1
|
Hwang HJ, Yoon H, Cho JH, Lee S, Hwang KA, Kim YJ. Immature Sword Bean ( Canavalia gladiata) Pod Alleviates Allergic Rhinitis (A Double-Blind Trial) Through PI3K/Akt/mTOR Signaling. Nutrients 2025; 17:468. [PMID: 39940325 PMCID: PMC11820081 DOI: 10.3390/nu17030468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
Background: Allergic rhinitis is an IgE-mediated condition of nasal congestion, runny nose, and sneezing which significantly impairs the quality of life. Current treatments, including antihistamines, often have long-term side effects, leading patients to seek safer alternatives. Objectives: Therefore, in this study, we aimed to evaluate the symptom relief efficacy of immature sword bean pod (SBP) extract, a natural material, in patients with allergic rhinitis, explore the mechanisms by which SBP regulates allergic immune responses, and evaluate its efficacy and safety as a functional ingredient in the management of allergic rhinitis. Methods: In a double-blind, placebo-controlled, randomized trial involving 64 participants with perennial allergic rhinitis, the subjects were assigned to receive either SBP or placebo orally for six weeks. Results: The SBP group exhibited significant improvements in nasal congestion (interaction p = 0.031), RQLQ (interaction p = 0.001), sleep (interaction p = 0.004), systemic reaction (interaction p = 0.002), daily life (interaction p = 0.047), and nasal symptoms (interaction p = 0.002). SBP treatment in EoL-1 and HMC-1 cells also led to a notable reduction in eosinophil cationic protein levels (p < 0.05), a key biomarker of allergic inflammation, by inhibiting PI3K/Akt/mTOR activation, resulting in decreased eosinophil activity. Conclusions: These findings suggest that the SBP extract is a promising natural treatment for allergic rhinitis, offering both efficacy and safety by improving key symptoms and reducing inflammatory responses.
Collapse
Affiliation(s)
- Hye-Jeong Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
- Department of Food and Biotechnology, Korea University, Sejong-si 30019, Republic of Korea;
| | - Hyeock Yoon
- Department of Food and Biotechnology, Korea University, Sejong-si 30019, Republic of Korea;
| | - Joo-Hyung Cho
- Myongji Bioefficacy Research Center, Myongji University, Yongin-si 17058, Republic of Korea;
| | - Seong Lee
- Biomedical Research Institute, Dankook University Hospital, Cheonan-si 31116, Republic of Korea;
| | - Kyung-A Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong-si 30019, Republic of Korea;
| |
Collapse
|
2
|
Giotakis AI, Dudas J, Glueckert R, Buechel E, Riechelmann H. Identification of neutrophils and eosinophils in upper airway mucosa with immunofluorescence multiplex image cytometry. Histochem Cell Biol 2024:10.1007/s00418-024-02284-y. [PMID: 38600336 DOI: 10.1007/s00418-024-02284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Characterization of inflammation in chronic rhinosinusitis with (CRSwNP) and without nasal polyps (CRSsNP) is an ongoing research process. To overcome limitations of current cytologic techniques, we investigated whether immunofluorescence multiplex image cytometry could quantify intact neutrophils, eosinophils, and other immune cells in solid upper airway mucosa. We used a four-channel immunofluorescence-microscopy technique for the simultaneous detection of the leukocyte marker CD45, the neutrophil marker myeloperoxidase, two eosinophil markers, i.e., major basic protein and eosinophil peroxidase, and DAPI (4',6-diamidin-2-phenylindole), in formalin-fixed paraffin-embedded upper airway tissue samples of patients with CRSwNP and CRSsNP, as well as of patients free of CRS with inferior turbinate hypertrophy (controls). Image acquisition and analysis were performed with TissueFAXS and StrataQuest (TissueGnostics, Vienna, Austria), respectively. Positive and negative immunostaining were differentiated with a specific fluorescence signal/background signal ratio. Isotype controls were used as negative controls. In six controls, nine patients with CRSsNP, and 11 patients with CRSwNP, the median area scanned and median cell count per patient were 14.2 mm2 and 34,356, respectively. In CRSwNP, the number of eosinophils was three times higher (23%) than that of neutrophils (7%). Three times more immune cells were encountered in CRSwNP (33%) compared to CRSsNP (11%). In controls, inflammation was balanced between the epithelial layer and lamina propria, in contrast to CRS (three times more pronounced inflammation in the lamina propria). The quantification of intact neutrophils, eosinophils, and other immune cells in solid tissue with undisrupted architecture seems feasible with immunofluorescence multiplex image cytometry.
Collapse
Affiliation(s)
- Aris I Giotakis
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - József Dudas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Rudolf Glueckert
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Elias Buechel
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
3
|
Kwon EK, Choi Y, Sim S, Ye YM, Shin YS, Park HS, Ban GY. Cannabinoid receptor 2 as a regulator of inflammation induced oleoylethanolamide in eosinophilic asthma. J Allergy Clin Immunol 2024; 153:998-1009.e9. [PMID: 38061443 DOI: 10.1016/j.jaci.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Oleoylethanolamide (OEA), an endogenously generated cannabinoid-like compound, has been reported to be increased in patients with severe asthma and aspirin-exacerbated respiratory disease. Recruitment of activated eosinophils in the airways is a hallmark of bronchial asthma. OBJECTIVE We explored the direct contribution of cannabinoid receptor 2 (CB2), a cognate receptor of OEA, which induces eosinophil activation in vitro and in vivo. METHODS We investigated OEA signaling in the eosinophilic cell line dEol-1 in peripheral blood eosinophils from people with asthma. In order to confirm whether eosinophil activation by OEA is CB2 dependent or not, CB2 small interfering RNA and the CB2 antagonist SR144528 were used. The numbers of airway inflammatory cells and the levels of cytokines were measured in bronchoalveolar lavage fluid, and airway hyperresponsiveness was examined in the BALB/c mice. RESULTS CB2 expression was increased after OEA treatment in both peripheral blood eosinophils and dEol-1 cells. It was also elevated after OEA-induced recruitment of eosinophils to the lungs in vivo. However, SR144528 treatment reduced the activation of peripheral blood eosinophils from asthmatic patients. Furthermore, CB2 knockdown decreased the activation of dEol-1 cells and the levels of inflammatory and type 2 cytokines. SR144528 treatment alleviated airway hyperresponsiveness and eosinophil recruitment to the lungs in vivo. CONCLUSION CB2 may contribute to the pathogenesis of eosinophilic asthma. Our results provide new insight into the molecular mechanism of signal transduction by OEA in eosinophilic asthma.
Collapse
Affiliation(s)
- Eun-Kyung Kwon
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea; Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
4
|
Oylumlu E, Uzel G, Durmus L, Ciraci C. IgE Immune Complexes Mitigate Eosinophilic Immune Responses through NLRC4 Inflammasome. Mediators Inflamm 2023; 2023:3224708. [PMID: 37885469 PMCID: PMC10599938 DOI: 10.1155/2023/3224708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Immune complexes (ICs) skew immune responses toward either a pro- or anti-inflammatory direction based on the type of stimulation. Immunoglobulin E (IgE) is associated with Th2 immune responses and known to activate innate immune cells. However, roles of antigen (Ag)-specific-IgE ICs in regulating human eosinophil responses remain elusive; therefore, this study builts upon the mechanism of which ovalbumin (Ova)-IgE ICs affects eosinophilic responses utilizing human EoL-1 cell line as a model. Eosinophils are granulocytes functioning through pattern recognition receptors (PRRs) and destructive granule contents in allergic inflammation and parasitic infections. One of the PRRs that eosinophils express is NLRC4, a member of the CARD domain containing nucleotide-binding oligomerization (NOD)-like receptor (NLR) family. Upon recognition of its specific ligand flagellin, NLRC4 inflammasome is formed and leads to the release of interleukin-1β (IL-1β). We exhibited that Ova-IgE ICs induced the NLRC4-inflammasome components, including NLRC4, caspase-1, intracellular IL-1β, and secretion of IL-1β, as well as the granule contents MMP9, TIMP1, and TIMP2 proteins via TLR2 signaling; these responses were suppressed, when NLRC4 inflammasome got actived in the presence of ICs. Furthermore, Ova-IgE ICs induced mRNA expressions of MMP9, TIMP2, and ECP and protein expressions of MMP9 and TIMP2 in EoL-1 through FcɛRII. Interestingly, TLR2 ligand and Ova-IgE ICs costimulation elevated the number of CD63+ cells, a degranulation marker, as compared to the native IgE. Collectively, our findings provide a mechanism for the impacts of Ova-IgE ICs on eosinophilic responses via NLRC4-inflammasome and may help understand eosinophil-associated diseases, including chronic eosinophilic pneumonia, eosinophilic esophagitis, eosinophilic granulomatosis, parasitic infections, allergy, and asthma.
Collapse
Affiliation(s)
- Ece Oylumlu
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
5
|
Bernadyn TF, Vizurraga A, Adhikari R, Kwarcinski F, Tall GG. GPR114/ADGRG5 is activated by its tethered peptide agonist because it is a cleaved adhesion GPCR. J Biol Chem 2023; 299:105223. [PMID: 37673336 PMCID: PMC10622838 DOI: 10.1016/j.jbc.2023.105223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Family B2 or adhesion G protein-coupled receptors (AGPCRs) are distinguished by variable extracellular regions that contain a modular protease, termed the GPCR autoproteolysis-inducing domain that self-cleaves the receptor into an N-terminal fragment (NTF) and a C-terminal fragment (CTF), or seven transmembrane domain (7TM). The NTF and CTF remain bound after cleavage through noncovalent interactions. NTF binding to a ligand(s) presented by nearby cells, or the extracellular matrix anchors the NTF, such that cell movement generates force to induce NTF/CTF dissociation and expose the AGPCR tethered peptide agonist. The released tethered agonist (TA) binds rapidly to the 7TM orthosteric site to activate signaling. The orphan AGPCR, GPR114 was reported to be uncleaved, yet paradoxically capable of activation by its TA. GPR114 has an identical cleavage site and TA to efficiently cleave GPR56. Here, we used immunoblotting and biochemical assays to demonstrate that GPR114 is a cleaved receptor, and the self-cleavage is required for GPR114 TA-activation of Gs and no other classes of G proteins. Mutagenesis studies defined features of the GPR114 and GPR56 GAINA subdomains that influenced self-cleavage efficiency. Thrombin treatment of protease-activated receptor 1 leader/AGPCR fusion proteins demonstrated that acute decryption of the GPR114/56 TAs activated signaling. GPR114 was found to be expressed in an eosinophilic-like cancer cell line (EoL-1 cells) and endogenous GPR114 was efficiently self-cleaved. Application of GPR114 TA peptidomimetics to EoL-1 cells stimulated cAMP production. Our findings may aid future delineation of GPR114 function in eosinophil cAMP signaling related to migration, chemotaxis, or degranulation.
Collapse
Affiliation(s)
- Tyler F Bernadyn
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexander Vizurraga
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rashmi Adhikari
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank Kwarcinski
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
6
|
Uzel G, Oylumlu E, Durmus L, Ciraci C. Duality of Valproic Acid Effects on Inflammation, Oxidative Stress and Autophagy in Human Eosinophilic Cells. Int J Mol Sci 2023; 24:13446. [PMID: 37686250 PMCID: PMC10487571 DOI: 10.3390/ijms241713446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Eosinophils function in rapid innate immune responses and allergic reactions. Recent research has raised the possibility that the histone deacetylase inhibitor valproic acid (VPA) may be a promising therapeutic agent for treatment of allergic responses and certain cancers. However, its effects on eosinophils remain unclear. Utilizing the EoL-1 human eosinophil cell line as a model, we investigated the effects of VPA on oxidative stress- and autophagy-mediated immune responses. We found that VPA induced reactive oxidative species (ROS) generation and eosinophil activation without affecting cell viability. Moreover, VPA treatment suppressed the negative regulator of antioxidant transcription factor Nrf2, which is known to activate antioxidant defense. Interestingly, VPA was able to increase autophagic markers, as well as NLRP3 and NLRC4 mRNA activation, in Eol-1 cells in a dose-dependent manner. Collectively, our results indicate that VPA could increase the severity of allergic responses, and if so, it clearly would not be a suitable drug for the treatment of allergic reactions. However, VPA does have the potential to induce autophagy and to regulate the inflammatory responses via inflammasome-driven caspase-1 deactivation in a dose-dependent manner.
Collapse
Affiliation(s)
| | | | | | - Ceren Ciraci
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey; (G.U.); (E.O.); (L.D.)
| |
Collapse
|
7
|
MiR-223-3p regulates the eosinophil degranulation and enhances the inflammation in allergic rhinitis by targeting FBXW7. Int Immunopharmacol 2023; 118:110007. [PMID: 36924565 DOI: 10.1016/j.intimp.2023.110007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES MiR-223-3p is a multifunctional microRNA regulated by multiple transcription factors and plays a critical role in inflammation. This paper was designed to investigate the regulatory role and mechanism of miR-223-3p in eosinophils degranulation and allergic rhinitis (AR) inflammation. METHODS OVA sensitized AR mouse model and EOL-1 cells model were established. RT-qPCR and FISH were performed to detect the miR-223-3p expression. ELISA and WB were utilized to evaluate mRNA and protein expression. HE staining and transmission electron microscopy were applied to observe the morphological changes in nasal mucosa. Flow cytometry and immunofluorescence staining were performed to measure the proportion of eosinophils and eosinophilic major basic protein expression. The targeting relationship between miR-223-3p and FBXW7 was verified by bioinformatic analysis and dual-luciferase reporter gene assay. The expression of FBXW7 was detected by immunohistochemistry. RESULTS The level of miR-223-3p in nasal mucosa was significantly up-regulated in AR group. The expression of miR-223-3p, ECP, MBP, and EPO were increased in EOL-1 cells, further increasing the miR-223-3p level could promote the ECP and EPO mRNA expression. Upregulation of miR-223-3p increased eosinophils granule protein expression, aggravated mucosal destruction and enhanced AR inflammation. Luciferase assay verified miR-223-3p directly target the 3'-UTR of FBXW7. In vitro, overexpression of FBXW7 could reverse the increase in MBP expression caused by the up-regulation of miR-223-3p. In vivo, knockdown of FBXW7 could reverse the down-regulation in granule protein level caused by the down-regulation of miR-223-3p, thereby aggravating AR inflammation. CONCLUSION Collected evidence elucidated that miR-223-3p could regulate the eosinophil degranulation and enhances the inflammation in AR by targeting FBXW7. The miR-223-3p/FBXW7 axis may provide a novel approach for AR treatment.
Collapse
|
8
|
Yang HW, Park JH, Jo MS, Shin JM, Kim DW, Park IH. Eosinophil-Derived Osteopontin Induces the Expression of Pro-Inflammatory Mediators and Stimulates Extracellular Matrix Production in Nasal Fibroblasts: The Role of Osteopontin in Eosinophilic Chronic Rhinosinusitis. Front Immunol 2022; 13:777928. [PMID: 35309360 PMCID: PMC8924074 DOI: 10.3389/fimmu.2022.777928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Eosinophilic chronic rhinosinusitis (ECRS) is a subtype of chronic rhinosinusitis (CRS) and is a refractory or intractable disease. However, a reliable clinical marker or an effective treatment strategy has not yet been established. ECRS is accompanied by excessive eosinophil infiltration and Th2 inflammatory response, which is closely related to tissue remodeling in the upper airways. Objectives We sought to investigate the effect of eosinophils on tissue remodeling in ECRS. The purpose of this study was to identify the effects of eosinophils on the expression of pro-inflammatory mediators and extracellular matrix (ECM) in nasal fibroblasts and the key mediators that stimulate them. Methods Butyric acid was used to differentiate EOL-1 cells into eosinophils. We co-cultured differentiated EOL-1 cells and fibroblasts to measure the expression of pro-inflammatory mediators and ECM in fibroblasts. Among the cytokines secreted from the differentiated EOL-1 cells, factors that induced tissue remodeling of fibroblasts were identified. Results Treatment with butyric acid (BA) differentiated EOL-1 cells into eosinophils. Differentiated EOL-1 cells induced fibroblasts to produce pro-inflammatory mediators, IL-6 and IL-8, and tissue remodeling factor, VEGF. It also induced myofibroblast differentiation and overexpression of ECM components. Differentiated EOL-1 cells overexpressed osteopontin (OPN), and recombinant OPN increased the expression of IL-6, IL-8, VEGF, and ECM components in nasal fibroblast. OPN was overexpressed in the nasal tissue of patients with ECRS and was associated with the severity of CRS. Conclusions Eosinophil-derived OPN stimulated nasal fibroblasts and contributed to inflammation and tissue remodeling in ECRS. Moreover, the expression level of OPN was proportional to the severity of ECRS. Therefore, OPN regulation is a potential treatment for ECRS.
Collapse
Affiliation(s)
- Hyun-Woo Yang
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Joo-Hoo Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Min-Sik Jo
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea
| | - Jae-Min Shin
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Device Usability Test Center, Guro Hospital, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Il-Ho Park
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University College of Medicine, Seoul, South Korea.,Medical Device Usability Test Center, Guro Hospital, Korea University College of Medicine, Seoul, South Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Akkaya I, Oylumlu E, Ozel I, Uzel G, Durmus L, Ciraci C. NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions. Immune Netw 2022; 21:e42. [PMID: 35036029 PMCID: PMC8733190 DOI: 10.4110/in.2021.21.e42] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.
Collapse
Affiliation(s)
- Ilgin Akkaya
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ece Oylumlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Irem Ozel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Goksu Uzel
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Lubeyne Durmus
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey
| | - Ceren Ciraci
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul 34469, Turkey.,Inflammation Program, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Identification of inflammatory markers in eosinophilic cells of the immune system: fluorescence, Raman and CARS imaging can recognize markers but differently. Cell Mol Life Sci 2021; 79:52. [PMID: 34936035 PMCID: PMC8739296 DOI: 10.1007/s00018-021-04058-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022]
Abstract
Eosinophils (Eos) play an important role in the immune system’s response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1β, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation.
Collapse
|
11
|
Borchert C, Herman A, Roth M, Brooks AC, Friedenberg SG. RNA sequencing of whole blood in dogs with primary immune-mediated hemolytic anemia (IMHA) reveals novel insights into disease pathogenesis. PLoS One 2020; 15:e0240975. [PMID: 33091028 PMCID: PMC7580939 DOI: 10.1371/journal.pone.0240975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022] Open
Abstract
Immune-mediated hemolytic anemia (IMHA) is a life-threatening autoimmune disorder characterized by a self-mediated attack on circulating red blood cells. The disease occurs naturally in both dogs and humans, but is significantly more prevalent in dogs. Because of its shared features across species, dogs offer a naturally occurring model for studying IMHA in people. In this study, we used RNA sequencing of whole blood from treatment-naïve dogs to study transcriptome-wide changes in gene expression in newly diagnosed animals compared to healthy controls. We found many overexpressed genes in pathways related to neutrophil function, coagulation, and hematopoiesis. In particular, the most highly overexpressed gene in cases was a phospholipase scramblase, which mediates the externalization of phosphatidylserine from the inner to the outer leaflet of cell membranes. This family of genes has been shown to be critically important for programmed cell death of erythrocytes as well as the initiation of the clotting cascade. Unexpectedly, we found marked underexpression of many genes related to lymphocyte function. We also identified groups of genes that are highly associated with the inflammatory response and red blood cell regeneration in affected dogs. We did not find any genes that distinguished dogs that lived vs. those that died at 30 days following diagnosis, nor did we find any relevant genomic signatures of microbial organisms in the blood of affected animals. Future studies are warranted to validate these findings and assess their implication in developing novel therapeutic approaches for dogs and humans with IMHA.
Collapse
Affiliation(s)
- Corie Borchert
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - Adam Herman
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Megan Roth
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - Aimee C. Brooks
- Department of Veterinary Clinical Sciences, Purdue University College of Veterinary Medicine, West Lafayette, Indiana, United States of America
| | - Steven G. Friedenberg
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| |
Collapse
|
12
|
Nagel S, Pommerenke C, Meyer C, MacLeod RAF, Drexler HG. Aberrant expression of NKL homeobox genes HMX2 and HMX3 interferes with cell differentiation in acute myeloid leukemia. PLoS One 2020; 15:e0240120. [PMID: 33048949 PMCID: PMC7553312 DOI: 10.1371/journal.pone.0240120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
The NKL-code describes normal expression patterns of NKL homeobox genes in hematopoiesis. Aberrant expression of NKL homeobox gene subclass members have been reported in several hematopoietic malignancies including acute myeloid leukemia (AML). Here, we analyzed the oncogenic role of the HMX-group of NKL homeobox genes in AML. Public expression profiling data–available for HMX1 and HMX2—indicate aberrant activity of HMX2 in circa 2% AML patients overall, rising to 31% in those with KMT2A/MLL rearrangements whereas HMX1 expression remains inconspicuous. AML cell lines EOL-1, MV4-11 and MOLM-13 expressed both, HMX2 and neighboring HMX3 genes, and harbored KMT2A aberrations, suggesting their potential functional association. Surprisingly, knockdown experiments in these cell lines demonstrated that KMT2A inhibited HMX2/3 which, in turn, did not regulate KMT2A expression. Furthermore, karyotyping and genomic profiling analysis excluded rearrangements of the HMX2/3 locus in these cell lines. However, comparative expression profiling and subsequent functional analyses revealed that IRF8, IL7- and WNT-signalling activated HMX2/3 expression while TNFa/NFkB- signalling proved inhibitory. Whole genome sequencing of EOL-1 identified two mutations in the regulatory upstream regions of HMX2/3 resulting in generation of a consensus ETS-site and transformation of a former NFkB-site into an SP1-site. Reporter-gene assays demonstrated that both mutations contributed to HMX2/3 activation, modifying ETS1/ELK1- and TNFalpha-mediated gene regulation. Moreover, DMSO-induced eosinophilic differentiation of EOL-1 cells coincided with HMX2/3 downregulation while knockdown of HMX2 induced cell differentiation, collectively supporting a fundamental role for these genes in myeloid differentiation arrest. Finally, target genes of HMX2/3 were identified in EOL-1 and included suppression of differentiation gene EPX, and activation of fusion gene FIP1L1-PDGFRA and receptor-encoding gene HTR7, both of which enhanced oncogenic ERK-signalling. Taken together, our study documents a leukemic role for deregulated NKL homeobox genes HMX2 and HMX3 in AML, revealing molecular mechanisms of myeloid differentiation arrest.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A. F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
13
|
Akula S, Paivandy A, Fu Z, Thorpe M, Pejler G, Hellman L. How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells. Cells 2020; 9:cells9092118. [PMID: 32957735 PMCID: PMC7564378 DOI: 10.3390/cells9092118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 01/09/2023] Open
Abstract
Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells. We found several important transcripts that were expressed at very high levels in peritoneal MCs, but were almost totally absent from the BMMCs, including the major chymotryptic granule protease Mcpt4, the neurotrophin receptor Gfra2, the substance P receptor Mrgprb2, the metalloprotease Adamts9 and the complement factor 2 (C2). In addition, there were a number of other molecules that were expressed at much higher levels in peritoneal MCs than in BMMCs, including the transcription factors Myb and Meis2, the MilR1 (Allergin), Hdc (Histidine decarboxylase), Tarm1 and the IL-3 receptor alpha chain. We also found many transcripts that were highly expressed in BMMCs but were absent or expressed at low levels in the peritoneal MCs. However, there were also numerous MC-related transcripts that were expressed at similar levels in the two populations of cells, but almost absent in peritoneal macrophages and B cells. These results reveal that the transcriptome of BMMCs shows many similarities, but also many differences to that of tissue MCs. BMMCs can thereby serve as suitable models in many settings concerning the biology of MCs, but our findings also emphasize that great care should be taken when extrapolating findings from BMMCs to the in vivo function of tissue-resident MCs.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Aida Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; (A.P.); (G.P.)
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.); (M.T.)
- Correspondence: ; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862
| |
Collapse
|
14
|
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells 2020; 9:cells9092041. [PMID: 32906767 PMCID: PMC7563840 DOI: 10.3390/cells9092041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocytes are a part of the immune system that plays an important role in the host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells’ types. To prove this hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
Collapse
|
15
|
Rygula A, Fernandes RF, Grosicki M, Kukla B, Leszczenko P, Augustynska D, Cernescu A, Dorosz A, Malek K, Baranska M. Raman imaging highlights biochemical heterogeneity of human eosinophils versus human eosinophilic leukaemia cell line. Br J Haematol 2019; 186:685-694. [PMID: 31134616 DOI: 10.1111/bjh.15971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
Eosinophils are acidophilic granulocytes that develop in the bone marrow. Although their population contributes only to approximately 1-6% of all leucocytes present in the human blood, they possess a wide range of specific functions. They play a key role in inflammation-regulating processes, when their numbers can increased to above 5 × 109 /l of peripheral blood. Their characteristic feature is the presence of granules containing eosinophil peroxidase (EPO), the release of which can trigger a cascade of events promoting oxidative stress, apoptosis or necrosis, leading finally to cell death. Raman spectroscopy is a powerful technique to detect EPO, which comprises a chromophore protoporphyrin IX. Another cell structure associated with inflammation processes are lipid bodies (lipid-rich organelles), also well recognized and imaged using high resolution confocal Raman spectroscopy. In this work, eosinophils isolated from the blood of a human donor were analysed versus their model, EoL-1 human eosinophilic leukaemia cell line, by Raman spectroscopic imaging. We showed that EPO was present only in primary cells and not found in the cell line. Eosinophils were activated using phorbol 12-myristate 13-acetate, which resulted in lipid bodies formation. An effect of cells stimulation was studied and compared for eosinophils and EoL-1.
Collapse
Affiliation(s)
- Anna Rygula
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Rafaella F Fernandes
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.,Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Bozena Kukla
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Dominika Augustynska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | | | - Aleksandra Dorosz
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
16
|
Moustaka K, Maleskou E, Lambrianidou A, Papadopoulos S, Lekka ME, Trangas T, Kitsiouli E. Docosahexaenoic Acid Inhibits Proliferation of EoL-1 Leukemia Cells and Induces Cell Cycle Arrest and Cell Differentiation. Nutrients 2019; 11:E574. [PMID: 30866528 PMCID: PMC6471786 DOI: 10.3390/nu11030574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 11/16/2022] Open
Abstract
Τhe effect of docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid) upon the proliferation of EoL-1 (Eosinophilic leukemia) cell line was assessed, while additional cellular events during the antiproliferative action were recorded. DHA inhibited EoL-1 cells growth dose-dependently by inducing growth arrest at G0/1 phase of the cell cycle. After DHA addition to the cells, the expression of MYC oncogene was decreased, PTAFR-mRNA overexpression was observed which was used as a marker of differentiation, and PLA2G4A-mRNA increase was recorded. The enzymatic activities of phospholipase A₂ (PLA₂), a group of hydrolytic enzymes, whose action precedes and leads to PAF biosynthesis through the remodeling pathway, as well as platelet activating factor acetylhydrolase (PAFAH) which hydrolyses and deactivates PAF, were also measured. DHA had an effect on the levels of both the intracellular and secreted activities of PLA₂ and PAFAH. The inflammatory cytokines IL-6 and TNF-α were also detected in high levels. In conclusion, DHA-induced EoL-1 cells differentiation was correlated with downregulation of MYC oncogene, overexpression of PTAFR and PLA2G4A-mRNAs, increase of the inflammatory cytokines production, and alteration of the enzymatic activities that regulate PAF levels. DHA is a natural substance and the understanding of its action on EoL-1 cells on molecular level could be useful in further investigation as a future therapeutic tool against F/P ⁺ hypereosinophilic syndrome.
Collapse
Affiliation(s)
- Kalliopi Moustaka
- Laboratory of Biochemistry, Department of Biological Applications & Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Eirini Maleskou
- Laboratory of Biochemistry, Department of Biological Applications & Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Andromachi Lambrianidou
- Laboratory of Biochemistry, Department of Biological Applications & Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Stelios Papadopoulos
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Marilena E Lekka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications & Technologies, University of Ioannina, 45110 Ioannina, Greece.
| | - Eirini Kitsiouli
- Laboratory of Biochemistry, Department of Biological Applications & Technologies, University of Ioannina, 45110 Ioannina, Greece.
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
17
|
Kim K, Hwang SM, Kim SM, Park SW, Jung Y, Chung IY. Terminally Differentiating Eosinophils Express Neutrophil Primary Granule Proteins as well as Eosinophil-specific Granule Proteins in a Temporal Manner. Immune Netw 2017; 17:410-423. [PMID: 29302254 PMCID: PMC5746611 DOI: 10.4110/in.2017.17.6.410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils and eosinophils, 2 prominent granulocytes, are commonly derived from myelocytic progenitors through successive stages in the bone marrow. Our previous genome-wide transcriptomic data unexpectedly showed that genes encoding a multitude of neutrophil primary granule proteins (NPGPs) were markedly downregulated during the end period of eosinophilic terminal differentiation when cord blood (CB) cluster of differentiation (CD) 34+ cells were induced to differentiate toward the eosinophil lineage during a 24-day culture period. Accordingly, this study aimed to examine whether NPGP genes were expressed on the way to eosinophil terminal differentiation stage and to compare their expression kinetics with that of genes encoding eosinophil-specific granule proteins (ESGPs). Transcripts of all NPGP genes examined, including proteinase 3, myeloperoxidase, cathepsin G (CTSG), and neutrophil elastase, reached a peak at day 12 and sharply declined thereafter, while transcript of ESGP genes including major basic protein 1 (MBP1) attained maximum expression at days 18 or 24. Growth factor independent 1 (GFI1) and CCAAT/enhancer-binding protein α (C/EBPA), transactivators for the NPGP genes, were expressed immediately before the NPGP genes, whereas expression of C/EBPA, GATA1, and GATA2 kinetically paralleled that of eosinophil granule protein genes. The expression kinetics of NPGPs and ESGPs were duplicated upon differentiation of the eosinophilic leukemia cell line (EoL-1) immature eosinophilic cells. Importantly, confocal image analysis showed that CTSG was strongly coexpressed with MBP1 in differentiating CB eosinophils at days 12 and 18 and became barely detectable at day 24 and beyond. Our results suggest for the first time the presence of an immature stage where eosinophils coexpress NPGPs and ESGPs before final maturation.
Collapse
Affiliation(s)
- Karam Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sae Mi Hwang
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sung Min Kim
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Yunjae Jung
- Department of Microbiology, Gachon University School of Medicine, Incheon 21936, Korea
| | - Il Yup Chung
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea.,Department of Molecular and Life Sciences, Hanyang University, Ansan 15588, Korea
| |
Collapse
|
18
|
Jung Y. Comparative Analysis of Dibutyric cAMP and Butyric Acid on the Differentiation of Human Eosinophilic Leukemia EoL-1 Cells. Immune Netw 2015; 15:313-8. [PMID: 26770185 PMCID: PMC4700407 DOI: 10.4110/in.2015.15.6.313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/02/2023] Open
Abstract
Purification of enough numbers of circulating eosinophils is difficult because eosinophils account for less than 5% peripheral blood leukocytes. Human eosinophilic leukemia EoL-1 cells have been considered an in vitro source of eosinophils as they can differentiate into mature eosinophil-like cells when incubated with dibutyryl cAMP (dbcAMP) or butyric acid. In this study, the viability and phenotypic maturation of EoL-1 cells stimulated by either dbcAMP or butyric acid were comparatively analyzed. After treatment with 100 µM dbcAMP or 0.5 µM butyric acid, EoL-1 cells showed morphological signs of differentiation, although the number of nonviable EoL-1 cells was significantly increased following butyric acid treatment. Stimulation of EoL-1 cells with 0.5 µM butyric acid more effectively induced the expression of mature eosinophil markers than stimulation with dbcAMP. These results suggest that treatment of EoL-1 cells with 0.5 µM butyric acid for limited duration could be an effective strategy for inducing their differentiation. Considering that expression of CCR3 was not sufficient in EoL-1 cells stimulated with 0.5 µM butyric acid, treatment of the chemically stimulated EoL-1 cells with cytokines, which primarily support eosinophil maturation, would help to obtain differentiated EoL-1 cells with greater functional maturity.
Collapse
Affiliation(s)
- YunJae Jung
- Department of Microbiology, School of Medicine, Gachon University, Incheon 21936, Korea
| |
Collapse
|
19
|
Induction of eosinophil apoptosis by hydrogen peroxide promotes the resolution of allergic inflammation. Cell Death Dis 2015; 6:e1632. [PMID: 25675292 PMCID: PMC4669804 DOI: 10.1038/cddis.2014.580] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 01/13/2023]
Abstract
Eosinophils are effector cells that have an important role in the pathogenesis of allergic disease. Defective removal of these cells likely leads to chronic inflammatory diseases such as asthma. Thus, there is great interest in understanding the mechanisms responsible for the elimination of eosinophils from inflammatory sites. Previous studies have demonstrated a role for certain mediators and molecular pathways responsible for the survival and death of leukocytes at sites of inflammation. Reactive oxygen species have been described as proinflammatory mediators but their role in the resolution phase of inflammation is poorly understood. The aim of this study was to investigate the effect of reactive oxygen species in the resolution of allergic inflammatory responses. An eosinophilic cell line (Eol-1) was treated with hydrogen peroxide and apoptosis was measured. Allergic inflammation was induced in ovalbumin sensitized and challenged mouse models and reactive oxygen species were administered at the peak of inflammatory cell infiltrate. Inflammatory cell numbers, cytokine and chemokine levels, mucus production, inflammatory cell apoptosis and peribronchiolar matrix deposition was quantified in the lungs. Resistance and elastance were measured at baseline and after aerosolized methacholine. Hydrogen peroxide accelerates resolution of airway inflammation by induction of caspase-dependent apoptosis of eosinophils and decrease remodeling, mucus deposition, inflammatory cytokine production and airway hyperreactivity. Moreover, the inhibition of reactive oxygen species production by apocynin or in gp91phox−/− mice prolonged the inflammatory response. Hydrogen peroxide induces Eol-1 apoptosis in vitro and enhances the resolution of inflammation and improves lung function in vivo by inducing caspase-dependent apoptosis of eosinophils.
Collapse
|
20
|
Roeen Z, Toda M, D'Alessandro-Gabazza CN, Onishi M, Kobayashi T, Yasuma T, Urawa M, Taguchi O, Gabazza EC. Thrombomodulin inhibits the activation of eosinophils and mast cells. Cell Immunol 2014; 293:34-40. [PMID: 25497974 DOI: 10.1016/j.cellimm.2014.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 01/21/2023]
Abstract
Eosinophils and mast cells play critical roles in the pathogenesis of bronchial asthma. Activation of both cells leads to the release of pro-inflammatory mediators in the airway of asthmatic patients. Recently, we have shown that inhaled thrombomodulin inhibits allergic bronchial asthma in a mouse model. In the present study, we hypothesize that thrombomodulin can inhibit the activation of eosinophils and mast cells. The effect of thrombomodulin on the activation and release of inflammatory mediators from eosinophils and mast cells was evaluated. Thrombomodulin inhibited the eotaxin-induced chemotaxis, upregulation of CD11b and degranulation of eosinophils. Treatment with thrombomodulin also significantly suppressed the degranulation and synthesis of inflammatory cytokines and chemokines in eosinophils and mast cells. Mice treated with a low-dose of inhaled thrombomodulin have decreased number of eosinophils and activated mast cells and Th2 cytokines in the lungs compared to untreated mice. The results of this study suggest that thrombomodulin may modulate allergic responses by inhibiting the activation of both eosinophils and mast cells.
Collapse
Affiliation(s)
- Ziaurahman Roeen
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Masahiro Onishi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Taro Yasuma
- Department of Endocrinology, Diabetes and Metabolism, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Masahito Urawa
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan; Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Osamu Taguchi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu City, Mie Prefecture 514-8507, Japan.
| |
Collapse
|
21
|
Synephrine inhibits eotaxin-1 expression via the STAT6 signaling pathway. Molecules 2014; 19:11883-95. [PMID: 25111027 PMCID: PMC6271232 DOI: 10.3390/molecules190811883] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 11/17/2022] Open
Abstract
Citrus contain various flavonoids and alkaloids that have multiple biological activities. It is known that the immature Citrus contains larger amounts of bioactive components, than do the mature plants. Although Citrus flavonoids are well known for their biological activities, Citrus alkaloids have not previously been assessed. In this study, we identified synephrine alkaloids as an active compound from immature Citrus unshiu, and investigated the effect of synephrine on eotaxin-1 expression. Eotaxin-1 is a potent chemoattractant for eosinophils, and a critical mediator, during the development of eosinophilic inflammation. We found that synephrine significantly inhibited IL-4-induced eotaxin-1 expression. This synephrine effect was mediated through the inhibition of STAT6 phosphorylation in JAK/STAT signaling. We also found that eosinophil recruitment induced by eotaxin-1 overexpression was inhibited by synephrine. Taken together, these findings indicate that inhibiting IL-4-induced eotaxin-1 expression by synephrine occurs primarily through the suppression of eosinophil recruitment, which is mediated by inhibiting STAT6 phosphorylation.
Collapse
|
22
|
Córdova C, Gutiérrez B, Martínez-García C, Martín R, Gallego-Muñoz P, Hernández M, Nieto ML. Oleanolic acid controls allergic and inflammatory responses in experimental allergic conjunctivitis. PLoS One 2014; 9:e91282. [PMID: 24699261 PMCID: PMC3974667 DOI: 10.1371/journal.pone.0091282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/10/2014] [Indexed: 12/11/2022] Open
Abstract
Pollen is the most common aeroallergen to cause seasonal conjunctivitis. The result of allergen exposure is a strong Th2-mediated response along with conjunctival mast cell degranulation and eosinophilic infiltration. Oleanolic acid (OA) is natural a triterpene that displays strong anti-inflammatory and immunomodulatory properties being an active anti-allergic molecule on hypersensitivity reaction models. However, its effect on inflammatory ocular disorders including conjunctivitis, has not yet been addressed. Hence, using a Ragweed pollen (RWP)-specific allergic conjunctivitis (EAC) mouse model we study here whether OA could modify responses associated to allergic processes. We found that OA treatment restricted mast cell degranulation and infiltration of eosinophils in conjunctival tissue and decreased allergen-specific Igs levels in EAC mice. Th2-type cytokines, secreted phospholipase A2 type-IIA (sPLA2-IIA), and chemokines levels were also significantly diminished in the conjunctiva and serum of OA-treated EAC mice. Moreover, OA treatment also suppressed RWP-specific T-cell proliferation. In vitro studies, on relevant cells of the allergic process, revealed that OA reduced the proliferative and migratory response, as well as the synthesis of proinflammatory mediators on EoL-1 eosinophils and RBL-2H3 mast cells exposed to allergic and/or crucial inflammatory stimuli such as RWP, sPLA2-IIA or eotaxin. Taken together, these findings demonstrate the beneficial activity of OA in ocular allergic processes and may provide a new intervention strategy and potential therapy for allergic diseases.
Collapse
Affiliation(s)
- Claudia Córdova
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid, Valladolid, Spain
| | - Beatriz Gutiérrez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid, Valladolid, Spain
| | - Carmen Martínez-García
- Departamento de Biología Celular, Histología y Farmacología, Universidad de Valladolid, Valladolid, Spain
| | - Rubén Martín
- Instituto de Ciencias del Corazón. Hospital Clínico Universitario, Valladolid, Spain
| | - Patricia Gallego-Muñoz
- Departamento de Biología Celular, Histología y Farmacología, Universidad de Valladolid, Valladolid, Spain
| | - Marita Hernández
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid, Valladolid, Spain
| | - María L. Nieto
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas-Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
23
|
Burger MT, Han W, Lan J, Nishiguchi G, Bellamacina C, Lindval M, Atallah G, Ding Y, Mathur M, McBride C, Beans EL, Muller K, Tamez V, Zhang Y, Huh K, Feucht P, Zavorotinskaya T, Dai Y, Holash J, Castillo J, Langowski J, Wang Y, Chen MY, Garcia PD. Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors. ACS Med Chem Lett 2013; 4:1193-7. [PMID: 24900629 DOI: 10.1021/ml400307j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/12/2013] [Indexed: 01/15/2023] Open
Abstract
Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM K is < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described.
Collapse
Affiliation(s)
- Matthew T. Burger
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Wooseok Han
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Jiong Lan
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Gisele Nishiguchi
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Cornelia Bellamacina
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mika Lindval
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Gordana Atallah
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yu Ding
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Michelle Mathur
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Chris McBride
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Elizabeth L. Beans
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Kristine Muller
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Victoriano Tamez
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yanchen Zhang
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Kay Huh
- Global Discovery Chemistry/Oncology & Exploratory Chemistry, Novartis Institutes for Biomedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Paul Feucht
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Tatiana Zavorotinskaya
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Yumin Dai
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Jocelyn Holash
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Joseph Castillo
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - John Langowski
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Yingyun Wang
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Min Y. Chen
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| | - Pablo D. Garcia
- Oncology
Research, Novartis Institutes for Biomedical Research, 4560 Horton
Street, Emeryville, California 94608, United States
| |
Collapse
|
24
|
Evaluation of the effect of kaempferol in a murine allergic rhinitis model. Eur J Pharmacol 2013; 718:48-56. [DOI: 10.1016/j.ejphar.2013.08.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 11/20/2022]
|
25
|
Induction of group IVC phospholipase A2 in allergic asthma: transcriptional regulation by TNFα in bronchoepithelial cells. Biochem J 2012; 442:127-37. [PMID: 22082005 DOI: 10.1042/bj20111269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Airway inflammation in allergen-induced asthma is associated with eicosanoid release. These bioactive lipids exhibit anti- and pro-inflammatory activities with relevance to pulmonary pathophysiology. We hypothesized that sensitization/challenge using an extract from the ubiquitous fungus Aspergillus fumigatus in a mouse model of allergic asthma would result in altered phospholipase gene expression, thus modulating the downstream eicosanoid pathway. We observed the most significant induction in the group IVC PLA2 (phospholipase A2) [also known as cPLA2γ (cytosolic PLA2γ) or PLA2G4C]. Our results infer that A. fumigatus extract can induce cPLA2γ levels directly in eosinophils, whereas induction in lung epithelial cells is most likely to be a consequence of TNFα (tumour necrosis factor α) secretion by A. fumigatus-activated macrophages. The mechanism of TNFα-dependent induction of cPLA2γ gene expression was elucidated through a combination of promoter deletions, ChIP (chromatin immunoprecipitation) and overexpression studies in human bronchoepithelial cells, leading to the identification of functionally relevant CRE (cAMP-response element), NF-κB (nuclear factor κB) and E-box promoter elements. ChIP analysis demonstrated that RNA polymerase II, ATF-2 (activating transcription factor 2)-c-Jun, p65-p65 and USF (upstream stimulating factor) 1-USF2 complexes are recruited to the cPLA2γ enhancer/promoter in response to TNFα, with overexpression and dominant-negative studies implying a strong level of co-operation and interplay between these factors. Overall, our results link cytokine-mediated alterations in cPLA2γ gene expression with allergic asthma and outline a complex regulatory mechanism.
Collapse
|
26
|
Lee J, Kim IS, Yun C. Secretion of MCP‐1, IL‐8 and IL‐6 induced by house dust mite,dermatophagoides pteronissinusin human eosinophilic EOL‐1 cells. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Qasem AR, Bucolo C, Baiula M, Spartà A, Govoni P, Bedini A, Fascì D, Spampinato S. Contribution of alpha4beta1 integrin to the antiallergic effect of levocabastine. Biochem Pharmacol 2008; 76:751-62. [PMID: 18680729 DOI: 10.1016/j.bcp.2008.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 07/07/2008] [Accepted: 07/08/2008] [Indexed: 11/30/2022]
Abstract
Levocabastine is an antiallergic drug acting as a histamine H1-receptor antagonist. In allergic conjunctivitis (AC), it may also antagonize up-regulation of the intercellular adhesion molecule-1 (ICAM-1) expressed on epithelial conjunctival cells. However, little is known about its effects on eosinophils, important effector cells in AC. The adhesion molecule integrin alpha(4)beta(1) is expressed in eosinophils; it interacts with the vascular cell adhesion molecule-1 (VCAM-1) and fibronectin (FN) in vascular endothelial cells and contributes to eosinophil activation and infiltration in AC. This study provides evidence that in a scintillation proximity assay levocabastine (IC(50) 406 microM), but not the first-generation antihistamine chlorpheniramine, displaced (125)I-FN binding to human integrin alpha(4)beta(1) and, in flow cytometry analysis, levocabastine antagonized the binding of a primary antibody to integrin alpha(4) expressed on the Jurkat cell surface. Levocabastine, but not chlorpheniramine, binds the alpha(4)beta(1) integrin and prevents eosinophil adhesion to VCAM-1, FN or human umbilical vascular endothelial cells (HUVEC) in vitro. Similarly, levocabastine affects alpha(L)beta(2)/ICAM-1-mediated adhesion of Jurkat cells. In a model of AC levocabastine eye drops reduced the clinical aspects of the late-phase reaction and the conjunctival expression of alpha(4)beta(1) integrin by reducing infiltrated eosinophils. We propose that blockade of integrin-mediated cell adhesion might be a target of the antiallergic action of levocabastine and may play a role in preventing eosinophil adhesion and infiltration in AC.
Collapse
Affiliation(s)
- Ahmed R Qasem
- Department of Medicine, Health Science Campus, University of Toledo, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jung YJ, Woo SY, Jang MH, Miyasaka M, Ryu KH, Park HK, Seoh JY. Human eosinophils show chemotaxis to lymphoid chemokines and exhibit antigen-presenting-cell-like properties upon stimulation with IFN-gamma, IL-3 and GM-CSF. Int Arch Allergy Immunol 2008; 146:227-34. [PMID: 18268391 DOI: 10.1159/000115891] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 11/20/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Eosinophils are multifunctional leukocytes. Under physiological conditions, they circulate in the blood and through the tissues to serve their functions. In certain inflammatory states, they enter the T-cell areas of lymph nodes (LNs) that drain the inflamed tissue and communicate with T cells in LNs, but the underlying mechanism that regulates their trafficking to LNs is not yet fully explored. Here, we report that a human eosinophilic leukemia cell line, EoL-1, and human peripheral blood (PB) eosinophils become reactive to the lymphoid chemokines CCL21 and CCL25 upon stimulation. METHODS EoL-1 cells were differentiated with dibutyryl cyclic AMP (dEoL-1) and subsequently pulsed with IFN-gamma, IL-3 and GM-CSF. The eosinophil fraction was purified from normal human adult PB and incubated for 1 day with the same cytokine combination. RESULTS Upon cytokine stimulation, dEoL-1 cells expressed chemokine receptors CCR7, CCR9 and CCR3 and developed chemotactic responsiveness to CCL21, CCL25 and CCL11, which bind to the respective receptors. Human PB eosinophils also showed chemotactic responsiveness to CCL21 and CCL25 upon stimulation with IFN-gamma, IL-3 and GM-CSF. In addition, the cytokine-stimulated dEoL-1 cells expressed costimulatory molecules, including CD40, CD80, CD86 and HLA-DR, and also expressed a tolerogenic and Th2-polarizing enzyme, indoleamine 2,3-dioxygenase. CONCLUSIONS These in vitro observations raise the possibility that eosinophils may utilize lymphoid chemokines to enter LNs and serve antigen-presenting functions in the LN under certain inflammatory conditions.
Collapse
Affiliation(s)
- Yun-Jae Jung
- Department of Microbiology, Gachon Medical School, Incheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Eosinophils are multifunctional leukocytes classically described as being involved in helminth parasitic infections and allergic diseases. Previously restricted to an exclusive role in the release of cytotoxic mediators, they are now also considered to be immunoregulatory cells and potential effectors in innate immune responses. Eosinophils are mainly found in tissues, so specific procedures are needed for their isolation from venous blood and for functional assays. Murine models are very useful for the dissection of eosinophil physiology in vivo. But murine eosinophils significantly differ from human ones. A complete understanding of eosinophil biology therefore requires comparative study of eosinophils from different mammalian species. We summarize here the main experimental protocols used to study human, mouse, and rat eosinophil biology. We focus on technical improvements of existing methods that optimize purification and in vitro functional studies of eosinophils.
Collapse
|
30
|
Sroka J, Włosiak P, Wilk A, Antonik J, Czyz J, Madeja Z. The effect of tributyltin on human eosinophilic [correction of eosinophylic] leukemia EoL-1 cells. Cell Mol Biol Lett 2007; 13:67-73. [PMID: 17965975 PMCID: PMC6275921 DOI: 10.2478/s11658-007-0037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 07/10/2007] [Indexed: 11/20/2022] Open
Abstract
Organotin compounds are chemicals that are widely used in industry and agriculture as plastic stabilizers, catalysts and biocides. Many of them, including tributyltin (TBT), have been detected in human food and, as a consequence, detectable levels have been found in human blood. As organotin compounds were shown to possess immunotoxic activity, we focused our attention on the effect of TBT on the basic determinants of the function of eosinophils, i.e. cell adhesiveness and motility. We used human eosinophylic leukemia EoL-1 cells, a common in vitro cellular model of human eosinophils. Here, we demonstrate that TBT causes a dose-dependent decrease in the viability of EoL-1 cells. When administered at sub-lethal concentrations, TBT significantly decreases the adhesion of EoL-1 cells to human fibroblasts (HSFs) and inhibits their migration on fibroblast surfaces. Since the basic function of eosinophils is to invade inflamed tissues, our results indicate that TBT, and possibly other organotin compounds, may affect major cellular properties involved in the determination of in vivo eosinophil function.
Collapse
Affiliation(s)
- Jolanta Sroka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-378, Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
31
|
Robert C, Delva L, Balitrand N, Nahajevszky S, Masszi T, Chomienne C, Papp B. Apoptosis Induction by Retinoids in Eosinophilic Leukemia Cells: Implication of Retinoic Acid Receptor-α Signaling in All-Trans-Retinoic Acid Hypersensitivity. Cancer Res 2006; 66:6336-44. [PMID: 16778211 DOI: 10.1158/0008-5472.can-06-0078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypereosinophilic syndrome (HES) has recently been recognized as a clonal leukemic lesion, which is due to a specific oncogenic event that generates hyperactive platelet-derived growth factor receptor-alpha-derived tyrosine kinase fusion proteins. In the present work, the effect of retinoids on the leukemic hypereosinophilia-derived EoL-1 cell line and on primary HES-derived cells has been investigated. We show that all-trans-retinoic acid (ATRA) inhibits eosinophil colony formation of HES-derived bone marrow cells and is a powerful inducer of apoptosis of the EoL-1 cell line. Apoptosis was shown in the nanomolar concentration range by phosphatidylserine externalization, proapoptotic shift of the Bcl-2/Bak ratio, drop in mitochondrial membrane potential, activation of caspases, and cellular morphology. Unlike in other ATRA-sensitive myeloid leukemia models, apoptosis was rapid and was not preceded by terminal cell differentiation. Use of isoform-selective synthetic retinoids indicated that retinoic acid receptor-alpha-dependent signaling is sufficient to induce apoptosis of EoL-1 cells. Our work shows that the scope of ATRA-induced apoptosis of malignancies may be wider within the myeloid lineage than thought previously, that the EoL-1 cell line constitutes a new and unique model for the study of ATRA-induced cell death, and that ATRA may have potential for the management of clonal HES.
Collapse
Affiliation(s)
- Carine Robert
- Institut National de la Santé et de la Recherche Médicale, UMR-S 718, Institut Universitaire d'Hématologie, University of Paris VII, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Ip WK, Wong CK, Lam CWK. Tumour necrosis factor-alpha-induced expression of intercellular adhesion molecule-1 on human eosinophilic leukaemia EoL-1 cells is mediated by the activation of nuclear factor-kappaB pathway. Clin Exp Allergy 2003; 33:241-8. [PMID: 12580918 DOI: 10.1046/j.1365-2222.2003.01585.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Intercellular adhesion molecule-1 (ICAM-1) has been shown to mediate the adhesion and migration of eosinophils to the site of allergic inflammation. However, molecular mechanisms regulating the expression of ICAM-1 in eosinophils are still being elucidated. We investigated the effect of tumour necrosis factor-alpha (TNF-alpha) on ICAM-1 expression of eosinophils. METHODS The surface expression of ICAM-1 on a human eosinophilic leukaemic cell line, EoL-1, was assessed by immunocytochemical staining. The phosphorylation of inhibitor kappa B-alpha (IkappaB-alpha) and p38 mitogen-activated protein kinase (MAPK) was detected by Western blot. Nuclear factor kappa-B (NF-kappaB) pathway-related genes were evaluated by the cDNA expression array system, whereas the activity of NF-kappaB was measured by electrophoretic mobility shift assay (EMSA). RESULTS TNF-alpha was found to induce the cell surface expression of ICAM-1. A specific proteasome inhibitor N-cbz-Leu-Leu-leucinal (MG-132), but not a p38 MAPK inhibitor (SB 203580), was found to suppress the TNF-alpha-induced expression of ICAM-1 on EoL-1 cells. The gene expressions of ICAM-1, NF-kappaB and IkappaBalpha were up-regulated after the stimulation with TNF-alpha. Further, TNF-alpha was shown to induce IkappaB-alpha phosphorylation and degradation, thereby indicating the activation of NF-kappaB. In EMSA, there was a shifted NF-kappaB band on TNF-alpha-treated cells with or without SB 203580, but no shifted band was observed on MG-132-treated cells. CONCLUSION In vitro studies of EoL-1 cells, an eosinophilic leukaemic cell line, confirmed that NF-kappaB plays an important role in the expression of ICAM-1 and recruitment of eosinophils in allergic inflammation.
Collapse
Affiliation(s)
- W K Ip
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | | | | |
Collapse
|
33
|
Lung HL, Ip WK, Wong CK, Mak NK, Chen ZY, Leung KN. Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate (EGCG) on the human eosinophilic leukemia EoL-1 cell line. Life Sci 2002; 72:257-68. [PMID: 12427485 DOI: 10.1016/s0024-3205(02)02236-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.
Collapse
Affiliation(s)
- H L Lung
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, China
| | | | | | | | | | | |
Collapse
|
34
|
Wang W, Tanaka T, Okamura H, Sugita M, Higa S, Kishimoto T, Suemura M. Interleukin-18 enhances the production of interleukin-8 by eosinophils. Eur J Immunol 2001; 31:1010-6. [PMID: 11298325 DOI: 10.1002/1521-4141(200104)31:4<1010::aid-immu1010>3.0.co;2-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interleukin-18 (IL-18), a proinflammatory cytokine, leads to IFN-gamma production by NK or T cells, induces Th1 differentiation and suppresses IgE synthesis by B cells when acting on responding cells together with IL-12. IL-18 also exhibits biological activities related to allergic inflammation such as histamine or IL-4 release from basophils and accumulation of eosinophils in localized lesions in allergic model mice. In this study, Reverse transcription (RT)-PCR analysis revealed that IL-18 receptor alpha chain mRNA was expressed in both freshly prepared eosinophils and two eosinophilic cell lines (YY-1 and EoL-1 cells). Flow cytometry and RT-PCR analyses revealed that the treatment of YY-1 cells with n-butyric acid promoted cell maturation and caused an enhancement of IL-18 receptor alpha chain expression. IL-18 had little effect on the survival of peripheral eosinophils, but it dose-dependently augmented IL-8 synthesis by YY-1 cells. In addition, IL-18-mediated up-regulation of IL-8 expression in eosinophils from a patient suffering from hyper-eosinophilic syndrome was confirmed. Our findings using peripheral blood eosinophils and eosinophilic cell line suggest the functional importance of IL-18 in the induction of IL-8 and a potential proinflammatory role in allergy.
Collapse
Affiliation(s)
- W Wang
- Department of Internal Medicine III, Osaka University Medical School, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Kikly KK, Bochner BS, Freeman SD, Tan KB, Gallagher KT, D'alessio KJ, Holmes SD, Abrahamson JA, Erickson-Miller CL, Murdock PR, Tachimoto H, Schleimer RP, White JR. Identification of SAF-2, a novel siglec expressed on eosinophils, mast cells, and basophils. J Allergy Clin Immunol 2000; 105:1093-100. [PMID: 10856141 DOI: 10.1067/mai.2000.107127] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Eosinophils, basophils, and mast cells are believed to be the central tenet cells in allergic conditions including allergic rhinitis, asthma, and eczema. The molecular mechanisms underlying the recruitment of these cells to sites of allergic inflammation are poorly understood. OBJECTIVES Our aim was to identify a common adhesion molecule that could potentially be responsible for mediating the recruitment of the allergic cell types to the lungs and other sites of allergy. METHODS We have cloned a sialoadhesin molecule from a human eosinophil library with the use of expressed sequence tag technology and characterized its expression on allergic cells by the use of flow cytometry and specific mAbs. RESULTS With the use of expressed sequence tag sequencing, we have identified a novel siglec molecule, SAF-2. SAF-2 has homology with other sialoadhesin family members (CD33 and siglec-5) and belongs to a subgroup of the Ig superfamily. SAF-2 is a 431-amino acid protein composed of 3 Ig domains with a 358-amino acid extracellular domain and a 47-amino acid tail. SAF-2 is highly restricted to eosinophils, basophils, and mast cells. Antibodies to SAF-2 do not modulate Ca(++) mobilization or chemotaxis of human eosinophils induced by eotaxin. CONCLUSION SAF-2 is a highly restricted sialoadhesin molecule, which may be useful in the detection and/or modulation of allergic cells.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Antigens, Surface/biosynthesis
- Antigens, Surface/genetics
- Antigens, Surface/physiology
- Basophils/metabolism
- Eosinophils/metabolism
- Erythrocytes/metabolism
- Gene Expression
- Humans
- Hypersensitivity/pathology
- Lectins
- Mast Cells/metabolism
- N-Acetylneuraminic Acid/pharmacology
- RNA, Messenger/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- K K Kikly
- Department of Immunology, SmithKline Beecham Pharmaceuticals, King of Prussia, PA 19406, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wong CK, Ho CY, Lam CW, Zhang JP, Hjelm NM. Differentiation of a human eosinophilic leukemic cell line, EoL-1: characterization by the expression of cytokine receptors, adhesion molecules, CD95 and eosinophilic cationic protein (ECP). Immunol Lett 1999; 68:317-23. [PMID: 10424438 DOI: 10.1016/s0165-2478(99)00064-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purification of enough eosinophils for the study of allergic inflammation is difficult because eosinophils comprise only a small percentage of circulating leucocytes. A human eosinophilic leukemic cell line, EoL-1, has been considered to be an in vitro eosinophilic model. In the present study, the suitability of EoL-1 cells as an eosinophilic model was further investigated. EoL-1 cells were induced to differentiate by dibutyryl cyclic AMP (dbcAMP). The expression of cell surface cytokines (IL-3, IL-5, GM-CSF) receptors, adhesion molecules (CD49d, CD11b), and CD95 (Fas) was investigated by flow cytometry. Expression of eosinophilic cationic protein (ECP) was determined by fluorescence enzyme immunoassay (FEIA) and reverse transcription-polymerase chain reaction (RT-PCR). EoL-1 cells could be differentiated into eosinophilic vacuole-containing cells by dbcAMP. They were found to express cell surface IL-3 and GM-CSF receptors, CD95 and CD49d. Treatment with dbcAMP could induce the expression of CD11b but decrease the expression of CD95. Anti-CD95 antibody could induce their apoptosis. The differentiation of EoL-1 cells was accompanied by increase in release of ECP into the supernatant and total ECP synthesis. Differentiation of EoL-1 cells also up-regulated the expression of mRNA for ECP and its level was parallel to the total amount of ECP synthesis. By virtue of their expression of haematopoietic cytokines receptors, adhesion molecules, CD95, synthesis and release of ECP, EoL-1 cells are suitable as an in vitro eosinophilic model for studying eosinophilic functions.
Collapse
Affiliation(s)
- C K Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin NT, PR China
| | | | | | | | | |
Collapse
|
37
|
Ohyama H, McBride J, Wong DT. Optimized conditions for gene transfection into the human eosinophilic cell line EoL-1 by electroporation. J Immunol Methods 1998; 215:105-11. [PMID: 9744752 DOI: 10.1016/s0022-1759(98)00067-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eosinophils are emerging as an increasingly important cell in the immunoregulatory network of normal and pathological processes. No studies has yet described optimized experimental strategies to transfect DNA into human eosinophils. Using a frequently employed in vitro model of human eosinophil, the EoL-1 cells, we now described the optimal transfection of DNA into these cells by electroporation. Our results indicate that electroporation can efficiently and reproducibly transfect DNA into EoL-1 cells. Optimal electroporation conditions consist of the use of 1 X RPMI medium 1640 with 10% FBS, voltage setting at 275 V, 1150 microF capacitance, 40 mg of DNA and 4.0 X 10(7) cells/ml per electroporation in a total volume of 0.5 ml in 0.4 cm gap cuvettes. These conditions may be a useful protocol for transfecting eosinophil cell lines.
Collapse
Affiliation(s)
- H Ohyama
- Department of Oral Medicine and Diagnostic Sciences, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | | | | |
Collapse
|
38
|
Abstract
ATP acts as a fast excitatory neurotransmitter by binding to a large family of membrane proteins, P2X receptors, that have been shown to be ligand-gated, non-selective cation channels. We report the cloning of a full-length and alternatively spliced form of the human P2X4 gene. Clones were identified from a human stomach cDNA library using a rat P2X4 probe. Nucleotide sequence analysis of positive clones identified the full-length human P2X4 cDNA, which codes for a 388-residue protein that is highly homologous (82%) to the rat gene, and an alternatively spliced cDNA. In the alternatively spliced cDNA, the 5'-untranslated region and the first 90 amino acids in the coding region of full-length human P2X4 are replaced by a 35 amino acid coding sequence that is highly homologous with a region of chaperonin proteins in the hsp-90 family. The open reading frames of the full-length and splice variant clones were confirmed by in vitro translation. Northern analysis indicated expression of the full-length P2X4 message in numerous human tissues including smooth muscle, heart, and skeletal muscles. Alternatively spliced RNAs were identified in smooth muscle and brain by RT-PCR and confirmed by RNAse protection assays using a 710 bp anti-sense RNA probe that spanned the alternatively spliced and native P2X4 regions. Injection of full-length, but not alternatively spliced, cRNA into Xenopus oocytes resulted in the expression of ATP gated non-selective cation currents.
Collapse
Affiliation(s)
- P D Dhulipala
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6046, USA
| | | | | |
Collapse
|
39
|
Nakajima T, Yamashita N, Matsui H, Suzuki N, Kaneoka H, Mizushima Y, Sakane T. Induction of differentiation into monocyte/macrophage cell lineage of a human eosinophilic leukaemia cell line EoL-1 by simultaneous stimulation with tumour necrosis factor-alpha and interferon-gamma. Br J Haematol 1995; 89:258-65. [PMID: 7873375 DOI: 10.1111/j.1365-2141.1995.tb03298.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human myeloid leukaemia cell lines have been shown to differentiate into distinct cell lineages in vitro in response to several differentiation-inducing agents. A human eosinophilic leukaemia cell line, EoL-1, has been shown to differentiate into mature eosinophilic granulocytes by treatment with the culture supernatant of a human T-cell line, HIL-3. In this study we have studied whether the EoL-1 cell line has potential to differentiate into cell lineage other than eosinophils. We found that EoL-1 cells cultured in the presence of tumour necrosis factor (TNF)-alpha (10 u/ml) and interferon (IFN)-gamma (1000 u/ml) for 2-4 d differentiated into macrophage-like cells in morphology, and expressed CD14 antigen on their cell surface. It is possible that the small subpopulation of EoL-1 cells which contains non-specific esterase (NSE) activity may be preferentially differentiated by TNF-alpha and IFN-gamma. To clarify this issue, we have cloned the EoL-1 cell line and obtained NSE negative and positive sublines. Both EoL-1 sublines differentiated into monocyte/macrophage-like cells, because: (a) EoL-1 sublines were induced to express CD14 antigen, and (b) they attached firmly to the plastic wells; (c) after differentiation they became strongly positive for NSE staining, and secreted TNF-alpha in response to the stimulation with lipopolysaccharide; and (d) they exhibited potent phagocytic activity. Therefore, we found that the EoL-1 cell line has the ability to differentiate not only into mature eosinophilic cells but also into monocyte/macrophage cell lineage, suggesting that EoL-1 cells represent immature cells with ability to differentiate into multiple cell lineages.
Collapse
Affiliation(s)
- T Nakajima
- Institute of Medical Science, St Marianna University, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Jung EY, Ohshima Y, Shintaku N, Sumimoto S, Heike T, Katamura K, Mayumi M. Effects of cyclic AMP on expression of LFA-1, Mac-1, and VLA-4 and eosinophilic differentiation of a human leukemia cell line, EoL-1. Eur J Haematol 1994; 53:156-62. [PMID: 7523182 DOI: 10.1111/j.1600-0609.1994.tb00664.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the effect of dibutyryl cAMP (dbcAMP) on the expression of LFA-1 (CD11a/CD18), Mac-1 (CD11b/CD18), and VLA-4 (CD49/CD29) and on eosinophilic differentiation of a human leukemia cell line, EoL-1. Dibutyryl cAMP induced eosinophilic differentiation of EoL-1 cells from 6-9 days after the start of culture with down-regulation of CD11a, CD18, and CD49 expression and up-regulation of CD11b expression. Changes in integrin expression, except for CD18, were seen predominantly in the fraction containing eosinophilic granule-positive cells, suggesting that the changes were dependent on eosinophilic differentiation. On the other hand, dbcAMP-induced changes of integrin expression were reversible and were not seen on day 9 when dbcAMP was removed on day 3, whereas eosinophilic differentiation was still present. A combination of G-CSF and TNF-alpha, which also induced eosinophilic differentiation of EoL-1 cells, increased CD11b expression slightly but had no significant effect on the expression of the other integrins. Butyrate and PMA up-regulated CD11b expression without eosinophilic differentiation. The results collectively suggest that the regulation of integrin expression on EoL-1 cells is partly dependent and partly not dependent on eosinophilic differentiation. The possible involvement of protein kinase A and protein kinase C in these changes is suggested.
Collapse
Affiliation(s)
- E Y Jung
- Department of Pediatrics, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Shintaku N, Ohshima Y, Jung EY, Kanazashi S, Sumimoto S, Ohmori K, Heike T, Katamura K, Mayumi M. Induction of eosinophilic granules, nonspecific esterase activity and CD14 expression in the human eosinophilic leukemia cell line, EOL-1. Hematol Oncol 1994; 12:129-39. [PMID: 7525448 DOI: 10.1002/hon.2900120305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the expression of eosinophilic granules, esterase activity and CD14 in a human eosinophilic cell line, EoL-1. Unstimulated EoL-1 cells were weakly positive for nonspecific esterase, but negative for surface CD14, and contained a few eosinophilic granule-positive cells. A combination of G-CSF and TNF-alpha increased the eosinophilic granule-containing cells, but failed to increase esterase activity or CD14 expression. IFN-gamma alone or in combination with TNF-alpha enhanced nonspecific esterase activity but failed to induce CD14 expression or increase eosinophilic granule-containing cells. dbcAMP increased eosinophilic granule-containing cells, nonspecific esterase activity and CD14 expression. Specific esterase activity was not detected in any circumstances. EoL-1 cells fractionated by density gradients or CD14 expression showed nonspecific esterase activity and CD14 expression in both the eosinophilic granule-positive and negative cell populations. Forskolin and butyrate had a synergistic effect on CD14 induction and protein kinase A was suggested to play a role in dbcAMP-induced CD14 expression. A protein kinase C activator, phorbol 12-myristate 13-acetate, did not increase eosinophilic granules, nonspecific esterase activity or CD14 expression in EoL-1 cells. The results show that EoL-1 cells can express nonspecific esterase and CD14, but the expression is not necessarily restricted to cells which have differentiated into the monocyte/macrophage lineage.
Collapse
Affiliation(s)
- N Shintaku
- Department of Pediatrics, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|