1
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
2
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2025; 51:187-217. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Rivera Antonio A, Padilla Martínez I, Márquez-Flores Y, Juárez Solano A, Torres Ramos M, Rosales Hernández M. Protective effect of (E)-(2,4-dihydroxy)-α-aminocinnamic acid, a hydroxy cinnamic acid derivative, in an ulcerative colitis model induced by TNBS. Biosci Rep 2024; 44:BSR20240797. [PMID: 39268608 PMCID: PMC11461179 DOI: 10.1042/bsr20240797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Ulcerative colitis (UC) is a multifactorial disease that causes long-lasting inflammation and ulcers in the digestive tract. UC is the most common form of inflammatory bowel disease (IBD). The current treatment for mild-to-moderate UC involves the use of 5-aminosalicylates (5-ASA), but much of this compound is unabsorbed and metabolized by N-acetylation. Several efforts have since been made to evaluate new molecules from synthetic or natural sources. Recently, it was reported that (E)-(5-chloro-2-hydroxy)-α-aminocinnamic acid (2c) and (E)-(2,4-dihydroxy)-α-aminocinnamic acid (2f) are as good or better myeloperoxidase (MPO) inhibitors and antioxidants than 5-ASA. Then, the present study aimed to evaluate the protective effects of 2c and 2f on a rat model of UC induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed that TNBS caused the induction of colonic ulcers, as well as a significant increase in MPO activity and malondialdehyde (MDA) and a decrease in glutathione (GSH) content. The administration of 2f, 2c and 5-ASA, decreased the ulcers presence, inhibited MPO peroxidation activity and MPO presence (as determined by immunofluorescence), and increased GSH and reduced MDA content. However, 2f was better than 2c and 5-ASA, then, the principal mechanism by which 2f presented a protective effect in a UC model induced by TNBS in rats is by inhibiting MPO activity and due to its antioxidant activity.
Collapse
Affiliation(s)
- Astrid Mayleth Rivera Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| | - Itzia Irene Padilla Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio la Laguna Ticomán, Ciudad de México 07340, México
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, C.P. 07738, Ciudad de México, México
| | - Alan Hipólito Juárez Solano
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Mónica A. Torres Ramos
- Dirección de investigación del Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez. Av. Insurgentes sur #3877, col. La Fama. Tlalpan, Ciudad de México. C.P. 14269. México
| | - Martha Cecilia Rosales Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomas, Ciudad de México 11340, México
| |
Collapse
|
4
|
Chancharoen M, Yang Z, Dalvie ED, Gubina N, Ruchirawat M, Croy RG, Fedeles BI, Essigmann JM. 5-Chloro-2'-deoxycytidine Induces a Distinctive High-Resolution Mutational Spectrum of Transition Mutations In Vivo. Chem Res Toxicol 2024; 37:486-496. [PMID: 38394377 PMCID: PMC10952010 DOI: 10.1021/acs.chemrestox.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
The biomarker 5-chlorocytosine (5ClC) appears in the DNA of inflamed tissues. Replication of a site-specific 5ClC in a viral DNA genome results in C → T mutations, which is consistent with 5ClC acting as a thymine mimic in vivo. Direct damage of nucleic acids by immune-cell-derived hypochlorous acid is one mechanism by which 5ClC could appear in the genome. A second, nonmutually exclusive mechanism involves damage of cytosine nucleosides or nucleotides in the DNA precursor pool, with subsequent utilization of the 5ClC deoxynucleotide triphosphate as a precursor for DNA synthesis. The present work characterized the mutagenic properties of 5ClC in the nucleotide pool by exposing cells to the nucleoside 5-chloro-2'-deoxycytidine (5CldC). In both Escherichia coli and mouse embryonic fibroblasts (MEFs), 5CldC in the growth media was potently mutagenic, indicating that 5CldC enters cells and likely is erroneously incorporated into the genome from the nucleotide pool. High-resolution sequencing of DNA from MEFs derived from the gptΔ C57BL/6J mouse allowed qualitative and quantitative characterization of 5CldC-induced mutations; CG → TA transitions in 5'-GC(Y)-3' contexts (Y = a pyrimidine) were dominant, while TA → CG transitions appeared at a much lower frequency. The high-resolution mutational spectrum of 5CldC revealed a notable similarity to the Catalogue of Somatic Mutations in Cancer mutational signatures SBS84 and SBS42, which appear in human lymphoid tumors and in occupationally induced cholangiocarcinomas, respectively. SBS84 is associated with the expression of activation-induced cytidine deaminase (AID), a cytosine deaminase associated with inflammation, as well as immunoglobulin gene diversification during antibody maturation. The similarity between the spectra of AID activation and 5CldC could be coincidental; however, the administration of 5CldC did induce some AID expression in MEFs, which have no inherent expression of its gene. In summary, this work shows that 5CldC induces a distinct pattern of mutations in cells. Moreover, that pattern resembles human mutational signatures induced by inflammatory processes, such as those triggered in certain malignancies.
Collapse
Affiliation(s)
- Marisa Chancharoen
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Zhiyu Yang
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Esha D. Dalvie
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nina Gubina
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Mathuros Ruchirawat
- Chulabhorn
Research Institute and Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Robert G. Croy
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Bogdan I. Fedeles
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - John M. Essigmann
- Departments
of Biological Engineering and Chemistry, and Center for Environmental
Health Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Lei P, Yu H, Ma J, Du J, Fang Y, Yang Q, Zhang K, Luo L, Jin L, Wu W, Sun D. Cell membrane nanomaterials composed of phospholipids and glycoproteins for drug delivery in inflammatory bowel disease: A review. Int J Biol Macromol 2023; 249:126000. [PMID: 37532186 DOI: 10.1016/j.ijbiomac.2023.126000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic intestinal disorder with an increasing global incidence. However, current treatment strategies, such as anti-inflammatory drugs and probiotics, have limitations in terms of safety, stability, and effectiveness. The emergence of targeted nanoparticles has revolutionized IBD treatment by enhancing the biological properties of drugs and promoting efficiency and safety. Unlike synthetic nanoparticles, cell membrane nanomaterials (CMNs) consist primarily of biological macromolecules, including phospholipids, proteins, and sugars. CMNs include red blood cell membranes, macrophage membranes, and leukocyte membranes, which possess abundant glycoprotein receptors and ligands on their surfaces, allowing for the formation of cell-to-cell connections with other biological macromolecules. Consequently, they exhibit superior cell affinity, evade immune responses, and target inflammation effectively, making them ideal material for targeted delivery of IBD therapies. This review explores various CMNs delivery systems for IBD treatment. However, due to the complexity and harsh nature of the intestinal microenvironment, the lack of flexibility or loss of selectivity poses challenges in designing single CMNs delivery strategies. Therefore, we propose a hierarchically programmed delivery modality that combines CMNs with pH, charge, ROS and ligand-modified responsive nanoparticles. This approach significantly improves delivery efficiency and points the way for future research in this area.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
6
|
Sahoo DK, Heilmann RM, Paital B, Patel A, Yadav VK, Wong D, Jergens AE. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front Endocrinol (Lausanne) 2023; 14:1217165. [PMID: 37701897 PMCID: PMC10493311 DOI: 10.3389/fendo.2023.1217165] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing gastrointestinal (GI) disorder characterized by intestinal inflammation. The etiology of IBD is multifactorial and results from a complex interplay between mucosal immunity, environmental factors, and host genetics. Future therapeutics for GI disorders, including IBD, that are driven by oxidative stress require a greater understanding of the cellular and molecular mechanisms mediated by reactive oxygen species (ROS). In the GI tract, oxidative stressors include infections and pro-inflammatory responses, which boost ROS generation by promoting the production of pro-inflammatory cytokines. Nuclear factor kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) represent two important signaling pathways in intestinal immune cells that regulate numerous physiological processes, including anti-inflammatory and antioxidant activities. Natural antioxidant compounds exhibit ROS scavenging and increase antioxidant defense capacity to inhibit pro-oxidative enzymes, which may be useful in IBD treatment. In this review, we discuss various polyphenolic substances (such as resveratrol, curcumin, quercetin, green tea flavonoids, caffeic acid phenethyl ester, luteolin, xanthohumol, genistein, alpinetin, proanthocyanidins, anthocyanins, silymarin), phenolic compounds including thymol, alkaloids such as berberine, storage polysaccharides such as tamarind xyloglucan, and other phytochemicals represented by isothiocyanate sulforaphane and food/spices (such as ginger, flaxseed oil), as well as antioxidant hormones like melatonin that target cellular signaling pathways to reduce intestinal inflammation occurring with IBD.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Romy M. Heilmann
- Department for Small Animals, Veterinary Teaching Hospital, College of Veterinary Medicine, University of Leipzig, Leipzig, SN, Germany
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - David Wong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Blagov AV, Orekhova VA, Sukhorukov VN, Melnichenko AA, Orekhov AN. Potential Use of Antioxidant Compounds for the Treatment of Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2023; 16:1150. [PMID: 37631065 PMCID: PMC10458684 DOI: 10.3390/ph16081150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Since inflammatory bowel diseases (IBDs) are chronic, the development of new effective therapeutics to combat them does not lose relevance. Oxidative stress is one of the main pathological processes that determines the progression of IBD. In this regard, antioxidant therapy seems to be a promising approach. The role of oxidative stress in the development and progression of IBD is considered in detail in this review. The main cause of oxidative stress in IBD is an inadequate response of leukocytes to dysbiosis and food components in the intestine. Passage of immune cells through the intestinal barrier leads to increased ROS concentration and the pathological consequences of exposure to oxidative stress based on the development of inflammation and impaired intestinal permeability. To combat oxidative stress in IBD, several promising natural (curcumin, resveratrol, quercetin, and melatonin) and artificial antioxidants (N-acetylcysteine (NAC) and artificial superoxide dismutase (aSOD)) that had been shown to be effective in a number of clinical trials have been proposed. Their mechanisms of action on pathological events in IBD and clinical manifestations from their impact have been determined. The prospects for the use of other antioxidants that have not yet been tested in the treatment of IBD, but have the properties of potential therapeutic candidates, have been also considered.
Collapse
Affiliation(s)
- Alexander V. Blagov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Varvara A. Orekhova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia; (V.A.O.); (V.N.S.); (A.A.M.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia
| |
Collapse
|
8
|
Leal M, Mercado MI, Moreno MA, Martínez Chamas JJ, Zampini IC, Ponessa GI, Simirgiotis MJ, Isla MI. Gochnatia glutinosa (D.Don) D.Don ex Hook. & Arn.: A plant with medicinal value against inflammatory disorders and infections. Heliyon 2023; 9:e15276. [PMID: 37215790 PMCID: PMC10196343 DOI: 10.1016/j.heliyon.2023.e15276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/11/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Gochnatia glutinosa is a shrub that grown in the Argentinean semiarid region (Monte region) used in the ancestral medicine as an antiseptic and anti-inflammatory agent. This study was aimed to examine the morpho-anatomical characteristics of G. glutinosa aerial parts, identify the chemical composition of traditionally used preparations to assess its pharmacobotanical characterization and evaluate its activity as antiseptic and anti-inflammatory to give scientific support to its traditional uses. G. glutinosa morpho-anatomical description was performed following standard histological techniques. Tincture and infusion of its aerial parts were prepared and were subjected to phytochemical analysis. Xanthine oxidase (XOD) and lipoxygenase (LOX) inhibition experiments, as well as ABTS•+, superoxide radical, and hydrogen peroxide scavenging activity, were carried out. The growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA) strains was also determined. The morpho-anatomical traits of G. glutinosa leaves and stems were reported for the first time. The medicinal preparations exhibited a large amount of phenolic chemicals mainly flavonoids such as rhamnetin, arcapillin, rhamnacin, hesperetin, isorhamnetin, centaureidin, europetin 7-O-mehylmyricetin, cirsiliol, sakuranetin, genkwanin and eupatorine and also phenolic acids and diterpenoid derivatives. Both preparations had free radical scavenging activity and were able to reduce both XOD and LOX activity, indicating their anti-inflammatory properties. Besides, tincture was effective against all MRSA strains (MIC values ranging from 60 to 240 g DW/mL). The results obtained in this work scientifically support the medicinal popular use of G. glutinosa as an antiseptic and anti-inflammatory. The identification of bioactive compounds and their morpho-anatomical description contribute to the quality control of this medicinal plant from Argentine Calchaquí Valley.
Collapse
Affiliation(s)
- Mariana Leal
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Mercado
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - María Alejandra Moreno
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - José Javier Martínez Chamas
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Iris Catiana Zampini
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Inés Ponessa
- Instituto de Morfología Vegetal. Área Botánica. Fundación Miguel Lillo, Miguel Lillo 251, San Miguel de Tucumán, Tucumán, Argentina
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja,Valdivia 5090000, Chile
| | - María Inés Isla
- Laboratorio de Investigación de Productos Naturales (LIPRON), Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV-CONICET), Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Lorenzo 1469. San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
9
|
Hakura A, Sui H, Seki Y, Sonoda J, Yoshida Y, Takagi H, Yokose S, Matsuda T, Asakura S, Nohmi T. DNA polymerase κ suppresses inflammation and inflammation-induced mutagenesis and carcinogenic potential in the colon of mice. Genes Environ 2023; 45:15. [PMID: 37087526 PMCID: PMC10122296 DOI: 10.1186/s41021-023-00272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Chronic inflammation induces DNA damage and promotes cell proliferation, thereby increasing the risk of cancer. DNA polymerase κ (Pol κ), involved in translesion DNA synthesis, counteracts mutagenesis induced by inflammation in the colon of mice. In the present study, we examined whether Pol κ suppressed inflammation-induced colon tumorigenesis by treating inactivated Polk knock-in (Polk-/-) mice with dextran sulfate sodium (DSS), an inducer of colon inflammation. RESULTS Male and female Polk-/- and Polk+/+ mice were administered 2% DSS in drinking water for six consecutive days, succeeded via a recovery period of 16 days, followed by 2% DSS for another two days. DSS treatment strongly induced colitis, and the severity of colitis was higher in Polk-/- mice than in Polk+/+ mice. The mice were sacrificed after 19 weeks from the initiation of the first DSS treatment and subjected to pathological examination and mutation analysis. DSS treatment induced colonic dysplasia, and the multiplicity of dysplasia was higher in Polk-/- mice than in Polk+/+mice. Some of the dysplasias in Polk-/- mice exhibited β-catenin-stained nucleus and/or cytoplasm. Mutation frequencies in the gpt reporter gene were increased by DSS treatment in Polk-/- mice, and were higher than those in Polk+/+ mice. CONCLUSIONS Pol κ suppresses inflammation and inflammation-induced dysplasia as well as inflammation-induced mutagenesis. The possible mechanisms by which Pol κ suppresses colitis- and colitis-induced dysplasia are discussed.
Collapse
Affiliation(s)
- Atsushi Hakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan.
| | - Hajime Sui
- Division of Safety Testing, Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, 257-0025, Japan
| | - Yuki Seki
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Jiro Sonoda
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
- Present Address: Operations Department, Global Safety HQS, Eisai Co., Ltd., 4-6-10 Koishikawa, Bunkyo-Ku, Tokyo, 112-8088, Japan
| | - Yusaku Yoshida
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Hisayoshi Takagi
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Shigeo Yokose
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-Ku, Hamamatsu-Shi, Shizuoka, 433-8114, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, 520-0811, Japan
| | - Shoji Asakura
- Global Drug Safety, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba-Shi, Ibaraki, 300-2635, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-Ku, Kawasaki-Shi, Kanagawa, 210-9501, Japan.
| |
Collapse
|
10
|
Role of Mitophagy in Regulating Intestinal Oxidative Damage. Antioxidants (Basel) 2023; 12:antiox12020480. [PMID: 36830038 PMCID: PMC9952109 DOI: 10.3390/antiox12020480] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The mitochondrion is also a major site for maintaining redox homeostasis between reactive oxygen species (ROS) generation and scavenging. The quantity, quality, and functional integrity of mitochondria are crucial for regulating intracellular homeostasis and maintaining the normal physiological function of cells. The role of oxidative stress in human disease is well established, particularly in inflammatory bowel disease and gastrointestinal mucosal diseases. Oxidative stress could result from an imbalance between ROS and the antioxidative system. Mitochondria are both the main sites of production and the main target of ROS. It is a vicious cycle in which initial ROS-induced mitochondrial damage enhanced ROS production that, in turn, leads to further mitochondrial damage and eventually massive intestinal cell death. Oxidative damage can be significantly mitigated by mitophagy, which clears damaged mitochondria. In this review, we aimed to review the molecular mechanisms involved in the regulation of mitophagy and oxidative stress and their relationship in some intestinal diseases. We believe the reviews can provide new ideas and a scientific basis for researching antioxidants and preventing diseases related to oxidative damage.
Collapse
|
11
|
Cadet J, Angelov D, Wagner JR. Hydroxyl radical is predominantly involved in oxidatively generated base damage to cellular DNA exposed to ionizing radiation. Int J Radiat Biol 2022; 98:1684-1690. [PMID: 35475423 DOI: 10.1080/09553002.2022.2067363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LBMC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, Turkey
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
12
|
Abdelzaher WY, Nassan MA, Ahmed SM, Welson NN, El-Saber Batiha G, Khalaf HM. Xanthine Oxidase Inhibitor, Febuxostat Is Effective against 5-Fluorouracil-Induced Parotid Salivary Gland Injury in Rats Via Inhibition of Oxidative Stress, Inflammation and Targeting TRPC1/CHOP Signalling Pathway. Pharmaceuticals (Basel) 2022; 15:ph15020232. [PMID: 35215344 PMCID: PMC8880727 DOI: 10.3390/ph15020232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The current research aimed to examine the ameliorative role of febuxostat (FEB), a highly potent xanthine oxidase inhibitor, against 5-fluorouracil (5-FU)-induced parotid salivary gland damage in rats, as FEB is a pleiotropic drug that has multiple pharmacological effects. A total of 32 Wistar adult male rats were randomly arranged into four groups. Group 1: the control group; given only the vehicle for 14 days, then given a saline i.p. injection from the 10th to the 14th day. Group 2: the FEB group; rats received FEB (10 mg/kg) once daily po for 14 days before receiving a saline i.p. injection from the 10th to the 14th day. Group 3: the 5-FU group; from the 10th to the 14th day, rats received an intraperitoneal injection of 5-FU (35 mg/kg/day). Group 4: the FEB/5-FU group; rats were pre-treated with FEB po for 14 days before receiving 5-FU i.p injections for five consecutive days from the 10th to the 14th day. Parotid gland damage was detected histologically and biochemically by the evaluation of oxidative stress markers (malondialdehyde (MDA) and nitric oxide levels (NOx)), oxidant defences (reduced glutathione (GSH) and superoxide dismutase (SOD)), inflammatory markers (tumour necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β)), and transient receptor potential canonical1 (TRCP1) and C/EBP homologous protein (CHOP). FEB pre-treatment reduced MDA, TNF-, and IL-1 while increasing SOD, GSH, and NOx. FEB also significantly increased TRPC1 and decreased CHOP in parotid gland tissue. In conclusion, FEB pre-treatment reduced 5-FU-induced parotid salivary gland damage not only through its powerful anti-inflammatory and antioxidant effects, but also through its effect on the TRPC1/CHOP signalling pathway.
Collapse
Affiliation(s)
- Walaa Yehia Abdelzaher
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt; (W.Y.A.); (H.M.K.)
| | - Mohamed A. Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Sabreen Mahmoud Ahmed
- Department of Human Anatomy and Embryology, Faculty of Medicine, Minia University, Minia 61511, Egypt;
- Department of Basic Medical Sciences, Faculty of Physiotherapy, Deraya University, New Minia City 61768, Egypt
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef 62511, Egypt
- Correspondence:
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Hanaa Mohamed Khalaf
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt; (W.Y.A.); (H.M.K.)
| |
Collapse
|
13
|
Chorawala MR, Chauhan S, Patel R, Shah G. Cell Wall Contents of Probiotics (Lactobacillus species) Protect Against Lipopolysaccharide (LPS)-Induced Murine Colitis by Limiting Immuno-inflammation and Oxidative Stress. Probiotics Antimicrob Proteins 2021; 13:1005-1017. [PMID: 33544362 DOI: 10.1007/s12602-020-09738-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
Currently, there are no effective therapeutic agents to limit intestinal mucosal damage associated with inflammatory bowel disease (IBD). Based on several clinical studies, probiotics have emerged as a possible novel therapeutic strategy for IBD; however, their possible mechanisms are still poorly understood. Although probiotics in murine and human improve disease severity, very little is known about the specific contribution of cell wall contents of probiotics in IBD. Herein, we investigated the protective effects of cell wall contents of three Lactobacillus species in lipopolysaccharide (LPS)-induced colitis rats. LPS-sensitized rats were rendered colitic by colonic instillation of LPS (500 µg/rat) for 14 consecutive days. Concurrently, cell wall contents isolated from 106 CFU of L. casei (LC), L. acidophilus (LA), and L. rhamnosus (LA) was given subcutaneously for 21 days, considering sulfasalazine (100 mg/kg, p.o.) as standard. The severity of colitis was assessed by body weight loss, food intake, stool consistency, rectal bleeding, colon weight/length, spleen weight, and histological analysis. Colonic inflammatory markers (myeloperoxidase activity, C-reactive protein, and pro-inflammatory cytokines) and oxidative stress markers (malondialdehyde, reduced glutathione, and nitric oxide) were also assayed. Cell wall contents of LC, LA, and LR significantly ameliorated the severity of colitis by reducing body weight loss and diarrhea and bleeding incidence, improving food intake, colon weight/length, spleen weight, and microscopic damage to the colonic mucosa. The treatment also reduced levels of inflammatory and oxidative stress markers and boosted anti-oxidant molecule. In conclusion, cell wall contents of LC, LA, and LR attenuate LPS-induced colitis by modulating immuno-inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Sweta Chauhan
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, India
| | - Rakesh Patel
- Department of Internal Medicine, Division of Hematology/Oncology, University of Iowa, Iowa City, Iowa, USA
| | - Gaurang Shah
- Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Amelioration of testosterone-induced benign prostatic hyperplasia using febuxostat in rats: The role of VEGF/TGFβ and iNOS/COX-2. Eur J Pharmacol 2020; 889:173631. [PMID: 33031799 DOI: 10.1016/j.ejphar.2020.173631] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/23/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a common male disorder. Febuxostat is a non-purine, selective inhibitor of xanthine oxidase (XO), which has a strong antioxidant capacity and pleiotropic pharmacological properties. This study's objective was to explore the potential ameliorative effects of febuxostat against testosterone-induced BPH in rats. Febuxostat (10 mg/kg/day, per os [p.o.]) prevented increased prostate index levels, serum levels of prostate-specific antigen (PSA), and testosterone levels compared to animals treated with testosterone alone, when administered for 28 days. Histological examination indicated that febuxostat dramatically ameliorated pathological changes in the prostate architecture compared to the testosterone group. Similarly, febuxostat markedly improved testosterone-induced oxidative stress by inhibiting the increase in lipid peroxide and nitrite content, and by reducing the level of depletion of reduced glutathione (GSH) and superoxide dismutase (SOD) activity, which significantly reduced the prostate content of pro-inflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6). Furthermore, febuxostat significantly reduced the prostatic content, both in terms of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) messenger ribonucleic acid (mRNA) levels, and of protein levels. Moreover, compared to the testosterone group, febuxostat's beneficial effects prevented the increase in growth factors, comprising vascular endothelial cell growth factor A (VEGF-A) and transforming growth factor beta (TGF-β) protein levels. Its ameliorating effects were equal to those of finasteride, which is the most widely used remedy for BPH. In conclusion, this study provides novel evidence that febuxostat experimentally attenuates testosterone-induced BPH in rats, at least in part by inhibiting iNOS/COX-2 and VEGF/TGF-β pathways.
Collapse
|
15
|
The Protective Role of Probiotics against Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8884583. [PMID: 33488940 PMCID: PMC7803265 DOI: 10.1155/2020/8884583] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths worldwide and a major global public health problem. With the rapid development of the economy, the incidence of CRC has increased linearly. Accumulating evidence indicates that changes in the gut microenvironment, such as undesirable changes in the microbiota composition, provide favorable conditions for intestinal inflammation and shaping the tumor growth environment, whereas administration of certain probiotics can reverse this situation to a certain extent. This review summarizes the roles of probiotics in the regulation of CRC, such as enhancing the immune barrier, regulating the intestinal immune state, inhibiting pathogenic enzyme activity, regulating CRC cell proliferation and apoptosis, regulating redox homeostasis, and reprograming intestinal microbial composition. Abundant studies have provided a theoretical foundation for the roles of probiotics in CRC prevention and treatment, but their mechanisms of action remain to be investigated, and further clinical trials are warranted for the application of probiotics in the target population.
Collapse
|
16
|
O'Connor KM, Das AB, Winterbourn CC, Hampton MB. Inhibition of DNA methylation in proliferating human lymphoma cells by immune cell oxidants. J Biol Chem 2020; 295:7839-7848. [PMID: 32312750 PMCID: PMC7278342 DOI: 10.1074/jbc.ra120.013092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/13/2020] [Indexed: 12/16/2022] Open
Abstract
Excessive generation of oxidants by immune cells results in acute tissue damage. One mechanism by which oxidant exposure could have long-term effects is modulation of epigenetic pathways. We hypothesized that methylation of newly synthesized DNA in proliferating cells can be altered by oxidants that target DNA methyltransferase activity or deplete its substrate, the methyl donor SAM. To this end, we investigated the effect of two oxidants produced by neutrophils, H2O2 and glycine chloramine, on maintenance DNA methylation in Jurkat T lymphoma cells. Using cell synchronization and MS-based analysis, we measured heavy deoxycytidine isotope incorporation into newly synthesized DNA and observed that a sublethal bolus of glycine chloramine, but not H2O2, significantly inhibited DNA methylation. Both oxidants inhibited DNA methyltransferase 1 activity, but only chloramine depleted SAM, suggesting that removal of substrate was the most effective means of inhibiting DNA methylation. These results indicate that immune cell-derived oxidants generated during inflammation have the potential to affect the epigenome of neighboring cells.
Collapse
Affiliation(s)
- Karina M O'Connor
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Christine C Winterbourn
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
17
|
Hakura A, Sui H, Sonoda J, Matsuda T, Nohmi T. DNA polymerase kappa counteracts inflammation-induced mutagenesis in multiple organs of mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:320-330. [PMID: 30620413 DOI: 10.1002/em.22272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 05/07/2023]
Abstract
In vitro studies indicate that DNA polymerase kappa (Polκ) is able to accurately and efficiently perform DNA synthesis using templates containing various types of DNA damage, including benzo[a]pyrene (BP)-induced N2 -deoxyguanosine adducts. In this study, we examined sensitivity of inactivated Polk knock-in (Polk-/- ) mice to BP carcinogenicity in the colon by administering an oral dose of BP plus dextran sulfate sodium (DSS), an inflammation causing promoter of carcinogenesis. Although colon cancer was successfully induced by BP plus DSS, there was no significant difference in tumor incidence or multiplicity between Polk-/- and Polk+/+ mice. Malignant lymphoma was induced in thymus by the treatment only in Polk-/- mice, but it lacked statistical significance. Mutant frequencies (MFs) in the gpt reporter gene were strongly enhanced in colon; almost to the same extent in both types of mice. Micronucleus formation in bone marrow at the high dose of BP and DNA adducts in colon and lung was not significantly different between two types of mice. Surprisingly, however, Polk-/- mice exhibited significantly higher MFs in colon and lung than did Polk+/+ mice when they were treated with DSS alone. The most prominent mutation induced by DSS treatment was G:C to C:G transversion, whose specific MF in proximal colon was 30 times higher in Polk-/- than in Polk+/+ mice. DSS alone did not enhance MF at all in Polk+/+ mice. The results indicate that Polκ does not suppress BP-induced mutagenesis and carcinogenesis in the colon, but counteracts inflammation-induced mutagenesis in multiple organs. Environ. Mol. Mutagen. 60:320-330, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Atsushi Hakura
- Tsukuba Drug Safety, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Hajime Sui
- Food and Drug Safety Center, Hatano Research Institute, Hadano, Kanagawa, Japan
| | - Jiro Sonoda
- GLP, Eisai Co., Ltd., Tsukuba-shi, Ibaraki, Japan
| | - Tomonari Matsuda
- Research Center for Environmental Quality Management, Kyoto University, Otsu, Shiga, Japan
| | - Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, Kawasaki-ku, Kawasaki-shi, Kanagawa, Japan
| |
Collapse
|
18
|
Battelli MG, Bortolotti M, Polito L, Bolognesi A. Metabolic syndrome and cancer risk: The role of xanthine oxidoreductase. Redox Biol 2018; 21:101070. [PMID: 30576922 PMCID: PMC6302121 DOI: 10.1016/j.redox.2018.101070] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022] Open
Abstract
Obesity and related pathologies such as diabetes and metabolic syndrome are associated with chronic inflammation and cancer. The serum level of xanthine oxidoreductase (XOR) is correlated to obesity-associated metabolic disorders. XOR can play a role in the pathogenesis of both metabolic syndrome and cancer through the inflammatory response and the oxidative stress elicited by the products of its activity. The reactive oxygen and nitrogen species and the uric acid derived from XOR concur to the development of hypertension, dyslipidemia and insulin resistance and participate in both cell transformation and proliferation, as well as in the progression and metastasis process. Despite the availability of different drugs to inhibit in vivo XOR activity, the complexity of XOR inhibition effects should be carefully considered before clinical application, save in the case of symptomatic hyperuricemia. Metabolic syndrome (MS) increases the risk of cancer development. Xanthine oxidoreductase (XOR) plays a role in both MS and cancer. Uric acid, ROS and RNS produced by XOR cause inflammation and oxidative stress. Inflammation and oxidative stress contribute to the pathogenesis of MS and cancer. XOR activity can be pharmacologically controlled.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
19
|
Parrish MC, Chaim IA, Nagel ZD, Tannenbaum SR, Samson LD, Engelward BP. Nitric oxide induced S-nitrosation causes base excision repair imbalance. DNA Repair (Amst) 2018; 68:25-33. [PMID: 29929044 DOI: 10.1016/j.dnarep.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/20/2018] [Accepted: 04/30/2018] [Indexed: 02/05/2023]
Abstract
It is well established that inflammation leads to the creation of potent DNA damaging chemicals, including reactive oxygen and nitrogen species. Nitric oxide can react with glutathione to create S-nitrosoglutathione (GSNO), which can in turn lead to S-nitrosated proteins. Of particular interest is the impact of GSNO on the function of DNA repair enzymes. The base excision repair (BER) pathway can be initiated by the alkyl-adenine DNA glycosylase (AAG), a monofunctional glycosylase that removes methylated bases. After base removal, an abasic site is formed, which then gets cleaved by AP endonuclease and processed by downstream BER enzymes. Interestingly, using the Fluorescence-based Multiplexed Host Cell Reactivation Assay (FM-HCR), we show that GSNO actually enhances AAG activity, which is consistent with the literature. This raised the possibility that there might be imbalanced BER when cells are challenged with a methylating agent. To further explore this possibility, we confirmed that GSNO can cause AP endonuclease to translocate from the nucleus to the cytoplasm, which might further exacerbate imbalanced BER by increasing the levels of AP sites. Analysis of abasic sites indeed shows GSNO induces an increase in the level of AP sites. Furthermore, analysis of DNA damage using the CometChip (a higher throughput version of the comet assay) shows an increase in the levels of BER intermediates. Finally, we found that GSNO exposure is associated with an increase in methylation-induced cytotoxicity. Taken together, these studies support a model wherein GSNO increases BER initiation while processing of AP sites is decreased, leading to a toxic increase in BER intermediates. This model is also supported by additional studies performed in our laboratory showing that inflammation in vivo leads to increased large-scale sequence rearrangements. Taken together, this work provides new evidence that inflammatory chemicals can drive cytotoxicity and mutagenesis via BER imbalance.
Collapse
Affiliation(s)
- Marcus C Parrish
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zachary D Nagel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
20
|
Battelli MG, Bortolotti M, Polito L, Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2557-2565. [PMID: 29733945 DOI: 10.1016/j.bbadis.2018.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
21
|
Mancini S, Mariani F, Sena P, Benincasa M, Roncucci L. Myeloperoxidase expression in human colonic mucosa is related to systemic oxidative balance in healthy subjects. Redox Rep 2017; 22:399-407. [PMID: 28064732 PMCID: PMC6837418 DOI: 10.1080/13510002.2016.1277049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To improve understanding of the preclinical stage of colonic inflammation by exploring the existence of a link between early inflammatory changes in the colonic mucosa and the systemic redox balance. METHODS Clinical characteristics, a fasting blood draw, and mucosal biopsies from the right, left, and sigmoid-rectum colonic tracts collected from 28 healthy individuals (14/14 males/females) who underwent colonoscopy. Myeloperoxidase (MPO) positive cells infiltrating colonic mucosa specimens were assessed by immunohistochemistry, and patients divided into high or low MPO expressing cells/optical field groups (MPOhigh or MPOlow, respectively).The systemic oxidative balance has been studied through derived-Reactive Oxygen Metabolites (d-ROMs), Biological Antioxidant Potential (BAP), and Lipoperoxide-cholesterol Oxidizing (LP-CHOLOX) tests on serum. RESULTS MPOhigh patients demonstrated an increased systemic oxidative stress compared to MPOlow individuals (P = 0.035), especially when MPO is referred to the left-sided colonic mucosa (P = 0.007). MPOlow subjects in the sigmoid-rectum showed a significant higher antioxidant capacity in the serum (P < 0.02). Sex-specific differences in MPO expression (male and female: 4.6 ± 3.2 and 2.6 ± 1.5 MPO-positive cells/optical field, respectively, P = 0.044), and a decreasing gradient in MPO expression moving from the cecum to the rectum (ascendant, descendant, and sigmoid-rectum: 3.7 ± 2.8, 3.1 ± 1.7, and 1.4 ± 0.5, respectively, P = 0.012) were also found and discussed. DISCUSSION The study is the first demonstrating a connection between systemic redox balance and MPO expression in the colonic mucosa, according to the colonic tract and patient gender. Further research evaluating the MPO expression in the human colon and its relationship with pathological conditions could benefit from these results.
Collapse
Affiliation(s)
- Stefano Mancini
- Department of Diagnostics, Clinical, and Public Health Medicine, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Mariani
- Department of Diagnostics, Clinical, and Public Health Medicine, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Paola Sena
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marta Benincasa
- Department of Biomedical, Metabolic, and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncucci
- Department of Diagnostics, Clinical, and Public Health Medicine, Section of Human Morphology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Tian T, Wang Z, Zhang J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4535194. [PMID: 28744337 PMCID: PMC5506473 DOI: 10.1155/2017/4535194] [Citation(s) in RCA: 411] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 05/22/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disease whose incidence has risen worldwide in recent years. Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of IBD. This review highlights the generation of reactive oxygen species (ROS) and antioxidant defense mechanisms in the gastrointestinal (GI) tract, the involvement of oxidative stress signaling in the initiation and progression of IBD and its relationships with genetic susceptibility and the mucosal immune response. In addition, potential therapeutic strategies for IBD that target oxidative stress signaling are reviewed and discussed. Though substantial progress has been made in understanding the role of oxidative stress in IBD in humans and experimental animals, the underlying mechanisms are still not well defined. Thus, further studies are needed to validate how oxidative stress signaling is involved in and contributes to the development of IBD.
Collapse
Affiliation(s)
- Tian Tian
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Ziling Wang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| | - Jinhua Zhang
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
23
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
24
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
25
|
Yu Y, Cui Y, Niedernhofer LJ, Wang Y. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chem Res Toxicol 2016; 29:2008-2039. [PMID: 27989142 DOI: 10.1021/acs.chemrestox.6b00265] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A variety of endogenous and exogenous agents can induce DNA damage and lead to genomic instability. Reactive oxygen species (ROS), an important class of DNA damaging agents, are constantly generated in cells as a consequence of endogenous metabolism, infection/inflammation, and/or exposure to environmental toxicants. A wide array of DNA lesions can be induced by ROS directly, including single-nucleobase lesions, tandem lesions, and hypochlorous acid (HOCl)/hypobromous acid (HOBr)-derived DNA adducts. ROS can also lead to lipid peroxidation, whose byproducts can also react with DNA to produce exocyclic DNA lesions. A combination of bioanalytical chemistry, synthetic organic chemistry, and molecular biology approaches have provided significant insights into the occurrence, repair, and biological consequences of oxidatively induced DNA lesions. The involvement of these lesions in the etiology of human diseases and aging was also investigated in the past several decades, suggesting that the oxidatively induced DNA adducts, especially bulky DNA lesions, may serve as biomarkers for exploring the role of oxidative stress in human diseases. The continuing development and improvement of LC-MS/MS coupled with the stable isotope-dilution method for DNA adduct quantification will further promote research about the clinical implications and diagnostic applications of oxidatively induced DNA adducts.
Collapse
Affiliation(s)
| | | | - Laura J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute Florida , Jupiter, Florida 33458, United States
| | | |
Collapse
|
26
|
ApoE deficiency promotes colon inflammation and enhances inflammatory potential oxidized-LDL and TNF-α in colon epithelial cells. Biosci Rep 2016; 36:BSR20160195. [PMID: 27538678 PMCID: PMC5052706 DOI: 10.1042/bsr20160195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022] Open
Abstract
Although deficiency in Apolipoprotein E (ApoE) is linked to many diseases, its effect on colon homoeostasis remains unknown. ApoE appears to control inflammation by regulating nuclear factor-κB (NF-κB). The present study was designed to examine whether ApoE deficiency affects factors of colon integrity in vivo and given the likelihood that ApoE deficiency increases oxidized lipids and TNF-α, the present study also examined whether such deficiency enhances the inflammatory potential of oxidized-LDL (oxLDL) and TNF-α in colon epithelial cells (CECs), in vitro. Here we show that ApoE deficiency is associated with chronic inflammation systemically and in colonic tissues as assessed by TNF-α levels. Increased colon TNF-α mRNA coincided with a substantial increase in cyclooxygenase (COX)-2. ApoE deficiency enhanced the potential of oxLDL and TNF-α to induce COX-2 expression as well as several other inflammatory factors in primary CECs. Interestingly, oxLDL enhanced TGF-β expression only in ApoE−/−, but not in wild-type, epithelial cells. ApoE deficiency appears to promote COX-2 expression enhancement through a mechanism that involves persistent NF-κB nuclear localization and PI3 and p38 MAP kinases but independently of Src. In mice, ApoE deficiency promoted a moderate increase in crypt length, which was associated with opposing effects of an increase in cell proliferation and apoptosis at the bottom and top of the crypt respectively. Our results support the notion that ApoE plays a central role in colon homoeostasis and that ApoE deficiency may constitute a risk factor for colon pathologies.
Collapse
|
27
|
Shukla PK, Chaudhry KK, Mir H, Gangwar R, Yadav N, Manda B, Meena AS, Rao R. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer 2016; 16:189. [PMID: 26951793 PMCID: PMC4782373 DOI: 10.1186/s12885-016-2180-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/15/2016] [Indexed: 02/01/2023] Open
Abstract
Background Alcohol consumption is one of the major risk factors for colorectal cancer. However, the mechanism involved in this effect of alcohol is unknown. Methods We evaluated the effect of chronic ethanol feeding on azoxymethane and dextran sulfate sodium (AOM/DSS)-induced carcinogenesis in mouse colon. Inflammation in colonic mucosa was assessed at a precancerous stage by evaluating mucosal infiltration of neutrophils and macrophages, and analysis of cytokine and chemokine gene expression. Results Chronic ethanol feeding significantly increased the number and size of polyps in colon of AOM/DSS treated mice. Confocal microscopic and immunoblot analyses showed a significant elevation of phospho-Smad, VEGF and HIF1α in the colonic mucosa. RT-PCR analysis at a precancerous stage indicated that ethanol significantly increases the expression of cytokines IL-1α, IL-6 and TNFα, and the chemokines CCL5/RANTES, CXCL9/MIG and CXCL10/IP-10 in the colonic mucosa of AOM/DSS treated mice. Confocal microscopy showed that ethanol feeding induces a dramatic elevation of myeloperoxidase, Gr1 and CD68-positive cells in the colonic mucosa of AOM/DSS-treated mice. Ethanol feeding enhanced AOM/DSS-induced suppression of tight junction protein expression and elevated cell proliferation marker, Ki-67 in the colonic epithelium. Conclusion This study demonstrates that chronic ethanol feeding promotes colonic tumorigenesis potentially by enhancing inflammation and elevation of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Pradeep K Shukla
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Kamaljit K Chaudhry
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Hina Mir
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Ruchika Gangwar
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Nikki Yadav
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Bhargavi Manda
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - Avtar S Meena
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| | - RadhaKrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Nash 426, Memphis, TN, 38163, USA.
| |
Collapse
|
28
|
Battelli MG, Polito L, Bortolotti M, Bolognesi A. Xanthine oxidoreductase in cancer: more than a differentiation marker. Cancer Med 2016; 5:546-57. [PMID: 26687331 PMCID: PMC4799950 DOI: 10.1002/cam4.601] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/17/2022] Open
Abstract
Human xanthine oxidoreductase (XOR) catalyzes the last two steps of purine catabolism and is present in two interconvertible forms, which may utilize O2 or NAD(+) as electron acceptors. In addition to uric acid, XOR products may comprise reactive oxygen and nitrogen species that have many biologic effects, including inflammation, endothelial dysfunction, and cytotoxicity, as well as mutagenesis and induction of proliferation. XOR is strictly modulated at the transcriptional and post-translational levels, and its expression and activity are highly variable in cancer. Xanthine oxidoreductase (XOR) expression has been negatively associated with a high malignity grade and a worse prognosis in neoplasms of the breast, liver, gastrointestinal tract, and kidney, which normally express a high level of XOR protein. However, the level of XOR expression may be associated with a worse outcome in cancer of low XOR-expressing cells, in relation to the inflammatory response elicited through the tissue damage induced by tumor growth. Xanthine oxidoreductase (XOR) has been implicated in the process of oncogenesis either directly because it is able to catalyze the metabolic activation of carcinogenic substances or indirectly through the action of XOR-derived reactive oxygen and nitrogen species. The role of uric acid is characterized by both oxidant and antioxidant action; thus, it is still debatable whether control of uricemia may be helpful to improve the outcomes of tumor illness.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine – DIMESAlma Mater Studiorum – University of Bologna, General Pathology UnitVia S. Giacomo 1440126BolognaItaly
| |
Collapse
|
29
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
30
|
Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest 2015; 125:3365-76. [PMID: 26325033 DOI: 10.1172/jci80006] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The generation of an inflammatory environment is favorable and often decisive for the growth of both primary tumors and metastases. Tumor cells either express membrane molecules or release tumor-derived soluble factors able to alter myelopoiesis. Tumor-reprogrammed myeloid cells not only create a tolerogenic environment by blocking T cell functions and proliferation, but also directly drive tumor growth by promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. In this Review, we discuss the interplay between immunosuppressive and protumoral myeloid cells and detail their immune-regulatory mechanisms, the molecular pathways involved in their differentiation, as well as their potential role as prognostic and diagnostic biomarkers and prospective targets for innovative approaches to treat tumor-bearing hosts.
Collapse
|
31
|
Intrinsic mutagenic properties of 5-chlorocytosine: A mechanistic connection between chronic inflammation and cancer. Proc Natl Acad Sci U S A 2015; 112:E4571-80. [PMID: 26243878 DOI: 10.1073/pnas.1507709112] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During chronic inflammation, neutrophil-secreted hypochlorous acid can damage nearby cells inducing the genomic accumulation of 5-chlorocytosine (5ClC), a known inflammation biomarker. Although 5ClC has been shown to promote epigenetic changes, it has been unknown heretofore if 5ClC directly perpetrates a mutagenic outcome within the cell. The present work shows that 5ClC is intrinsically mutagenic, both in vitro and, at a level of a single molecule per cell, in vivo. Using biochemical and genetic approaches, we have quantified the mutagenic and toxic properties of 5ClC, showing that this lesion caused C→T transitions at frequencies ranging from 3-9% depending on the polymerase traversing the lesion. X-ray crystallographic studies provided a molecular basis for the mutagenicity of 5ClC; a snapshot of human polymerase β replicating across a primed 5ClC-containing template uncovered 5ClC engaged in a nascent base pair with an incoming dATP analog. Accommodation of the chlorine substituent in the template major groove enabled a unique interaction between 5ClC and the incoming dATP, which would facilitate mutagenic lesion bypass. The type of mutation induced by 5ClC, the C→T transition, has been previously shown to occur in substantial amounts both in tissues under inflammatory stress and in the genomes of many inflammation-associated cancers. In fact, many sequence-specific mutational signatures uncovered in sequenced cancer genomes feature C→T mutations. Therefore, the mutagenic ability of 5ClC documented in the present study may constitute a direct functional link between chronic inflammation and the genetic changes that enable and promote malignant transformation.
Collapse
|
32
|
Al-Salihi M, Reichert E, Fitzpatrick FA. Influence of myeloperoxidase on colon tumor occurrence in inflamed versus non-inflamed colons of Apc(Min/+) mice. Redox Biol 2015; 6:218-225. [PMID: 26262998 PMCID: PMC4536298 DOI: 10.1016/j.redox.2015.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 12/14/2022] Open
Abstract
Control of colorectal cancer needs to be tailored to its etiology. Tumor promotion mechanisms in colitis-associated colon cancer differ somewhat from the mechanisms involved in hereditary and sporadic colorectal cancer. Unlike sporadic or inherited tumors, some experimental models show that colitis-associated colon tumors do not require cyclooxygenase (COX) expression for progression, and non-steroidal anti-inflammatory drugs (NSAIDs) which prevent sporadic or inherited colon cancer do not prevent colitis-associated colon cancer. We report that myeloperoxidase (MPO), an ancestor of the COX isoenzymes, is a determinant of colitis-associated colon tumors in ApcMin/+ mice. During experimentally induced colitis, inhibition of MPO by resorcinol dampened colon tumor development. Conversely, in the bowels of ApcMin/+ mice without colitis, resorcinol administration or ‘knockout’ of MPO gene coincided with a slight, but discernible increase in colon tumor incidence. Acrolein, a by-product of MPO catalysis, formed a covalent adduct with the phosphatase tensin homolog (PTEN) tumor suppressor and enhanced the activity of the Akt kinase proto-oncogene in vitro and in vivo. Thus, MPO may be an important determinant of diet and inflammation on colon cancer risk via its effect on endogenous exposure to oxidants and acrolein. We propose a hypothetical model to explain an apparent dichotomy between colon tumor occurrence and MPO inhibition in inflamed versus non-inflamed colons. Myeloperoxidase is a determinant of colitis-associated colon tumors in ApcMin/+ mice. Inhibition of MPO by resorcinol dampened colitis-associated colon tumor occurrence. Acrolein is a by-product of MPO catalysis. Acrolein forms a covalent adduct with the phosphatase tensin homolog tumor suppressor. Acrolein adducted PTEN enhances the activity of the Akt kinase proto-oncogene. MPO may have an effect on endogenous exposure to oxidants and acrolein. MPO may be an important determinant of diet and inflammation on colon cancer risk.
Collapse
Affiliation(s)
- Mazin Al-Salihi
- School of Medicine, University of Jordan, Amman 11942, Jordan.
| | - Ethan Reichert
- Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - F A Fitzpatrick
- Kansas City University of Medicine & Biosciences, Department of Pharmacology, 1750 Independence Avenue, Kansas City, MO 64106, USA.
| |
Collapse
|
33
|
Guina T, Biasi F, Calfapietra S, Nano M, Poli G. Inflammatory and redox reactions in colorectal carcinogenesis. Ann N Y Acad Sci 2015; 1340:95-103. [PMID: 25727454 DOI: 10.1111/nyas.12734] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been established that there is a relationship between chronic inflammation and cancer development. The constant colonic inflammation typical of inflammatory bowel diseases is now considered a risk factor for colorectal carcinoma (CRC) development. The inflammatory network of signaling molecules is also required during the late phases of carcinogenesis, to enable cancer cells to survive and to metastasize. Oxidative reactions are an integral part of the inflammatory response, and are generally associated with CRC development. However, when the malignant phenotype is acquired, increased oxidative status induces antioxidant defenses in cancer cells, favoring their aggressiveness. This contradictory behavior of cancer cells toward redox status is of great significance for potential anticancer therapies. This paper summarizes the essential background information relating to the molecules involved in regulating oxidative stress and inflammation during carcinogenesis. Understanding more of their function in CRC stages might provide the foundation for future developments in CRC treatment.
Collapse
Affiliation(s)
- Tina Guina
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | | | | | | |
Collapse
|
34
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
35
|
Park JM, Han NY, Han YM, Chung MK, Lee HK, Ko KH, Kim EH, Hahm KB. Predictive proteomic biomarkers for inflammatory bowel disease-associated cancer: Where are we now in the era of the next generation proteomics? World J Gastroenterol 2014; 20:13466-13476. [PMID: 25309077 PMCID: PMC4188898 DOI: 10.3748/wjg.v20.i37.13466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/10/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in genomic medicine have opened up the possibility of tailored medicine that may eventually replace traditional “one-size-fits all” approaches to the treatment of inflammatory bowel disease (IBD). In addition to exploring the interactions between hosts and microbes, referred to as the microbiome, a variety of strategies that can be tailored to an individual in the coming era of personalized medicine in the treatment of IBD are being investigated. These include prompt genomic screening of patients at risk of developing IBD, the utility of molecular discrimination of IBD subtypes among patients diagnosed with IBD, and the discovery of proteome biomarkers to diagnose or predict cancer risks. Host genetic factors influence the etiology of IBD, as do microbial ecosystems in the human bowel, which are not uniform, but instead represent many different microhabitats that can be influenced by diet and might affect processes essential to bowel metabolism. Further advances in basic research regarding intestinal inflammation may reveal new insights into the role of inflammatory mediators, referred to as the inflammasome, and the macromolecular complex of metabolites formed by intestinal bacteria. Collectively, knowledge of the inflammasome and metagenomics will lead to the development of biomarkers for IBD that target specific pathogenic mechanisms involved in the spontaneous progress of IBD. In this review article, our recent results regarding the discovery of potential proteomic biomarkers using a label-free quantification technique are introduced and on-going projects contributing to either the discrimination of IBD subtypes or to the prediction of cancer risks are accompanied by updated information from IBD biomarker research.
Collapse
|
36
|
Sastre J. Special issue on "Oxidative stress and redox signaling in the gastrointestinal tract and related organs". Free Radic Res 2013; 47:851-3. [PMID: 24004387 DOI: 10.3109/10715762.2013.840775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia , Valencia , Spain
| |
Collapse
|