1
|
Gagarinskiy EL, Sharapov MG, Goncharov RG, Gurin AE, Ugraitskaya SV, Fesenko EE. The effectiveness of prolonged hypothermic preservation of isolated rat hearts using oxygen, medical nitrous oxide and carbon monoxide gas mixtures. Arch Biochem Biophys 2025; 765:110295. [PMID: 39798642 DOI: 10.1016/j.abb.2025.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/23/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The possibility of using an oxygen-nitrous oxide mixture for prolonged hypothermic preservation of rat heart for 24 h was investigated. A comparative analysis of restoration of functional activity of hearts in the groups of 24-h preservation at +4 °C with different gases (O2, N2) and gas mixtures (CO + O2, N2O + O2, N2+O2, N2O + N2) was carried out. It was shown that the presence of oxygen in the gas mixture was the key factor for heart preservation. No stable heart preservation was observed in oxygen-free mixtures. At the same time, preservation in pure oxygen showed a significantly lower level of cardiac recovery compared to preservation in gas mixtures O2+CO (6.5 atm.) and O2+N2O (6.5 atm.). LVDP (left ventricular developed pressure) values were 30 ± 19 mmHg and 46 ± 9 mmHg, respectively, with no significant differences found. The decrease in LDVP after 24 h of storage was 26-40 % of the intact control. The results obtained indicate the presence of pronounced synergistic effects of both gases during 24-h heart preservation, which is confirmed by data of marker genes Nfe2l2, Nox1, Prdx1, Hif1a, Nos2, Slc2a4, Ucp-1, Jun, Casp3 expression analysis and myocardial infarction damage level data. The more frequent occurrence of arrhythmias was observed in the oxygen-nitrous oxide group compared with the CO group, and the mechanism of this phenomenon is unclear. Nevertheless, the already medically approved N2O + O2 gas mixture could serve as a balanced choice for future improvements, offering a shorter duration of cardiac preservation compared to the CO + O2 mixture, while ensuring safety in its use.
Collapse
Affiliation(s)
- Evgeniy L Gagarinskiy
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Mars G Sharapov
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Ruslan G Goncharov
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Artem E Gurin
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Svetlana V Ugraitskaya
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| | - Eugeny E Fesenko
- Institute of Cell Biophysics RAS - a Separate Subdivision of Federal Research Centre "Pushchino Scientific Centre for Biological Research RAS", Institutskaya St., 3, 142290, Russia, Moscow Region, Pushchino.
| |
Collapse
|
2
|
Ai Z, Li D, Lan S, Zhang C. Nanomaterials exert biological effects by influencing the ubiquitin-proteasome system. Eur J Med Chem 2025; 282:116974. [PMID: 39556894 DOI: 10.1016/j.ejmech.2024.116974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The ubiquitin-proteasome system (UPS) is an important type of protein post-translational modification that affects the quantity and quality of various proteins and influences cellular processes such as the cell cycle, transcription, oxidative stress, and autophagy. Nanomaterials (NMs), which exhibit excellent physicochemical properties, can directly interact with the UPS and act as molecular-targeted drugs to induce changes in biological processes. This review provides an overview of the influence of NMs on the UPS of misfolded proteins and key proteins, which are related to cancer, neurodegenerative diseases and oxidative stress. This review also summarizes the role of modification processes involved in ubiquitination the biological effects of NMs and the mechanism of such effects of NMs through regulation of the UPS. This review deepens our understanding of the influence of NMs on the protein degradation process and provides new potential therapeutic targets for disease.
Collapse
Affiliation(s)
- Zhen Ai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Dan Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
3
|
Mendoza EN, Ciriolo MR, Ciccarone F. Hypoxia-Induced Reactive Oxygen Species: Their Role in Cancer Resistance and Emerging Therapies to Overcome It. Antioxidants (Basel) 2025; 14:94. [PMID: 39857427 PMCID: PMC11762716 DOI: 10.3390/antiox14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Normal tissues typically maintain partial oxygen pressure within a range of 3-10% oxygen, ensuring homeostasis through a well-regulated oxygen supply and responsive vascular network. However, in solid tumors, rapid growth often outpaces angiogenesis, creating a hypoxic microenvironment that fosters tumor progression, altered metabolism and resistance to therapy. Hypoxic tumor regions experience uneven oxygen distribution with severe hypoxia in the core due to poor vascularization and high metabolic oxygen consumption. Cancer cells adapt to these conditions through metabolic shifts, predominantly relying on glycolysis, and by upregulating antioxidant defenses to mitigate reactive oxygen species (ROS)-induced oxidative damage. Hypoxia-induced ROS, resulting from mitochondrial dysfunction and enzyme activation, exacerbates genomic instability, tumor aggressiveness, and therapy resistance. Overcoming hypoxia-induced ROS cancer resistance requires a multifaceted approach that targets various aspects of tumor biology. Emerging therapeutic strategies target hypoxia-induced resistance, focusing on hypoxia-inducible factors, ROS levels, and tumor microenvironment subpopulations. Combining innovative therapies with existing treatments holds promise for improving cancer outcomes and overcoming resistance mechanisms.
Collapse
|
4
|
Zhang P, Zhang J, Ma C, Ma H, Jing L. 6-hydroxygenistein attenuates hypoxia-induced injury via activating Nrf2/HO-1 signaling pathway in PC12 cells. Sci Rep 2025; 15:875. [PMID: 39762378 PMCID: PMC11704347 DOI: 10.1038/s41598-025-85286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
4',5,6,7-tetrahydoxyisoflavone (6-hydroxygenistein, 6-OHG) is a hydroxylated derivative of genistein with excellent antioxidant activity, but whether 6-OHG can protect hypoxia-induced damage is unclear. The objective of current study was to evaluate the protective effect and underling mechanism of 6-OHG against hypoxia-induced injury via network pharmacology and cellular experiments. 6-OHG-related and hypoxia injury-related targets were screened by public databases. The intersected targets were used for constructing PPI network and performing GO and KEGG functional analysis. We induced injury in PC12 cells under hypoxia conditions and observed the effects and molecular mechanisms of 6-OHG on cellular damage. Network pharmacological analysis predicted that 6-OHG delayed hypoxia injury by mitigating oxidative stress, inflammatory response and apoptosis. Cellular experiments suggested that 6-OHG treatment mitigated cell damage, enhanced cell viability, reduced ROS production and MDA level, increased SOD and CAT activities and elevated GSH level in PC12 cell exposed to hypoxia. Additionally, 6-OHG treatment reduced the TNF-α and IL-6 levels and elevated the IL-10 content, while downregulated the NF-κB and TNF-α expressions. 6-OHG also inhibited the caspase-3 and - 9 activation and the Bax and cleaved caspase-3 expressions, and elevated the Bcl-2 expression. Moreover, 6-OHG remarkably enhanced Nrf2 nuclear translocation and increased HO-1 expression. Molecular docking also proved the strong binding affinities of 6-OHG with Nrf2 and HO-1. Furthermore, ML385, a specific Nrf2 inhibitor, eliminated the beneficial effects of 6-OHG. In summary, 6-OHG can alleviate hypoxia-induced injury in PC12 cells through activating Nrf2/HO-1 signaling pathway and may be developed as candidate for preventing neuro-damage induced by hypoxia.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, NO.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, NO.333 Binhe South Road, Qilihe District, Lanzhou, 730050, Gansu, People's Republic of China
| | - Jie Zhang
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, NO.333 Binhe South Road, Qilihe District, Lanzhou, 730050, Gansu, People's Republic of China
| | - Chuan Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, NO.333 Binhe South Road, Qilihe District, Lanzhou, 730050, Gansu, People's Republic of China
| | - Huiping Ma
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, NO.333 Binhe South Road, Qilihe District, Lanzhou, 730050, Gansu, People's Republic of China.
| | - Linlin Jing
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, NO.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China.
- Department of Pharmacy, the 940th Hospital of Joint Logistics Support force of PLA, NO.333 Binhe South Road, Qilihe District, Lanzhou, 730050, Gansu, People's Republic of China.
| |
Collapse
|
5
|
周 志, 孙 凡, 江 秉. [Research Progress in the Role of Hypoxia-Inducible Factor 1 in Altitude Sickness and the Mechanisms Involved]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1424-1435. [PMID: 39990820 PMCID: PMC11839359 DOI: 10.12182/20241160303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Indexed: 02/25/2025]
Abstract
Individuals who reside at high altitudes for extended periods or those who visit these regions briefly frequently experience high-altitude response, which triggers a series of physiological and pathological changes in the body, ultimately causing altitude sickness. One of the most critical features of high-altitude environments is hypoxia. Recent studies have demonstrated that hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating the body's response to hypoxic conditions at high altitudes. HIF-1, a heterodimeric transcription factor composed of an oxygen-sensitive subunit α (HIF-1α) and a constitutively expressed subunit β (HIF-1β), directly regulates the expression of multiple target genes, thereby modulating various physiological processes essential for cellular adaptation to hypoxia. According to a substantial body of research, aberrant expression of HIF-1 is implicated in the pathogenesis and progression of various diseases, including altitude sickness, cardiovascular disorders, neurological conditions, inflammatory diseases, cognitive impairment, immune dysregulation, and cancer. In this review, we provided an in-depth examination of the structural characteristics and regulatory mechanisms governing HIF-1 expression, discussed its downstream target genes, and highlighted the inhibitors currently under development. Additionally, we summarized the pivotal role and underlying mechanisms of HIF-1 in the development of altitude sickness, particularly its regulatory role in the pathophysiological processes of high-altitude pulmonary edema (HAPE), high-altitude cerebral edema (HACE), and high-altitude pulmonary hypertension (HAPH). Through a thorough examination of the role of HIF-1, we aim to provide a theoretical foundation and potential therapeutic targets for the prevention and treatment of altitude sickness.
Collapse
Affiliation(s)
- 志豪 周
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - 凡丽 孙
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - 秉华 江
- 天健先进生物医学实验室 郑州大学医学科学院(河南 450000)Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
6
|
Alva R, Wiebe JE, Stuart JA. Revisiting reactive oxygen species production in hypoxia. Pflugers Arch 2024; 476:1423-1444. [PMID: 38955833 DOI: 10.1007/s00424-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
7
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Villareal LB, Xue X. The emerging role of hypoxia and environmental factors in inflammatory bowel disease. Toxicol Sci 2024; 198:169-184. [PMID: 38200624 PMCID: PMC10964750 DOI: 10.1093/toxsci/kfae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating disorder characterized by inflammation of the gastrointestinal tract. Despite extensive research, the exact cause of IBD remains unknown, hampering the development of effective therapies. However, emerging evidence suggests that hypoxia, a condition resulting from inadequate oxygen supply, plays a crucial role in intestinal inflammation and tissue damage in IBD. Hypoxia-inducible factors (HIFs), transcription factors that regulate the cellular response to low oxygen levels, have gained attention for their involvement in modulating inflammatory processes and maintaining tissue homeostasis. The two most studied HIFs, HIF-1α and HIF-2α, have been implicated in the development and progression of IBD. Toxicological factors encompass a wide range of environmental and endogenous agents, including dietary components, microbial metabolites, and pollutants. These factors can profoundly influence the hypoxic microenvironment within the gut, thereby exacerbating the course of IBD and fostering the progression of colitis-associated colorectal cancer. This review explores the regulation of hypoxia signaling at the molecular, microenvironmental, and environmental levels, investigating the intricate interplay between toxicological factors and hypoxic signaling in the context of IBD, focusing on its most concerning outcomes: intestinal fibrosis and colorectal cancer.
Collapse
Affiliation(s)
- Luke B Villareal
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
9
|
Kang GS, Jo HJ, Lee YR, Oh T, Park HJ, Ahn GO. Sensing the oxygen and temperature in the adipose tissues - who's sensing what? Exp Mol Med 2023; 55:2300-2307. [PMID: 37907745 PMCID: PMC10689767 DOI: 10.1038/s12276-023-01113-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the β-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Joon Park
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
10
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Zhao Y, Yu J, Huang A, Yang Q, Li G, Yang Y, Chen Y. ROS impairs tumor vasculature normalization through an endocytosis effect of caveolae on extracellular SPARC. Cancer Cell Int 2023; 23:152. [PMID: 37528424 PMCID: PMC10394868 DOI: 10.1186/s12935-023-03003-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The accumulation of reactive oxygen species (ROS) in tumor microenvironment (TME) is an important player for tumorigenesis and progression. We aimed to explore the outcomes of ROS on tumor vessels and the potential regulated mechanisms. METHODS Exogenous H2O2 was adopted to simulate the ROS setting. Immunofluorescence staining and ultrasonography were used to assess the vascular endothelial coverage and perfusions in the tumors inoculated with Lewis lung cancer (LLC) and melanoma (B16F10) cells of C57BL/6 mice, respectively. ELISA and western-blot were used to detect the expression of secreted acidic and cysteine-rich protein (SPARC) and Caveale-1 in human umbilical vein endothelial cells (HUVEC) extra- and intracellularly. Intracellular translocation of SPARC was observed using electron microscopy and immunofluorescence approaches. RESULT Under the context of oxidative stress, the pericyte recruitment of neovascularization in mouse lung cancer and melanoma tissues would be aberrated, which subsequently led to the disruption of the tumor vascular architecture and perfusion dysfunction. In vitro, HUVEC extracellularly SPARC was down-regulated, whereas intracellularly it was up-regulated. By electron microscopy and immunofluorescence staining, we observed that SPARC might undergo transmembrane transport via caveale-1-mediated endocytosis. Finally, the binding of SPARC to phosphorylated-caveale-1 was also detected in B16F10 tissues. CONCLUSION In the oxidative stress environment, neovascularization within the tumor occurs structural deterioration and decreased perfusion capacity. One of the main regulatory mechanisms is the migration of extracellular SPARC from the endothelium to intracellular compartments via Caveolin-1 carriers.
Collapse
Affiliation(s)
- Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Yu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guiling Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yong Yang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Yeshan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Aschner M, Skalny AV, Lu R, Santamaria A, Zhou JC, Ke T, Karganov MY, Tsatsakis A, Golokhvast KS, Bowman AB, Tinkov AA. The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity. Arch Toxicol 2023; 97:1299-1318. [PMID: 36933023 DOI: 10.1007/s00204-023-03483-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is an oxygen-sensing transcriptional regulator orchestrating a complex of adaptive cellular responses to hypoxia. Several studies have demonstrated that toxic metal exposure may also modulate HIF-1α signal transduction pathway, although the existing data are scarce. Therefore, the present review aims to summarize the existing data on the effects of toxic metals on HIF-1 signaling and the potential underlying mechanisms with a special focus on prooxidant effect of the metals. The particular effect of metals was shown to be dependent on cell type, varying from down- to up-regulation of HIF-1 pathway. Inhibition of HIF-1 signaling may contribute to impaired hypoxic tolerance and adaptation, thus promoting hypoxic damage in the cells. In contrast, its metal-induced activation may result in increased tolerance to hypoxia through increased angiogenesis, thus promoting tumor growth and contributing to carcinogenic effect of heavy metals. Up-regulation of HIF-1 signaling is mainly observed upon Cr, As, and Ni exposure, whereas Cd and Hg may both stimulate and inhibit HIF-1 pathway. The mechanisms underlying the influence of toxic metal exposure on HIF-1 signaling involve modulation of prolyl hydroxylases (PHD2) activity, as well as interference with other tightly related pathways including Nrf2, PI3K/Akt, NF-κB, and MAPK signaling. These effects are at least partially mediated by metal-induced ROS generation. Hypothetically, maintenance of adequate HIF-1 signaling upon toxic metal exposure through direct (PHD2 modulation) or indirect (antioxidant) mechanisms may provide an additional strategy for prevention of adverse effects of metal toxicity.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, 518100, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Aristides Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia.,Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Crete, Greece
| | - Kirill S Golokhvast
- Siberian Federal Scientific Centre of Agrobiotechnologies of the Russian Academy of Sciences, Krasnoobsk, Russia
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia. .,Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003, Yaroslavl, Russia.
| |
Collapse
|
13
|
Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma. J Zhejiang Univ Sci B 2023; 24:32-49. [PMID: 36632749 PMCID: PMC9837376 DOI: 10.1631/jzus.b2200269] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.
Collapse
|
14
|
Dihydrotanshinone I preconditions myocardium against ischemic injury via PKM2 glutathionylation sensitive to ROS. Acta Pharm Sin B 2023; 13:113-127. [PMID: 36815040 PMCID: PMC9939318 DOI: 10.1016/j.apsb.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Ischemic preconditioning (IPC) is a potential intervention known to protect the heart against ischemia/reperfusion injury, but its role in the no-reflow phenomenon that follows reperfusion is unclear. Dihydrotanshinone I (DT) is a natural compound and this study illustrates its role in cardiac ischemic injury from the aspect of IPC. Pretreatment with DT induced modest ROS production and protected cardiomyocytes against oxygen and glucose deprivation (OGD), but the protection was prevented by a ROS scavenger. In addition, DT administration protected the heart against isoprenaline challenge. Mechanistically, PKM2 reacted to transient ROS via oxidization at Cys423/Cys424, leading to glutathionylation and nuclear translocation in dimer form. In the nucleus, PKM2 served as a co-factor to promote HIF-1α-dependent gene induction, contributing to adaptive responses. In mice subjected to permanent coronary ligation, cardiac-specific knockdown of Pkm2 blocked DT-mediated preconditioning protection, which was rescued by overexpression of wild-type Pkm2, rather than Cys423/424-mutated Pkm2. In conclusion, PKM2 is sensitive to oxidation, and subsequent glutathionylation promotes its nuclear translocation. Although IPC has been viewed as a protective means against reperfusion injury, our study reveals its potential role in protection of the heart from no-reflow ischemia.
Collapse
|
15
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
16
|
Ying M, Hu X. Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells. Semin Cancer Biol 2022; 87:32-47. [PMID: 36374644 DOI: 10.1016/j.semcancer.2022.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Cancer cells are characterized by sustained proliferation, which requires a huge demand of fuels to support energy production and biosynthesis. Energy is produced by the oxidation of the fuels during catabolism, and biosynthesis is achieved by the reduction of smaller units or precursors. Therefore, the oxidation-reduction (redox) reactions in cancer cells are more active compared to those in the normal counterparts. The higher activity of redox metabolism also induces a more severe oxidative stress, raising the question of how cancer cells maintain the redox balance. In this review, we overview the redox metabolism of cancer cells in an electron-tracing view. The electrons are derived from the nutrients in the tumor microenvironment and released during catabolism. Most of the electrons are transferred to NAD(P) system and then directed to four destinations: energy production, ROS generation, reductive biosynthesis and antioxidant system. The appropriate distribution of these electrons achieved by the function of redox regulation network is essential to maintain redox homeostasis in cancer cells. Interfering with the electron distribution and disrupting redox balance by targeting the redox regulation network may provide therapeutic implications for cancer treatment.
Collapse
Affiliation(s)
- Minfeng Ying
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| | - Xun Hu
- Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
18
|
Winning S, Fandrey J. Oxygen Sensing in Innate Immune Cells: How Inflammation Broadens Classical Hypoxia-Inducible Factor Regulation in Myeloid Cells. Antioxid Redox Signal 2022; 37:956-971. [PMID: 35088604 DOI: 10.1089/ars.2022.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: Oxygen deprivation (hypoxia) is a common feature at sites of inflammation. Immune cells and all other cells present at the inflamed site have to adapt to these conditions. They do so by stabilization and activation of hypoxia-inducible factor subunit α (HIF-1α and HIF-2α, respectively), enabling constant generation of adenosine triphosphate (ATP) under these austere conditions by the induction of, for example, glycolytic pathways. Recent Advances: During recent years, it has become evident that HIFs play a far more important role than initially believed because they shape the inflammatory phenotype of immune cells. They are indispensable for migration, phagocytosis, and the induction of inflammatory cytokines by innate immune cells and thereby enable a crosstalk between innate and adaptive immunity. In short, they ensure the survival and function of immune cells under critical conditions. Critical Issues: Up to now, there are still open questions regarding the individual roles of HIF-1 and HIF-2 for the different cell types. In particular, the loss of both HIF-1 and HIF-2 in myeloid cells led to unexpected and contradictory results in the mouse models analyzed so far. Similarly, the role of HIF-1 in dendritic cell maturation is unclear due to inconsistent results from in vitro experiments. Future Directions: The HIFs are indispensable for immune cell survival and action under inflammatory conditions, but they might also trigger over-activation of immune cells. Therefore, they might be excellent setscrews to adjust the inflammatory response by pharmaceuticals. China and Japan and very recently (August 2021) Europe have approved prolyl hydroxylase inhibitors (PHIs) to stabilize HIF such as roxadustat for clinical use to treat anemia by increasing the production of erythropoietin, the classical HIF target gene. Nonetheless, we need further work regarding the use of PHIs under inflammatory conditions, because HIFs show specific activation and distinct expression patterns in innate immune cells. The extent to which HIF-1 or HIF-2 as a transcription factor regulates the adaptation of immune cells to inflammatory hypoxia differs not only by the cell type but also with the inflammatory challenge and the surrounding tissue. Therefore, we urgently need isoform- and cell type-specific modulators of the HIF pathway. Antioxid. Redox Signal. 37, 956-971.
Collapse
Affiliation(s)
- Sandra Winning
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Burtscher J, Mallet RT, Pialoux V, Millet GP, Burtscher M. Adaptive Responses to Hypoxia and/or Hyperoxia in Humans. Antioxid Redox Signal 2022; 37:887-912. [PMID: 35102747 DOI: 10.1089/ars.2021.0280] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Significance: Oxygen is indispensable for aerobic life, but its utilization exposes cells and tissues to oxidative stress; thus, tight regulation of cellular, tissue, and systemic oxygen concentrations is crucial. Here, we review the current understanding of how the human organism (mal-)adapts to low (hypoxia) and high (hyperoxia) oxygen levels and how these adaptations may be harnessed as therapeutic or performance enhancing strategies at the systemic level. Recent Advances: Hyperbaric oxygen therapy is already a cornerstone of modern medicine, and the application of mild hypoxia, that is, hypoxia conditioning (HC), to strengthen the resilience of organs or the whole body to severe hypoxic insults is an important preparation for high-altitude sojourns or to protect the cardiovascular system from hypoxic/ischemic damage. Many other applications of adaptations to hypo- and/or hyperoxia are only just emerging. HC-sometimes in combination with hyperoxic interventions-is gaining traction for the treatment of chronic diseases, including numerous neurological disorders, and for performance enhancement. Critical Issues: The dose- and intensity-dependent effects of varying oxygen concentrations render hypoxia- and/or hyperoxia-based interventions potentially highly beneficial, yet hazardous, although the risks versus benefits are as yet ill-defined. Future Directions: The field of low and high oxygen conditioning is expanding rapidly, and novel applications are increasingly recognized, for example, the modulation of aging processes, mood disorders, or metabolic diseases. To advance hypoxia/hyperoxia conditioning to clinical applications, more research on the effects of the intensity, duration, and frequency of altered oxygen concentrations, as well as on individual vulnerabilities to such interventions, is paramount. Antioxid. Redox Signal. 37, 887-912.
Collapse
Affiliation(s)
- Johannes Burtscher
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Vincent Pialoux
- Inter-University Laboratory of Human Movement Biology EA7424, University Claude Bernard Lyon 1, University of Lyon, Lyon, France
| | - Grégoire P Millet
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.,Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Molecular Mechanisms Underlying Twin-to-Twin Transfusion Syndrome. Cells 2022; 11:cells11203268. [PMID: 36291133 PMCID: PMC9600593 DOI: 10.3390/cells11203268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Twin-to-twin transfusion syndrome is a unique disease and a serious complication occurring in 10–15% of monochorionic multiple pregnancies with various placental complications, including hypoxia, anemia, increased oxidative stress, and ischemia-reperfusion injury. Fetoscopic laser photocoagulation, a minimally invasive surgical procedure, seals the placental vascular anastomoses between twins and dramatically improves the survival rates in twin-to-twin transfusion syndrome. However, fetal demise still occurs, suggesting the presence of causes other than placental vascular anastomoses. Placental insufficiency is considered as the main cause of fetal demise in such cases; however, little is known about its underlying molecular mechanisms. Indeed, the further association of the pathogenic mechanisms involved in twin-to-twin transfusion syndrome placenta with several molecules and pathways, such as vascular endothelial growth factor and the renin–angiotensin system, makes it difficult to understand the underlying pathological conditions. Currently, there are no effective strategies focusing on these mechanisms in clinical practice. Certain types of cell death due to oxidative stress might be occurring in the placenta, and elucidation of the molecular mechanism underlying this cell death can help manage and prevent it. This review reports on the molecular mechanisms underlying the development of twin-to-twin transfusion syndrome for effective management and prevention of fetal demise after fetoscopic laser photocoagulation.
Collapse
|
21
|
Cyran AM, Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem Res Toxicol 2022; 35:1690-1700. [PMID: 35948068 PMCID: PMC9580020 DOI: 10.1021/acs.chemrestox.2c00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Cellular homeostasis is continuously challenged by damage
from
reactive oxygen species (ROS) and numerous reactive electrophiles.
Human cells contain various protective systems that are upregulated
in response to protein damage by electrophilic or oxidative stress.
In addition to the NRF2-mediated antioxidant response, ROS and reactive
electrophiles also activate HSF1 and HIF1 that control heat shock
response and hypoxia response, respectively. Here, we review chemical
and biological mechanisms of activation of these three transcription
factors by ROS/reactive toxicants and the roles of their gene expression
programs in antioxidant protection. We also discuss how NRF2, HSF1,
and HIF1 responses establish multilayered cellular defenses consisting
of largely nonoverlapping programs, which mitigates limitations of
each response. Some innate immunity links in these stress responses
help eliminate damaged cells, whereas others suppress deleterious
inflammation in normal tissues but inhibit immunosurveillance of cancer
cells in tumors.
Collapse
Affiliation(s)
- Anna M Cyran
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
22
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
23
|
Abstract
The regulatory mechanism of hypoxia-inducible factor-1α (HIF-1α) is complex. HIF-1α may inhibit or promote apoptosis in osteoblasts under different physiological conditions, and induce bone regeneration and repair injury in coordination with angiogenesis. The relationship between H2O2 and HIFs is complex, and this study aimed to explore the role of HIF-1α in H2O2-induced apoptosis. Dimethyloxallyl glycine (DMOG) and 2-Methoxyestradiol (2ME) were used to stabilize and inhibit HIFs, respectively. Cell viability was assessed with CCK8. Apoptosis and ROS levels were detected by flow cytometry, and HIF mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR). Western blot was performed to detect HIF-1α, HIF-2α, Bax, Bak, Bcl-2, Bcl-XL, caspase-9, and PCNA protein amounts. Our data suggest that both HIF-1α and HIF-2α play a protective role in oxidative stress. HIF-1α reduces H2O2-induced apoptosis by upregulating Bcl-2 and Bcl-XL, downregulating Bax, Bak, and caspase-9, stabilizing intracellular ROS levels, and promoting the repair of H2O2-induced DNA damage to reduce apoptosis.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Lili Wei
- General Geriatrics Division, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| |
Collapse
|
24
|
Liang S, Dong S, Liu W, Wang M, Tian S, Ai Y, Wang H. Accumulated ROS Activates HIF-1α-Induced Glycolysis and Exerts a Protective Effect on Sensory Hair Cells Against Noise-Induced Damage. Front Mol Biosci 2022; 8:806650. [PMID: 35096971 PMCID: PMC8790562 DOI: 10.3389/fmolb.2021.806650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Noise exposure causes noise-induced hearing loss (NIHL). NIHL exhibits loss of inner ear sensory hair cells and is often irreparable. Although oxidative stress is involved in hearing loss, the complex mechanisms involved in NIHL are unclear. Hypoxia-inducible factor 1α (HIF-1α) has been suggested to be essential for protecting sensory hair cells. Additionally, it has been shown that ROS is involved in modulating the stability of HIF-1α. To investigate the NIHL pathogenesis, we established a tert-butyl hydroperoxide (t-BHP)-induced oxidative stress damage model in hair-like HEI-OC1 cells and an NIHL model in C57BL/6 mice. Protein and mRNA expression were determined, and biochemical parameters including reactive oxygen species (ROS) accumulation, glucose uptake, adenosine triphosphat (ATP) production, and mitochondrial content were evaluated. In HEI-OC1 cells, t-BHP induced ROS accumulation and reduced mitochondrial content and oxygen consumption, but the ATP level was unaffected. Additionally, there was increased glucose uptake and lactate release along with elevated expression of HIF-1α, glucose transporter 1, and several glycolytic enzymes. Consistently, noise trauma induced oxidative stress and the expression of HIF-1α and glycolytic enzymes in mice. Thus, we concluded that ROS induced HIF-1α expression, which promoted glycolysis, suggesting a metabolic shift maintained the ATP level to attenuate hair cell damage in NIHL.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenwen Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Man Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shanshan Tian
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Ai
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Yu Ai, ; Haibo Wang,
| |
Collapse
|
25
|
Gui L, Chen Y, Diao Y, Chen Z, Duan J, Liang X, Li H, Liu K, Miao Y, Gao Q, Li Z, Yang J, Li Y. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia. Mater Today Bio 2022; 13:100192. [PMID: 34988419 PMCID: PMC8695365 DOI: 10.1016/j.mtbio.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 11/21/2022] Open
Abstract
With critical limb ischemia (CLI) being a multi-factorial disease, it is becoming evident that gene therapy with a multiple bio-functional growth factor could achieve better therapeutic outcomes. Cytochrome P450 epoxygenase-2J2 (CYP2J2) and its catalytic products epoxyeicosatrienoic acids (EETs) exhibit pleiotropic biological activities, including pro-angiogenic, anti-inflammatory and cardiovascular protective effects, which are considerably beneficial for reversing ischemia and restoring local blood flow in CLI. Here, we designed a nanoparticle-based pcDNA3.1-CYP2J2 plasmid DNA (pDNA) delivery system (nanoparticle/pDNA complex) composed of a novel three-arm star block copolymer (3S-PLGA-po-PEG), which was achieved by conjugating three-armed PLGA to PEG via the peroxalate ester bond. Considering the multiple bio-functions of CYP2J2-EETs and the sensitivity of the peroxalate ester bond to H2O2, this nanoparticle-based gene delivery system is expected to exhibit excellent pro-angiogenic effects while improving the high oxidative stress and inflammatory micro-environment in ischemic hindlimb. Our study reports the first application of CYP2J2 in the field of therapeutic angiogenesis for CLI treatment and our findings demonstrated good biocompatibility, stability and sustained release properties of the CYP2J2 nano-delivery system. In addition, this nanoparticle-based gene delivery system showed high transfection efficiency and efficient VEGF expression in vitro and in vivo. Intramuscular injection of nanoparticle/pDNA complexes into mice with hindlimb ischemia resulted in significant rapid blood flow recovery and improved muscle repair compared to mice treated with naked pDNA. In summary, 3S-PLGA-po-PEG/CYP2J2-pDNA complexes have tremendous potential and provide a practical strategy for the treatment of limb ischemia. Moreover, 3S-PLGA-po-PEG nanoparticles might be useful as a potential non-viral carrier for other gene delivery applications. Cytochrome P450 epoxygenase-2J2 (CYP2J2) was first applied in the field of therapeutic angiogenesis for critical limb ischemia treatment. The ROS-responsive three-arm star block copolymer (3S-PLGA-po-PEG) was synthesized with peroxalate ester as H2O2-responsive linkages through the esterification reaction of oxalyl chloride and hydroxyl group. The CYP2J2 nano-delivery system achieved high transfection efficiency and significant therapeutic angiogenesis effect.
Collapse
Affiliation(s)
- Liang Gui
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China.,Graduate School of Peking Union Medical College, Beijing, 100730, PR China.,Department of Vascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, PR China
| | - Youlu Chen
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongpeng Diao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zuoguan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jianwei Duan
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Xiaoyu Liang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Huiyang Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Kaijing Liu
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yuqing Miao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Qing Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Zhichao Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Jing Yang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| |
Collapse
|
26
|
Zhitkovich A. Ascorbate: antioxidant and biochemical activities and their importance for in vitro models. Arch Toxicol 2021; 95:3623-3631. [PMID: 34596731 DOI: 10.1007/s00204-021-03167-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
Ascorbate has many biological activities that involve fundamental cellular functions such as gene expression, differentiation, and redox homeostasis. Biochemically, it serves as a cofactor for a large family of dioxygenases (> 60 members) which control transcription, formation of extracellular matrix, and epigenetic processes of histone and DNA demethylation. Ascorbate is also a major antioxidant acting as a very effective scavenger of primary reactive oxygen species. Reduction of Fe(III) by ascorbate is important for cellular uptake of iron via DMT1. Cell culture models are extensively used in toxicology and pharmacology for mechanistic studies of nutrients, drugs and other xenobiotics. High-throughput screens in vitro, such as a large-scale Tox21 program in the US, offers opportunities to assess hazardous properties of a vast and growing number of industrial chemicals. However, cells in typical cultures are severely deficient in ascorbate, raising concerns about their ability to accurately recapitulate toxic and other responses in vivo. Scarcity of ascorbate and a frequently unrecognized use of media with its thiol substitute alters stress sensitivity of cells in different directions. Remediation of ascorbate deficiency in tissue culture restores the physiological state of many cellular processes and it should improve a currently limited toxicity predictability of in vitro bioassays.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Room 507, Providence, RI, 02912, USA.
| |
Collapse
|
27
|
Pei X, Chu M, Tang P, Zhang H, Zhang X, Zheng X, Li J, Mei J, Wang T, Yin S. Effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, oxidative stress, and apoptosis in hybrid yellow catfish "Huangyou-1". FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1429-1448. [PMID: 34313912 DOI: 10.1007/s10695-021-00989-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The regulation mechanism of the hybrid yellow catfish "Huangyou-1" was assessed under conditions of hypoxia and reoxygenation by examination of oxygen sensors and by monitoring respiratory metabolism, oxidative stress, and apoptosis. The expressions of genes related to oxygen sensors (HIF-1α, HIF-2α, VHL, HIF-1β, PHD2, and FIH-1) were upregulated in the brain and liver during hypoxia, and recovered compared with control upon reoxygenation. The expressions of genes related to glycolysis (HK1, PGK1, PGAM2, PFK, and LDH) were increased during hypoxia and then recovered compared with control upon reoxygenation. The mRNA levels of CS did not change during hypoxia in the brain and liver, but increased during reoxygenation. The mRNA levels of SDH decreased significantly only in the liver during hypoxia, but later increased compared with control upon reoxygenation in both tissues. Under hypoxic conditions, the expressions of genes related to oxidative stress (SOD1, SOD2, GSH-Px, and CAT) and the activity of antioxidant enzymes (SOD, CAT, and GSH-Px) and MDA were upregulated compared with control. The expressions of genes related to apoptosis (Apaf-1, Bax, Caspase 3, Caspase 9, and p53) were higher than those in control during hypoxic exposure, while the expressions of Bcl-2 and Cyt C were decreased. The findings of the transcriptional analyses will provide insights into the molecular mechanisms of hybrid yellow catfish "Huangyou-1" under conditions of hypoxia and reoxygenation. Overall, these findings showed that oxygen sensors of "Huangyou-1" are potentially useful biomarkers of environmental hypoxic exposure. Together with genes related to respiratory metabolism, oxidative stress and apoptosis occupy a quite high position in enhancing hypoxia tolerance. Our findings provided new insights into the molecular regulatory mechanism of hypoxia in "Huangyou-1."
Collapse
Affiliation(s)
- Xueying Pei
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Mingxu Chu
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Peng Tang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Hongyan Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Xinyu Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Xiang Zheng
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Jie Li
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Tao Wang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China.
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, Jiangsu, China.
| |
Collapse
|
28
|
Luczak MW, Krawic C, Zhitkovich A. NAD + metabolism controls growth inhibition by HIF1 in normoxia and determines differential sensitivity of normal and cancer cells. Cell Cycle 2021; 20:1812-1827. [PMID: 34382917 DOI: 10.1080/15384101.2021.1959988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hypoxia-induced transcription factor HIF1 inhibits cell growth in normoxia through poorly understood mechanisms. A constitutive upregulation of hypoxia response is associated with increased malignancy, indicating a loss of antiproliferative effects of HIF1 in cancer cells. To understand these differences, we examined a control of cell cycle in primary human cells with activated hypoxia response in normoxia. Activated HIF1 caused a global slowdown of cell cycle progression through G1, S and G2 phases leading to the loss of mitotic cells. Cell cycle inhibition required a prolonged HIF1 activation and was not associated with upregulation of p53 or the CDK inhibitors p16, p21 or p27. Growth inhibition by HIF1 was independent of its Asn803 hydroxylation or the presence of HIF2. Antiproliferative effects of hypoxia response were alleviated by inhibition of lactate dehydrogenase and more effectively, by boosting cellular production of NAD+, which was decreased by HIF1 activation. In comparison to normal cells, various cancer lines showed several fold-higher expression of NAMPT which is a rate-limiting enzyme in the main biosynthetic pathway for NAD+. Inhibition of NAMPT activity in overexpressor cancer cells sensitized them to antigrowth effects of HIF1. Thus, metabolic changes in cancer cells, such as enhanced NAD+ production, create resistance to growth-inhibitory activity of HIF1 permitting manifestation of its tumor-promoting properties.AbbreviationsDMOG: dimethyloxalylglycine, DM-NOFD: dimethyl N-oxalyl-D-phenylalanine, NMN: β-nicotinamide mononucleotide.
Collapse
Affiliation(s)
- Michal W Luczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
29
|
Zhao J, Zhao Y, Ma X, Zhang B, Feng H. Targeting ferroptosis in osteosarcoma. J Bone Oncol 2021; 30:100380. [PMID: 34345580 PMCID: PMC8319509 DOI: 10.1016/j.jbo.2021.100380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumour in children and adolescents, with high degree of malignancy and an extremely poor prognosis. Ferroptosis, a non-traditional mode of regulated cell death (RCD) characterised by iron-dependent accumulation of lipid reactive oxygen species (ROS), is closely associated with a variety of cancers. It has been demonstrated that ferroptosis can regulate OS progression and exert an essential role in the treatment of OS, which is potentially of great value. By targeting ferroptosis in OS, the present review article summarises the relevant mechanisms and therapeutic applications along with discussing current limitations and future directions, which may provide a new strategy for the treatment of OS.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| | - Yi Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| | - Xiaowei Ma
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| | - Benzheng Zhang
- Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei 050011, PR. China
| | - Helin Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei 050011, PR China
| |
Collapse
|
30
|
Sankorrakul K, Qian L, Thangnipon W, Coulson EJ. Is there a role for the p75 neurotrophin receptor in mediating degeneration during oxidative stress and after hypoxia? J Neurochem 2021; 158:1292-1306. [PMID: 34109634 DOI: 10.1111/jnc.15451] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022]
Abstract
Cholinergic basal forebrain (cBF) neurons are particularly vulnerable to degeneration following trauma and in neurodegenerative conditions. One reason for this is their characteristic expression of the p75 neurotrophin receptor (p75NTR ), which is up-regulated and mediates neuronal death in a range of neurological and neurodegenerative conditions, including dementia, stroke and ischaemia. The signalling pathway by which p75NTR signals cell death is incompletely characterised, but typically involves activation by neurotrophic ligands and signalling through c-Jun kinase, resulting in caspase activation via mitochondrial apoptotic signalling pathways. Less well appreciated is the link between conditions of oxidative stress and p75NTR death signalling. Here, we review the literature describing what is currently known regarding p75NTR death signalling in environments of oxidative stress and hypoxia to highlight the overlap in signalling pathways and the implications for p75NTR signalling in cBF neurons. We propose that there is a causal relationship and define key questions to test this assertion.
Collapse
Affiliation(s)
- Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia.,Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Lei Qian
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Elizabeth J Coulson
- School of Biomedical Sciences, Faculty of Medicine and Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Qld., Australia
| |
Collapse
|
31
|
Cui D, Chen C, Luo B, Yan F. Inhibiting PHD2 in human periodontal ligament cells via lentiviral vector-mediated RNA interference facilitates cell osteogenic differentiation and periodontal repair. J Leukoc Biol 2021; 110:449-459. [PMID: 33988258 DOI: 10.1002/jlb.1ma0321-761r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontal defect regeneration in severe periodontitis remains a challenging task in clinic owing to poor survival of seed cells caused by the remaining oxidative stress microenvironment. Recently, the reduction of prolyl hydroxylase domain-containing protein 2 (PHD2), a primary cellular oxygen sensor, has shown an incredible extensive effect on skeletal muscle tissue regeneration by improving cell resistance to reactive oxygen species, whereas its role in periodontal defect repair is unclear. Here, through lentivirus vector-mediated RNA interference, the PHD2 gene in human periodontal ligament cells (hPDLCs) is silenced, leading to hypoxia-inducible factor-1α stabilization in normoxia. In vitro, PHD2 silencing not only exhibited a satisfactory effect on cell proliferation, but also induced distinguished osteogenic differentiation of hPDLCs. Real-time polymerase chain reaction and Western blotting revealed significant up-regulation of osteocalcin, alkaline phosphatase (ALP), runt-related transcription factor 2, and collagen type I (COL I). Under oxidative stress conditions, COL I and ALP expression levels, suppressed by 100 μM H2 O2 , were elevated by PHD2-gene-silencing in hPDLCs. In vivo, periodontal fenestration defects were established in 18 female Sprague-Dawley rats aged 6 wk old, followed by implantation of PHD2 silencing hPDLCs in situ for 21 d. Persistent and stable silencing of PHD2 in hPDLCs promoted better new bone formation according to microcomputed tomography 3D reconstruction and related bone parameter analysis. This work demonstrates the therapeutic efficiency of PHD2 gene interference in osteogenic differentiation and periodontal defect repair for highly efficient periodontal regeneration.
Collapse
Affiliation(s)
- Di Cui
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Changxing Chen
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Binyan Luo
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Watts M, Williams G, Lu J, Nithianantharajah J, Claudianos C. MicroRNA-210 Regulates Dendritic Morphology and Behavioural Flexibility in Mice. Mol Neurobiol 2021; 58:1330-1344. [PMID: 33165828 DOI: 10.1007/s12035-020-02197-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023]
Abstract
MicroRNAs are known to be critical regulators of neuronal plasticity. The highly conserved, hypoxia-regulated microRNA-210 (miR-210) has been shown to be associated with long-term memory in invertebrates and dysregulated in neurodevelopmental and neurodegenerative disease models. However, the role of miR-210 in mammalian neuronal function and cognitive behaviour remains unexplored. Here we generated Nestin-cre-driven miR-210 neuronal knockout mice to characterise miR-210 regulation and function using in vitro and in vivo methods. We identified miR-210 localisation throughout neuronal somas and dendritic processes and increased levels of mature miR-210 in response to neural activity in vitro. Loss of miR-210 in neurons resulted in higher oxidative phosphorylation and ROS production following hypoxia and increased dendritic arbour density in hippocampal cultures. Additionally, miR-210 knockout mice displayed altered behavioural flexibility in rodent touchscreen tests, particularly during early reversal learning suggesting processes underlying updating of information and feedback were impacted. Our findings support a conserved, activity-dependent role for miR-210 in neuroplasticity and cognitive function.
Collapse
Affiliation(s)
- Michelle Watts
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gabrielle Williams
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jing Lu
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience & Mental Health, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Mental Health Research, The Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
33
|
The DpdtbA induced EMT inhibition in gastric cancer cell lines was through ferritinophagy-mediated activation of p53 and PHD2/hif-1α pathway. J Inorg Biochem 2021; 218:111413. [PMID: 33713969 DOI: 10.1016/j.jinorgbio.2021.111413] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that epithelial-mesenchymal transition (EMT) involves reactive oxygen species (ROS) production, but how ferritinophagy-mediated ROS production affects EMT status remains obscure. 2,2'-di-pyridylketone hydrazone dithiocarbamate s-butyric acid (DpdtbA), an iron chelator, exhibited interesting antitumor activities against gastric and esophageal cancer cells. As an extension of our previous research, in this paper we presented the effect of DpdtbA on EMT regulation of gastric cancer lines (SGC-7901 and MGC-803) in both normoxic and hypoxic conditions. The data from immunofluorescent and Western blotting analysis revealed that DpdtbA treatment resulted in EMT inhibition along with downregulation of hypoxia-inducible factor (hif-1α), hinting that prolyl hydroxylase 2 (PHD2) was involved. Knockdown of PHD2 significantly attenuated the action of DpdtbA on EMT regulation, supporting that PHD2 involved the EMT modulation. In addition, the inhibition of EMT involved ROS production that stemmed from DpdtbA induced ferritinophagy; while the accumulation of ferrous iron due to ferritinophagy contributed to PHD2 activation and hif-1α degradation. The correlation analysis revealed that ferritinophagic flux was a dominant driving force in determination of the EMT status. Futhermore, the ferritinophagy-mediated ROS production triggered p53 activation. Taken together, All data supported that DpdtbA induced EMT inhibition was through activation of p53 and PHD2/hif-1α pathway.
Collapse
|
34
|
Kobayashi Y, Oguro A, Imaoka S. Feedback of hypoxia-inducible factor-1alpha (HIF-1alpha) transcriptional activity via redox factor-1 (Ref-1) induction by reactive oxygen species (ROS). Free Radic Res 2021; 55:154-164. [PMID: 33410354 DOI: 10.1080/10715762.2020.1870685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) is important for adaptation to hypoxia. Hypoxia is a common feature of cancer and inflammation, by which HIF-1alpha increases. However, prolonged hypoxia decreases HIF-1alpha, and the underlying mechanisms currently remain unclear. Cellular reactive oxygen species (ROS) increases in cancer and inflammation. In the present study, we demonstrated that prolonged hypoxia increased ROS, which induced prolyl hydroxylase domain-containing protein 2 (PHD2) and factor inhibiting HIF-1 (FIH-1), major regulators of HIF-1alpha. Cellular stress response (CSR) increased HIF-1alpha transcriptional activity by scavenging endogenous ROS. PHD2 and FIH-1 were induced by external hydrogen peroxide (H2O2) but were suppressed by ROS-scavenging catalase. We investigated the mechanisms by which PHD2 and FIH-1 are regulated by ROS. The knockdown of HIF-1alpha decreased PHD2 and FIH-1 mRNA levels, suggesting their regulation by HIF-1alpha. We then focused on redox factor-1 (Ref-1), which is a regulator of HIF-1alpha transcriptional activity. The knockdown of Ref-1 decreased PHD2 and FIH-1. Ref-1 was regulated by ROS. Prolonged hypoxia and the addition of H2O2 induced the expression of Ref-1. Furthermore, the knockdown of p65, a component of kappa-light-chain enhancer of activated B cells (NF-κB), efficiently inhibited the induction of Ref-1 by ROS. Collectively, the present results showed that prolonged hypoxia or increased ROS levels induced Ref-1, leading to the activation of HIF-1alpha transcriptional activity, while the activation of HIF-1alpha via Ref-1 induced PHD2 and FIH-1, causing the feedback of HIF-1alpha. To the best of our knowledge, this is the first study to demonstrate the regulation of HIF-1alpha via Ref-1 by ROS.
Collapse
Affiliation(s)
- Yukino Kobayashi
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Ami Oguro
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.,Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
35
|
Wu Z, Zuo M, Zeng L, Cui K, Liu B, Yan C, Chen L, Dong J, Shangguan F, Hu W, He H, Lu B, Song Z. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development. EMBO Rep 2021; 22:e50827. [PMID: 33314701 PMCID: PMC7788456 DOI: 10.15252/embr.202050827] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022] Open
Abstract
Many cancer cells maintain enhanced aerobic glycolysis due to irreversible defective mitochondrial oxidative phosphorylation (OXPHOS). This phenomenon, known as the Warburg effect, is recently challenged because most cancer cells maintain OXPHOS. However, how cancer cells coordinate glycolysis and OXPHOS remains largely unknown. Here, we demonstrate that OMA1, a stress-activated mitochondrial protease, promotes colorectal cancer development by driving metabolic reprogramming. OMA1 knockout suppresses colorectal cancer development in AOM/DSS and xenograft mice models of colorectal cancer. OMA1-OPA1 axis is activated by hypoxia, increasing mitochondrial ROS to stabilize HIF-1α, thereby promoting glycolysis in colorectal cancer cells. On the other hand, under hypoxia, OMA1 depletion promotes accumulation of NDUFB5, NDUFB6, NDUFA4, and COX4L1, supporting that OMA1 suppresses OXPHOS in colorectal cancer. Therefore, our findings support a role for OMA1 in coordination of glycolysis and OXPHOS to promote colorectal cancer development and highlight OMA1 as a potential target for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhida Wu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Meiling Zuo
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Ling Zeng
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Kaisa Cui
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer EpigeneticsWuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Bing Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Chaojun Yan
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Li Chen
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Jun Dong
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Fugen Shangguan
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wanglai Hu
- School of Basic Medical ScienceAnhui Medical UniversityHefeiAnhuiChina
| | - He He
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| | - Bin Lu
- Attardi Institute of Mitochondrial BiomedicineSchool of Life SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyin Song
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesFrontier Science Center for Immunology and MetabolismWuhan UniversityWuhanHubeiChina
| |
Collapse
|
36
|
Bader SB, Dewhirst MW, Hammond EM. Cyclic Hypoxia: An Update on Its Characteristics, Methods to Measure It and Biological Implications in Cancer. Cancers (Basel) 2020; 13:E23. [PMID: 33374581 PMCID: PMC7793090 DOI: 10.3390/cancers13010023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Regions of hypoxia occur in most if not all solid cancers. Although the presence of tumor hypoxia is a common occurrence, the levels of hypoxia and proportion of the tumor that are hypoxic vary significantly. Importantly, even within tumors, oxygen levels fluctuate due to changes in red blood cell flux, vascular remodeling and thermoregulation. Together, this leads to cyclic or intermittent hypoxia. Tumor hypoxia predicts for poor patient outcome, in part due to increased resistance to all standard therapies. However, it is less clear how cyclic hypoxia impacts therapy response. Here, we discuss the causes of cyclic hypoxia and, importantly, which imaging modalities are best suited to detecting cyclic vs. chronic hypoxia. In addition, we provide a comparison of the biological response to chronic and cyclic hypoxia, including how the levels of reactive oxygen species and HIF-1 are likely impacted. Together, we highlight the importance of remembering that tumor hypoxia is not a static condition and that the fluctuations in oxygen levels have significant biological consequences.
Collapse
Affiliation(s)
- Samuel B. Bader
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| | - Mark W. Dewhirst
- Radiation Oncology Department, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ester M. Hammond
- Department of Oncology, The Oxford Institute for Radiation Oncology, Oxford University, Oxford OX3 7DQ, UK;
| |
Collapse
|
37
|
Wang Y, Li G, Deng M, Liu X, Huang W, Zhang Y, Liu M, Chen Y. The multifaceted functions of RNA helicases in the adaptive cellular response to hypoxia: From mechanisms to therapeutics. Pharmacol Ther 2020; 221:107783. [PMID: 33307143 DOI: 10.1016/j.pharmthera.2020.107783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia is a hallmark of cancer. Hypoxia-inducible factor (HIF), a master player for sensing and adapting to hypoxia, profoundly influences genome instability, tumor progression and metastasis, metabolic reprogramming, and resistance to chemotherapies and radiotherapies. High levels and activity of HIF result in poor clinical outcomes in cancer patients. Thus, HIFs provide ideal therapeutic targets for cancers. However, HIF biology is sophisticated, and currently available HIF inhibitors have limited clinical utility owing to their low efficacy or side effects. RNA helicases, which are master players in cellular RNA metabolism, are usually highly expressed in tumors to meet the increased oncoprotein biosynthesis demand. Intriguingly, recent findings provide convincing evidence that RNA helicases are crucial for the adaptive cellular response to hypoxia via a mutual regulation with HIFs. More importantly, some RNA helicase inhibitors may suppress HIF signaling by blocking the translation of HIF-responsive genes. Therefore, RNA helicase inhibitors may work synergistically with HIF inhibitors in cancer to improve treatment efficacy. In this review, we discuss current knowledge of how cells sense and adapt to hypoxia through HIFs. However, our primary focus is on the multiple functions of RNA helicases in the adaptive response to hypoxia. We also highlight how these hypoxia-related RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yijie Wang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guangqiang Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Mingxia Deng
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yao Zhang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Min Liu
- Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yan Chen
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, China; Biomedical Translational Research Institute, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
38
|
Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacol Sin 2020; 41:1539-1546. [PMID: 33110240 PMCID: PMC7588589 DOI: 10.1038/s41401-020-00554-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID-19) and its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the greatest current threat to global public health. The highly infectious SARS-CoV-2 virus primarily attacks pulmonary tissues and impairs gas exchange leading to acute respiratory distress syndrome (ARDS) and systemic hypoxia. The current pharmacotherapies for COVID-19 largely rely on supportive and anti-thrombi treatment and the repurposing of antimalarial and antiviral drugs such as hydroxychloroquine and remdesivir. For a better mechanistic understanding of COVID-19, our present review focuses on its primary pathophysiologic features: hypoxia and cytokine storm, which are a prelude to multiple organ failure and lethality. We discussed a possible link between the activation of hypoxia inducible factor 1α (HIF-1α) and cell entry of SARS-CoV-2, since HIF-1α is shown to suppress the angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) and upregulate disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). In addition, the protein targets of HIF-1α are involved with the activation of pro-inflammatory cytokine expression and the subsequent inflammatory process. Furthermore, we hypothesized a potential utility of so-called "hypoxic conditioning" to activate HIF-1α-induced cytoprotective signaling for reduction of illness severity and improvement of vital organ function in patients with COVID-19. Taken together, we would propose further investigations into the hypoxia-related molecular mechanisms, from which novel targeted therapies can be developed for the improved management of COVID-19.
Collapse
|
39
|
Zheng H, Yu S, Zhu C, Guo T, Liu F, Xu Y. HIF1α promotes tumor chemoresistance via recruiting GDF15-producing TAMs in colorectal cancer. Exp Cell Res 2020; 398:112394. [PMID: 33242463 DOI: 10.1016/j.yexcr.2020.112394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Chemoresistance is a tremendous challenge to efficacy of systemic chemotherapy which is the preferred treatment for the advanced CRC patients. More tumor-associated macrophages (TAMs) are recruited into the CRC tumor under chemotherapy, which are highly implicated in the chemoresistance development, but the underlying molecular mechanism is unclear. Here, we present that activated HIF1α signaling in CRC cells under chemotherapy drives the expression of HMGB1to promotes macrophage infiltration and in turn chemoresistance development. Chemotherapeutic treatment with 5-FU leads to increased recruitment of macrophages into tumors, which display tumor-protective alternative activation. Mechanistically, tumor HIF1α signaling activated by chemo-induced ROS drives the transcription of HMGB1 to promote more macrophage infiltration into CRC tumor. Furthermore, high levels of GDF15 produced by TAMs impair the chemosensitity of tumor cells via enhancing fatty acids β-oxidation. Together, our current study reveals a new insight into the cross-talking between tumor cells and immune cells, and provides novel drug targets for clinic treatments for CRC.
Collapse
Affiliation(s)
- Hongtu Zheng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shan Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Congcong Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Fangqi Liu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
40
|
Talib WH, AL-ataby IA, Mahmod AI, Jawarneh S, Al Kury LT, AL-Yasari IH. The Impact of Herbal Infusion Consumption on Oxidative Stress and Cancer: The Good, the Bad, the Misunderstood. Molecules 2020; 25:E4207. [PMID: 32937891 PMCID: PMC7570648 DOI: 10.3390/molecules25184207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/23/2022] Open
Abstract
The release of reactive oxygen species (ROS) and oxidative stress is associated with the development of many ailments, including cardiovascular diseases, diabetes and cancer. The causal link between oxidative stress and cancer is well established and antioxidants are suggested as a protective mechanism against cancer development. Recently, an increase in the consumption of antioxidant supplements was observed globally. The main sources of these antioxidants include fruits, vegetables, and beverage. Herbal infusions are highly popular beverages consumed daily for different reasons. Studies showed the potent antioxidant effects of plants used in the preparation of some herbal infusions. Such herbal infusions represent an important source of antioxidants and can be used as a dietary protection against cancer. However, uncontrolled consumption of herbal infusions may cause toxicity and reduced antioxidant activity. In this review, eleven widely consumed herbal infusions were evaluated for their antioxidant capacities, anticancer potential and possible toxicity. These herbal infusions are highly popular and consumed as daily drinks in different countries. Studies discussed in this review will provide a solid ground for researchers to have better understanding of the use of herbal infusions to reduce oxidative stress and as protective supplements against cancer development.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (I.A.A.); (A.I.M.); (S.J.)
| | - Israa A. AL-ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (I.A.A.); (A.I.M.); (S.J.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (I.A.A.); (A.I.M.); (S.J.)
| | - Sajidah Jawarneh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan; (I.A.A.); (A.I.M.); (S.J.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, UAE;
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 00964, Iraq;
| |
Collapse
|
41
|
Wang C, He C, Lu S, Wang X, Wang L, Liang S, Wang X, Piao M, Cui J, Chi G, Ge P. Autophagy activated by silibinin contributes to glioma cell death via induction of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF. Cell Death Dis 2020; 11:630. [PMID: 32801360 PMCID: PMC7429844 DOI: 10.1038/s41419-020-02866-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Induction of lethal autophagy has become a strategy to eliminate glioma cells, but it remains elusive whether autophagy contributes to cell death via causing mitochondria damage and nuclear translocation of apoptosis inducing factor (AIF). In this study, we find that silibinin induces AIF translocation from mitochondria to nuclei in glioma cells in vitro and in vivo, which is accompanied with autophagy activation. In vitro studies reveal that blocking autophagy with 3MA, bafilomycin A1 or by knocking down ATG5 with SiRNA inhibits silibinin-induced mitochondrial accumulation of superoxide, AIF translocation from mitochondria to nuclei and glioma cell death. Mechanistically, silibinin activates autophagy through depleting ATP by suppressing glycolysis. Then, autophagy improves intracellular H2O2 via promoting p53-mediated depletion of GSH and cysteine and downregulation of xCT. The increased H2O2 promotes silibinin-induced BNIP3 upregulation and translocation to mitochondria. Knockdown of BNIP3 with SiRNA inhibits silibinin-induced mitochondrial depolarization, accumulation of mitochondrial superoxide, and AIF translocation from mitochondria to nuclei, as well as prevents glioma cell death. Furthermore, we find that the improved H2O2 reinforces silibinin-induced glycolysis dysfunction. Collectively, autophagy contributes to silibinin-induced glioma cell death via promotion of oxidative stress-mediated BNIP3-dependent nuclear translocation of AIF.
Collapse
Affiliation(s)
- Chongcheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Lei Wang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Shipeng Liang
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China
| | - Xinyu Wang
- Department of Radiotherapy, Second Hospital of Jilin University, 130021, Changchun, China
| | - Meihua Piao
- Department of Anesthesiology, First Hospital of Jilin University, 130021, Changchun, China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, 130021, Changchun, China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 130021, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, 130021, Changchun, China.
- Research Center of Neuroscience, First Hospital of Jilin University, 130021, Changchun, China.
| |
Collapse
|
42
|
Vincent G, Novak EA, Siow VS, Cunningham KE, Griffith BD, Comerford TE, Mentrup HL, Stolz DB, Loughran P, Ranganathan S, Mollen KP. Nix-Mediated Mitophagy Modulates Mitochondrial Damage During Intestinal Inflammation. Antioxid Redox Signal 2020; 33:1-19. [PMID: 32103677 PMCID: PMC7262642 DOI: 10.1089/ars.2018.7702] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aims: Mitochondrial stress and dysfunction within the intestinal epithelium are known to contribute to the pathogenesis of inflammatory bowel disease (IBD). However, the importance of mitophagy during intestinal inflammation remains poorly understood. The primary aim of this study was to investigate how the mitophagy protein BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L/NIX) mitigates mitochondrial damage during intestinal inflammation in the hopes that these data will allow us to target mitochondrial health in the intestinal epithelium as an adjunct to immune-based treatment strategies. Results: In the intestinal epithelium of patients with ulcerative colitis, we found that NIX was upregulated and targeted to the mitochondria. We obtained similar findings in wild-type mice undergoing experimental colitis. An increase in NIX expression was found to depend on stabilization of hypoxia-inducible factor-1 alpha (HIF1α), which binds to the Nix promoter region. Using the reactive oxygen species (ROS) scavenger MitoTEMPO, we were able to attenuate disease and inhibit both HIF1α stabilization and subsequent NIX expression, suggesting that mitochondrially derived ROS are crucial to initiating the mitophagic response during intestinal inflammation. We subjected a global Nix-/- mouse to dextran sodium sulfate colitis and found that these mice developed worse disease. In addition, Nix-/- mice were found to exhibit increased mitochondrial mass, likely due to the inability to clear damaged or dysfunctional mitochondria. Innovation: These results demonstrate the importance of mitophagy within the intestinal epithelium during IBD pathogenesis. Conclusion: NIX-mediated mitophagy is required to maintain intestinal homeostasis during inflammation, highlighting the impact of mitochondrial damage on IBD progression.
Collapse
Affiliation(s)
- Garret Vincent
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizabeth A Novak
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vei Shaun Siow
- Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kellie E Cunningham
- Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Heather L Mentrup
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Patricia Loughran
- Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Kevin P Mollen
- Division of Pediatric Surgery; Pittsburgh, Pennsylvania, USA.,Department of Surgery and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
van Gisbergen MW, Offermans K, Voets AM, Lieuwes NG, Biemans R, Hoffmann RF, Dubois LJ, Lambin P. Mitochondrial Dysfunction Inhibits Hypoxia-Induced HIF-1α Stabilization and Expression of Its Downstream Targets. Front Oncol 2020; 10:770. [PMID: 32509579 PMCID: PMC7248342 DOI: 10.3389/fonc.2020.00770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
mtDNA variations often result in bioenergetic dysfunction inducing a metabolic switch toward glycolysis resulting in an unbalanced pH homeostasis. In hypoxic cells, expression of the tumor-associated carbonic anhydrase IX (CAIX) is enhanced to maintain cellular pH homeostasis. We hypothesized that cells with a dysfunctional oxidative phosphorylation machinery display elevated CAIX expression levels. Increased glycolysis was observed for cytoplasmic 143B mutant hybrid (m.3243A>G, >94.5%) cells (p < 0.05) and 143B mitochondrial DNA (mtDNA) depleted cells (p < 0.05). Upon hypoxia (0.2%, 16 h), genetic or pharmacological oxidative phosphorylation (OXPHOS) inhibition resulted in decreased CAIX (p < 0.05), vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-alpha (HIF-1α) expression levels. Reactive oxygen species (ROS) and prolyl-hydroxylase 2 (PHD2) levels could not explain these observations. In vivo, tumor take (>500 mm3) took longer for mutant hybrid xenografts, but growth rates were comparable with control tumors upon establishment. Previously, it has been shown that HIF-1α is responsible for tumor establishment. In agreement, we found that HIF-1α expression levels and the pimonidazole-positive hypoxic fraction were reduced for the mutant hybrid xenografts. Our results demonstrate that OXPHOS dysfunction leads to a decreased HIF-1α stabilization and subsequently to a reduced expression of its downstream targets and hypoxic fraction in vivo. In contrast, hypoxia-inducible factor 2-alpha (HIF-2α) expression levels in these xenografts were enhanced. Inhibition of mitochondrial function is therefore an interesting approach to increase therapeutic efficacy in hypoxic tumors.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Kelly Offermans
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - An M Voets
- Department of Clinical Genomics, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Natasja G Lieuwes
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Rianne Biemans
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Roland F Hoffmann
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
44
|
Contreras-Lopez R, Elizondo-Vega R, Paredes MJ, Luque-Campos N, Torres MJ, Tejedor G, Vega-Letter AM, Figueroa-Valdés A, Pradenas C, Oyarce K, Jorgensen C, Khoury M, Garcia-Robles MDLA, Altamirano C, Djouad F, Luz-Crawford P. HIF1α-dependent metabolic reprogramming governs mesenchymal stem/stromal cell immunoregulatory functions. FASEB J 2020; 34:8250-8264. [PMID: 32333618 DOI: 10.1096/fj.201902232r] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factor 1 α (HIF1α), a regulator of metabolic change, is required for the survival and differentiation potential of mesenchymal stem/stromal cells (MSC). Its role in MSC immunoregulatory activity, however, has not been completely elucidated. In the present study, we evaluate the role of HIF1α on MSC immunosuppressive potential. We show that HIF1α silencing in MSC decreases their inhibitory potential on Th1 and Th17 cell generation and limits their capacity to generate regulatory T cells. This reduced immunosuppressive potential of MSC is associated with a metabolic switch from glycolysis to OXPHOS and a reduced capacity to express or produce some immunosuppressive mediators including Intercellular Adhesion Molecule (ICAM), IL-6, and nitric oxide (NO). Moreover, using the Delayed-Type Hypersensitivity murine model (DTH), we confirm, in vivo, the critical role of HIF1α on MSC immunosuppressive effect. Indeed, we show that HIF1α silencing impairs MSC capacity to reduce inflammation and inhibit the generation of pro-inflammatory T cells. This study reveals the pivotal role of HIF1α on MSC immunosuppressive activity through the regulation of their metabolic status and identifies HIF1α as a novel mediator of MSC immunotherapeutic potential.
Collapse
Affiliation(s)
- Rafael Contreras-Lopez
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maria Jose Paredes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maria Jose Torres
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Gautier Tejedor
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Ana Maria Vega-Letter
- Cells for Cells, Consorcio Regenero, Las Condes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Aliosha Figueroa-Valdés
- Cells for Cells, Consorcio Regenero, Las Condes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Karina Oyarce
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | | | - Maroun Khoury
- Cells for Cells, Consorcio Regenero, Las Condes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Maria de Los Angeles Garcia-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Farida Djouad
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
45
|
Juchaux F, Sellathurai T, Perrault V, Boirre F, Delannoy P, Bakkar K, Albaud J, Gueniche A, Cheniti A, Dal Belo S, Souverain L, Le Balch M, Commo S, Thibaut S, Michelet JF. A combination of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol stabilizes hypoxia-inducible factor 1-alpha and improves hair density in female volunteers. Int J Cosmet Sci 2020; 42:167-173. [PMID: 31960447 DOI: 10.1111/ics.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was first to demonstrate that a combination of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol could synergize in vitro on biological pathways associated with hair growth and then to demonstrate the benefit on hair density in a clinical study. METHODS The effects of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol directly on the hypoxic inducible factor-1α protein (HIF-1α) and related genes expression were demonstrated on keratinocytes in culture in vitro using western-blot analysis and real time quantitative polymerase chain reaction analysis. The effect of resveratrol against oxidative stress induced by hydrogen peroxide treatment was studied in hair follicle and hair matrix cells in vitro using the sensitive probe Dichloro-dihydro-fluorescein diacetate (DCFH-DA). Finally, a randomized clinical study on hair density was conducted on 79 Caucasian female subjects to assess the effect of this combination of actives. RESULTS Pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol stabilized HIF-1a protein and increased the expression of HIF-1α target genes. Resveratrol significantly reduced the oxygen peroxide-induced oxidative stress generated in hair follicle and hair matrix cells. The clinical study showed that a topical treatment with the combination significantly increased the hair density on women from 1.5 months. CONCLUSION In addition to the antioxidant properties of resveratrol, the association of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol revealed a synergistic effect on the HIF-1α pathway. The results of the clinical study confirmed the importance of such a combination to increase the hair density.
Collapse
Affiliation(s)
- F Juchaux
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - T Sellathurai
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - V Perrault
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - F Boirre
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - P Delannoy
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - K Bakkar
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - J Albaud
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - A Gueniche
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - A Cheniti
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Dal Belo
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - L Souverain
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - M Le Balch
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Commo
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Thibaut
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - J F Michelet
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| |
Collapse
|
46
|
Racané L, Ptiček L, Fajdetić G, Tralić-Kulenović V, Klobučar M, Kraljević Pavelić S, Perić M, Paljetak HČ, Verbanac D, Starčević K. Green synthesis and biological evaluation of 6-substituted-2-(2-hydroxy/methoxy phenyl)benzothiazole derivatives as potential antioxidant, antibacterial and antitumor agents. Bioorg Chem 2019; 95:103537. [PMID: 31884142 DOI: 10.1016/j.bioorg.2019.103537] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/02/2023]
Abstract
We present a new efficient green synthetic protocol for introduction of substituents to the C-6 position of 2-arylbenzothiazole nuclei. Newly synthesized compounds were designed to study the influence of the hydroxy and methoxy groups on the 2-arylbenzothiazole scaffold, as well as the influence of the type of substituents placed on the C-6 position of benzothiazole moiety on biological activity, including antibacterial, antitumor and antioxidant activity. Modest activity was observed against the tested Gram-positive and Gram-negative bacterial strains for only amidino derivatives 5d and 6d. The tested compounds exhibited moderate to strong antiproliferative activity towards the tumor cell lines tested. The SAR study revealed that the introduction of substituents into the benzene ring of the benzothiazole nuclei is essential for antiproliferative activity, while introduction of the hydroxy group into the 2-aryl moiety of the 2-arybenzothiazole scaffold significantly improved selectivity against tumor cell lines. The observed results revealed several novel 6-substituted-2-arylbenzothiazole compounds, 5b, 5c, 5f and 6f, with strong and selective antiproliferative activity towards HeLa cells in micro and submicromolar concentrations, with the most selective compounds being 6-ammonium-2-(2-hydroxy/methoxyphenyl)benzothiazoles 5f and 6f. The compound 5f bearing the hydroxy group on the 2-arylbenzothiazole core showed the most promising antioxidative activity evaluated by DPPH, ABTS and FRAP in vitro assays. The presence of the amino protonated group attached at the benzothiazole moiety was essential for the antiproliferative and antioxidant activity observed, exerted through a change in the levels of the reactive oxygen species-modulated HIF-1 protein.
Collapse
Affiliation(s)
- Livio Racané
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia.
| | - Lucija Ptiček
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Glorija Fajdetić
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Vesna Tralić-Kulenović
- Department of Applied Chemistry, Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia
| | - Marko Klobučar
- Center for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Sandra Kraljević Pavelić
- Center for High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Mihaela Perić
- Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia
| | - Hana Čipčić Paljetak
- Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Šalata 2, 10000 Zagreb, Croatia
| | - Donatella Verbanac
- Department for Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia.
| |
Collapse
|
47
|
Bicker A, Nauth T, Gerst D, Aboouf MA, Fandrey J, Kristiansen G, Gorr TA, Hankeln T. The role of myoglobin in epithelial cancers: Insights from transcriptomics. Int J Mol Med 2019; 45:385-400. [PMID: 31894249 PMCID: PMC6984796 DOI: 10.3892/ijmm.2019.4433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
The muscle-associated respiratory protein myoglobin (MB) is expressed in multiple types of cancer, including breast and prostate tumors. In Kaplan-Meier analyses of the two tumor types, MB positivity is associated with favorable prognoses. Despite its well-characterized function in myocytes, the role of MB in cancer remains unclear. To study the impact of endogenous MB expression, small interfering RNA MB-knockdown cells were engineered using breast, prostate and colon cancer cell lines (MDA-MB468, LNCaP, DLD-1), and their transcriptomes were investigated using RNA-Seq at different oxygen levels. In MB-positive cells, increased expression of glycolytic genes was observed, which was possibly mediated by a higher activity of hypoxia-inducible factor 1α. In addition, the results of the gene set enrichment analysis suggested that MB contributed to fatty acid transport and turnover. MB-positive, wild-type-p53 LNCaP cells also exhibited increased expression of p53 target genes involved in cell cycle checkpoint control and prevention of cell migration. MB-positive cells expressing mutant p53 exhibited upregulation of genes associated with prolonged cancer cell viability and motility. Therefore, it was hypothesized that these transcriptomic differences may result from MB-mediated generation of nitric oxide or reactive oxygen species, thus employing established enzymatic activities of the globin. In summary, the transcriptome comparisons identified potential molecular functions of MB in carcinogenesis by highlighting the interaction of MB with key metabolic and regulatory processes.
Collapse
Affiliation(s)
- Anne Bicker
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D‑55099 Mainz, Germany
| | - Theresa Nauth
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D‑55099 Mainz, Germany
| | - Daniela Gerst
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH‑8057 Zurich, Switzerland
| | - Mostafa Ahmed Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH‑8057 Zurich, Switzerland
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg‑Essen, D‑45147 Essen, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University Hospital Bonn, University of Bonn, D‑53127 Bonn, Germany
| | - Thomas Alexander Gorr
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, CH‑8057 Zurich, Switzerland
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University, D‑55099 Mainz, Germany
| |
Collapse
|
48
|
Cannito S, Foglia B, Villano G, Turato C, C Delgado T, Morello E, Pin F, Novo E, Napione L, Quarta S, Ruvoletto M, Fasolato S, Zanus G, Colombatto S, Lopitz-Otsoa F, Fernández-Ramos D, Bussolino F, Sutti S, Albano E, Martínez-Chantar ML, Pontisso P, Parola M. SerpinB3 Differently Up-Regulates Hypoxia Inducible Factors -1α and -2α in Hepatocellular Carcinoma: Mechanisms Revealing Novel Potential Therapeutic Targets. Cancers (Basel) 2019; 11:1933. [PMID: 31817100 PMCID: PMC6966556 DOI: 10.3390/cancers11121933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
SerpinB3 (SB3) is a hypoxia and hypoxia-inducible factor (HIF)-2α-dependent cysteine-protease inhibitor up-regulated in hepatocellular carcinoma (HCC), released by cancer cells and able to stimulate proliferation and epithelial-to-mesenchymal-transition. Methods: In the study we employed transgenic and knock out SerpinB3 mice, liver cancer cell line, human HCC specimens, and mice receiving diethyl-nitrosamine (DEN) administration plus choline-deficient L-amino acid refined (CDAA) diet (DEN/CDAA protocol). Results: We provide detailed and mechanistic evidence that SB3 can act as a paracrine mediator able to affect the behavior of surrounding cells by differentially up-regulating, in normoxic conditions, HIF-1α and HIF-2α. SB3 acts by (i) up-regulating HIF-1α transcription, facilitating cell survival in a harsh microenvironment and promoting angiogenesis, (ii) increasing HIF-2α stabilization via direct/selective NEDDylation, promoting proliferation of liver cancer cells, and favoring HCC progression. Moreover (iii) the highest levels of NEDD8-E1 activating enzyme (NAE1) mRNA were detected in a subclass of HCC patients expressing the highest levels of HIF-2α transcripts; (iv) mice undergoing DEN/CDAA carcinogenic protocol showed a positive correlation between SB3 and HIF-2α transcripts with the highest levels of NAE1 mRNA detected in nodules expressing the highest levels of HIF-2α transcripts. Conclusions: These data outline either HIF-2α and NEDDylation as two novel putative therapeutic targets to interfere with the procarcinogenic role of SerpinB3 in the development of HCC.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Gianmarco Villano
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Cristian Turato
- Veneto Institute of Oncology IOV—IRCCS, 35128 Padova, Italy;
| | - Teresa C Delgado
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Elisabetta Morello
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Fabrizio Pin
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Erica Novo
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| | - Lucia Napione
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy;
- Laboratory of Vascular Oncology Candiolo Cancer Institute—FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy;
| | - Santina Quarta
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.Q.); (P.P.)
| | - Mariagrazia Ruvoletto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Silvano Fasolato
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.V.); (M.R.); (S.F.)
| | - Giacomo Zanus
- Hepatobiliary Surgery, University of Padova, 35128 Padova, Italy;
| | | | - Fernando Lopitz-Otsoa
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - David Fernández-Ramos
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Federico Bussolino
- Laboratory of Vascular Oncology Candiolo Cancer Institute—FPO IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), 10060 Candiolo, Italy;
- Department of Oncology, University of Torino, 10125 Torino, Italy;
| | - Salvatore Sutti
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Emanuele Albano
- Department of Health Sciences and Interdisciplinary Research Center for Autoimmune Diseases, University Amedeo Avogadro of East Piedmont, 28100 Novara, Italy; (S.S.); (E.A.)
| | - Maria Luz Martínez-Chantar
- Liver Disease and Metabolism Laboratory, CIC bioGUNE, Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain; (T.C.D.); (F.L.-O.); (D.F.-R.); (M.L.M.-C.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35128 Padova, Italy; (S.Q.); (P.P.)
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy; (S.C.); (B.F.); (E.M.); (F.P.); (E.N.)
| |
Collapse
|
49
|
Zhu C, Ding H, Yang J, Zhou Y, Luo Y, Shi S, Zhang Y, Wei Y, Ni G. Downregulation of Proline Hydroxylase 2 and Upregulation of Hypoxia-Inducible Factor 1α are Associated with Endometrial Cancer Aggressiveness. Cancer Manag Res 2019; 11:9907-9912. [PMID: 31819628 PMCID: PMC6878929 DOI: 10.2147/cmar.s223421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/30/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction Proline hydroxylase 2 (PHD2) is involved in tumorigenesis. This study aimed to examine PHD2 and hypoxia-inducible factor 1α (HIF-1α) expression in different endometrial tissues and explore the correlations between PHD2 and HIF-1α expression with clinicopathological characteristics of endometrial cancer. Methods We collected 50 tissue sections of endometrial adenocarcinoma, 30 of atypical endometrial hyperplasia, and 30 of control normal endometrium. The expression of PHD2 was detected by PCR, Western blot, and immunohistochemical analysis. Results PHD2 mRNA and protein levels reduced in endometrial cancer tissues compared to normal endometrium (p<0.05). In contrast, HIF-1α expression levels increased in endometrial cancer tissues compared to normal endometrium (p<0.05). In addition, PHD2 and HIF-1α levels were correlated with lymphovascular stromal invasion (LVSI), postoperative FIGO stage, and lymph node metastasis of endometrial cancer (p<0.05). Conclusion Our findings suggest that reduced expression of PHD2 and increased expression of HIF-1α are associated with endometrial cancer aggressiveness. PHD2 might be a novel biomarker and a potential target for endometrial cancer management.
Collapse
Affiliation(s)
- Chengcheng Zhu
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Huafeng Ding
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Junwen Yang
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yihui Zhou
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yonghong Luo
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Suhua Shi
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Ying Zhang
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Yalan Wei
- Departments of Gynecology and Obstetrics, General Hospital of Wuhu Second People's Hospital, Wuhu, Anhui, People's Republic of China
| | - Guantai Ni
- Departments of Gynecology and Obstetrics, Yi Jishan General Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
50
|
Stuart JA, Aibueku O, Bagshaw O, Moradi F. Hypoxia inducible factors as mediators of reactive oxygen/nitrogen species homeostasis in physiological normoxia. Med Hypotheses 2019; 129:109249. [DOI: 10.1016/j.mehy.2019.109249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/15/2019] [Accepted: 05/26/2019] [Indexed: 12/12/2022]
|