics, The University of Texas at Austin, Austin, TX, 78712, USA.
- LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, TX, 78712, USA.
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Exopolysaccharide from Lactobacillus casei NA-2 attenuates Escherichia coli O157:H7 surface adhesion via modulation of membrane surface properties and adhesion-related gene expression. Microb Pathog 2022; 173:105863. [PMID: 36332791 DOI: 10.1016/j.micpath.2022.105863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
The natural compound, exopolysaccharide from Lactobacillus casei NA-2 (EPS-cn2), has been shown to inhibit biofilm formation by Escherichia coli O157:H7. Although bacterial adhesion to substrate surfaces is a primary, indispensable step in this process, the mechanisms by which EPS-cn2 can block E. coli O157:H7 adhesion to biotic or abiotic surfaces remain unclear. In this study, investigation of E. coli O157:H7 response to EPS-cn2 revealed that 1 mg/mL EPS-cn2 can decrease adherence to polystyrene and confluent Caco-2 cell surfaces to 49.0% (P<0.0001) and 57.0% (P<0.01) of that in untreated E. coli O157:H7, respectively. Moreover, EPS-cn2 significantly reduced outer membrane hydrophobicity by 49.0% and decreased the electronegativity of the membrane surface charge by as much as 1.57 mV (P<0.05) compared to untreated cells. High throughput RNA sequencing indicated that genes responsible for adhesion through extracellular matrix secretion, such as poly-N-acetyl-glucosamine (PNAG) biosynthesis, locus of enterocyte effacement (LEE) proteins and outer membrane protein (OmpT) were all down-regulated in response to EPS-cn2, while chemotaxis and motility-related flagellar assembly genes were differentially up-regulated, suggesting that the EPS-cn2 may serve as an extracellular signal to attenuate adhesion-related gene expression and alter bacterial surface properties in E. coli O157:H7. These findings support the further development of EPS-cn2 for pathogenic biofilm management in clinical and industrial settings, and suggests the further targeting of adhesion-related genes to limit the persistence of this highly pathogenic strain in sensitive environments.
Collapse
|
8
|
Preparation and characterization of amphiphilic chitosan/iodine composite film as antimicrobial material. Int J Biol Macromol 2022; 222:2426-2438. [DOI: 10.1016/j.ijbiomac.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
9
|
Ariyadasa S, Daear W, Abeysekera G, Billington C, Fee C, Prenner E, Pang L. Evaluation of Biopolymer Materials and Synthesis Techniques to Develop a Rod-Shaped Biopolymer Surrogate for Legionella pneumophila. Polymers (Basel) 2022; 14:polym14132571. [PMID: 35808617 PMCID: PMC9269393 DOI: 10.3390/polym14132571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Biopolymer microparticles have been developed for applications that require biocompatibility and biodegradability, such as drug delivery. In this study, we assessed the production of microparticles using carnauba wax, κ-carrageenan, alginate, and poly (lactic-co-glycolic acid) (PLGA) with the aim of developing a novel, DNA-tracer-loaded, biopolymer surrogate with a size, shape, surface charge, and relative hydrophobicity similar to stationary-phase Legionella pneumophila to mimic the bacteria’s mobility and persistence in engineered water systems. We found that the type and concentration of biopolymer, reaction conditions, and synthesis methods affected the morphology, surface charge, relative hydrophobicity, and DNA tracer loading efficiency of the biopolymer microparticles produced. Carnauba wax, κ-carrageenan, and alginate (Protanal®, and low and medium viscosity) produced highly polydisperse microspheres. In contrast, PLGA and alginate-CaCO3 produced uniform microspheres and rod-shaped microparticles, respectively, with high DNA tracer loading efficiencies (PLGA 70% and alginate-CaCO3 95.2 ± 5.7%) and high reproducibilities. Their synthesis reproducibility was relatively high. The relative hydrophobicity of PLGA microspheres closely matched the cell surface hydrophobicity of L. pneumophila but not the bacterial morphology, whereas the polyelectrolyte layer-by-layer assembly was required to enhance the relative hydrophobicity of alginate-CaCO3 microparticles. Following this surface modification, alginate-CaCO3 microparticles represented the best match to L. pneumophila in size, morphology, surface charge, and relative hydrophobicity. This new biopolymer surrogate has the potential to be used as a mimic to study the mobility and persistence of L. pneumophila in water systems where the use of the pathogen is impractical and unsafe.
Collapse
Affiliation(s)
- Sujani Ariyadasa
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand; (G.A.); (C.B.); (L.P.)
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
- Correspondence: ; Tel.: +64-3351-6019
| | - Weiam Daear
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (W.D.); (E.P.)
| | - Gayan Abeysekera
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand; (G.A.); (C.B.); (L.P.)
| | - Craig Billington
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand; (G.A.); (C.B.); (L.P.)
| | - Conan Fee
- School of Product Design, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand;
- Biomolecular Interaction Centre, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Elmar Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (W.D.); (E.P.)
| | - Liping Pang
- Institute of Environmental Science and Research, P.O. Box 29181, Christchurch 8540, New Zealand; (G.A.); (C.B.); (L.P.)
| |
Collapse
|
10
|
Wang Y, Samaranayake LP, Dykes GA. Tea extracts inhibit the attachment of streptococci to oral/dental substrata by reducing hydrogen bonding energies. BIOFOULING 2022; 38:42-54. [PMID: 34886732 DOI: 10.1080/08927014.2021.2013826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Previous work in the authors' lab demonstrated that tea extracts significantly suppressed streptococcal colonization of abiotic substrata by coating the bacterial cell surfaces with tea components. In this study, the physico-chemical mechanisms by which the tea coating inhibits cellular attachment are demonstrated. The changes in the cell surface physico-chemical properties of streptococci, induced by tea extracts, were measured. Using these results, surface interaction energies were calculated between streptococcal cells and hard surfaces (glass, stainless steel, hydroxyapatite and titanium) within the cellular attachment system exploiting the extended Derjaguin-Landau-Verwey-Overbeek theory. The net energy outcomes were compared with experiment results of attachment assays to validate the predictability of the model. The results showed that the tea extracts inhibited the attachment of the bacteria by 11.1%-91.5%, and reduced the interaction energy by 15.4%-94.9%. It was also demonstrated that the abilities of the bacteria to attach to hard surfaces correlated well with their net interaction energies. The predominant interaction in the systems was found to be hydrogen bonding. In conclusion, tea extracts suppress streptococcal attachment to hard substrata by limiting the formation of hydrogen bonds.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Gary A Dykes
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Rajalingam N, Chae HB, Chu HJ, Kim SR, Hwang I, Hyun JE, Choi SY. Development of Strategies to Minimize the Risk of Listeria monocytogenes Contamination in Radish, Oriental Melon, and Carrots. Foods 2021; 10:foods10092135. [PMID: 34574243 PMCID: PMC8472131 DOI: 10.3390/foods10092135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Contamination by Listeria monocytogenes in packaged produce is a major concern. The purpose of this study was to find natural and affordable sanitizers to reduce L. monocytogenes contamination in agricultural products. Organic acids, ultraviolet-C (UV-C), and ethanol were analyzed either alone or in combination to assess their ability to reduce L. monocytogenes population in radish, oriental melon, and carrot samples. In radish samples, 3% malic acid combined with UV-C at a dosage of 144 mj/cm2 significantly reduced (>4 log CFU/g) the population of L. monocytogenes (1.44 ± 0.5) compared to the control sample (5.14 ± 0.09). In the case of the melon samples, exposure to UV-C at a dosage of 144 mj/cm2 combined with 3% lactic acid (2.73 ± 0.75) or 50% ethanol (2.30 ± 0.01) was effective against L. monocytogenes compared to the control sample (5.10 ± 0.19). In carrot samples, 3% lactic acid combined with 144 mj/cm2 dosage UV-C reduced L. monocytogenes population (4.48 ± 0.25) more than in the control sample (5.85 ± 0.08). These results reveal that sanitizers that are effective for one crop are less effective for another crop indicating that effective prevention methods should be customized for each crop to prevent pathogen cross contamination during postharvest washing.
Collapse
|
12
|
Ariyadasa S, Abeysekera G, Billington C, Fee C, Pang L. Growth phase-dependent surface properties of Legionella pneumophila and their role in adhesion to stainless steel coated QCM-D sensors. Lett Appl Microbiol 2021; 73:257-267. [PMID: 34028067 DOI: 10.1111/lam.13510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 04/08/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
Legionella pneumophila cell surface hydrophobicity and charge are important determinants of their mobility and persistence in engineered water systems (EWS). These surface properties may differ depending on the growth phase of L. pneumophila resulting in variable adhesion and persistence within EWS. We describe the growth-dependent variations in L. pneumophila cell surface hydrophobicity and surface charge using the microbial adhesion to hydrocarbon assay and microelectrophoresis, respectively, and their role in cell adhesion to stainless steel using a quartz crystal microbalance with dissipation (QCM-D) monitoring instrument. We observed a steady increase in L. pneumophila hydrophobicity during their lifecycle in culture media. Cell surfaces of stationary phase L. pneumophila were significantly more hydrophobic than their lag and midexponential counterparts. No significant changes in L. pneumophila cell surface charge were noted. Morphology of L. pneumophila remained relatively constant throughout their lifecycle. In the QCM-D study, lag and exponential phase L. pneumophila weakly adhered to stainless steel surfaces resulting in viscoelastic layers. In contrast, stationary phase bacteria were tightly and irreversibly bound to the surfaces, forming rigid layers. Our results suggest that the stationary phase of L. pneumophila would highly favour their adhesion to plumbing surfaces and persistence in EWS.
Collapse
Affiliation(s)
- S Ariyadasa
- Institute of Environmental Science and Research, Christchurch, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - G Abeysekera
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - C Billington
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - C Fee
- School of Product Design and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - L Pang
- Institute of Environmental Science and Research, Christchurch, New Zealand
| |
Collapse
|
13
|
Wang Y. Liposome as a delivery system for the treatment of biofilm-mediated infections. J Appl Microbiol 2021; 131:2626-2639. [PMID: 33650748 DOI: 10.1111/jam.15053] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Biofilm formation by pathogenic microorganisms has been a tremendous challenge for antimicrobial therapies due to various factors. The biofilm matrix sequesters bacterial cells from the exterior environment and therefore prevents antimicrobial agents from reaching the interior. In addition, biofilm surface extracellular polymeric substances can absorb antimicrobial agents and thus reduce their bioavailability. To conquer these protection mechanisms, liposomes have been developed into a drug delivery system for antimicrobial agents against biofilm-mediated infections. The unique characteristics of liposomes, including versatility for cargoes, target-specificity, nonimmunogenicity, low toxicity, and biofilm matrix-/cell membrane-fusogenicity, remarkably improve the effectiveness of antimicrobial agents and minimize recurrence of infections. This review summarizes current development of liposomal carriers for biofilm therapeutics, presents evidence in their practical applications and discusses their potential limitations.
Collapse
Affiliation(s)
- Y Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
14
|
Wang Y, Baptist JA, Dykes GA. Garcinia mangostana
extract inhibits the attachment of chicken isolates of
Listeria monocytogenes
to cultured colorectal cells potentially due to a high proanthocyanidin content. J Food Saf 2021. [DOI: 10.1111/jfs.12889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yi Wang
- School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland Australia
| | | | - Gary A. Dykes
- Graduate Research School Curtin University Perth Western Australia Australia
| |
Collapse
|
15
|
Wang Y, Samaranayake LP, Dykes GA. Tea extracts modulate oral biofilm development by altering bacterial hydrophobicity and aggregation. Arch Oral Biol 2020; 122:105032. [PMID: 33418435 DOI: 10.1016/j.archoralbio.2020.105032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study aims to investigate the effects of tea extracts on biofilm formation by oral streptococci and the potential mechanisms behind the effects. DESIGN We examined the effects of five types of tea extracts (green, oolong, black, pu-erh and chrysanthemum tea) on cell surface hydrophobicity and auto-aggregation of three different streptococcal species (Streptococcus mutans, Streptococcus salivarius and Streptococcus mitis) and evaluated their biofilm formation on four disparate hard surfaces (glass, stainless steel, hydroxyapatite and titanium). The correlation between biofilm formation and the cellular properties were investigated in order to study the mechanisms by which the tea extracts affect biofilm formation. RESULTS Results show that the tea extracts reduced cell surface hydrophobicity (by up to 57.9 %) and, in some cases, altered cellular auto-aggregation (by up to 12 %) and biofilm formation (by up to 2.61 log CFU cm-2). Specifically, oolong tea extract was found to enhance biofilm formation by increasing cellular auto-aggregation and pu-erh tea extract retarded biofilm formation by increasing auto-aggregation. Biofilm formation correlated well to cell surface hydrophobicity and auto-aggregation in combination, but not to either one alone as determined by multiple linear regression analysis. CONCLUSIONS Tea extracts have the ability to modulate streptococcal biofilm formation by altering cell surface hydrophobicity and cellular aggregation.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, Brisbane, Queensland 4006, Australia.
| | | | - Gary A Dykes
- Graduate Research School, Curtin University, Perth, Western Australia 6845, Australia.
| |
Collapse
|
16
|
Gleco S, Noussi T, Jude A, Reddy P, Kirste R, Collazo R, LaJeunesse D, Ivanisevic A. Oxidative Stress Transcriptional Responses of Escherichia coli at GaN Interfaces. ACS APPLIED BIO MATERIALS 2020; 3:9073-9081. [DOI: 10.1021/acsabm.0c01299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Gleco
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Theophraste Noussi
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Akamu Jude
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Pramod Reddy
- Adroit Materials, 2054 Kildaire Farm Road, Suite 205, Cary, North Carolina 27518, United States
| | - Ronny Kirste
- Adroit Materials, 2054 Kildaire Farm Road, Suite 205, Cary, North Carolina 27518, United States
| | - Ramón Collazo
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Dennis LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, North Carolina 27402-6170, United States
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
17
|
Zhu J, Wang M, Zhang H, Yang S, Song KY, Yin R, Zhang W. Effects of Hydrophilicity, Adhesion Work, and Fluid Flow on Biofilm Formation of PDMS in Microfluidic Systems. ACS APPLIED BIO MATERIALS 2020; 3:8386-8394. [PMID: 35019610 DOI: 10.1021/acsabm.0c00660] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polydimethylsiloxane (PDMS) has been the most widely used material in microfluidic systems, especially for cell biology applications. However, the antibacterial performance of PDMS in flow conditions has never been reported in the literature. In this paper, we analyzed the effects of contact angle (CA), adhesion force (work), and surface free energy on the antibacterial activities of PDMS by varying the ratio of curing agents (crosslinking degree) and surface modification with oxygen plasma. The results show that the Young's modulus has no particular effects on bacterial adhesion compared to the CAs of samples. For the first time, we analyzed the adhesion work (AW) effect on biofilm formation, and we found that biofilms tend to form on the surface with less AW. Furthermore, we analyzed the dual effect of hydrophilicity and shear force induced by fluid flow on the bacterial adhesion in PDMS microfluidic systems. We found that at low flow rates in microfluidic conditions, the adhesion of the bacteria on the PDMS surface is inhibited when the fluid flow exceeds a certain value. It required higher shear force to inhibit bacterial adhesion on the hydrophilic surface than on the hydrophobic surface. Therefore, hydrophilicity might be the dominant factor affecting bacterial adhesion.
Collapse
Affiliation(s)
- Jinling Zhu
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minqi Wang
- Shanghai Jiaotong University, 9th hospital, Shanghai 200011, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengbing Yang
- Shanghai Jiaotong University, 9th hospital, Shanghai 200011, China
| | - Ki-Young Song
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100811, China
| | - Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjun Zhang
- School of Mechatronics and Automation, Shanghai University, Shanghai 200240, China.,College of Engineering, The University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9, Canada
| |
Collapse
|
18
|
Quinn J, McFadden R, Chan CW, Carson L. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020; 23:101745. [PMID: 33235984 PMCID: PMC7670191 DOI: 10.1016/j.isci.2020.101745] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Titanium and its alloys have emerged as excellent candidates for use as orthopedic biomaterials. Nevertheless, there are often complications arising after implantation of orthopedic devices, most notably prosthetic joint infection and aseptic loosening. To ensure that implanted devices remain functional in situ, innovation in surface modification has attracted much attention in the effort to develop orthopedic materials with optimal characteristics at the biomaterial-tissue interface. This review will draw together metallurgy, surface engineering, biofilm microbiology, and biomaterial science. It will serve to appreciate why titanium and its alloys are frequently used orthopedic biomaterials and address some of the challenges facing these biomaterials currently, including the significant problem of device-associated infection. Finally, the authors shall consolidate and evaluate surface modification techniques employed to overcome some of these issues by offering a unique perspective as to the direction in which research is headed from a broad, interdisciplinary point of view.
Collapse
Affiliation(s)
- James Quinn
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan McFadden
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Chi-Wai Chan
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
19
|
Wang Y, Lee SM, Gentle IR, Dykes GA. A statistical approach for modelling the physical process of bacterial attachment to abiotic surfaces. BIOFOULING 2020; 36:1227-1242. [PMID: 33412938 DOI: 10.1080/08927014.2020.1865934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
A statistical approach using a polynomial linear model in combination with a probability distribution model was developed to mathematically represent the process of bacterial attachment and study its mechanism. The linear deterministic model was built based on data from experiments investigating bacterial and substratum surface physico-chemical factors as predictors of attachment. The prediction results were applied to a normal-approximated binomial distribution model to probabilistically predict attachment. The experimental protocol used mixtures of Streptococcus salivarius and Escherichia coli, and mixtures of porous poly(butyl methacrylate-co-ethyl dimethacrylate) and aluminum sec-butoxide coatings, at varying ratios, to allow bacterial attachment to substratum surfaces across a range of physico-chemical properties (including the surface hydrophobicity of bacterial cells and the substratum, the surface charge of the cells and the substratum, the substratum surface roughness and cell size). The model was tested using data from independent experiments. The model indicated that hydrophobic interaction was the most important predictor while reciprocal interactions existed between some of the factors. More importantly, the model established a range for each factor within which the resultant attachment is unpredictable. This model, however, considers bacterial cells as colloidal particles and accounts only for the essential physico-chemical attributes of the bacterial cells and substratum surfaces. It is therefore limited by a lack of consideration of biological and environmental factors. This makes the model applicable only to specific environments and potentially provides a direction to future modelling for different environments.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, Brisbane, Queensland, Australia
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Sui M Lee
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Gary A Dykes
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
- Graduate Research School, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Wang Y, Lam ATW. Inhibitory effects of saliva as a suspending fluid on attachment of oral bacteria to hydroxyapatite and titanium. Arch Oral Biol 2020; 120:104924. [PMID: 33091662 DOI: 10.1016/j.archoralbio.2020.104924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES This study aims to examine the influence of saliva on the attachment of oral bacteria to hydroxyapatite and titanium surfaces in an in vitro setting using saliva as a suspending fluid for the bacterial cells, and to investigate the changes in bacterial surface physicochemical properties (hydrophobicity and charge) induced by saliva. DESIGN Saliva collected from human donors was used to treat five strains of oral bacteria. The surface hydrophobicity and charge of the treated cells were measured. The effects of saliva as a suspending fluid on attachment of the strains to hydroxyapatite and titanium were investigated. RESULTS Saliva was found to inhibit the attachment of four streptococcal strains by up to 100-fold. The inhibitory effects were potentially due to changes in cell-surface physicochemical properties induced by saliva. These effects were, however, not observed on Actinomyces naeslundii. CONCLUSIONS The results suggest that saliva may reduce bacterial colonization by oral streptococci and that using saliva as a suspending fluid may be a useful addition for bacterial attachment studies.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, 288 Herston Road, Herston, Brisbane, Queensland 4006, Australia.
| | - Antonia T W Lam
- School of Dentistry, the University of Queensland, 288 Herston Road, Herston, Brisbane, Queensland 4006, Australia
| |
Collapse
|
21
|
Wang Y, Lam ATW. Epigallocatechin gallate and gallic acid affect colonization of abiotic surfaces by oral bacteria. Arch Oral Biol 2020; 120:104922. [PMID: 33045616 DOI: 10.1016/j.archoralbio.2020.104922] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES epigallocatechin gallate and gallic acid are known antimicrobial agents. Their roles in controlling microbial colonization, such as bacterial attachment and biofilm formation, are however not completely clear. This study aims to investigate their effects on the colonization of abiotic surfaces by oral bacteria and study the mechanism of their activities. DESIGN the effects of epigallocatechin gallate and gallic acid on cell surface physicochemical properties (hydrophobicity and charge) of a range of oral bacteria and their auto-aggregation, attachment and biofilm formation on different abiotic surfaces (glass, stainless steel and hydroxyapatite) were studied. RESULTS results show that epigallocatechin gallate inhibited bacterial attachment to the hard surfaces (except hydroxyapatite) by 0.2-1.4 log CFU cm-2 by affecting cell surface hydrophobicity and charge. In addition, epigallocatechin gallate induced notches on cell surfaces of Streptococcus mutans without affecting their viability and biofilm formation. Gallic acid enhanced auto-aggregation (by 7.9-30.6 %) and biofilm formation by Actinomyces naeslundii (by 0.9-1.2 log CFU cm-2) by causing calcium efflux from the cells. CONCLUSIONS the tested phytochemicals influenced the colonization of abiotic surfaces by oral bacteria through different mechanisms, most notably via affecting cell surface physicochemical properties, inducing changes in the shape of cell envelopes and causing calcium efflux.
Collapse
Affiliation(s)
- Yi Wang
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia.
| | - Antonia T W Lam
- School of Dentistry, the University of Queensland, 288, Herston Road, Herston, Brisbane, Queensland 4006, Australia
| |
Collapse
|
22
|
Silva S, Araújo L, Nascimento Junior JA, Silva T, Lopes AC, Correia MT, Silva M, Oliveira MB. Effects of Cefazolin and Meropenem in Eradication Biofilms of Clinical and Environmental Isolates of Proteus mirabilis. Curr Microbiol 2020; 77:1681-1688. [PMID: 32300927 DOI: 10.1007/s00284-020-01984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Proteus mirabilis is an opportunistic Gram-negative bacterium belonging to the family Enterobacteriaceae and is known for its ability to cause urinary tract infections. The aim of this study was to determine the value of the minimum concentration of cefazolin and meropenem on biofilm eradication, as well as the resistance profiles and genetic diversity of clinical and environmental isolates of P. mirabilis. We compared the isolates collected from a hospital environment and from an urban stream impacted in Recife-Pernambuco, Brazil. Biochemical tests were performed to determine the profiles of susceptibility, hydrophobicity, biofilm formation and eradication. The genetic diversity was verified using the ERIC-PCR method. The results revealed that two clinical isolates (ICP4 and ICP5) were multi-drug resistant, whereas the environmental isolates showed resistance only to tetracycline, except for CP525S, which was resistant also to ampicillin. Of the isolates investigated, three were moderately hydrophobic, while the remaining were hydrophilic. Genetic diversity analysis verified the presence of clones indicating that the stream is harboring and disseminating bacteria of hospital origin. All isolates formed a biofilm, however, high concentrations of cefazolin and meropenem were required to eradicate the already formed biofilm. Our study analyzed the survival strategies of these bacteria in the environments investigated and corresponds to first report the use of these antibiotics to eliminate P. mirabilis biofilms.
Collapse
Affiliation(s)
- Sivoneide Silva
- Departamento de Bioquímica, Centro de Biociências - Universidade Federal de Pernambuco, Av. Moraes Rego s/n, Recife, PE, Brazil
| | - Lívia Araújo
- Departamento de Bioquímica, Centro de Biociências - Universidade Federal de Pernambuco, Av. Moraes Rego s/n, Recife, PE, Brazil
| | - José Adelson Nascimento Junior
- Departamento de Bioquímica, Centro de Biociências - Universidade Federal de Pernambuco, Av. Moraes Rego s/n, Recife, PE, Brazil
| | - Túlio Silva
- Centro de Tecnologias Estratégicas Do Nordeste (CETENE), Recife, PE, Brazil
| | - Ana Catarina Lopes
- Departamento de Medicina Tropical, Centro de Ciências da Saúde - Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria Tereza Correia
- Departamento de Bioquímica, Centro de Biociências - Universidade Federal de Pernambuco, Av. Moraes Rego s/n, Recife, PE, Brazil
| | - Márcia Silva
- Departamento de Bioquímica, Centro de Biociências - Universidade Federal de Pernambuco, Av. Moraes Rego s/n, Recife, PE, Brazil
| | - Maria Betânia Oliveira
- Departamento de Bioquímica, Centro de Biociências - Universidade Federal de Pernambuco, Av. Moraes Rego s/n, Recife, PE, Brazil.
| |
Collapse
|
23
|
McLay RB, Nguyen HN, Jaimes-Lizcano YA, Dewangan NK, Alexandrova S, Rodrigues DF, Cirino PC, Conrad JC. Level of Fimbriation Alters the Adhesion of Escherichia coli Bacteria to Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1133-1142. [PMID: 28976770 DOI: 10.1021/acs.langmuir.7b02447] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adhesion of bacteria to interfaces is the first step in pathogenic infection, in biofilm formation, and in bioremediation of oil spills and other pollutants. Bacteria use a variety of surface structures to promote interfacial adhesion, with the level of expression of these structures varying in response to local conditions and environmental signals. Here, we investigated how overexpression of type 1 fimbriae, one such appendage, modifies the ability of Escherichia coli to adhere to solid substrates, via biofilm formation and yeast agglomeration, and to oil/water interfaces, via a microbial adhesion to hydrocarbon assay. A plasmid that enables inducible expression of E. coli MG1655 type 1 fimbriae was transformed into fimbriae-deficient mutant strain MG1655ΔfimA. The level of fimH gene expression in the engineered strain, measured using quantitative real-time PCR, could be tuned by changing the concentration of inducer isopropyl β-d-1-thiogalactopyranoside (IPTG), and was higher than that in strain MG1655. Increasing the degree of fimbriation only slightly modified the surface energy and zeta potential of the bacteria, but enhanced their ability to agglomerate yeast cells and to adhere to solid substrates (as measured by biofilm formation) and to oil/water interfaces. We anticipate that the tunable extent of fimbriation accessible with this engineered strain can be used to investigate how adhesin expression modifies the ability of bacteria to adhere to interfaces and to actively self-assemble there.
Collapse
Affiliation(s)
- Ryan B McLay
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Hang N Nguyen
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Yuly Andrea Jaimes-Lizcano
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Simone Alexandrova
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| | - Debora F Rodrigues
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
- Department of Biology and Biochemistry, University of Houston , Houston, Texas 77204-5008, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston , Houston, Texas 77204-4004, United States
| |
Collapse
|
24
|
Mikulskis P, Hook A, Dundas AA, Irvine D, Sanni O, Anderson D, Langer R, Alexander MR, Williams P, Winkler DA. Prediction of Broad-Spectrum Pathogen Attachment to Coating Materials for Biomedical Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:139-149. [PMID: 29191009 PMCID: PMC7613461 DOI: 10.1021/acsami.7b14197] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bacterial infections in healthcare settings are a frequent accompaniment to both routine procedures such as catheterization and surgical site interventions. Their impact is becoming even more marked as the numbers of medical devices that are used to manage chronic health conditions and improve quality of life increases. The resistance of pathogens to multiple antibiotics is also increasing, adding an additional layer of complexity to the problems of employing safe and effective medical procedures. One approach to reducing the rate of infections associated with implanted and indwelling medical devices is the use of polymers that resist the formation of bacterial biofilms. To significantly accelerate the discovery of such materials, we show how state of the art machine learning methods can generate quantitative predictions for the attachment of multiple pathogens to a large library of polymers in a single model for the first time. Such models facilitate design of polymers with very low pathogen attachment across different bacterial species that will be candidate materials for implantable or indwelling medical devices such as urinary catheters, cochlear implants, and pacemakers.
Collapse
Affiliation(s)
- Paulius Mikulskis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Andrew Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Adam A. Dundas
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Derek Irvine
- Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Olutoba Sanni
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Daniel Anderson
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139-4307, United States
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139-4307, United States
| | - Morgan R. Alexander
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Corresponding Authors; ;
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - David A. Winkler
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Kingsbury Drive, Melbourne, Victoria 3086, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, South Australia 5046, Australia
- Corresponding Authors; ;
| |
Collapse
|
25
|
Physico-chemistry of bacterial transmission versus adhesion. Adv Colloid Interface Sci 2017; 250:15-24. [PMID: 29129313 DOI: 10.1016/j.cis.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one. Transmission is further complicated when the donor surface is not covered with a single layer of adhering bacteria but with a multi-layered biofilm, in which case bacteria can be transmitted either by interfacial failure at the biofilm-donor surface or through cohesive failure in the biofilm. Transmission through cohesive failure in a biofilm is more common than interfacial failure. The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission. Opposition of surface thermodynamics and adhesion force analyses, will allow to distinguish between transmission of bacteria from a donor covered with a (sub)monolayer of adhering bacteria or a multi-layered biofilm. Contact angle measurements required for surface thermodynamic analyses of transmission are of an entirely different nature than analyses of adhesion forces, usually measured through atomic force microscopy. Nevertheless, transmission probabilities based on Weibull analyses of adhesion forces between bacteria and donor and receiver surfaces, correspond with the surface thermodynamic preferences of bacteria for either the donor or receiver surface. Surfaces with low adhesion forces such as polymer-brush coated or nanostructured surfaces are thus preferable for use as non-adhesive receiver surfaces, but at the same time should be avoided for use as a donor surface. Since bacterial transmission occurs under a contact pressure between two surfaces, followed by their separation under tensile or shear pressure and ultimately detachment, this will affect biofilm structure. During the compression phase of transmission, biofilms are compacted into a more dense film. After transmission, and depending on the ability of the bacterial strain involved to produce extracellular polymeric substances, biofilm left-behind on a donor or transmitted to a receiver surface will relax to its original, pre-transmission structure owing to the viscoelasticity of the extracellular polymeric substances matrix, when present. Apart from mechanistic differences between bacterial adhesion and transmission, the low numbers of bacteria generally transmitted require careful selection of suitably sensitive enumeration methods, for which culturing and optical coherence tomography are suggested. Opposing adhesion and transmission as done in this review, not only yields a better understanding of bacterial transmission, but may stimulate researchers to more carefully consider whether an adhesion or transmission model is most appropriate in the specific area of application aimed for, rather than routinely relying on adhesion models.
Collapse
|
26
|
Wang Y, Bandara HMHN, Mikkelsen D, Samaranayake LP. Effects of tea extracts on the colonization behaviour of Candida species: attachment inhibition and biofilm enhancement. J Med Microbiol 2017; 66:1244-1252. [DOI: 10.1099/jmm.0.000555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yi Wang
- School of Dentistry, University of Queensland, Brisbane, Australia
| | | | - Deirdre Mikkelsen
- School of Dentistry, University of Queensland, Brisbane, Australia
- The University of Queensland, ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
27
|
Chen S, Li Y, Cheng YF. Nanopatterning of steel by one-step anodization for anti-adhesion of bacteria. Sci Rep 2017; 7:5326. [PMID: 28706204 PMCID: PMC5509660 DOI: 10.1038/s41598-017-05626-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
Surface nanopatterning of metals has been an effective technique for improved performance and functionalization. However, it is of great challenge to fabricate nanostructure on carbon steels despite their extensive use and urgent needs to maintain the performance reliability and durability. Here, we report a one-step anodization technique to nanopattern a carbon steel in 50 wt.% NaOH solution for highly effective anti-adhesion by sulphate reducing bacteria (SRB), i.e., Desulfovibrio desulfuricans subsp. desulfuricans (Beijerinck) Kluyver and van Niel. We characterize the morphology, structure, composition, and surface roughness of the nanostructured film formed on the steel as a function of anodizing potential. We quantify the surface hydrophobicity by contact angle measurements, and the SRB adhesion by fluorescent analysis. The optimal anodization potential of 2.0 V is determined for the best performance of anti-adhesion of SRB to the steel, resulting in a 23.5 times of reduction of SRB adhesion compared to bare steel. We discuss the mechanisms for the film formation on the steel during anodization, and the high-performance anti-adhesion of bacteria to nanopatterned steels. Our technique is simple, cost-effective and environment-friendly, providing a promising alternative for industry-scale surface nanopatterning of carbon steels for effective controlling of bacterial adhesion.
Collapse
Affiliation(s)
- Shiqiang Chen
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Yuan Li
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Y Frank Cheng
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
28
|
Wang Y, Dykes GA. Surface Properties of Polysaccharides. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_9-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|