1
|
El-Belkasy RO, El-Kemary M, Hanafy NAN. Evaluating the role of targeted silymarin loaded hyaluronic acid/protein nanoparticles in activating hepatic progenitor stem cells for liver regeneration after CCl 4-induced liver damage. Int J Biol Macromol 2025; 309:142837. [PMID: 40188925 DOI: 10.1016/j.ijbiomac.2025.142837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Silymarin is a natural flavonoid component isolated from the Silybum Marianum (Milk Thistle) plant with multiple pharmacological activities. We investigated its anti-fibrotic effect on the liver and demonstrated its role in activating hepatic progenitor stem cells during liver regeneration. METHODS Hybrid polymeric protein nanoparticles were prepared by loading silymarin with an albumin-hyaluronic acid complex to achieve stem cell targeting and increase silymarin's bioavailability. RESULTS TEM, Zeta potential, DLS, UV-visible spectrophotometer, Fluorescence analysis, and FTIR verified the successful formation of nanoparticles and efficient encapsulation. In the present study, The liver fibrotic model was induced by the intraperitoneal injection of carbon tetrachloride, followed by the injection of silymarin NPs into mice twice a week for 4 weeks. We evaluated the expression of hepatic fibrosis markers such as (Collagen I, TGF-β1, SMAD3, and MMP-3) and hepatic progenitor stem cell activation markers such as (HNF1β, FOXl1, CD90, Vimentin, and CD105). The results showed that the targeted silymarin NPs caused significant suppression and downregulation of Collagen I, TGF-β, SMAD-3, and MMP-3 and upregulation of the hepatic progenitor stem cells markers HNF1β, FOXl1, CD90, Vimentin, and CD105. They also didn't induce expression of IL-6, IL-1β, and TNF-α, proving that they cause no signs of inflammation. CONCLUSION The novel point is that these results demonstrated that the targeted Silymarin NPs not only could efficiently alleviate CCl4-induced liver fibrosis more than using only free silymarin; by inhibiting the TGF-β/Smad-3 signaling pathway, but also could activate hepatic progenitor stem cells causing liver regeneration.
Collapse
Affiliation(s)
- Rawan O El-Belkasy
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Maged El-Kemary
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Nile Valley University, Fayoum 63518, Egypt
| | - Nemany A N Hanafy
- Group of Bionanotechnology and Molecular Cell Biology, Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt; NanoBio4Can program, Koç University Research Center for Translational Medicine (KUTTAM), 34450 Istanbul, Turkey.
| |
Collapse
|
2
|
Thamm JR, Jounaidi Y, Mueller ML, Rosen V, Troulis MJ, Guastaldi FPS. Temporomandibular Joint Fibrocartilage Contains CD105 Positive Mouse Mesenchymal Stem/Progenitor Cells with Increased Chondrogenic Potential. J Maxillofac Oral Surg 2023; 22:559-570. [PMID: 37534349 PMCID: PMC10390456 DOI: 10.1007/s12663-022-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022] Open
Abstract
Objective A specific type of mesenchymal stem/progenitor cells (MSPCs), CD105+ is reported to aid in cartilage regeneration through TGF-β/Smad2-signalling. The purpose of this study was to identify and characterize CD105+ MSPCs in temporomandibular joint (TMJ) cartilage. Materials and Methods MSPCs were isolated from mouse TMJ condyle explants and evaluated for their clonogenicity and pluripotential abilities. MSPC were examined for CD105 antigen using immunohistochemistry and flow cytometry. Results Immunohistochemistry revealed presence of CD105+ MSPCs in the proliferative zone of condyle's cartilage. Only 0.2% of isolated MSPCs exhibited CD105, along with the stem cell surface markers CD44 and Sca-1. In CD105+ MSPCs, intracellular immunostaining revealed significantly higher (p < 0.05) protein levels of collagen type 1, 2, proteoglycan 4. Ability for chondrogenic differentiation was found to be significantly higher (p < 0.05) after 4 weeks compared to CD105- cells, using alcian blue staining. CD105+ cells were found to resemble an early MSPC subgroup with significantly higher gene expression of biglycan, proteoglycan 4, collagen type 2, Gli2, Sox5 (p < 0.001) and Sox9 (p < 0.05). In contrast, significantly lower levels of Runx2 (p < 0.05), Osterix, Trps1, Col10a1 (p < 0.01), Ihh (p < 0.001) related to chondrocyte senescence and commitment to osteogenic lineage, were observed compared to CD105- cells. Conclusion The study showed the existence of a CD105+ MSPC subgroup within TMJ fibrocartilage that may be activated to aid in fibrocartilage repair.
Collapse
Affiliation(s)
- Janis R. Thamm
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Max-Laurin Mueller
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA USA
| | - Maria J. Troulis
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
- Walter C. Guralnick Professor of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
| | - Fernando Pozzi Semeghini Guastaldi
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA USA
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, 50 Blossom St, Thier 513A, Boston, MA 02114 USA
| |
Collapse
|
3
|
Endoglin in the Spotlight to Treat Cancer. Int J Mol Sci 2021; 22:ijms22063186. [PMID: 33804796 PMCID: PMC8003971 DOI: 10.3390/ijms22063186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
A spotlight has been shone on endoglin in recent years due to that fact of its potential to serve as both a reliable disease biomarker and a therapeutic target. Indeed, endoglin has now been assigned many roles in both physiological and pathological processes. From a molecular point of view, endoglin mainly acts as a co-receptor in the canonical TGFβ pathway, but also it may be shed and released from the membrane, giving rise to the soluble form, which also plays important roles in cell signaling. In cancer, in particular, endoglin may contribute to either an oncogenic or a non-oncogenic phenotype depending on the cell context. The fact that endoglin is expressed by neoplastic and non-neoplastic cells within the tumor microenvironment suggests new possibilities for targeted therapies. Here, we aimed to review and discuss the many roles played by endoglin in different tumor types, as well as the strong evidence provided by pre-clinical and clinical studies that supports the therapeutic targeting of endoglin as a novel clinical strategy.
Collapse
|
4
|
Petinati N, Kapranov N, Davydova Y, Bigildeev A, Pshenichnikova O, Karpenko D, Drize N, Kuzmina L, Parovichnikova E, Savchenko V. Immunophenotypic characteristics of multipotent mesenchymal stromal cells that affect the efficacy of their use in the prevention of acute graft vs host disease. World J Stem Cells 2020; 12:1377-1395. [PMID: 33312405 PMCID: PMC7705461 DOI: 10.4252/wjsc.v12.i11.1377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSCs) are widely used in the clinic due to their unique properties, namely, their ability to differentiate in all mesenchymal directions and their immunomodulatory activity. Healthy donor MSCs were used to prevent the development of acute graft vs host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT). The administration of MSCs to patients was not always effective. The MSCs obtained from different donors have individual characteristics. The differences between MSC samples may affect their clinical efficacy.
AIM To study the differences between effective and ineffective MSCs.
METHODS MSCs derived from the bone marrow of a hematopoietic stem cells donor were injected intravenously into allo-BMT recipients for GVHD prophylaxis at the moment of blood cell reconstitution. Aliquots of 52 MSC samples that were administered to patients were examined, and the same cells were cultured in the presence of peripheral blood mononuclear cells (PBMCs) from a third-party donor or treated with the pro-inflammatory cytokines IL-1β, IFN and TNF. Flow cytometry revealed the immunophenotype of the nontreated MSCs, the MSCs cocultured with PBMCs for 4 d and the MSCs exposed to cytokines. The proportions of CD25-, CD146-, CD69-, HLA-DR- and PD-1-positive CD4+ and CD8+ cells and the distribution of various effector and memory cell subpopulations in the PBMCs cocultured with the MSCs were also determined.
RESULTS Differences in the immunophenotypes of effective and ineffective MSCs were observed. In the effective samples, the mean fluorescence intensity (MFI) of HLA-ABC, HLA-DR, CD105, and CD146 was significantly higher. After MSCs were treated with IFN or cocultured with PBMCs, the HLA-ABC, HLA-DR, CD90 and CD54 MFI showed a stronger increase in the effective MSCs, which indicated an increase in the immunomodulatory activity of these cells. When PBMCs were cocultured with effective MSCs, the proportions of CD4+ and CD8+central memory cells significantly decreased, and the proportion of CD8+CD146+ lymphocytes increased more than in the subpopulations of lymphocytes cocultured with MSC samples that were ineffective in the prevention of GVHD; in addition, the proportion of CD8+effector memory lymphocytes decreased in the PBMCs cocultured with the effective MSC samples but increased in the PBMCs cocultured with the ineffective MSC samples. The proportion of CD4+CD146+ lymphocytes increased only when cocultured with the inefficient samples.
CONCLUSION For the first time, differences were observed between MSC samples that were effective for GVHD prophylaxis and those that were ineffective. Thus, it was shown that the immunomodulatory activity of MSCs depends on the individual characteristics of the MSC population.
Collapse
Affiliation(s)
- Nataliya Petinati
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Nikolay Kapranov
- Laboratory for Immunophenotyping of Blood and Bone Marrow Cells, National Research Center for Hematology, Moscow 125167, Russia
| | - Yulia Davydova
- Laboratory for Immunophenotyping of Blood and Bone Marrow Cells, National Research Center for Hematology, Moscow 125167, Russia
| | - Alexey Bigildeev
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Olesya Pshenichnikova
- Laboratory for Genetic Engineering, National Research Center for Hematology, Moscow 125167, Russia
| | - Dmitriy Karpenko
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Nina Drize
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Larisa Kuzmina
- Hematopoiesis Depression and Bone Marrow Transplantation Department, National Research Center for Hematology, Moscow 125167, Russia
| | - Elena Parovichnikova
- Hematopoiesis Depression and Bone Marrow Transplantation Department, National Research Center for Hematology, Moscow 125167, Russia
| | - Valeriy Savchenko
- Hematopoiesis Depression and Bone Marrow Transplantation Department, National Research Center for Hematology, Moscow 125167, Russia
| |
Collapse
|
5
|
Qu C, Brohlin M, Kingham PJ, Kelk P. Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium. Cell Tissue Res 2019; 380:93-105. [PMID: 31889209 DOI: 10.1007/s00441-019-03160-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022]
Abstract
This study was aimed to investigate the effects of cGMP xeno-/serum-free medium (XSF, Irvine Scientific) on the properties of human dental pulp stem cells (DPSCs). DPSCs, from passage 2, were cultured in XSF or fetal bovine serum (FBS)-supplemented medium, and sub-cultured up to passage 8. Cumulative population doublings (PDs) and the number of colony-forming-units (CFUs) were determined. qRT-PCR, ELISA, and in vitro assays were used to assess angiogenic capacity. Flow cytometry was used to measure CD73, CD90, and CD105 expression. Differentiation into osteo-, adipo-, and chondrogenic cell lineages was performed. DPSCs showed more elongated morphology, a reduced rate of proliferation at later passages, and lower CFU counts in XSF compared with FBS. Expression of angiogenic factors at the gene and protein levels varied in the two media and with passage number, but cells grown in XSF had more in vitro angiogenic activity. The majority of early and late passage DPSCs cultured in XSF expressed CD73 and CD90. In contrast, the percentage of CD105 positive DPSCs in XSF medium was significantly lower with increased passage whereas the majority of cells cultured in FBS were CD105 positive. Switching XSF-cultured DPSCs to medium supplemented with human serum restored the expression of CD105. The tri-lineage differentiation of DPSCs cultured under XSF and FBS conditions was similar. We showed that despite reduced CD105 expression levels, DPSCs expanded in XSF medium maintained a functional MSC phenotype. Furthermore, restoration of CD105 expression is likely to occur upon in vivo transplantation, when cells are exposed to human serum.
Collapse
Affiliation(s)
- Chengjuan Qu
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Maria Brohlin
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, 901 87, Umeå, Sweden.,Division of Clinical Immunology and Transfusion Medicine, Tissue Establishment, Cell Therapy Unit, Department of Laboratory Medicine, Umeå University Hospital, Daniel Naezéns väg, 907 37, Umeå, Sweden
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden
| | - Peyman Kelk
- Department of Integrative Medical Biology, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
6
|
Widowati W, Gunanegara RF, Rizal R, Widodo WS, Amalia A, Wibowo SHB, Handono K, Marlina M, Lister INE, Chiuman L. Comparative Analysis of Wharton’s Jelly Mesenchymal Stem Cell (WJ-MSCs) Isolated Using Explant and Enzymatic Methods. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1742-6596/1374/1/012024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Liu J, Chuah YJ, Fu J, Zhu W, Wang DA. Co-culture of human umbilical vein endothelial cells and human bone marrow stromal cells into a micro-cavitary gelatin-methacrylate hydrogel system to enhance angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:906-916. [PMID: 31147062 DOI: 10.1016/j.msec.2019.04.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 12/31/2022]
Abstract
Vascular tissue engineering seeks to develop functional blood vessels that comprise of both endothelial cells and pericytes for translational medicine and is often faced with numerous challenges such as nutrients and wastes diffusion problem in the centre of the scaffolds. Various strategies have been adopted to solve the diffusion problem in thick engineered scaffolds. Typically, microchannels or dissolvable microspheres are introduced into three-dimensional (3D) scaffolds as an alternative way to improve the infiltration of scaffolds and endothelial cells are usually incorporated into the biomaterials. While some research groups now focus on finding supporting cells to build further vascularized structures in the scaffolds. In this study, a bioinspired 3D gelatin-methacrylate (Gel-MA) hydrogel with dissolvable microspheres was created to encapsulate human bone marrow stromal cells (HMSCs) and human umbilical vein endothelial cells (HUVECs) which was used to investigate whether HMSCs could play a pericytes-like role and enhance vascularization within the engineered scaffolds. The results showed co-culture of HMSCs and HUVECs demonstrated significantly improved vascularization when compared to either HUVECs or HMSCs monoculture. Angiogenic genes were expressed significantly higher in co-culture group. Moreover, when implanting the pre-vascularized scaffolds in vivo, co-culture system integrated more successfully with host tissue and showed higher host tissue invasion than any other groups. More importantly, both the qPCR and immunofluorescence results indicated MSCs differentiated towards pericytes to enhance vascularization in this study. This paper highlights the enhanced capability of 3D micro-cavitary Gel-MA hydrogel for co-culturing HUVECs and HMSCs to promote vascularization which presents a potential strategy for future tissue repair and regeneration.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Yon Jin Chuah
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jiayin Fu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Wenzhen Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Xu M, Shaw G, Murphy M, Barry F. Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Are Functionally and Genetically Different From Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells 2019; 37:754-765. [PMID: 30779868 PMCID: PMC6591688 DOI: 10.1002/stem.2993] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 12/14/2022]
Abstract
There has been considerable interest in the generation of functional mesenchymal stromal cell (MSC) preparations from induced pluripotent stem cells (iPSCs) and this is now regarded as a potential source of unlimited, standardized, high‐quality cells for therapeutic applications in regenerative medicine. Although iMSCs meet minimal criteria for defining MSCs in terms of marker expression, there are substantial differences in terms of trilineage potential, specifically a marked reduction in chondrogenic and adipogenic propensity in iMSCs compared with bone marrow‐derived (BM) MSCs. To reveal the cellular basis underlying these differences, we conducted phenotypic, functional, and genetic comparisons between iMSCs and BM‐MSCs. We found that iMSCs express very high levels of both KDR and MSX2 compared with BM‐MSCs. In addition, BM‐MSCs had significantly higher levels of PDGFRα. These distinct gene expression profiles were maintained during culture expansion, suggesting that prepared iMSCs are more closely related to vascular progenitor cells (VPCs). Although VPCs can differentiate along the chondrogenic, osteogenic, and adipogenic pathways, they require different inductive conditions compared with BM‐MSCs. These observations suggest to us that iMSCs, based on current widely used preparation protocols, do not represent a true alternative to primary MSCs isolated from BM. Furthermore, this study highlights the fact that high levels of expression of typical MSC markers such as CD73, CD90, and CD105 are insufficient to distinguish MSCs from other mesodermal progenitors in differentiated induced pluripotent stem cell cultures. stem cells2019;37:754–765
Collapse
Affiliation(s)
- Maojia Xu
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Mary Murphy
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Frank Barry
- The Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
9
|
Chen F, Li G, Zhao ER, Li J, Hableel G, Lemaster JE, Bai Y, Sen GL, Jokerst JV. Cellular toxicity of silicon carbide nanomaterials as a function of morphology. Biomaterials 2018; 179:60-70. [PMID: 29980075 PMCID: PMC6069971 DOI: 10.1016/j.biomaterials.2018.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
Silicon carbide has been shown to be biocompatible and is used as a coating material for implanted medical devices to prevent biofilms. Silicon carbide nanomaterials are also promising in cell tracking due to their stable and strong luminescence, but more comprehensive studies of this material on the nanoscale are needed. Here, we studied the toxicity of silicon carbide nanomaterials on human mesenchymal stem cells in terms of metabolism, viability, adhesion, proliferation, migration, oxidative stress, and differentiation ability. We compared two different shapes and found that silicon carbide nanowires are toxic to human mesenchymal stem cells but not to cancer cell lines at the concentration of 0.1 mg/mL. Control silicon carbide nanoparticles were biocompatible to human mesenchymal stem cells at 0.1 mg/mL. We studied the potential mechanistic effect of silicon carbide nanowires on human mesenchymal stem cells' phenotype, cytokine secretion, and gene expression. These findings suggest that the toxic effect of silicon carbide nanomaterials to human mesenchymal stem cells are dependent on morphology.
Collapse
Affiliation(s)
- Fang Chen
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Gongyi Li
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan, 410073 PR China
| | - Eric Ruike Zhao
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jingting Li
- Departments of Dermatology and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ghanim Hableel
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jeanne E Lemaster
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yuting Bai
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - George L Sen
- Departments of Dermatology and Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Burbano C, Villar-Vesga J, Orejuela J, Muñoz C, Vanegas A, Vásquez G, Rojas M, Castaño D. Potential Involvement of Platelet-Derived Microparticles and Microparticles Forming Immune Complexes during Monocyte Activation in Patients with Systemic Lupus Erythematosus. Front Immunol 2018; 9:322. [PMID: 29545790 PMCID: PMC5837989 DOI: 10.3389/fimmu.2018.00322] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Microparticles (MPs) are vesicles derived from the plasma membrane of different cells, are considered a source of circulating autoantigens, and can form immune complexes (MPs-ICs). The number of MPs and MPs-ICs increases in patients with systemic lupus erythematosus (SLE). MPs activate myeloid cells by inducing IL-6 and TNF-α in both SLE and other diseases. Therefore, we propose that the recognition of MPs-ICs by monocytes rather that MPs may define their phenotype and contribute to the inflammatory process in patients with SLE. Thus, the aims of this study were to evaluate the association among circulating MPs-ICs from different cell sources, alterations observed in monocyte subsets, and disease activity in patients with SLE and to establish whether monocytes bind and respond to MPs-ICs in vitro. Circulating MPs and monocyte subsets were characterized in 60 patients with SLE and 60 healthy controls (HCs) using multiparametric flow cytometry. Patients had higher MP counts and frequencies of MPs-CD41a + (platelet-derived) compared with HCs, regardless of disease activity. MPs from patients with SLE were C1q + and formed ICs with IgM and IgG. MPs-IgG + were positively correlated with active SLE (aSLE), whereas MPs-IgM + were negatively correlated. Most of the circulating total ICs-IgG + were located on MPs. The proportion and number of non-classical monocytes were significantly decreased in patients with SLE compared with HCs and in patients with aSLE compared with patients with the inactive disease. Non-classical monocytes obtained from patients with SLE exhibited increased levels of CD64 associated with MPs-IgG +, MPs-C1q +, total circulating ICs-IgG +, and disease activity. The direct effects of MPs and MPs-IgG + on monocytes were evaluated in cell culture. Monocytes from both HCs and patients bound to and internalized MPs and MPs-IgG + independent of CD64. These vesicles derived from platelets (PMPs), mainly PMPs-IgG +, activated monocytes in vitro and increased the expression of CD69, CD64, and pro-inflammatory cytokines such as IL-1β, TNF-α, and IFN-α. Therefore, MPs are one of the most representative sources of the total amount of circulating ICs-IgG + in patients with SLE. MPs-IgG + are associated with SLE activity, and PMPs-IgG + stimulate monocytes, changing their phenotype and promoting pro-inflammatory responses related to disease activity.
Collapse
Affiliation(s)
- Catalina Burbano
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Juan Villar-Vesga
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Janine Orejuela
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Carlos Muñoz
- Sección de Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Adriana Vanegas
- Sección de Reumatología, Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
11
|
Roman BL, Hinck AP. ALK1 signaling in development and disease: new paradigms. Cell Mol Life Sci 2017; 74:4539-4560. [PMID: 28871312 PMCID: PMC5687069 DOI: 10.1007/s00018-017-2636-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022]
Abstract
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.
Collapse
Affiliation(s)
- Beth L Roman
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, 130 DeSoto St, Pittsburgh, PA, 15261, USA.
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nat Commun 2017; 8:389. [PMID: 28855514 PMCID: PMC5577173 DOI: 10.1038/s41467-017-00505-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Therapies based on immune cells have been applied for diseases ranging from cancer to diabetes. However, the viral and electroporation methods used to create cytoreagents are complex and expensive. Consequently, we develop targeted mRNA nanocarriers that are simply mixed with cells to reprogram them via transient expression. Here, we describe three examples to establish that the approach is simple and generalizable. First, we demonstrate that nanocarriers delivering mRNA encoding a genome-editing agent can efficiently knock-out selected genes in anti-cancer T-cells. Second, we imprint a long-lived phenotype exhibiting improved antitumor activities into T-cells by transfecting them with mRNAs that encode a key transcription factor of memory formation. Third, we show how mRNA nanocarriers can program hematopoietic stem cells with improved self-renewal properties. The simplicity of the approach contrasts with the complex protocols currently used to program therapeutic cells, so our methods will likely facilitate manufacturing of cytoreagents.Current widely used viral and electroporation methods for creating therapeutic cell-based products are complex and expensive. Here, the authors develop targeted mRNA nanocarriers that can transiently program gene expression by simply mixing them with cells, to improve their therapeutic potential.
Collapse
|
13
|
Rakocevic J, Orlic D, Mitrovic-Ajtic O, Tomasevic M, Dobric M, Zlatic N, Milasinovic D, Stankovic G, Ostojić M, Labudovic-Borovic M. Endothelial cell markers from clinician's perspective. Exp Mol Pathol 2017; 102:303-313. [PMID: 28192087 DOI: 10.1016/j.yexmp.2017.02.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
Endothelial cell markers are membrane-bound or cytoplasmic molecules expressed by endothelial cells, which help their easier identification and discrimination from other cell types. During vasculogenesis, endothelial cells differentiate from hemangioblasts to form new blood vessels. With the discovery of endothelial progenitor cells (EPC) and their ability to form new blood vessels, the term vasculogenesis is not only reserved for the embryonic development. Possibility of de novo blood vessel formation from EPC is now widely explored in different ischemic conditions, especially in cardiovascular medicine. Numerous clinical trials have tested enhancing tissue vascularization by delivering hematopoietic cells that expressed endothelial markers. This therapeutic approach proved to be challenging and promising, particularly for patients who have exhausted all conventional therapeutic modalities. Angiogenesis, which refers to the formation of new blood vessels from existing vasculature, is indispensable process during tumor progression and metastasis. Blockage of tumor angiogenesis by targeting and inhibiting endothelial cell has emerged as novel safe and efficacious method to control many advanced malignant diseases. Numerous clinical studies are currently testing new antiangiogenic drugs which target and inhibit endothelial cell markers, receptors or molecules which transmit receptor-mediated signals, therefore inhibiting endothelial cell proliferation, migration and vascular tube formation. Many of these drugs are now widely used in clinical settings as first- or second-line chemotherapy in advanced malignant conditions. So far, these therapeutic approaches gave modest, yet encouraging clinical improvements, prolonging survival and improving functional capacity and quality of life for many terminally ill patients. Here we present the most commonly used endothelial cell markers along with their applicability in contemporary clinical practice.
Collapse
Affiliation(s)
- Jelena Rakocevic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, 26 Visegradska Street, Belgrade, Serbia
| | - Dejan Orlic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Olivera Mitrovic-Ajtic
- Department for Neuroendocrinology, Institute for Medical Research, 4 Dr Subotica Street, Belgrade, Serbia
| | - Miloje Tomasevic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; Department of Internal medicine, Faculty of Medical Sciences, University of Kragujevac, 69 Svetozara Markovica Street, Kragujevac, Serbia
| | - Milan Dobric
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Natasa Zlatic
- School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Dejan Milasinovic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia
| | - Goran Stankovic
- Cardiology Clinic, Clinical Center of Serbia, 8 Dr Koste Todorovica Street, Belgrade, Serbia; School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Miodrag Ostojić
- School of Medicine, University of Belgrade, 8 Dr Subotica Street, Belgrade, Serbia
| | - Milica Labudovic-Borovic
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, 26 Visegradska Street, Belgrade, Serbia.
| |
Collapse
|
14
|
Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 2016; 73:3311-21. [PMID: 27141940 PMCID: PMC11108490 DOI: 10.1007/s00018-016-2229-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.
Collapse
Affiliation(s)
- Miaohua Mo
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Shan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Ying Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Hong Li
- Department of General Surgery, Qingdao Municipal Hospital, 5 Donghai M Rd, Qingdao, China.
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China.
| |
Collapse
|
15
|
Abstract
Determining the developmental pathway leading to erythrocytes and being able to isolate their progenitors are crucial to understanding and treating disorders of red cell imbalance such as anemia, myelodysplastic syndrome, and polycythemia vera. Here we show that the human erythrocyte progenitor (hEP) can be prospectively isolated from adult bone marrow. We found three subfractions that possessed different expression patterns of CD105 and CD71 within the previously defined human megakaryocyte/erythrocyte progenitor (hMEP; Lineage(-) CD34(+) CD38(+) IL-3Rα(-) CD45RA(-)) population. Both CD71(-) CD105(-) and CD71(+) CD105(-) MEPs, at least in vitro, still retained bipotency for the megakaryocyte (MegK) and erythrocyte (E) lineages, although the latter subpopulation is skewed in differentiation toward the erythroid lineage. Notably, the proliferative and differentiation output of the CD71(intermediate(int)/+) CD105(+) subset of cells within the MEP population was completely restricted to the erythroid lineage with the loss of MegK potential. CD71(+) CD105(-) MEPs are erythrocyte-biased MEPs (E-MEPs) and CD71(int/+) CD105(+) cells are EPs. These previously unclassified populations may facilitate further understanding of the molecular mechanisms governing human erythroid development and serve as potential therapeutic targets in disorders of the erythroid lineage.
Collapse
|
16
|
Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells Int 2015; 2015:762098. [PMID: 26236348 PMCID: PMC4506912 DOI: 10.1155/2015/762098] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into multiple cell lineages and contributing to tissue repair and regeneration. Characterization of the physiological function of MSCs has been largely hampered by lack of unique markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate filament protein expressed in the early stages of development. Increasing studies have shown a particular association between Nestin and MSCs. Nestin could characterize a subset of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells (HSCs). Nestin expressing (Nes(+)) MSCs also play a role in the progression of various diseases. However, Nes(+) cells were reported to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the progress of the research on Nestin, particularly the function of Nes(+) cells in bone marrow, and discuss the feasibility of using Nestin as a specific marker for MSCs.
Collapse
|
17
|
Kays SK, Kaufmann KB, Abel T, Brendel C, Bonig H, Grez M, Buchholz CJ, Kneissl S. CD105 is a surface marker for receptor-targeted gene transfer into human long-term repopulating hematopoietic stem cells. Stem Cells Dev 2015; 24:714-23. [PMID: 25517513 DOI: 10.1089/scd.2014.0455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are an important target cell population for gene therapy since they can reconstitute the entire hematopoietic system. HSC-enriched cell populations can be recognized based on cell surface marker expression, such as CD34, which is broadly expressed on immature and partially differentiated cells. In mice, co-expression of CD34 and CD105 was previously shown to be relatively more specific for the most immature, long-term repopulating HSCs. Here, we evaluated whether CD105, which is expressed on 30%-80% of CD34(+) cells, is a marker also for human long-term repopulating HSCs. Therefore, we tracked the mature progeny of CD34(+) cells transduced with the CD105-targeted lentiviral vector CD105-LV in xenotolerant mice. Transduction was blocked with soluble CD105 protein confirming specificity. Importantly, CD105-LV transduced human CD34(+) cells engrafted in NOD-scid IL2Rγ(-/-) mice with up to 20% reporter gene-positive cells detected long term in all human hematopoietic lineages in bone marrow (BM), spleen, and blood. In addition, competitive repopulation experiments in mice showed a superior engraftment of CD105-LV transduced CD34(+) cells in BM and spleen compared with cells transduced with a conventional nontargeted lentiviral vector. Thus, human CD34(+)/CD105(+) cells are enriched for early HSCs with high repopulating capacity. Targeting this cell population with CD105-LV offers a novel gene transfer strategy to reach high engraftment rates of transduced cells and highlights the applicability of receptor-targeted vectors to trace cell subsets offering an alternative to prospective isolation by surface markers.
Collapse
Affiliation(s)
- Sarah-Katharina Kays
- 1 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ziegler H, Welker C, Sterk M, Haarer J, Rammensee HG, Handgretinger R, Schilbach K. Human Peripheral CD4(+) Vδ1(+) γδT Cells Can Develop into αβT Cells. Front Immunol 2014; 5:645. [PMID: 25709606 PMCID: PMC4329445 DOI: 10.3389/fimmu.2014.00645] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 11/16/2022] Open
Abstract
The lifelong generation of αβT cells enables us to continuously build immunity against pathogens and malignancies despite the loss of thymic function with age. Homeostatic proliferation of post-thymic naïve and memory T cells and their transition into effector and long-lived memory cells balance the decreasing output of naïve T cells, and recent research suggests that also αβT-cell development independent from the thymus may occur. However, the sites and mechanisms of extrathymic T-cell development are not yet understood in detail. γδT cells represent a small fraction of the overall T-cell pool, and are endowed with tremendous phenotypic and functional plasticity. γδT cells that express the Vδ1 gene segment are a minor population in human peripheral blood but predominate in epithelial (and inflamed) tissues. Here, we characterize a CD4+ peripheral Vδ1+ γδT-cell subpopulation that expresses stem-cell and progenitor markers and is able to develop into functional αβT cells ex vivo in a simple culture system and in vivo. The route taken by this process resembles thymic T-cell development. However, it involves the re-organization of the Vδ1+ γδTCR into the αβTCR as a consequence of TCR-γ chain downregulation and the expression of surface Vδ1+Vβ+ TCR components, which we believe function as surrogate pre-TCR. This transdifferentiation process is readily detectable in vivo in inflamed tissue. Our study provides a conceptual framework for extrathymic T-cell development and opens up a new vista in immunology that requires adaptive immune responses in infection, autoimmunity, and cancer to be reconsidered.
Collapse
Affiliation(s)
- Hendrik Ziegler
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Christian Welker
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Marco Sterk
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Jan Haarer
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen , Tübingen , Germany
| | - Rupert Handgretinger
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| | - Karin Schilbach
- Department of Hematology and Oncology, University Children's Hospital, University of Tübingen , Tübingen , Germany
| |
Collapse
|
19
|
Osteogenic Potential of Mouse Adipose-Derived Stem Cells Sorted for CD90 and CD105 In Vitro. Stem Cells Int 2014; 2014:576358. [PMID: 25302065 PMCID: PMC4181779 DOI: 10.1155/2014/576358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue-derived stromal cells, termed ASCs, play an important role in regenerative applications. They resemble mesenchymal stem cells owing to their inexhaustibility, general differentiation potential, and plasticity and display a series of cell-specific and cluster-of-differentiation (CD) marker profiles similar to those of other somatic stem cells. Variations in phenotypes or differentiation are intimately associated with CD markers. The purpose of our study was to exhibit distinct populations of ASCs with differing characteristics for osteogenic differentiation. The primary cell batch of murine-derived ASCs was extracted from subcutaneous adipose tissue and the cells were sorted for the expression of the surface protein molecules CD90 and CD105 using flow cytometry. Each cell population sorted for CD90 and CD105 was analyzed for osteogenic potency after cell culture. The results suggested that ASCs exhibit distinct populations with differing characteristics for osteogenic differentiation: unsorted ASCs stimulated comparable mineralized nodule formation as bone marrow stromal cells (BMSCs) in osteogenic medium and viral transfection for BMP2 accelerated the formation of mineralized nodules in CD90 and/or CD105 positive ASCs with observation of decrease in CD105 expression after 14 days. Future studies assessing different immunophenotypes of ASCs should be undertaken to develop cell-based tissue engineering.
Collapse
|
20
|
Schrimpf C, Teebken OE, Wilhelmi M, Duffield JS. The role of pericyte detachment in vascular rarefaction. J Vasc Res 2014; 51:247-58. [PMID: 25195856 DOI: 10.1159/000365149] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 06/07/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Pericytes surround endothelial cells at the perivascular interface. Signaling between endothelial cells and pericytes is crucial for capillary homeostasis, as pericytes stabilize vessels and regulate many microvascular functions. Recently it has been shown that pericytes are able to detach from the vascular wall and contribute to fibrosis by becoming scar-forming myofibroblasts in many organs including the kidney. At the same time, the loss of pericytes within the perivascular compartment results in vulnerable capillaries which are prone to instability, pathological angiogenesis, and, ultimately, rarefaction. AIMS This review will give an overview of pericyte-endothelial cell interactions, summarize the signaling pathways that have been identified to be involved in pericyte detachment from the vascular wall, and present pathological endothelial responses in the context of disease of the kidney.
Collapse
Affiliation(s)
- Claudia Schrimpf
- Division of Vascular and Endovascular Surgery, Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | | | | | | |
Collapse
|
21
|
Kanesvaran R, Tan MH. Targeted therapy for renal cell carcinoma: The next lap. J Carcinog 2014; 13:3. [PMID: 24737951 PMCID: PMC3986548 DOI: 10.4103/1477-3163.127638] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/15/2013] [Indexed: 12/19/2022] Open
Abstract
Advances in rationally targeted therapeutics over the last decade have transformed the clinical care of advanced kidney cancer. While oncologists consolidate the gains of the wave of new agents, comprising a panoply of anti-vascular endothelial growth factor multi-targeted tyrosine kinase inhibitors and inhibitors of the mammalian target of rapamycin (mTOR), there is an increasing sense that a plateau has been reached in the short term. It is sobering that all currently approved targeted therapies have not yielded durable remissions and remain palliative in intent. In the context of recent insights in kidney cancer biology, we review promising ongoing and future approaches for kidney cancer therapeutics aimed toward forging new paths in the systemic management of renal cell carcinoma. Broadly, candidate agents for such innovative strategies include immune check-point inhibitors, anti-cancer stem cell agents, next-generation anti-vascular endothelial growth factor receptor and anti-mTOR agents as well as more investigational agents in the preclinical and early clinical development settings.
Collapse
Affiliation(s)
- Ravindran Kanesvaran
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Republic of Singapore
| | - Min-Han Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Republic of Singapore ; Institute of Bioengineering and Nanotechnology, Singapore 138669, Republic of Singapore
| |
Collapse
|
22
|
Salamon A, Jonitz-Heincke A, Adam S, Rychly J, Müller-Hilke B, Bader R, Lochner K, Peters K. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro. Exp Cell Res 2013; 319:2856-65. [PMID: 24055981 DOI: 10.1016/j.yexcr.2013.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
Abstract
Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients.
Collapse
Affiliation(s)
- Achim Salamon
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chakhachiro ZI, Zuo Z, Aladily TN, Kantarjian HM, Cortes JE, Alayed K, Nguyen MH, Medeiros LJ, Bueso-Ramos C. CD105 (endoglin) is highly overexpressed in a subset of cases of acute myeloid leukemias. Am J Clin Pathol 2013; 140:370-8. [PMID: 23955456 DOI: 10.1309/ajcpg8xh7zonakxk] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To assess CD105 (endoglin) expression in 119 acute myeloid leukemia (AML) and 13 control cases using immunohistochemistry. METHODS CD105 expression was assessed retrospectively by using immunohistochemistry in bone marrow specimens. RESULTS CD105 was strongly and diffusely positive in all 9 (100%) AMLs with t(15;17)(q24.1;q21.2), 2 (100%) AMLs with t(8;21)(q22;q22), 1 (100%) AML with t(6;9)(p23;q34), 7 (28%) of 25 AMLs with myelodysplasia-related changes, 1 (33%) of 3 therapy-related AMLs, 3 (16%) of 19 AMLs unclassifiable, 1 (14%) of 7 AMLs with inv(16)(p13.1q22), and 5 (11%) of 45 AMLs not otherwise specified. Uninvolved bone marrow in these cases showed no CD105 expression by erythroid precursors, megakaryocytes, or endothelial or stromal cells. Two of 13 control bone marrow specimens showed partial CD105 positivity in myeloid cells. In 21 strongly CD105+ AML cases tested for the IDH2 mutation, 9 (42%) were mutated (P = .004). CONCLUSIONS These data suggest that CD105 could be a therapeutic target in a subset of patients with AML.
Collapse
Affiliation(s)
- Zaher I Chakhachiro
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 072, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bourdeau A, Trop S, Doody KM, Dumont DJ, Tremblay ML, Tremblayef ML. Inhibition of T cell protein tyrosine phosphatase enhances interleukin-18-dependent hematopoietic stem cell expansion. Stem Cells 2013; 31:293-304. [PMID: 23135963 PMCID: PMC3593175 DOI: 10.1002/stem.1276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 10/11/2012] [Indexed: 01/30/2023]
Abstract
The clinical application of hematopoietic progenitor cell-based therapies for the treatment of hematological diseases is hindered by current protocols, which are cumbersome and have limited efficacy to augment the progenitor cell pool. We report that inhibition of T-cell protein tyrosine phosphatase (TC-PTP), an enzyme involved in the regulation of cytokine signaling, through gene knockout results in a ninefold increase in the number of hematopoietic progenitors in murine bone marrow (BM). This effect could be reproduced using a short (48 hours) treatment with a pharmacological inhibitor of TC-PTP in murine BM, as well as in human BM, peripheral blood, and cord blood. We also demonstrate that the ex vivo use of TC-PTP inhibitor only provides a temporary effect on stem cells and did not alter their capacity to reconstitute all hematopoietic components in vivo. We establish that one of the mechanisms whereby inhibition of TC-PTP mediates its effects involves the interleukin-18 (IL-18) signaling pathway, leading to increased production of IL-12 and interferon-gamma by progenitor cells. Together, our results reveal a previously unrecognized role for IL-18 in contributing to the augmentation of the stem cell pool and provide a novel and simple method to rapidly expand progenitor cells from a variety of sources using a pharmacological compound.
Collapse
Affiliation(s)
- Annie Bourdeau
- Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Molecular pathways of early CD105-positive erythroid cells as compared with CD34-positive common precursor cells by flow cytometric cell-sorting and gene expression profiling. Blood Cancer J 2013; 3:e100. [PMID: 23310930 PMCID: PMC3556575 DOI: 10.1038/bcj.2012.45] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Special attention has recently been drawn to the molecular network of different genes that are responsible for the development of erythroid cells. The aim of the present study was to establish in detail the immunophenotype of early erythroid cells and to compare the gene expression profile of freshly isolated early erythroid precursors with that of the CD34-positive (CD34(+)) compartment. Multiparameter flow cytometric analyses of human bone marrow mononuclear cell fractions (n=20) defined three distinct early erythroid stages. The gene expression profile of sorted early erythroid cells was analyzed by Affymetrix array technology. For 4524 genes, a differential regulation was found in CD105-positive erythroid cells as compared with the CD34(+) progenitor compartment (2362 upregulated genes). A highly significant difference was observed in the expression level of genes involved in transcription, heme synthesis, iron and mitochondrial metabolism and transforming growth factor-β signaling. A comparison with recently published data showed over 1000 genes that as yet have not been reported to be upregulated in the early erythroid lineage. The gene expression level within distinct pathways could be illustrated directly by applying the Ingenuity software program. The results of gene expression analyses can be seen at the Gene Expression Omnibus repository.
Collapse
|
26
|
Ziebarth AJ, Nowsheen S, Steg AD, Shah MM, Katre AA, Dobbin ZC, Han HD, Lopez-Berestein G, Sood AK, Conner M, Yang ES, Landen CN. Endoglin (CD105) contributes to platinum resistance and is a target for tumor-specific therapy in epithelial ovarian cancer. Clin Cancer Res 2012; 19:170-82. [PMID: 23147994 DOI: 10.1158/1078-0432.ccr-12-1045] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Endoglin (CD105) is a membranous protein overexpressed in tumor-associated endothelial cells, chemoresistant populations of ovarian cancer cells, and potentially stem cells. Our objective was to evaluate the effects and mechanisms of targeting endoglin in ovarian cancer. EXPERIMENTAL DESIGN Global and membranous endoglin expression was evaluated in multiple ovarian cancer lines. In vitro, the effects of siRNA-mediated endoglin knockdown with and without chemotherapy were evaluated by MTT assay, cell-cycle analysis, alkaline comet assay, γ-H2AX foci formation, and quantitative PCR. In an orthotopic mouse model, endoglin was targeted with chitosan-encapsulated siRNA with and without carboplatin. RESULTS Endoglin expression was surprisingly predominantly cytoplasmic, with a small population of surface-positive cells. Endoglin inhibition decreased cell viability, increased apoptosis, induced double-stranded DNA damage, and increased cisplatin sensitivity. Targeting endoglin downregulates expression of numerous DNA repair genes, including BARD1, H2AFX, NBN, NTHL1, and SIRT1. BARD1 was also associated with platinum resistance, and was induced by platinum exposure. In vivo, antiendoglin treatment decreased tumor weight in both ES2 and HeyA8MDR models when compared with control (35%-41% reduction, P < 0.05). Endoglin inhibition with carboplatin was associated with even greater inhibitory effect when compared with control (58%-62% reduction, P < 0.001). CONCLUSIONS Endoglin downregulation promotes apoptosis, induces significant DNA damage through modulation of numerous DNA repair genes, and improves platinum sensitivity both in vivo and in vitro. Antiendoglin therapy would allow dual treatment of both tumor angiogenesis and a subset of aggressive tumor cells expressing endoglin and is being actively pursued as therapy in ovarian cancer.
Collapse
Affiliation(s)
- Angela J Ziebarth
- Departments of Obstetrics and Gynecology, Radiation Oncology, and Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Very small embryonic-like stem cells purified from umbilical cord blood lack stem cell characteristics. PLoS One 2012; 7:e34899. [PMID: 22509366 PMCID: PMC3318011 DOI: 10.1371/journal.pone.0034899] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 03/06/2012] [Indexed: 01/04/2023] Open
Abstract
Very small embryonic-like (VSEL) cells have been described as putatively pluripotent stem cells present in murine bone marrow and human umbilical cord blood (hUCB) and as such are of high potential interest for regenerative medicine. However, there remain some questions concerning the precise identity and properties of VSEL cells, particularly those derived from hUCB. For this reason, we have carried out an extensive characterisation of purified populations of VSEL cells from a large number of UCB samples. Consistent with a previous report, we find that VSEL cells are CXCR4+, have a high density, are indeed significantly smaller than HSC and have an extremely high nuclear/cytoplasmic ratio. Their nucleoplasm is unstructured and stains strongly with Hoechst 33342. A comprehensive FACS screen for surface markers characteristic of embryonic, mesenchymal, neuronal or hematopoietic stem cells revealed negligible expression on VSEL cells. These cells failed to expand in vitro under a wide range of culture conditions known to support embryonic or adult stem cell types and a microarray analysis revealed the transcriptional profile of VSEL cells to be clearly distinct both from well-defined populations of pluripotent and adult stem cells and from the mature hematopoietic lineages. Finally, we detected an aneuploid karyotype in the majority of purified VSEL cells by fluorescence in situ hybridisation. These data support neither an embryonic nor an adult stem cell like phenotype, suggesting rather that hUCB VSEL cells are an aberrant and inactive population that is not comparable to murine VSEL cells.
Collapse
|
28
|
Serradifalco C, Catanese P, Rizzuto L, Cappello F, Puleio R, Barresi V, Nunnari CM, Zummo G, Di Felice V. Embryonic and foetal Islet-1 positive cells in human hearts are also positive to c-Kit. Eur J Histochem 2011; 55:e41. [PMID: 22297447 PMCID: PMC3284243 DOI: 10.4081/ejh.2011.e41] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/23/2011] [Accepted: 10/13/2011] [Indexed: 01/24/2023] Open
Abstract
During embryogenesis, the mammalian heart develops from a primitive heart tube originating from two bilateral primary heart fields located in the lateral plate mesoderm. Cells belongings to the pre-cardiac mesoderm will differentiate into early cardiac progenitors, which express early transcription factors which are also common to the Isl-1 positive cardiac progenitor cells isolated from the developing pharyngeal mesoderm and the foetal and post-natal mice hearts. A second population of cardiac progenitor cells positive to c-Kit has been abundantly isolated from adult hearts. Until now, these two populations have been considered two different sets of progenitor cells present in the heart in different stages of an individual life. In the present study we collected embryonic, foetal and infant hearts, and we tested the hypotheses that c-Kit positive cells, usually isolated from the adult heart, are also present in the intra-uterine life and persist in the adult heart after birth, and that foetal Isl-1 positive cells are also positive to c-Kit. Using immunohistochemistry we studied the temporal distribution of Isl-1 positive and c-Kit/CD105 double positive cells, and by immunofluorescence and confocal analysis we studied the co-localization of c-Kit and Isl-1 positive cells. The results indicated that cardiomyocytes and interstitial cells were positive for c-Kit from the 9th to the 19th gestational week, that cells positive for both c-Kit and CD105 appeared in the interstitium at the 17th gestational week and persisted in the postnatal age, and that the Isl-1 positive cells were a subset of the c-Kit positive population.
Collapse
|
29
|
Abstract
Angiogenesis/vasculogenesis and neurogenesis are essential for pulp regeneration. Two subfractions of side-population (SP) cells, CD31(-)/CD146(-) SP cells and CD105(+) cells with angiogenic and neurogenic potential, were isolated by flow cytometry from canine dental pulp. In an experimental model of mouse hindlimb ischemia, transplantation of these cell populations resulted in an increase in blood flow, including high-density capillary formation. In a model of rat cerebral ischemia, stem cell transplantations enhanced neuronal regeneration and recovery from motor disability. Autologous transplantation of the CD31(-)/CD146(-) SP cells into an in vivo model of amputated pulp resulted in complete regeneration of pulp tissue with vascular and neuronal processes within 14 days. The transplanted cells expressed pro-angiogenic factors, implying trophic action on endothelial cells. Autologous transplantation of CD31(-)/CD146(-) SP cells or CD105(+) cells with stromal-cell-derived factor-1 (SDF-1) into root canals after whole pulp removal of mature teeth resulted in complete regeneration of pulp replete with nerves and vasculature by day 14, followed by dentin formation along the dentinal wall by day 35. Therefore, the potential utility of fractionated SP cells and CD105(+) cells in angiogenesis and neurogenesis was demonstrated by treatment of limb and cerebral ischemia following pulpotomy and pulpectomy.
Collapse
Affiliation(s)
- M Nakashima
- Center for Advanced Medicine for Dental and Oral Disease, National Center for Geriatrics and Gerontology, Research Institute, Obu, Aichi, Japan.
| | | |
Collapse
|
30
|
Donnenberg AD, Donnenberg VS, Griffin DL, Moore LR, Tekinturhan F, Kormos RL. Intra-operative preparation of autologous bone marrow-derived CD34-enriched cellular products for cardiac therapy. Cytotherapy 2011; 13:441-8. [PMID: 21062114 PMCID: PMC4165076 DOI: 10.3109/14653249.2010.529888] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIMS With the advent of regenerative therapy, there is renewed interest in the use of bone marrow as a source of adult stem and progenitor cells, including cell subsets prepared by immunomagnetic selection. Cell selection must be rapid, efficient and performed according to current good manufacturing practices. In this report we present a methodology for intra-operative preparation of CD34(+) selected autologous bone marrow for autologous use in patients receiving coronary artery bypass grafts or left ventricular assist devices. METHODS AND RESULTS We developed a rapid erythrocyte depletion method using hydroxyethyl starch and low-speed centrifugation to prepare large-scale (mean 359 mL) bone marrow aspirates for separation on a Baxter Isolex 300i immunomagnetic cell separation device. CD34 recovery after erythrocyte depletion was 68.3 ± 20.2%, with an average depletion of 91.2 ± 2.8% and an average CD34 content of 0.58 ± 0.27%. After separation, CD34 purity was 64.1 ± 17.2%, with 44.3 ± 26.1% recovery and an average dose of 5.0 ± 2.7 × 10(6) CD34(+) cells/product. In uncomplicated cases CD34-enriched cellular products could be accessioned, prepared, tested for release and administered within 6 h. Further analysis of CD34(+) bone marrow cells revealed a significant proportion of CD45(-) CD34(+) cells. CONCLUSIONS Intra-operative immunomagnetic separation of CD34-enriched bone marrow is feasible using rapid low-speed Hetastarch sedimentation for erythrocyte depletion. The resulting CD34-enriched product contains CD45(-) cells that may represent non-hematopoietic or very early hematopoietic stem cells that participate in tissue regeneration.
Collapse
Affiliation(s)
- Albert D Donnenberg
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Fricke S, Fricke C, Oelkrug C, Hilger N, Schönfelder U, Kamprad M, Lehmann J, Boltze J, Emmrich F, Sack U. Characterization of murine non-adherent bone marrow cells leading to recovery of endogenous hematopoiesis. Cell Mol Life Sci 2010; 67:4095-106. [PMID: 20556631 PMCID: PMC11115818 DOI: 10.1007/s00018-010-0427-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 05/04/2010] [Accepted: 06/01/2010] [Indexed: 12/15/2022]
Abstract
Non-adherent bone marrow-derived cells (NA-BMCs) are a mixed cell population that can give rise to multiple mesenchymal phenotypes and that facilitates hematopoietic recovery. We characterized NA-BMCs by flow cytometry, fibroblast colony-forming units (CFU-f), real-time PCR, and in in vivo experiments. In comparison to adherent cells, NA-BMCs expressed high levels of CD11b(+) and CD90(+) within the CD45(+) cell fraction. CFU-f were significantly declining over the cultivation period, but NA-BMCs were still able to form CFU-f after 5 days. Gene expression analysis of allogeneic NA-BMCs compared to bone marrow (BM) indicates that NA-BMCs contain stromal, mesenchymal, endothelial cells and monocytes, but less osteoid, lymphoid, and erythroid cells, and hematopoietic stem cells. Histopathological data and analysis of weight showed an excellent recovery and organ repair of lethally irradiated mice after NA-BMC transplantation with a normal composition of the BM.
Collapse
Affiliation(s)
- Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstraße 01, 04103 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wilson A, Shehadeh LA, Yu H, Webster KA. Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells. BMC Genomics 2010; 11:229. [PMID: 20374652 PMCID: PMC2873471 DOI: 10.1186/1471-2164-11-229] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Accepted: 04/07/2010] [Indexed: 11/17/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) are pluripotent cells, present in the bone marrow and other tissues that can differentiate into cells of all germ layers and may be involved in tissue maintenance and repair in adult organisms. Because of their plasticity and accessibility these cells are also prime candidates for regenerative medicine. The contribution of stem cell aging to organismal aging is under debate and one theory is that reparative processes deteriorate as a consequence of stem cell aging and/or decrease in number. Age has been linked with changes in osteogenic and adipogenic potential of MSCs. Results Here we report on changes in global gene expression of cultured MSCs isolated from the bone marrow of mice at ages 2, 8, and 26-months. Microarray analyses revealed significant changes in the expression of more than 8000 genes with stage-specific changes of multiple differentiation, cell cycle and growth factor genes. Key markers of adipogenesis including lipoprotein lipase, FABP4, and Itm2a displayed age-dependent declines. Expression of the master cell cycle regulators p53 and p21 and growth factors HGF and VEGF also declined significantly at 26 months. These changes were evident despite multiple cell divisions in vitro after bone marrow isolation. Conclusions The results suggest that MSCs are subject to molecular genetic changes during aging that are conserved during passage in culture. These changes may affect the physiological functions and the potential of autologous MSCs for stem cell therapy.
Collapse
Affiliation(s)
- Amber Wilson
- Department of Molecular and Cellular Pharmacology, and the Vascular Biology Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
33
|
Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev 2009; 20:435-40. [PMID: 19896887 DOI: 10.1016/j.cytogfr.2009.10.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dental caries is a common public health problem, causing early loss of dental pulp and resultant tooth loss. Dental pulp has important functions to sustain teeth providing nutrient and oxygen supply, innervation, reactionary/reparative dentin formation and immune response. Regeneration of pulp is an unmet need in endodontic therapy, and angiogenesis/vasculogenesis and neurogenesis are critical for pulp regeneration. Permanent and deciduous pulp tissue is easily available from teeth after extraction without ethical issues and has potential for clinical use. In this review, we introduce some stem cell subfractions, CD31(-)/CD146(-) SP cells and CD105(+) cells with high angiogenic and neurogenic potential, derived from human adult dental pulp tissue. Potential utility of these cells is addressed as a source of cells for treatment of cerebral and limb ischemia and pulp inflammation complete with angiogenesis and vasculogenesis.
Collapse
Affiliation(s)
- Misako Nakashima
- Department of Oral Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522, Japan.
| | | | | |
Collapse
|
34
|
Heng BC, Hsu SH, Cowan CM, Liu A, Tai J, Chan Y, Sherman W, Basu S. Transcatheter injection-induced changes in human bone marrow-derived mesenchymal stem cells. Cell Transplant 2009; 18:1111-21. [PMID: 19650972 DOI: 10.3727/096368909x12483162197006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human mesenchymal stem cells (hMSC) are being administered by direct intramyocardial (IM) injection into patients with myocardial dysfunction with an objective to improve clinical status. However, surprisingly little attention has been directed to qualifying hMSC functionality beyond simple viability. In particular, the transit of hMSCs through a small-caliber needle lumen, the final fluidic pathway for all IM injection devices, may be especially prone to inducing unwarranted effects on cell function. This study evaluated the changes in clonogenicity, gene expression, and cytokine secretion that may be induced in hMSC (20 million/ml) by injection through a 26-gauge Nitinol needle at two different flow rates compared to noninjected control samples. Results indicated that hMSC viability and colony forming unit (CFU) formation was not altered by changes in injection rate, although a trend toward lower titers was noted at the higher flow rate, for the specific batch of hMSCs studied. The gene expression and cytokine analysis data suggest that delivering a suspension of MSCs through narrow lumen needles may marginally alter certain gene expression programs, but that such in vitro effects are transient and not translated into measurable differences in protein production. Gene expression levels of four cytokines (bFGF, SDF-1, SCF, VEGF) were significantly different at 400 microl/min, and that of all cytokines were significantly different at 1600 microl/min when compared to controls (p < 0.05). These changes were less pronounced (statistically insignificant for most cases, p > 0.05) and, in certain instances directionally opposite, at 72 h. However, no differences in the amounts of secreted bFGF, VEGF, or TGF-beta were detectable at either of the two time points or flow rates. We infer that intramyocardial administration by transcatheter techniques is unlikely to interfere with the machinery required for cell replication or secretion of regulatory and other growth factors, which are the mainstays of MSC contribution to cardiac tissue repair and regeneration.
Collapse
|
35
|
Wong AP, Keating A, Lu WY, Duchesneau P, Wang X, Sacher A, Hu J, Waddell TK. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest 2009; 119:336-48. [PMID: 19164856 DOI: 10.1172/jci36882] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/03/2008] [Indexed: 02/05/2023] Open
Abstract
The bone marrow compartment is enriched in stem and progenitor cells, and an unidentified subpopulation of these cells can contribute to lung epithelial repair. Here we identify this subpopulation and quantitate its relative contribution to injured airway epithelium. A subpopulation of adherent human and murine bone marrow cells that expresses Clara cell secretory protein (CCSP) was identified using flow cytometry. When cultured at the air-liquid interface in ex vivo cultures, Ccsp+ cells expressed type I and type II alveolar markers as well as basal cell markers and active epithelial sodium channels. Ccsp+ cells preferentially homed to naphthalene-damaged airways when delivered transtracheally or intravenously, with the former being more efficient than the latter. Interestingly, naphthalene-induced lung damage transiently increased Ccsp expression in bone marrow and peripheral circulation. Furthermore, lethally irradiated Ccsp-null mice that received tagged wild-type bone marrow contained donor-derived epithelium in both normal and naphthalene-damaged airways. This study therefore identifies what we believe to be a newly discovered cell in the bone marrow that might have airway reconstitution potential in the context of cell-based therapies for lung disease. Additionally, these data could reconcile previous controversies regarding the contribution of bone marrow to lung regeneration.
Collapse
Affiliation(s)
- Amy P Wong
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, and the McEwen Centre in Regenerative Medicine, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Bi B, Guo J, Marlier A, Lin SR, Cantley LG. Erythropoietin expands a stromal cell population that can mediate renoprotection. Am J Physiol Renal Physiol 2008; 295:F1017-22. [PMID: 18653480 PMCID: PMC2576137 DOI: 10.1152/ajprenal.90218.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 07/21/2008] [Indexed: 01/13/2023] Open
Abstract
Recent studies have demonstrated that erythropoietin (EPO) receptors are expressed on tubular epithelial cells and that EPO can protect tubular cells from injury in vitro and in vivo. Separate studies have demonstrated that marrow stromal cells (MSCs) exert a renoprotective effect in ischemia-reperfusion and cisplatin tubular injury via the secretion of factors that reduce apoptosis and increase proliferation of tubular epithelial cells. In the present study we demonstrate that MSCs express EPO receptors and that EPO can protect MSCs from serum deprivation-induced cell death and can stimulate MSC proliferation in vitro. The administration of EPO to mice resulted in the expansion of CD45-Flk1-CD105+ MSCs in the bone marrow and in the spleen and mobilized these cells as well as CD45-Flk1+ endothelial progenitor cells into the peripheral circulation. Consistent with previous reports, the administration of EPO diminished the decline in renal function associated with cisplatin administration. This effect was partially reproduced by intraperitoneal injection of cultured EPO-mobilized cells in cisplatin-treated mice. Thus the in vivo expansion and/or activation of these cells may contribute to the renoprotective effects of EPO to protect tubular cells from toxic injury.
Collapse
Affiliation(s)
- Baoyuan Bi
- Yale University School of Medicine, 333 Cedar St., PO Box 208029, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
38
|
Endoglin-Mediated Vascular Remodeling: Mechanisms Underlying Hereditary Hemorrhagic Telangiectasia. Trends Cardiovasc Med 2008; 18:25-32. [DOI: 10.1016/j.tcm.2007.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 11/08/2007] [Accepted: 11/13/2007] [Indexed: 11/18/2022]
|
39
|
Zheng PP, Hop WC, Luider TM, Sillevis Smitt PAE, Kros JM. Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Ann Neurol 2007; 62:40-8. [PMID: 17503506 DOI: 10.1002/ana.21151] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Gliomas are among the highest vascularized tumors. We hypothesized that patients with gliomas have increased levels of circulating endothelial progenitor cells (EPCs) and circulating endothelial nitric oxide synthase (eNOS). METHODS The fraction of EPCs was quantified by fluorescence-activated cell sorter analysis using anti-CD34, -CD133 and -KDR (kinase insert domain receptor) monoclonal antibodies in unselected peripheral blood samples of 32 patients with gliomas. Control groups included 47 patients with other central nervous system tumors or diseases, 10 patients with recent ischemic strokes, and 19 healthy blood donors. The circulating eNOS concentration of plasma was measured by a colorimetric assay in the same samples. In addition, CD34(+)CD105(+) KDR(+) and CD34(+)CD146(+)KDR(-) cell fractions were measured. RESULTS The percentage of CD34(+)CD133(+)KDR(+) EPCs in the blood of glioma patients is significantly greater than that in the blood of patients with other central nervous system tumors or diseases (p = 0.003), stroke patients (p = 0.005), or healthy donors (p = 0.013). The plasma eNOS concentration is also significantly greater in glioma patients compared with each of the control groups (p < 0.001 for all groupwise comparisons). No significant differences in the levels of the EPCs or eNOS between any of the control groups were demonstrated. In the glioma patients, the level of eNOS correlated with the fraction of CD34(+)CD105(+)KDR(+) cells (r = 0.748; p = 0.008). INTERPRETATION The data are suggestive of increased mobilization of EPCs contributing to neoplastic vasculogenesis in glioma. The increased levels of EPCs and eNOS in the peripheral blood of glioma patients trigger further investigations as to their value as independent parameters for use in clinical practice.
Collapse
Affiliation(s)
- Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Dr. Molewaterplein 50, 3000 DR Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
40
|
Abstract
Endoglin (ENG), an ancillary receptor for several members of the transforming growth factor (TGF)-beta superfamily, has a well-studied role in endothelial function. Here, we report that endoglin also plays an important role early in development at the level of the hemangioblast, an embryonic progenitor of the hematopoietic and endothelial lineages. Eng(-/-), Eng(+/-) and Eng(+/+) mouse embryonic stem (ES) cells were differentiated as embryoid bodies (EBs) and assayed for blast colony-forming cells (BL-CFCs). Our results showed a profound reduction in hemangioblast frequency in the absence of endoglin. Furthermore, cell-sorting experiments revealed that endoglin marks the hemangioblast on day 3 of EB differentiation. When analyzed for hematopoietic and endothelial activity, replated Eng(-/-) BL-CFCs presented limited hematopoietic potential, whereas endothelial differentiation was unaltered. Analysis of hematopoietic colony formation of EBs, at different time points, further supports a function for endoglin in early hematopoiesis. Taken together, these findings point to a role for endoglin in both hemangioblast specification and hematopoietic commitment.
Collapse
Affiliation(s)
- Rita C R Perlingeiro
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9133, USA.
| |
Collapse
|
41
|
Ma YH, Mentlein R, Knerlich F, Kruse ML, Mehdorn HM, Held-Feindt J. Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol 2007; 86:31-45. [PMID: 17611714 DOI: 10.1007/s11060-007-9439-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 06/11/2007] [Indexed: 02/06/2023]
Abstract
According to new hypotheses astrocytomas/gliomas either arise from or attract neural stem cells. Biological markers, particularly antigenic markers, have played a significant role for the characterization of these tumour stem cells (TSCc). Because these studies have been performed with single experimental samples mostly from gliomas, we investigated the expression of the stem cell markers CD133/Prominin, Nestin, Sox-2, Musashi-1, CXCR4, Flt-4/VEGFR-3 and CD105/Endoglin in 72 astrocytomas of different WHO-grades and compared it to normal adult human brain. Expression of their mRNA was quantified by quantitative RT-PCR, of their protein by counting immunopositive cells. In contrast to normal brain, tumour samples showed a high variability for the expression of all markers. However, their mean expression was significantly increased in astrocytomas, but this depended on the WHO grade only for CD133, Nestin, Sox-2 and Musashi-1. Confocal microscopy revealed that these markers mostly could be co-stained with glial fibrillary acidic protein, a marker for astoglial cells, but less frequently with the proliferation marker Ki-67/MIB-1. These markers sometimes, but not necessarily could be co-stained with each other in complex patterns. Our results show that most astrocytomas contain considerable portions of cells expressing stem cell markers. It appears that some of these cells originate from tumour genesis (supporting the stem cell hypothesis) while others are attracted by the tumours. Further functional markers are required to differentiate these TSC-types.
Collapse
Affiliation(s)
- Yue-Hui Ma
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, Campus Kiel, Schittenhelmstr. 10, 24105, Kiel, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Seggewiss R, Einsele H. Hematopoietic Growth Factors Including Keratinocyte Growth Factor in Allogeneic and Autologous Stem Cell Transplantation. Semin Hematol 2007; 44:203-11. [PMID: 17631184 DOI: 10.1053/j.seminhematol.2007.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of hematopoietic stem cell transplantation (HSCT) is to cure patients of malignancies, autoimmune diseases, and immunodeficiency disorders by redirecting the immune system: the often described graft-versus-leukemia (GVL) or graft-versus-tumor (GVT) effects. Unfortunately, fulfillment of this goal is often hampered by relapse of the underlying disease, graft-versus-host disease (GVHD), or severe opportunistic infections, which account for the majority of post-transplantation deaths. Moreover, studies of long-term survivors of transplantation indicate an accelerated immune aging due to the transplantation procedure itself, preceding chemo- or radiotherapy, and acute and chronic GVHD. Significant advances have been made towards overcoming these obstacles by enhancing immune reconstitution with hematopoietic growth factors (HGFs) such as granulocyte colony-stimulating factor (G-CSF) or erythropoietin (EPO) or through the application of cytokines. In addition, there are approaches to promote the thymic-dependent development of naive T cells, which are prepared for the interaction with a multitude of pathogens. Examples are the application of keratinocyte growth factor (KGF), neuroendocrine hormones such as growth hormone or prolactin, sex hormone ablation, or the invention of a three-dimensional artificial thymus based on a cytomatrix. Might these measures result in a higher rate of healthy and fully recovered patients? Here we review progress in each of these areas.
Collapse
Affiliation(s)
- Ruth Seggewiss
- Department of Internal Medicine II, Julius-Maximilians-University, Würzburg, Germany
| | | |
Collapse
|
43
|
Rogers I, Yamanaka N, Bielecki R, Wong CJ, Chua S, Yuen S, Casper RF. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Exp Cell Res 2007; 313:1839-52. [PMID: 17433293 DOI: 10.1016/j.yexcr.2007.02.029] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 01/30/2023]
Abstract
We report on a subset of cells that co-purify with CD45-positive/Lineage minus (CD45(pos)/Lin(minus)) hematopoietic cells that are capable of in vitro differentiation into multi-potential cells including cells with neuroectoderm properties. Although these cells are CD45 positive and have properties similar to CD45-negative mesenchymal progenitor cells (MPC) derived from bone marrow (BM), they are neither hematopoietic cells nor mesenchymal cells. These CD45(pos)/Lin(minus) cells can be expanded in vitro, express the stem cell genes Oct-4 and Nanog and can be induced to differentiate into endothelial cells, osteoblasts, muscle cells and neural cells at frequencies similar to those reported for bone marrow mesenchymal cells. Long-term culture of these cells followed by transplantation into NOD/SCID mice resulted in positive bone marrow stromal cell engraftment but not hematopoietic engraftment, suggesting that despite their CD45-positive status these cells do not have the same properties as hematopoietic stem cells. Clonal cell analysis determined that the culture period caused a broadening in the differentiation potential of the starting population.
Collapse
Affiliation(s)
- Ian Rogers
- Department of Obstetrics and Gynaecology, Rm. 876 Samuel Lunenfeld Research Institute, Mount Sinai Hospital and the University of Toronto, 600 University Ave, Toronto, Ontario, Canada M5G 1X5.
| | | | | | | | | | | | | |
Collapse
|
44
|
Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 2007; 115:896-908. [PMID: 17283259 DOI: 10.1161/circulationaha.106.655209] [Citation(s) in RCA: 840] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ex vivo expansion of resident cardiac stem cells, followed by delivery to the heart, may favor regeneration and functional improvement. METHODS AND RESULTS Percutaneous endomyocardial biopsy specimens grown in primary culture developed multicellular clusters known as cardiospheres, which were plated to yield cardiosphere-derived cells (CDCs). CDCs from human biopsy specimens and from comparable porcine samples were examined in vitro for biophysical and cytochemical evidence of cardiogenic differentiation. In addition, human CDCs were injected into the border zone of acute myocardial infarcts in immunodeficient mice. Biopsy specimens from 69 of 70 patients yielded cardiosphere-forming cells. Cardiospheres and CDCs expressed antigenic characteristics of stem cells at each stage of processing, as well as proteins vital for cardiac contractile and electrical function. Human and porcine CDCs cocultured with neonatal rat ventricular myocytes exhibited biophysical signatures characteristic of myocytes, including calcium transients synchronous with those of neighboring myocytes. Human CDCs injected into the border zone of myocardial infarcts engrafted and migrated into the infarct zone. After 20 days, the percentage of viable myocardium within the infarct zone was greater in the CDC-treated group than in the fibroblast-treated control group; likewise, left ventricular ejection fraction was higher in the CDC-treated group. CONCLUSIONS A method is presented for the isolation of adult human stem cells from endomyocardial biopsy specimens. CDCs are cardiogenic in vitro; they promote cardiac regeneration and improve heart function in a mouse infarct model, which provides motivation for further development for therapeutic applications in patients.
Collapse
|
45
|
Gentry T, Foster S, Winstead L, Deibert E, Fiordalisi M, Balber A. Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy 2007; 9:259-74. [PMID: 17464758 DOI: 10.1080/14653240701218516] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND ALDH(br) cells express high aldehyde dehydrogenase (ALDH) activity and have progenitor cell activity in several contexts. We characterized human BM ALDH(br) cells to determine whether cell sorting based on ALDH activity isolates potentially useful populations for cell therapy. METHOD We measured the expression of ALDH and cell-surface Ag by flow cytometry and compared the ability of sorted ALDH(br), and BM populations remaining after ALDH(br) cells were removed (ALDH(dim) populations), to develop into several cell lineages in culture. RESULTS The ALDH(br) population comprised 1.2+/-0.8% (mean+/-SD, n=30) nucleated cells and was enriched in cells expressing CD34, CD117, CD105, CD127, CD133 and CD166, and in primitive CD34(+) CD38(-) and CD34(+) CD133(+) progenitors. Most of the CD34(+) and CD133(+) cells were ALDH(dim). ALDH(br) populations had 144-fold more hematopoietic colony-forming activity than ALDH(dim) cells and included all megakaryocyte progenitors. ALDH(br) populations readily established endothelial cell monolayers in cultures. Cells generating endothelial colonies in 7 days were 435-fold more frequent in ALDH(br) than ALDH(dim) populations. CFU-F were 9.5-fold more frequent in ALDH(br) than ALDH(dim) cells, and ALDH(br) cells gave rise to multipotential mesenchymal cell cultures that could be driven to develop into adipocytes, osteoblasts and chondrocytes. DISCUSSION Hematopoietic, endothelial and mesenchymal progenitor cells can be isolated simultaneously from human BM by cell sorting based on ALDH activity. BM ALDH(br) populations may be useful in several cell therapy applications.
Collapse
Affiliation(s)
- T Gentry
- Aldagen Inc., Durham, North Carolina 27713, USA
| | | | | | | | | | | |
Collapse
|
46
|
Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E, Gioia M, Bonanno A, Profita M, Bellia V, Testa U, Bonsignore MR. Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1496-503. [PMID: 16020520 DOI: 10.1152/ajpregu.00338.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Marathon runners show increased circulating CD34+ cell counts and postexercise release of interleukin-6 (IL-6), granulocyte-colony stimulating factor (G-CSF) and flt3-ligand (Bonsignore MR, Morici G, Santoro A, Pegano M, Cascio L, Bonnano A, Abate P, Mirabella F, Profita M, Insalaco G, Gioia M, Vignola AM, Majolino I, Testa U, and Hogg JC. J Appl Physiol 93: 1691–1697, 2002). In the present study we hypothesized that supramaximal (“all-out”) exercise may acutely affect circulating progenitors and reticulocytes and investigated possible mechanisms involved. Progenitor release was measured by flow cytometry ( n = 20) and clonogenic assays ( n = 6) in 20 young competitive rowers (13 M, 7 F, age ± SD: 17.1 ± 2.1 yr, peak O2consumption: 56.5 ± 11.4 ml·min−1·kg−1) at rest and shortly after 1,000 m “all-out.” Release of reticulocytes, cortisol, muscle enzymes, neutrophil elastase, and several cytokines/growth factors was measured. Supramaximal exercise doubled circulating CD34+ cells (rest: 7.6 ± 3.0, all-out: 16.3 ± 9.1 cells/μl, P < 0.001), and increased immature reticulocyte fractions; AC133+ cells doubled, suggesting release of angiogenetic precursors. Erythrocyte burst forming units and colony forming units for granulocytes-monocytes and all blood series increased postexercise by 3.4-, 5.5-, and 4.8-fold, respectively ( P < 0.01 for all). All-out rowing acutely increased plasma cortisol, neutrophil elastase, flt3-ligand, hepatocyte growth factor, VEGF, and transforming growth factor-β1, and decreased erythropoietin; K-ligand, stromal-derived factor-1, IL-6, and G-CSF were unchanged. Therefore, all-out exercise is a physiological stimulus for progenitor release in athletes. Release of reticulocytes and proangiogenetic cells and mediators suggests tissue hypoxia as possibly involved in progenitor mobilization.
Collapse
Affiliation(s)
- Giuseppe Morici
- Department of Experimental Medicine, University of Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Onoe T, Ohdan H, Tokita D, Shishida M, Tanaka Y, Hara H, Zhou W, Ishiyama K, Mitsuta H, Ide K, Asahara T. Liver sinusoidal endothelial cells tolerize T cells across MHC barriers in mice. THE JOURNAL OF IMMUNOLOGY 2005; 175:139-46. [PMID: 15972640 DOI: 10.4049/jimmunol.175.1.139] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although livers transplanted across MHC barriers in mice are normally accepted without recipient immune suppression, the underlying mechanisms remain to be clarified. To identify the cell type that contributes to induction of such a tolerance state, we established a mixed hepatic constituent cell-lymphocyte reaction (MHLR) assay. Irradiated C57BL/6 (B6) or BALB/c mouse hepatic constituent cells (HCs) and CFSE-labeled B6 splenocytes were cocultured. In allogeneic MHLR, whole HCs did not promote T cell proliferation. When liver sinusoidal endothelial cells (LSECs) were depleted from HC stimulators, allogeneic MHLR resulted in marked proliferation of reactive CD4(+) and CD8(+) T cells. To test the tolerizing capacity of the LSECs toward alloreactive T cells, B6 splenocytes that had transmigrated through monolayers of B6, BALB/c, or SJL/j LSECs were restimulated with irradiated BALB/c splenocytes. Nonresponsiveness of T cells that had transmigrated through allogeneic BALB/c LSECs and marked proliferation of T cells transmigrated through syngeneic B6 or third-party SJL/j LSECs were observed after the restimulation. Transmigration across the Fas ligand-deficient BALB/c LSECs failed to render CD4(+) T cells tolerant. Thus, we demonstrate that Fas ligand expressed on naive LSECs can impart tolerogenic potential upon alloantigen recognition via the direct pathway. This presents a novel relevant mechanism of liver allograft tolerance. In conclusion, LSECs are capable of regulating a polyclonal population of T cells with direct allospecificity, and the Fas/Fas ligand pathway is involved in such LSEC-mediated T cell regulation.
Collapse
Affiliation(s)
- Takashi Onoe
- Department of Surgery, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Boiret N, Rapatel C, Veyrat-Masson R, Guillouard L, Guérin JJ, Pigeon P, Descamps S, Boisgard S, Berger MG. Characterization of nonexpanded mesenchymal progenitor cells from normal adult human bone marrow. Exp Hematol 2005; 33:219-25. [PMID: 15676216 DOI: 10.1016/j.exphem.2004.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/25/2004] [Accepted: 11/01/2004] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Adult bone marrow (BM) mesenchymal stem/progenitor cells (MS/PC) are a potentially useful tool for cell therapy and tissue repair. However, the identification of cell subsets rich in MS/PC from fresh BM has not been described. We have developed a means of identifying such subsets from untouched bone marrow. MATERIAL AND METHODS First, MS/PC were enriched by short-time adherence (D(1-3)) before any cell division to evaluate the efficiency of CD73, CD105, CDw90, and CD49a antigens to select highly purified CD45(-)CD14(-) fluorescence-activated sorted subsets enriched in clonogenic mesenchymal cells. Then, we adapted this method to unmanipulated BM mononuclear cells (MNC). RESULTS Short-time (D(1-3)) adherent CD45(-)CD14(-) cells expressing CD73 or CD49a antigens contained all the CFU-F, even though the CD105(+) and CDw90(+) subsets comprised less than half the total. In fresh unmanipulated BM MNC, CD73 and CD49a were also highly discriminative and allowed up to a 3 log enrichment of CFU-F when compared to BM MNC. Normal culture conditions upregulated most of the tested antigens. CONCLUSION The CD45(-)CD14(-)/CD73(+) and CD45(-)CD14(-)/CD49a(+) phenotypes identified subsets containing all the CFU-F and sufficiently enriched to detect them in fresh BM, enabling evaluation of mesenchymal content of BM collections for cell therapy.
Collapse
Affiliation(s)
- Nathalie Boiret
- Hématologie Biologique, U.F. de Biologie et Caractérisation Cellulaires, Faculté de Médecine et de Pharmacie, Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The transforming growth factor-beta (TGF-beta) superfamily of receptors comprises two groups of transmembrane serine-threonine kinase receptors, so called type I, and type II receptors, that are activated following engagement by members of the TGF-beta superfamily of ligands. These events specify diverse downstream responses that are differentially regulated by controlling access and activation of the ligands, their receptors and downstream substrates in different cell types. The purpose of this review is to describe the biochemical properties of these receptors, focusing specifically on the mechanisms regulating receptor/ligand interactions and activation in mammalian cells.
Collapse
Affiliation(s)
- Mark de Caestecker
- Division of Nephrology, S-3223 Medical Center North, 1161 21st Street S, Nashville, TN 37232-2372, USA.
| |
Collapse
|
50
|
Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2004; 2:e301. [PMID: 15459755 PMCID: PMC520599 DOI: 10.1371/journal.pbio.0020301] [Citation(s) in RCA: 262] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 07/13/2004] [Indexed: 12/05/2022] Open
Abstract
Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts. Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may correlate with acquisition of self renewal characteristics by cancer stem cells. This comprehensive study of gene expression in hematopoietic stem cells reveals some key cellular changes that occur when the stem cells transition from quiescence to proliferation and back again
Collapse
Affiliation(s)
- Teresa A Venezia
- 1Cell and Molecular Biology Program, Baylor College of MedicineHouston, TexasUnited States of America
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
| | - Akil A Merchant
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 3Department of Medicine, Baylor College of MedicineHouston, TexasUnited States of America
| | - Carlos A Ramos
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 3Department of Medicine, Baylor College of MedicineHouston, TexasUnited States of America
| | - Nathan L Whitehouse
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Andrew S Young
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Chad A Shaw
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Margaret A Goodell
- 1Cell and Molecular Biology Program, Baylor College of MedicineHouston, TexasUnited States of America
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
- 5Department of Pediatrics, Baylor College of MedicineHouston, TexasUnited States of America
| |
Collapse
|