1
|
Impact of genetic deletion of MrgD or Mas receptors in depressive-like behaviour in mice. Acta Neuropsychiatr 2023; 35:27-34. [PMID: 35979816 DOI: 10.1017/neu.2022.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES To evaluate the impact of genetic deletion of receptors of the counterregulatory arms of the renin-angiotensin system in depressive-like behaviours. METHODS 8-12 weeks-old male mice wild type (WT, C57BL/6J) and mice with genetic deletion of MrgD (MrgD KO) or Mas receptors (Mas KO) were subjected to the Forced Swim Test (FST) and the Tail Suspension Test (TST). Brain-derived neurotrophic factor (BDNF) levels were measured by enzyme-linked immunosorbent assay (ELISA). Blockade of Mas was performed by acute intracerebroventricular (icv) injection of its selective antagonist, A779. RESULTS No statistical difference in immobility time was observed between MrgD KO and WT male animals subjected to FST and TST. However, acute icv injection of A779 significantly increased the immobility time of MrgD KO male mice subjected to FST and TST, suggesting the involvement of Mas in preventing depressive-like behaviour. Indeed, Mas KO male animals showed increased immobility time in FST and TST, evidencing a depressive-like behaviour in these animals, in addition to a reduction in BDNF levels in the prefrontal cortex and hippocampus. No changes in BDNF levels were observed in MrgD KO male animals. CONCLUSION Our data showed that Mas plays an important role in the neurobiology of depression probably by modulating BDNF expression. On the contrary, lack of MrgD did not alter depressive-like behaviour, which was supported by the lack of alterations in BDNF levels.
Collapse
|
2
|
Recent Advances in the Endogenous Brain Renin-Angiotensin System and Drugs Acting on It. J Renin Angiotensin Aldosterone Syst 2021; 2021:9293553. [PMID: 34925551 PMCID: PMC8651430 DOI: 10.1155/2021/9293553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 12/22/2022] Open
Abstract
The RAS (renin-angiotensin system) is the part of the endocrine system that plays a prime role in the control of essential hypertension. Since the discovery of brain RAS in the seventies, continuous efforts have been put by the scientific committee to explore it more. The brain has shown the presence of various components of brain RAS such as angiotensinogen (AGT), converting enzymes, angiotensin (Ang), and specific receptors (ATR). AGT acts as the precursor molecule for Ang peptides—I, II, III, and IV—while the enzymes such as prorenin, ACE, and aminopeptidases A and N synthesize it. AT1, AT2, AT4, and mitochondrial assembly receptor (MasR) are found to be plentiful in the brain. The brain RAS system exhibits pleiotropic properties such as neuroprotection and cognition along with regulation of blood pressure, CVS homeostasis, thirst and salt appetite, stress, depression, alcohol addiction, and pain modulation. The molecules acting through RAS predominantly ARBs and ACEI are found to be effective in various ongoing and completed clinical trials related to cognition, memory, Alzheimer's disease (AD), and pain. The review summarizes the recent advances in the brain RAS system highlighting its significance in pathophysiology and treatment of the central nervous system-related disorders.
Collapse
|
3
|
de Souza AMA, West CA, de Abreu ARR, Pai AV, Mesquita LBT, Ji H, Chianca D, de Menezes RCA, Sandberg K. Role of the Renin Angiotensin System in Blood Pressure Allostasis-induced by Severe Food Restriction in Female Fischer rats. Sci Rep 2018; 8:10327. [PMID: 29985423 PMCID: PMC6037681 DOI: 10.1038/s41598-018-28593-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 01/02/2023] Open
Abstract
Severe food restriction (FR) is associated with blood pressure (BP) and cardiovascular dysfunction. The renin-angiotensin system (RAS) regulates BP and its dysregulation contributes to impaired cardiovascular function. Female Fischer rats were maintained on a control (CT) or severe FR (40% of CT) diet for 14 days. In response to severe FR, BP allostasis was achieved by up-regulating circulating Ang-[1–8] by 1.3-fold through increased angiotensin converting enzyme (ACE) activity and by increasing the expression of AT1Rs 1.7-fold in mesenteric vessels. Activation of the RAS countered the depressor effect of the severe plasma volume reduction (≥30%). The RAS, however, still underperformed as evidenced by reduced pressor responses to Ang-[1–8] even though AT1Rs were still responsive to the depressor effects of an AT1R antagonist. The aldosterone (ALDO) response was also inadequate as no changes in plasma ALDO were observed after the large fall in plasma volume. These findings have implications for individuals who have experienced a period(s) of severe FR (e.g., anorexia nervosa, dieters, natural disasters) and suggests increased activity of the RAS in order to achieve allostasis contributes to the cardiovascular dysfunction associated with inadequate food intake.
Collapse
Affiliation(s)
- Aline Maria Arlindo de Souza
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA. .,Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil.
| | - Crystal A West
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA
| | | | - Amrita V Pai
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC, 20057, USA
| | - Laura Batista Tavares Mesquita
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil
| | - Hong Ji
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA
| | - Deoclécio Chianca
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil
| | - Rodrigo Cunha Alvim de Menezes
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35460-000, Brazil
| | - Kathryn Sandberg
- Department of Medicine, Georgetown University, Washington, DC, 20057, USA
| |
Collapse
|
4
|
Hypothalamic and inflammatory basis of hypertension. Clin Sci (Lond) 2017; 131:211-223. [PMID: 28057892 DOI: 10.1042/cs20160001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
Hypertension is a major health problem with great consequences for public health. Despite its role as the primary cause of significant morbidity and mortality associated with cardiovascular disease, the pathogenesis of essential hypertension remains largely unknown. The central nervous system (CNS) in general, and the hypothalamus in particular, are intricately involved in the development and maintenance of hypertension. Over the last several decades, the understanding of the brain's role in the development of hypertension has dramatically increased. This brief review is to summarize the neural mechanisms of hypertension with a focus on neuroendocrine and neurotransmitter involvement, highlighting recent findings that suggest that hypothalamic inflammation disrupts key signalling pathways to affect the central control of blood pressure, and therefore suggesting future development of interventional strategies that exploit recent findings pertaining to the hypothalamic control of blood pressure as well as the inflammatory-sympathetic mechanisms involved in hypertension.
Collapse
|
5
|
Huber G, Schuster F, Raasch W. Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 2017; 125:72-90. [PMID: 28687340 DOI: 10.1016/j.phrs.2017.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVD) are among the main causes of death globally and in this context hypertension represents one of the key risk factors for developing a CVD. It is well established that the peripheral renin-angiotensin system (RAS) plays an important role in regulating blood pressure (BP). All components of the classic RAS can also be found in the brain but, in contrast to the peripheral RAS, how the endogenous RAS is involved in modulating cardiovascular effects in the brain is not fully understood yet. It is a complex system that may work differently in diverse areas of the brain and is linked to the peripheral system by the circumventricular organs (CVO), which do not have a blood brain barrier (BBB). In this review, we focus on the brain angiotensin peptides, their interactions with each other, and the consequences in the central nervous system (CNS) concerning cardiovascular control. Additionally, we present potential drug targets in the brain RAS for the treatment of hypertension.
Collapse
Affiliation(s)
- Gianna Huber
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Franziska Schuster
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany; CBBM (Center of Brain, Behavior and Metabolism), Lübeck, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany.
| |
Collapse
|
6
|
Huang S, Du F, Li L, Liu Y, Liu Y, Zhang C, Qian ZM. Angiotensin II inhibits uptake of transferrin-bound iron but not non-transferrin-bound iron by cultured astrocytes. Neuropeptides 2014; 48:161-6. [PMID: 24786977 DOI: 10.1016/j.npep.2014.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/08/2014] [Accepted: 04/07/2014] [Indexed: 11/17/2022]
Abstract
The existence of all components of the renin-angiotensin system (RAS) and the iron metabolism system, and the recent findings on the functions of angiotensin II (ANGII) in peripheral iron metabolism imply that ANGII might play a role in iron homeostasis by regulating expression of iron transport proteins in the brain. Here, we investigated effects of ANGII on uptake and release of iron as well as expression of cell iron transport proteins in cultured astrocytes. We demonstrated that ANGII could significantly inhibit transferrin-bound iron (Tf-Fe) uptake and iron release as well as the expression of transferrin receptor 1 (TfR1) and the iron exporter ferroportin 1 (Fpn1) in cultured astrocytes. This indicated that the inhibitory role of ANGII on Tf-Fe uptake and iron release is mediated by its negative effect on the expression of TfR1 and Fpn1. We also provided evidence that ANGII had no effect on divalent metal transporter 1 (DMT1) expression as well as non-transferrin-bound iron (NTBI) uptake in the cells. Our findings showed that ANGII has a role to affect expression of iron transport proteins in astrocytes in vitro and also suggested that ANGII might have a physiological function in brain iron homeostasis.
Collapse
Affiliation(s)
- Suna Huang
- Laboratory of Neuropharmacology and Department of Neurosurgery, South-west Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Fang Du
- Laboratory of Neuropharmacology and Department of Neurosurgery, South-west Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Lan Li
- Laboratory of Neuropharmacology and Department of Neurosurgery, South-west Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yong Liu
- Department of Neurology, Xin Qiao Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Yuhong Liu
- Laboratory of Neuropharmacology and Department of Neurosurgery, South-west Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Chao Zhang
- Laboratory of Neuropharmacology and Department of Neurosurgery, South-west Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Zhong Ming Qian
- Laboratory of Neuropharmacology and Department of Neurosurgery, South-west Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
7
|
Angiotensin II inhibits iron uptake and release in cultured neurons. Neurochem Res 2014; 39:893-900. [PMID: 24682751 DOI: 10.1007/s11064-014-1285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/14/2014] [Accepted: 03/13/2014] [Indexed: 01/26/2023]
Abstract
Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.
Collapse
|
8
|
Participation of 5-HT and AT1 Receptors within the Rostral Ventrolateral Medulla in the Maintenance of Hypertension in the Goldblatt 1 Kidney-1 Clip Model. Int J Hypertens 2014; 2014:723939. [PMID: 24678417 PMCID: PMC3941787 DOI: 10.1155/2014/723939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022] Open
Abstract
The hypothesis that changes in neurotransmission within the rostral ventrolateral medulla (RVLM) are important to maintain the high blood pressure (BP) was tested in Goldblatt one kidney-one clip hypertension model (1K-1C). Male Wistar rats were anesthetized (urethane 1.2 g/kg, i.v.), and the effects of bilateral microinjections into the RVLM of the following drugs were measured in 1K-1C or control groups: glutamate (0.1 mol/L, 100 nL) and its antagonist kynurenic acid (0.02 mol/L, 100 nL), the angiotensin AT1 receptor antagonist candesartan (0.01 mol/L, 100 nL), and the nonselective 5-HT receptor antagonist methiothepin (0.06 mol/L, 100 nL). Experiments in 1K-1C rats were performed 6 weeks after surgery. In anesthetized rats glutamate response was larger in hypertensive than in normotensive rats (H: Δ67 ± 6.5; N: Δ43 ± 3.54 mmHg). In contrast, kynurenic acid microinjection into the RVLM did not cause any change in BP in either group. The blockade of either AT1 or 5-HT receptors within the RVLM decreased BP only in 1K-1C rats. A largest depressor response was caused by 5-HT receptor blockade. The data suggest that 5-HT and AT1 receptors act tonically to drive RVLM in 1K-1C rats, and these actions within RVLM contribute to the pathogenesis of this model of hypertension.
Collapse
|
9
|
Park MH, Kim HN, Lim JS, Ahn JS, Koh JY. Angiotensin II potentiates zinc-induced cortical neuronal death by acting on angiotensin II type 2 receptor. Mol Brain 2013; 6:50. [PMID: 24289788 PMCID: PMC4222118 DOI: 10.1186/1756-6606-6-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/26/2013] [Indexed: 01/19/2023] Open
Abstract
Background The angiotensin system has several non-vascular functions in the central nervous system. For instance, inhibition of the brain angiotensin system results in a reduction in neuronal death following acute brain injury such as ischemia and intracerebral hemorrhage, even under conditions of constant blood pressure. Since endogenous zinc has been implicated as a key mediator of ischemic neuronal death, we investigated the possibility that the angiotensin system affects the outcome of zinc-triggered neuronal death in cortical cell cultures. Results Exposure of cortical cultures containing neurons and astrocytes to 300 μM zinc for 15 min induced submaximal death in both types of cells. Interestingly, addition of angiotensin II significantly enhanced the zinc-triggered neuronal death, while leaving astrocytic cell death relatively unchanged. Both type 1 and 2 angiotensin II receptors (AT1R and AT2R, respectively) were expressed in neurons as well as astrocytes. Zinc neurotoxicity was substantially attenuated by PD123319, a specific inhibitor of AT2R, and augmented by CGP42112, a selective activator of AT2R, indicating a critical role for this receptor subtype in the augmentation of neuronal cell death. Because zinc toxicity occurs largely through oxidative stress, the levels of superoxides in zinc-treated neurons were assessed by DCF fluorescence microscopy. Combined treatment with zinc and angiotensin II substantially increased the levels of superoxides in neurons compared to those induced by zinc alone. This increase in oxidative stress by angiotensin II was completely blocked by the addition of PD123319. Finally, since zinc-induced oxidative stress may be caused by induction and/or activation of NADPH oxidase, the activation status of Rac and the level of the NADPH oxidase subunit p67phox were measured. Angiotensin II markedly increased Rac activity and the levels of p67phox in zinc-treated neurons and astrocytes in a PD123319-dependent manner. Conclusion The present study shows that the angiotensin system, especially that involving AT2R, may have an oxidative injury-potentiating effect via augmentation of the activity of NADPH oxidase. Hence, blockade of angiotensin signaling cascades in the brain may prove useful in protecting against the oxidative neuronal death that is likely to occur in acute brain injury.
Collapse
Affiliation(s)
- Mi-Ha Park
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, South Korea.
| | | | | | | | | |
Collapse
|
10
|
Narayanaswami V, Somkuwar SS, Horton DB, Cassis LA, Dwoskin LP. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release. Biochem Pharmacol 2013; 86:656-65. [PMID: 23831951 DOI: 10.1016/j.bcp.2013.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/31/2022]
Abstract
Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of nicotine on dopamine and norepinephrine release in brain regions involved in nicotine reward and hypertension.
Collapse
Affiliation(s)
- Vidya Narayanaswami
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, 465 Biological Pharmaceutical Complex, Lexington, KY 40536-0596, USA
| | | | | | | | | |
Collapse
|
11
|
Wright JW, Harding JW. Importance of the brain Angiotensin system in Parkinson's disease. PARKINSON'S DISEASE 2012; 2012:860923. [PMID: 23213621 PMCID: PMC3503402 DOI: 10.1155/2012/860923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| | - Joseph W. Harding
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| |
Collapse
|
12
|
The levels of renin-angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int 2012; 61:54-62. [PMID: 22542773 DOI: 10.1016/j.neuint.2012.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/09/2023]
Abstract
We previously showed that patients with temporal lobe epilepsy (TLE) present an increased expression of angiotensin II (AngII) AT1 and AT2 receptors in the hippocampus, supporting the idea of an upregulation of renin-angiotensin system (RAS) in this disease. This study aimed to verify the relationship between the RAS and TLE during epileptogenesis. Levels of the peptides angiotensin I (AngI), angiotensin II (AngII) and angiotensin 1-7 (Ang 1-7), were detected by HPLC assay. Angiotensin AT1 and AT2 receptors, Mas mRNA receptors and angiotensin converting enzyme (ACE), tonin and neutral endopeptidase (NEP) mRNA were also quantified at the hippocampus of Wistar rats by real time PCR, during acute (n=10), silent (n=10) and chronic (n=10) phases of pilocarpine-induced epilepsy. We observed an increased peptide level of Ang1-7 into acute and silent phases, decreasing importantly (p≤0.05) in the chronic phase, suggesting that AngI may be converted into Ang 1-7 by NEP, which is present in high levels in these periods. Our results also showed increased peptide level of AngII in the chronic phase of this model. In contraposition, the ACE expression is reduced in all periods. These data suggest that angiotensinogen or AngI may be cleaved to AngII by tonin, which showed increased expression in all phases. We found changes in AT1, AT2 and Mas mRNA receptors levels suggesting that Ang1-7 could act at Mas receptor during the silent period. Herein, we demonstrated for the first time, changes in angiotensin-related peptides, their receptors as well as the releasing enzymes in the hippocampus of rats during pilocarpine-induced epilepsy.
Collapse
|
13
|
Albrecht D. Physiological and pathophysiological functions of different angiotensins in the brain. Br J Pharmacol 2010. [DOI: 10.1111/j.1476-5381.2010.00648.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
14
|
Effect of acetaldehyde upon cathepsin G and chymase. NRAS implications. Dig Dis Sci 2008; 53:1311-5. [PMID: 17932768 DOI: 10.1007/s10620-007-0013-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 09/03/2007] [Indexed: 12/09/2022]
Abstract
Hypertension is commonly observed in alcoholics. Both the renin-angiotensin system (RAS) and the non-renin-angiotensin system (NRAS) have been implicated in the dynamics of blood pressure maintenance. In bilaterally nephrectomized rats, acetaldehyde has been reported to enhance the generation of the rate-limiting angiotensin I (ANG I) in the plasma, and in humans it inhibits the activity of several angiotensinases (A, B, and M) in the serum, thereby promoting a hypertensive set of reactions. We report here the results of a study on the effect of acetaldehyde upon cathepsin G and mast cell chymase. Acetaldehyde enhanced cathepsin G activity at all of the concentrations tested between 11.2 and 223.5 mM in a statistically significant manner. Since cathepsin G is one of several enzymes transforming ANG I into ANG II and is also capable of cleaving ANG II directly from angiotensinogen, we suggest that alcoholism, which will generate exogenous acetaldehyde from ingested alcohol, may be a contributory factor for an elevated cathepsin G activity and, consequently, hypertension via the NRAS. Chymase activity also is elevated in the presence of 440 mM acetaldehyde and diminished in the presence of 27 mM acetaldehyde. Since both enzymes also degrade ANG II, the degradative effects of each enzyme on ANG II may neutralize one another.
Collapse
|
15
|
Elased KM, Cunha TS, Marcondes FK, Morris M. Brain angiotensin-converting enzymes: role of angiotensin-converting enzyme 2 in processing angiotensin II in mice. Exp Physiol 2008; 93:665-75. [PMID: 18263657 PMCID: PMC7197900 DOI: 10.1113/expphysiol.2007.040311] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Angiotensin (Ang)‐converting enzyme 2 (ACE2) metabolizes Ang II to the vasodilatory peptide Ang(1–7), while neprilysin (NEP) generates Ang(1–7) from Ang I. Experiments used novel Surface Enhanced Laser Desorption Ionization‐Time of Flight (SELDI‐TOF) mass spectroscopic (MS) assays to study Ang processing. Mass spectroscopy was used to measure proteolytic conversion of Ang peptide substrates to their specific peptide products. We compared ACE/ACE2 activity in plasma, brain and kidney from C57BL/6 and NEP−/− mice. Plasma or tissue extracts were incubated with Ang I or Ang II (1296 or 1045, m/z, respectively), and generated peptides were monitored with MS. Angiotensin‐converting enzyme 2 activity was detected in kidney and brain, but not in plasma. Brain ACE2 activity was highest in hypothalamus. Angiotensin‐converting enzyme 2 activity was inhibited by the specific ACE2 inhibitor, DX600 (10 μm, 99% inhibition), but not by the ACE inhibitor, captopril (10 μm). Both MS and colorimetric assays showed high ACE activity in plasma and kidney with low levels in brain. To extend these findings, ACE measurements were made in ACE overexpressing mice. Angiotensin‐converting enzyme four‐copy mice showed higher ACE activity in kidney and plasma with low levels in hypothalamus. In hypothalamus from NEP−/− mice, generation of Ang(1–7) from Ang I was decreased, suggesting a role for NEP in Ang metabolism. With Ang II as substrate, there was no difference between NEP−/− and wild‐type control mice, indicating that other enzymes may contribute to generation of Ang(1–7). The data suggest a predominant role of hypothalamic ACE2 in the processing of Ang II, in contrast to ACE, which is most active in plasma.
Collapse
Affiliation(s)
- Khalid M Elased
- Wright State University, Boonshoft School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | | | | | | |
Collapse
|
16
|
Grammatopoulos TN, Outeiro TF, Hyman BT, Standaert DG. Angiotensin II protects against alpha-synuclein toxicity and reduces protein aggregation in vitro. Biochem Biophys Res Commun 2007; 363:846-51. [PMID: 17900533 PMCID: PMC2707356 DOI: 10.1016/j.bbrc.2007.09.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 11/20/2022]
Abstract
In this study, we examined the effects of angiotensin II (AngII) in a genetic in vitro PD model produced by alpha-synuclein (alpha-syn) overexpression in the human neuroglioma H4 cell line. We observed a maximal decrease in alpha-syn-induced toxicity of 85% and reduction in inclusion formation by 19% when cultures were treated with AngII in the presence of the angiotensin type 1 (AT1) receptor antagonist losartan and AT2 receptor antagonist PD123319. When compared to AngII, the AT4 receptor agonist AngIV was moderately effective in protecting H4 cells against alpha-syn toxicity and did not significantly reduce inclusion formation. Here we show that AngII is protective against genetic, as well as neurotoxic models of PD. These data support the view that agents acting on the renin-angiotensin-system (RAS) may be useful in the prevention and/or treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Tom N Grammatopoulos
- MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
17
|
Dampney RAL, Hirooka Y, Potts PD, Head GA. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: FUNCTIONS OF ANGIOTENSIN PEPTIDES IN THE ROSTRAL VENTROLATERAL MEDULLA. Clin Exp Pharmacol Physiol 2007; 23 Suppl 3:S105-11. [DOI: 10.1111/j.1440-1681.1996.tb02822.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Mulder J, Wernérus H, Shi TJ, Pontén F, Hober S, Uhlén M, Hökfelt T. Systematically generated antibodies against human gene products: High throughput screening on sections from the rat nervous system. Neuroscience 2007; 146:1689-703. [PMID: 17478047 DOI: 10.1016/j.neuroscience.2007.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 10/23/2022]
Abstract
Completion of the Human Genome Project and recent developments in proteomics make it possible to systematically generate affinity reagents to a large portion of the proteome. Recently an antibody-based human protein atlas covering many organs including four areas of the brain has been released (www.proteinatlas.org). Due to the heterogeneity, size, and availability of tissue a more thorough analysis of the human brain is associated with considerable difficulties. Here we applied 120 antibodies raised against 112 human gene products to the smaller rat brain, a rodent animal model, where a single section represents a 'superarray' including many brain areas, and consequently allowing analysis of a huge number of cell types and their neurochemicals. Immunoreactive structures were seen in the investigated brain tissue after incubation with 56 antibodies (46.6%), of which 25 (20.8%) showed a clearly discrete staining pattern that was limited to certain areas, or subsets of brain cells. Bioinformatics, pre-adsorption tests and Western blot analysis were applied to identify non-specific antibodies. Eleven antibodies, including such raised against four 'ambiguous' proteins, passed all validation criteria, and the expression pattern and subcellular distribution of these proteins were studied in detail. To further explore the potential of the systematically generated antibodies, all 11 antibodies that passed validation were used to analyze the spinal cord and lumbar dorsal root ganglia after unilateral transection of the sciatic nerve. Discrete staining patterns were observed for four of the proteins, and injury-induced regulation was found for one of them. In conclusion, the study presented here suggests that a significant portion (10%) of the antibodies generated to a human protein can be used to analyze orthologues present in the rodent brain and to produce a protein-based atlas of the rodent brain. It is hoped that this type of antibody-based, high throughput screening of brain tissue from various rodent disease models will provide new information on the brain chemical neuroanatomy and insights in processes underlying neurological pathologies.
Collapse
Affiliation(s)
- J Mulder
- Department of Neuroscience, Karolinska Institutet, Retzius v. 8, S171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
19
|
Grammatopoulos TN, Jones SM, Ahmadi FA, Hoover BR, Snell LD, Skoch J, Jhaveri VV, Poczobutt AM, Weyhenmeyer JA, Zawada WM. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol Neurodegener 2007; 2:1. [PMID: 17224059 PMCID: PMC1783655 DOI: 10.1186/1750-1326-2-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 01/15/2007] [Indexed: 12/21/2022] Open
Abstract
Background Recent attention has focused on understanding the role of the brain-renin-angiotensin-system (RAS) in stroke and neurodegenerative diseases. Direct evidence of a role for the brain-RAS in Parkinson's disease (PD) comes from studies demonstrating the neuroprotective effect of RAS inhibitors in several neurotoxin based PD models. In this study, we show that an antagonist of the angiotensin II (Ang II) type 1 (AT1) receptor, losartan, protects dopaminergic (DA) neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity both in primary ventral mesencephalic (VM) cultures as well as in the substantia nigra pars compacta (SNpc) of C57BL/6 mice (Fig. 1). Results In the presence of exogenous Ang II, losartan reduced MPP+ (5 μM) induced DA neuronal loss by 72% in vitro. Mice challenged with MPTP showed a 62% reduction in the number of DA neurons in the SNpc and a 71% decrease in tyrosine hydroxylase (TH) immunostaining of the striatum, whereas daily treatment with losartan lessened MPTP-induced loss of DA neurons to 25% and reduced the decrease in striatal TH+ immunostaining to 34% of control. Conclusion Our study demonstrates that the brain-RAS plays an important neuroprotective role in the MPTP model of PD and points to AT1 receptor as a potential novel target for neuroprotection.
Collapse
Affiliation(s)
- Tom N Grammatopoulos
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Susan M Jones
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Ferogh A Ahmadi
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
- Neuroscience Program, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Brian R Hoover
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Lawrence D Snell
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Jesse Skoch
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Vimal V Jhaveri
- Department of Pharmacology, University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - Andy M Poczobutt
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| | - James A Weyhenmeyer
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | - W Michael Zawada
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
- Neuroscience Program, Department of Medicine, Denver and Health Sciences Center, Denver, Colorado 80262, USA
| |
Collapse
|
20
|
Hagiwara Y, Kubo T. Centrally injected angiotensin II trans-synaptically activates angiotensin II-sensitive neurons in the anterior hypothalamic area of rats. Neurosci Lett 2006; 409:157-61. [PMID: 17045741 DOI: 10.1016/j.neulet.2006.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 08/24/2006] [Accepted: 09/14/2006] [Indexed: 11/30/2022]
Abstract
Previously, we have demonstrated that pressure-ejected application of angiotensin II onto some neurons in the anterior hypothalamic area (AHA) of rats increases their firing rate. In contrast, pressure application of the angiotensin AT1 receptor antagonist losartan onto AHA neurons blocked the basal firing of the neurons. To investigate possible participation of these AHA neurons in the brain angiotensin system, we examined whether intracerebroventricular injection of angiotensin II results in an activation of angiotensin II-sensitive neurons in the AHA of rats. Intracerebroventricular injection of angiotensin II increased the firing rate of AHA angiotensin II-sensitive neurons. The angiotensin II-induced increase of unit firing in AHA neurons was abolished by pressure application of losartan onto the same neurons. In addition, the angiotensin II-induced increase of firing in AHA neurons was abolished by pressure application of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7), a calmodulin inhibitor, onto the same neurons. Pressure application of W7 onto AHA neurons affected neither the basal firing rate nor the increase in unit firing induced by pressure application of angiotensin II onto the same neurons. Intracerebroventricular injection of the cholinergic agonist carbachol did not affect the firing rate of angiotensin II-sensitive neurons in the AHA. These findings suggest that intracerebroventricular injection of angiotensin II activates AHA angiotensin II-sensitive neurons via angiotensinergic inputs to the neurons.
Collapse
Affiliation(s)
- Yukihiko Hagiwara
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | |
Collapse
|
21
|
von Bohlen und Halbach O, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res 2006; 326:599-616. [PMID: 16555051 DOI: 10.1007/s00441-006-0190-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 01/24/2023]
Abstract
The renin-angiotensin system (RAS) is one of the best-studied enzyme-neuropeptide systems in the brain and can serve as a model for the action of peptides on neuronal function in general. It is now well established that the brain has its own intrinsic RAS with all its components present in the central nervous system. The RAS generates a family of bioactive angiotensin peptides with variable biological and neurobiological activities. These include angiotensin-(1-8) [Ang II], angiotensin-(3-8) [Ang IV], and angiotensin-(1-7) [Ang-(1-7)]. These neuroactive forms of angiotensin act through specific receptors. Only Ang II acts through two different high-specific receptors, termed AT1 and AT2. Neuronal AT1 receptors mediate the stimulatory actions of Ang II on blood pressure, water and salt intake, and the secretion of vasopressin. In contrast, neuronal AT2 receptors have been implicated in the stimulation of apoptosis and as being antagonistic to AT1 receptors. Among the many potential effects mediated by stimulation of AT2 are neuronal regeneration after injury and the inhibition of pathological growth. Ang-(1-7) mediates its antihypertensive effects by stimulating the synthesis and release of vasodilator prostaglandins and nitric oxide and by potentiating the hypotensive effects of bradykinin. New data concerning the roles of Ang IV and Ang-(1-7) in cognition also support the existence of complex site-specific interactions between multiple angiotensins and multiple receptors in the mediation of important central functions of the RAS. Thus, the RAS of the brain is involved not only in the regulation of blood pressure, but also in the modulation of multiple additional functions in the brain, including processes of sensory information, learning, and memory, and the regulation of emotional responses.
Collapse
Affiliation(s)
- O von Bohlen und Halbach
- Interdisciplinary Center for Neurosciences (IZN), Department of Neuroanatomy, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany.
| | | |
Collapse
|
22
|
Pediconi D, Martarelli D, Fontanazza A, Pompei P. Effects of losartan and irbesartan administration on brain angiotensinogen mRNA levels. Eur J Pharmacol 2006; 528:79-87. [PMID: 16321381 DOI: 10.1016/j.ejphar.2005.10.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 10/25/2005] [Accepted: 10/28/2005] [Indexed: 11/18/2022]
Abstract
Losartan, 2-n-butyl-4-chloro-5-hydroxymethyl-1-[(2'(1H-tetrazol-5-yl)-biphenil-4-yl)methyl]imidazole, and Irbesartan, 2-n-butyl-3-[(2'-(1H-tetrazol-5-yl)-biphenyl-4-yl)methyl]-1,3-diaza-spiro[4,4]non-1-en-4-one, are two angiotensin AT1 receptor antagonists largely used in human health care as antihypertensive agents. Their ability to cross the blood-brain barrier and to influence the central renin-angiotensin system are widely investigated, but how this brain system responds to the subchronic and chronic block of the angiotensin AT1 receptor is still unknown. Normotensive rats were intragastrically implanted for 7- and 30-day administration, with a dose of 3 and 30 mg/kg body weight. Treatments were shown to influence, in a dose-, time- and brain-area-dependent manner, angiotensinogen mRNA levels in scanned areas. This study showed a general up-regulation of angiotensinogen mRNA expression after 7 days and a widespread down-regulation or basal level of expression after a 30-day administration of two angiotensin AT1 receptor antagonists.
Collapse
Affiliation(s)
- Dario Pediconi
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino (MC), Italy
| | | | | | | |
Collapse
|
23
|
Kubo T, Hagiwara Y. Enhanced activity of angiotensin II-sensitive neurons in the anterior hypothalamic area of spontaneously hypertensive rats. Brain Res 2004; 1020:140-6. [PMID: 15312795 DOI: 10.1016/j.brainres.2004.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2004] [Indexed: 11/24/2022]
Abstract
We have previously reported that an angiotensin system in the anterior hypothalamic area (AHA) is enhanced in spontaneously hypertensive rats (SHRs) and that this enhancement is involved in hypertension in this strain. In addition, we have reported that some neurons in the AHA are tonically activated by endogenous angiotensins in rats. In this study, we examined whether activities of neurons receiving tonic angiotensinergic inputs in the AHA are enhanced in SHR as compared with those of Wistar Kyoto rats (WKY). Male 15- to 16- or 6-week-old SHR and age-matched WKY were anesthetized and artificially ventilated. Extracellular potentials were recorded from single neurons in the AHA. Pressure application of angiotensin II onto some neurons in the AHA increased their firing rate. The basal firing rate of angiotensin II-sensitive neurons was increased in both 15- to 16- and 6-week-old SHR than in age-matched WKY. The increase of unit firing by angiotenisn II was enhanced in both 15- to 16- and 6-week-old SHR as compared with age-matched WKY. Pressure application of losartan, an angiotensin type 1 (AT1) receptor antagonist, alone decreased the basal firing rate of angiotensin II-sensitive neurons in 15- to 16-week-old SHR and WKY. The decrease of unit firing by losartan was also enhanced in SHR as compared with WKY. Pressure application of glutamate onto angiotensin II-sensitive neurons increased their firing rate and the increase of unit firing by glutamate was enhanced in 15- to 16-week-old SHR as compared with age-matched WKY. These findings suggest that activities of angiotensin II-sensitive neurons in the AHA are enhanced in SHR as compared with WKY. It is possible that the enhanced activity of angiotensin II-sensitive neurons in the AHA of SHR is partly due to enhanced neuronal reactivity to angiotensin II.
Collapse
Affiliation(s)
- Takao Kubo
- Department of Pharmacology, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| | | |
Collapse
|
24
|
Hagiwara Y, Kubo T. Tonic angiotensinergic inputs to neurons in the anterior hypothalamic area of rats. Brain Res 2004; 1006:207-14. [PMID: 15051524 DOI: 10.1016/j.brainres.2004.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2004] [Indexed: 11/29/2022]
Abstract
We have previously reported that microinjection of angiotensin II into the anterior hypothalamic area (AHA) produces a pressor response in rats and that the angiotensin AT1 receptor antagonist, losartan, similarly injected causes a depressor response in hypertensive rats. In this study, we examined whether endogenous angiotensins are involved in activation of neurons in the AHA. Male Wistar rats were anesthetized and artificially ventilated. Extracellular potentials were recorded from single neurons in the AHA. Pressure-ejected application of angiotensin II and glutamate onto some neurons in the AHA increased their firing rate. The increase of unit firing induced by angiotensin II but not by glutamate was inhibited by losartan. Application of losartan alone inhibited the basal firing rate of angiotensin II-sensitive neurons in a concentration-dependent manner. Application of the angiotensin AT2 receptor antagonist, PD123319, did not affect the increase of unit firing induced by angiotensin II and the basal firing rate of angiotensin II-sensitive neurons. Pressure application of angiotensin I onto angiotensin II-sensitive neurons also increased firing rate and the increase of unit firing by angiotensin I was inhibited by the angiotensin converting enzyme inhibitor, captopril. Captopril alone inhibited the basal firing rate of angitensin II-sensitive neurons. Acetylcholine did not affect unit firing of angiotensin II-sensitive neurons, whereas it increased the firing rate of some angiotensin II-insensitive neurons in the AHA. Increases of blood pressure by intravenous phenylephrine completely inhibited the basal firing rate of angiotensin II-sensitive neurons. These findings suggest that some neurons in the AHA are tonically activated by endogenous angiotensins. It seems likely that newly synthesized angiotensins are used for the angiotensinergic transmission in the AHA.
Collapse
Affiliation(s)
- Yukihiko Hagiwara
- Department of Pharmacology, Showa Pharmaceutical University, Higasi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | | |
Collapse
|
25
|
Carvalho THF, Bergamaschi CT, Lopes OU, Campos RR. Role of endogenous angiotensin II on glutamatergic actions in the rostral ventrolateral medulla in Goldblatt hypertensive rats. Hypertension 2003; 42:707-12. [PMID: 12913058 DOI: 10.1161/01.hyp.0000086524.35251.2d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we investigated the cardiovascular responses mediated by rostral ventrolateral medulla neurons (RVLM) in the Goldblatt hypertension model (2K-1C) treated or not treated with captopril. The actions of glutamate into the RVLM were tested, injecting glutamate (0.1 mol/L, 100 nL) and its antagonist kynurenic acid (0.02 mol/L, 100 nL). Glycine (0.5 mol/L, 100 nL) was also microinjected. Experiments were performed in male Wistar rats (weight, 250 to 300 g); 5 groups were studied: (1) 2K-1C nontreated (H, n=6); (2) 2K-1C treated with captopril, 10 mg/kg per day (Ht10, n=10); (3) 2K-1C treated with captopril, 50 mg/kg per day (Ht50, n=7); (4) control normotensive rats (N, n=7); and (5) normotensive rats treated with captopril, 50 mg/kg per day (Nt50, n=8). All experiments in 2K-1C were performed 6 weeks after renal surgery; captopril treatment lasted for the last 2 weeks. In urethane-anesthetized rats (1.2 g/kg IV), bilateral microinjection of glycine into the RVLM caused a depressor response; there was no difference between groups in relation to the change of variation (N: 54+/-2; H: 46+/-12; Ht10: 50+/-3, and Ht50: 42+/-7 mm Hg). Only in the H group, kynurenic acid microinjection into the RVLM caused a depressor response (H: 158+/-8 to 132+/-8 mm Hg). Glutamate response was larger in hypertensive than in normotensive rats (N: 38+/-2.6 and H: 55+/-6); no difference was observed between hypertensive groups. The data suggest that glutamate acts tonically to drive the RVLM in 2K-1C rats, and this action is modulated by endogenous angiotensin II. The increase in the glutamate actions within the RVLM may contribute to the pathogenesis of renovascular hypertension.
Collapse
|
26
|
Son YJ, Hur MK, Ryu BJ, Park SK, Damante G, D'Elia AV, Costa ME, Ojeda SR, Lee BJ. TTF-1, a homeodomain-containing transcription factor, participates in the control of body fluid homeostasis by regulating angiotensinogen gene transcription in the rat subfornical organ. J Biol Chem 2003; 278:27043-52. [PMID: 12730191 DOI: 10.1074/jbc.m303157200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In recent years, it has become increasingly evident that angiotensins synthesized in the brain contribute to regulating body fluid homeostasis. Although angiotensinogen, the unique angiotensin precursor, is produced in the brain, the factors that regulate its gene expression remain unknown. We recently found that TTF-1, a homeodomain-containing transcription factor essential for the development of the fetal diencephalon, is postnatally expressed in discrete areas of the hypothalamus. We now report that the subfornical organ, an important site of angiotensinogen synthesis, is an extra-hypothalamic site of TTF-1 expression. Double in situ hybridization histochemistry demonstrated the presence of TTF-1 mRNA in angiotensinogen-producing cells of the rat subfornical organ. RNase protection assays showed that TTF-1 and angiotensinogen mRNA levels are simultaneously increased in the subfornical organ by water deprivation. The angiotensinogen promoter contains seven presumptive TTF-1 binding motifs, four of which are recognized by the TTF-1 homeodomain. In the C6 glioma cell line, TTF-1 transactivates the angiotensinogen promoter in a dose-dependent manner. This transactivation is abolished by deletion of the TTF-1 binding motif at -125. Intracranial administration of an antisense TTF-1 oligodeoxynucleotide decreased angiotensinogen mRNA in the subfornical organ and dramatically reduced the animal's water intake while increasing urine excretion. Moreover, plasma arginine vasopressin content was decreased by the same treatment. These results demonstrate a novel role for TTF-1 in the regulation of body fluid homeostasis, exerted via the transactivational control of angiotensinogen synthesis in the subfornical organ.
Collapse
Affiliation(s)
- Young June Son
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan 680-749, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shinkai T, Ohmori O, Hori H, Nakamura J. Genetic approaches to polydipsia in schizophrenia: a preliminary report of a family study and an association study of an angiotensin-converting enzyme gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 2003; 119B:7-12. [PMID: 12707930 DOI: 10.1002/ajmg.b.10066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pathophysiology of polydipsia in patients with schizophrenia is inadequately understood. This study aims to investigate the genetic influence on polydipsia in schizophrenia, and is comprised of a family study and an association study. First, we screened in-patients in 14 psychiatric hospitals and found a total of 36 pairs of a proband and his/her first-degree relative, both of whom were diagnosed with schizophrenia. Among these pairs, a significant familial concordance of polydipsia was found (Fisher's exact test, two-sided, P = 0.0014; odds ratio, 88.20; 95% confidence interval, 7.31-1064.34). These results indicate that genetic factors may underlie the pathophysiology of polydipsia in patients with schizophrenia. Subsequently, we examined the genetic association between polydipsia/water intoxication and the angiotensin-converting enzyme (ACE) insertion (I)/deletion (D) polymorphism in patients with chronic schizophrenia (polydipsics: n = 65; non-polydipsics: n = 97) because several lines of evidence suggested that ACE might be involved in the development of polydipsia in schizophrenia. The D allele of ACE was found to be associated with a non-significant trend toward an increased risk of polydipsia (P = 0.086). Furthermore, a significant allelic association was found between the D allele of ACE and water intoxication (P = 0.0392). This significance remained after the data were adjusted for confounding variables by regression analysis. These results suggest that the ACE D allele may be a risk factor for polydipsia/water intoxication in patients with schizophrenia.
Collapse
Affiliation(s)
- Takahiro Shinkai
- Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | | | | | | |
Collapse
|
28
|
Dampney RAL, Fontes MAP, Hirooka Y, Horiuchi J, Potts PD, Tagawa T. Role of angiotensin II receptors in the regulation of vasomotor neurons in the ventrolateral medulla. Clin Exp Pharmacol Physiol 2002; 29:467-72. [PMID: 12010194 DOI: 10.1046/j.1440-1681.2002.03658.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. There is a high density of angiotensin type 1 (AT1) receptors in various brain regions involved in cardiovascular regulation. The present review will focus on the role of AT1 receptors in regulating the activity of sympathetic premotor neurons in the rostral part of the ventrolateral medulla (VLM), which are known to play a pivotal role in the tonic and phasic regulation of sympathetic vasomotor activity and arterial pressure. 2. Microinjection of angiotensin (Ang) II into the rostral VLM (RVLM) results in an increase in arterial pressure and sympathetic vasomotor activity. These effects are blocked by prior application of losartan, a selective AT1 receptor antagonist, indicating that they are mediated by AT1 receptors. However, microinjection of AngII into the RVLM has no detectable effect on respiratory activity, indicating that AT1 receptors are selectively or even exclusively associated with vasomotor neurons in this region. 3. Under normal conditions in anaesthetized animals, AT1 receptors do not appear to contribute significantly to the generation of resting tonic activity in RVLM sympathoexcitatory neurons. However, recent studies suggest that they contribute significantly to the tonic activity of these neurons under certain conditions, such as salt deprivation or heart failure, or in spontaneously hypertensive or genetically modified rats in which the endogenous levels of AngII are increased or in which AT1 receptors are upregulated. 4. Recent evidence also indicates that AT1 receptors play an important role in mediating phasic excitatory inputs to RVLM sympathoexcitatory neurons in response to activation of some neurons within the hypothalamic paraventricular nucleus. The physiological conditions that lead to activation of these AT1 receptor-mediated inputs are unknown. Further studies are also required to determine the cellular mechanisms of action of AngII in the RVLM and its interactions with other neurotransmitters in that region.
Collapse
Affiliation(s)
- R A L Dampney
- Department of Physiology and Institute for Biomedical Research, University of Sydney, New South Wales, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Hu L, Zhu DN, Yu Z, Wang JQ, Sun ZJ, Yao T. Expression of angiotensin II type 1 (AT(1)) receptor in the rostral ventrolateral medulla in rats. J Appl Physiol (1985) 2002; 92:2153-61. [PMID: 11960969 DOI: 10.1152/japplphysiol.00261.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, the changes of amino acids release in the spinal cord after the application of angiotensin II (ANG II) in the rostral ventrolateral medulla (RVLM) and the distribution of ANG receptors on neurons of the RVLM were investigated. A microdialysis experiment showed that microinjection of angiotensin II into the RVLM significantly (P < 0.01) increased the release of aspartate and glutamate in the intermediolateral column of the spinal cord. Immunofluorescence technique combined with confocal microscopy demonstrated that most of the glutamatergic and GABAergic neurons in the RVLM of both Wistar and spontaneously hypertensive rats (SHR) were double labeled with ANG type 1 (AT1) receptor. Immunocytochemical studies demonstrated that the mean optic density of AT1 receptor of the cell surface as well as the whole cell was higher (P < 0.05) in SHR than that in Wistar rats, indicating that the higher expression of AT1 receptors in the RVLM may contribute to the higher responsiveness of SHR to ANG II stimulation. Immunogold staining and electronmicroscopic study demonstrated that AT1 receptor in the RVLM was distributed on the rough endoplasmic reticulum, cell membrane, and nerve processes. The results suggest that effects evoked by ANG II in the RVLM are closely related to glutamatergic and GABAergic pathways. These results indirectly support the hypothesis that ANG II in the RVLM may activate vasomotor sympathetic glutamatergic neurons, leading to an increase in sympathetic nerve activity and arterial blood pressure.
Collapse
Affiliation(s)
- Lian Hu
- Department of Physiology, Medical Center of Fudan University (Former Shanghai Medical University), Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
30
|
Lazartigues E, Dunlay SM, Loihl AK, Sinnayah P, Lang JA, Espelund JJ, Sigmund CD, Davisson RL. Brain-selective overexpression of angiotensin (AT1) receptors causes enhanced cardiovascular sensitivity in transgenic mice. Circ Res 2002; 90:617-24. [PMID: 11909827 DOI: 10.1161/01.res.0000012460.85923.f0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To examine the physiological importance of brain angiotensin II type 1 (AT1) receptors, we developed a novel transgenic mouse model with rat AT1a receptors targeted selectively to neurons of the central nervous system (CNS). A transgene consisting of 2.8 kb of the rat neuron-specific enolase (NSE) 5' flanking region fused to a cDNA encoding the full open-reading frame of the rat AT1a receptor was constructed and transgenic mice (NSE-AT1a) were generated. Two of six transgenic founder lines exhibited brain-selective expression of the transgene at either moderate or high levels. Immunohistochemistry revealed widespread distribution of AT1 receptors in neurons throughout the CNS. This neuron-targeted overexpression of AT1a receptors resulted in enhanced cardiovascular responsiveness to intracerebroventricular (ICV) angiotensin II (Ang II) injection but not to other central pressor agents, demonstrating functional overexpression of the transgene in NSE-AT1a mice. Interestingly, baseline blood pressure (BP) was not elevated in either transgenic line. However, blockade of central AT1 receptors with ICV losartan caused significant falls in basal BP in NSE-AT1a mice but had no effect in nontransgenic controls. These results suggest that whereas there is an enhanced contribution of central AT1 receptors to the maintenance of baseline BP in NSE-AT1a mice, particularly effective baroreflex buffering prevents hypertension in this model. Used both independently, and in conjunction with mice harboring gene-targeted deletions of AT1a receptors, this new model will permit quantitative and relevant investigations of the role of central AT1a receptors in cardiovascular homeostasis in health and disease.
Collapse
Affiliation(s)
- Eric Lazartigues
- Department of Anatomy and Cell Biology, the University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
Most forms of hypertension are associated with a wide variety of functional changes in the hypothalamus. Alterations in the following substances are discussed: catecholamines, acetylcholine, angiotensin II, natriuretic peptides, vasopressin, nitric oxide, serotonin, GABA, ouabain, neuropeptide Y, opioids, bradykinin, thyrotropin-releasing factor, vasoactive intestinal polypeptide, tachykinins, histamine, and corticotropin-releasing factor. Functional changes in these substances occur throughout the hypothalamus but are particularly prominent rostrally; most lead to an increase in sympathetic nervous activity which is responsible for the rise in arterial pressure. A few appear to be depressor compensatory changes. The majority of the hypothalamic changes begin as the pressure rises and are particularly prominent in the young rat; subsequently they tend to fluctuate and overall to diminish with age. It is proposed that, with the possible exception of the Dahl salt-sensitive rat, the hypothalamic changes associated with hypertension are caused by renal and intrathoracic cardiopulmonary afferent stimulation. Renal afferent stimulation occurs as a result of renal ischemia and trauma as in the reduced renal mass rat. It is suggested that afferents from the chest arise, at least in part, from the observed increase in left auricular pressure which, it is submitted, is due to the associated documented impaired ability to excrete sodium. It is proposed, therefore, that the hypothalamic changes in hypertension are a link in an integrated compensatory natriuretic response to the kidney's impaired ability to excrete sodium.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College School of Medicine, Charing Cross Campus, London, United Kingdom.
| |
Collapse
|
33
|
DiBona GF, Jones SY. Effect of dietary sodium intake on the responses to bicuculline in the paraventricular nucleus of rats. Hypertension 2001; 38:192-7. [PMID: 11509475 DOI: 10.1161/01.hyp.38.2.192] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tachycardic, pressor, and renal sympathoexcitatory responses produced by administration of the gamma-aminobutyric acid antagonist bicuculline into the paraventricular nucleus of the rat are attenuated by the administration of losartan, an angiotensin II type 1 receptor antagonist, into the ipsilateral rostroventrolateral medulla. Therefore, excitatory synaptic inputs to pressor neurons in the rostroventrolateral medulla that arise from activation of the paraventricular nucleus are mediated predominantly by the action of angiotensin II on angiotensin II type 1 receptors. To examine whether such responses are influenced by physiological changes in the activity of the renin-angiotensin system, we measured heart rate, arterial pressure, and renal sympathetic nerve activity responses to the administration of bicuculline in the paraventricular nucleus in normal rats that were fed low-, normal-, and high-sodium diets and in rats with congestive heart failure. The rank order of both plasma renin activity and renal sympathoexcitatory responses was congestive heart failure>low-sodium diet>normal-sodium diet>high-sodium diet. The rank order of pressor and tachycardic responses exhibited a similar trend, but the differences between the groups were smaller and not statistically significant. The results indicate that the renal sympathoexcitatory responses to activation of the paraventricular nucleus are modulated by physiological alterations in the activity of the renin-angiotensin system.
Collapse
Affiliation(s)
- G F DiBona
- Departments of Internal Medicine and Physiology, University of Iowa College of Medicine, and Veterans Administration Medical Center, Iowa City, IO 52242, USA.
| | | |
Collapse
|
34
|
Abstract
A series of 2-sec.amino-4H-3,1-benzoxazin-4-ones was evaluated as acyl-enzyme inhibitors of human recombinant chymase. The compounds were also assayed for inhibition of human cathepsin G, bovine chymotrypsin, and human leukocyte elastase. Introduction of an aromatic moiety into the 2-substituent resulted in strong inhibition of chymase, cathepsin G, and chymotrypsin. Extension of the N(Me)CH2Ph substituent by one methylene unit was unfavourable to inhibit these proteases. Towards chymase, 2-(N-benzyl-N-methylamino)-4H-3,1-benzoxazin-4-one (32) and 2-(N-benzyl-N-methylamino)-6-methyl-4H-3,1-benzoxazin-4-one (33) were found to exhibit Ki values of 11 and 17 nM, respectively, and form stable acyl-enzymes with half-lives of 53 and 25 min, respectively. Benzoxazinone 33 also inhibited the human chymase-catalyzed formation of angiotensin 11 from angiotensin I.
Collapse
Affiliation(s)
- U Neumann
- Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
35
|
DiBona GF. Review: Role of angiotensin in central regulation of sympathetic activity: effect of dietary sodium chloride. J Renin Angiotensin Aldosterone Syst 2001; 2:S110-S113. [PMID: 28095216 DOI: 10.1177/14703203010020011901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Gerald F DiBona
- Departments of Internal Medicine and Physiology and Biophysics, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242 USA,
| |
Collapse
|
36
|
Chaves GZ, Caligiorne SM, Santos RA, Khosla MC, Campagnole-Santos MJ. Modulation of the baroreflex control of heart rate by angiotensin-(1-7) at the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats. J Hypertens 2000; 18:1841-8. [PMID: 11132609 DOI: 10.1097/00004872-200018120-00019] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In the present study, we evaluated the effect of angiotensin-(1-7) [Ang-(1-7)] and its selective antagonist, D-Ala7-Ang-(1-7) (A-779), at the nucleus tractus solitarii (nTS), in the modulation of the bradycardic component of the baroreceptor reflex. METHODS Mean arterial pressure (MAP) and heart rate were continuously recorded. Reflex changes in heart rate elicited by bolus injection of graded doses of phenylephrine were evaluated before and after bilateral microinjection (glass micropipette) of Ang-(1-7) (10 pmol or 25 pmol), A-779 (50 pmol) or saline (vehicle) into the nTS of urethane anesthetized male Wistar rats or spontaneously hypertensive rats (SHR). The averaged ratio between reflex changes in heart rate and changes in MAP was used as index of baroreflex sensitivity. RESULTS Microinjection of Ang-(1-7) into the nTS elicited significant decreases in MAP and heart rate in both Wistar and SHR. While the decrease in MAP was similar in both strains, the changes in heart rate were smaller in SHR. A-779 produced small changes in MAP and heart rate that were no different from those induced by saline. After microinjection of 10 pmol of Ang-(1-7) into the nTS of normotensive rats, there was a significant increase in baroreflex sensitivity. In SHR, only the microinjection of a higher dose (25 pmol) of Ang-(1-7) produced a significant increase in baroreflex sensitivity. A significant reduction inbaroreflex sensitivity was observed after microinjection of A-779 (50 pmol) in both strains. CONCLUSIONS These results indicate that Ang-(1-7) exerts a tonic modulatory effect on the baroreflex control of heart rate at the nTS, probably through a non-AT1 non-AT2 receptor subtype. In addition, our data showed a reduced sensitivity to Ang-(1-7) at the nTS of SHR, that could be accounting, at least in part, for the decreased baroreflex sensitivity present in this model of hypertension.
Collapse
Affiliation(s)
- G Z Chaves
- Departamento de Fisiologia e Biofisica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- M J Robertson
- Astra Charnwood, Loughborough, Leicestershire, England
| |
Collapse
|
38
|
Tagawa T, Fontes MA, Potts PD, Allen AM, Dampney RA. The physiological role of AT1 receptors in the ventrolateral medulla. Braz J Med Biol Res 2000; 33:643-52. [PMID: 10829092 DOI: 10.1590/s0100-879x2000000600005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons in the rostral and caudal parts of the ventrolateral medulla (VLM) play a pivotal role in the regulation of sympathetic vasomotor activity and blood pressure. Studies in several species, including humans, have shown that these regions contain a high density of AT1 receptors specifically associated with neurons that regulate the sympathetic vasomotor outflow, or the secretion of vasopressin from the hypothalamus. It is well established that specific activation of AT1 receptors by application of exogenous angiotensin II in the rostral and caudal VLM excites sympathoexcitatory and sympathoinhibitory neurons, respectively, but the physiological role of these receptors in the normal synaptic regulation of VLM neurons is not known. In this paper we review studies which have defined the effects of specific activation or blockade of these receptors on cardiovascular function, and discuss what these findings tell us with regard to the physiological role of AT1 receptors in the VLM in the tonic and phasic regulation of sympathetic vasomotor activity and blood pressure.
Collapse
Affiliation(s)
- T Tagawa
- Department of Physiology and Institute for Biomedical Research, University of Sydney, Australia
| | | | | | | | | |
Collapse
|
39
|
Tagawa T, Dampney RA. AT(1) receptors mediate excitatory inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Hypertension 1999; 34:1301-7. [PMID: 10601134 DOI: 10.1161/01.hyp.34.6.1301] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II type 1 (AT(1)) receptors are located on pressor neurons in the rostral ventrolateral medulla, and their activation results in an increase in arterial pressure. However, the normal role of these AT(1) receptors in cardiovascular regulation is unknown. In this study, we tested the hypothesis that these receptors mediate synaptic excitation of rostral ventrolateral medullary pressor neurons in response to activation of the hypothalamic paraventricular nucleus. In anesthetized rats, microinjections of the gamma-aminobutyric acid receptor antagonist bicuculline were made into the paraventricular nucleus; this injection causes activation of the nucleus as a consequence of disinhibition. The pressor and sympathoexcitatory responses evoked by paraventricular nucleus activation were significantly reduced (by approximately 40% to 50%) after microinjection of the specific AT(1) receptor antagonists losartan or L-158,809 into the rostral ventrolateral medulla on the ipsilateral, but not contralateral, side. These responses were reduced to a similar degree after microinjections of the neuroinhibitory compound muscimol into the ipsilateral, but not contralateral, rostral ventrolateral medulla. However, bilateral microinjections of the glutamate receptor antagonist kynurenic acid into the rostral ventrolateral medulla had no effect on the responses evoked from the paraventricular nucleus. Conversely, bilateral microinjections of kynurenic acid into the rostral ventrolateral medulla virtually abolished the somatosympathoexcitatory reflex, whereas bilateral microinjections of losartan or L-158,809 had no effect on this reflex. The results indicate that excitatory synaptic inputs to pressor neurons in the rostral ventrolateral medulla arising from activation of the paraventricular nucleus are mediated predominantly by AT(1) receptors.
Collapse
Affiliation(s)
- T Tagawa
- Department of Physiology and Institute for Biomedical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|
40
|
Rauch M, Schmid HA. Functional evidence for subfornical organ-intrinsic conversion of angiotensin I to angiotensin II. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R1630-8. [PMID: 10362741 DOI: 10.1152/ajpregu.1999.276.6.r1630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using extracellular electrophysiological recording in an in vitro slice preparation, we investigated whether ANG I can be locally converted to the functionally active ANG II within the rat subfornical organ (SFO). ANG I and ANG II (10(-8)-10(-7) M) excited approximately 75% of all neurons tested with both peptides (n = 25); the remainder were insensitive. The increase in firing rate and the duration and the latency of the responses of identical neurons, superfused with equimolar concentrations of ANG I and ANG II, were not different. The threshold concentrations of the ANG I- and ANG II-induced excitations were both 10(-9) M. Inhibition of the angiotensin-converting enzyme by captopril (10(-4) M; n = 8) completely blocked the ANG I-induced excitation, a 10-fold lower dose was only effective in two of four neurons. The AT1-receptor antagonist losartan (10(-5) M; n = 6) abolished the excitation caused by ANG I and ANG II. Subcutaneous injections of equimolar doses of ANG I and ANG II (200 microliters; 2 x 10(-4) M) in water-sated rats similarly increased water intake by 2.4 +/- 0.5 (n = 16) and 2. 7 +/- 0.4 ml (n = 20) after 1 h, respectively. Control rats receiving saline drank 0.07 +/- 0.06 ml under these conditions. Pretreatment with a low dose of captopril (2.3 x 10(-3) M) 10 min before the injection of ANG I caused a water intake of 2.8 +/- 0.5 ml (n = 10), whereas a high dose of captopril (4.6 x 10(-1) M) suppressed the dipsogenic response of ANG I entirely (n = 11). These data provide direct functional evidence for an SFO-intrinsic renin-angiotensin system (RAS) and underline the importance of the SFO as a central nervous interface connecting the peripheral with the central RAS.
Collapse
Affiliation(s)
- M Rauch
- Max-Planck-Institut für Physiologische und Klinische Forschung, W. G. Kerckhoff-Institut, 61231 Bad Nauheim, Germany.
| | | |
Collapse
|
41
|
Raghavendra V, Chopra K, Kulkarni SK. Modulation of motor functions involving the dopaminergic system by AT1 receptor antagonist, losartan. Neuropeptides 1998; 32:275-80. [PMID: 10189063 DOI: 10.1016/s0143-4179(98)90048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Growing evidence has indicated the existence of a brain renin angiotensin system and its possible interaction with other putative neurotransmitters and their receptors. In the present study, the effect of losartan, an AT1 receptor antagonist, was studied on the motor functions involving the dopaminergic system. Losartan (5-30 mg/kg) per se decreased locomotor activity without producing motor toxicity. It partially reversed the apomorphine-induced hyperlocomotion and stereotypy in mice, and potentiated neuroleptic-induced catalepsy in rats. On chronic administration (once daily for 21 days) losartan failed to block apomorphine-induced hyperlocomotion, but the inhibition of stereotypic response and potentiation of neuroleptic-induced catalepsy remained unaltered. These observations suggest that losartan inhibited the release of dopamine through AT1 receptor and also suggest the existence of a compensatory mechanism in certain brain region concerned with dopamine motor function.
Collapse
Affiliation(s)
- V Raghavendra
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
42
|
Gelband CH, Sumners C, Lu D, Raizada MK. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. REGULATORY PEPTIDES 1998; 73:141-7. [PMID: 9556076 DOI: 10.1016/s0167-0115(97)11050-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Collapse
Affiliation(s)
- C H Gelband
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
43
|
Gelband CH, Sumners C, Lu D, Raizada MK. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. REGULATORY PEPTIDES 1997; 72:139-45. [PMID: 9652973 DOI: 10.1016/s0167-0115(97)01050-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.
Collapse
MESH Headings
- Animals
- Brain/cytology
- Brain/drug effects
- Brain/enzymology
- Coculture Techniques
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Humans
- Mixed Function Oxygenases/genetics
- Mixed Function Oxygenases/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Norepinephrine/metabolism
- Norepinephrine/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Sympathomimetics/metabolism
- Sympathomimetics/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- C H Gelband
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
44
|
Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol 1996; 118:414-20. [PMID: 8735646 PMCID: PMC1909619 DOI: 10.1111/j.1476-5381.1996.tb15418.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. The ability of angiotensin II to modulate dopamine release from rat striatal slices in vitro and in the intact rat striatum in vivo was assessed by the microdialysis technique. 2. In slices of rat striatum, angiotensin II (0.1-1.0 microM) induced a concentration-related increase in endogenous dopamine release which was maximal (approximately 250% above basal levels) within the first 2-4 min of agonist application and subsequently declined to near basal values. The angiotensin II-induced increase in dopamine release was Ca(2+)-dependent and was completely antagonized by the selective AT1 receptor antagonist, losartan (1.0 microM). In contrast, the AT2 receptor antagonist, PD123177 (1.0 microM) failed to modify the angiotensin II-induced response. Neither antagonist alone modified basal dopamine release from striatal slices. 3. In freely moving rats, angiotensin II (1.0-10 microM; administered via the microdialysis probe) induced a concentration-related increase in extracellular levels of dopamine which was maximal (approximately 150% above basal levels) within 20-40 min of agonist application and subsequently declined. The angiotensin II (10 microM)-induced increase in extracellular levels of dopamine was completely antagonized by the AT1 receptor antagonist, losartan (0.1-1.0 microM; administered via the microdialysis probe) but not by the AT2 receptor antagonist, PD123177 (1.0 microM; administered via the microdialysis probe). Neither antagonist alone modified basal extracellular levels of dopamine. 4. Homogenate radioligand binding studies with [125I]-angiotensin II (0.1 nm) identified relatively low levels of specific binding sites in rat striatal homogenates compared to homogenates of pyriform cortex (51.3 +/- 9.2 and 651.3 +/- 55.1 fmol g-1 wet weight, respectively, mean +/- s.e.mean, n = 3; non-specific binding defined by unlabelled angiotensin II). The majority of the specific [125I]-angiotensin II (0.1 nM) binding in the striatal and pyriform cortex homogenates was sensitive to the selective AT1 receptor antagonist, losartan (1.0 microM). 5. In conclusions the present study provides direct evidence that angiotensin II acting via the AT1 receptor subtype facilitates the release of dopamine in the rat striatum in vitro and in vivo. This receptor-mediated response may account for the modulation of dopamine-mediated behavioural responses by antagonists of the AT1 receptor and inhibitors of angiotensin converting enzyme.
Collapse
Affiliation(s)
- D C Brown
- Department of Pharmacology, Medical School, University of Birmingham, Edgbaston
| | | | | | | |
Collapse
|