1
|
Dolkar R, Paudwal G, Singh D, Behera C, Malik SB, Ali SM, Kaur H, Nargotra A, Shankar R, Singh SK, Gupta PN. Mechanistic Approach into 1,2,3-triazoles-based IIIM(S)-RS98 Mediated Apoptosis in Lung Cancer Cells. AAPS J 2025; 27:35. [PMID: 39900819 DOI: 10.1208/s12248-025-01018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025] Open
Abstract
Lung cancer is a major public health problem across the globe, since it is the second most frequent cancer and the leading cause of cancer fatalities. This necessitates careful assessment of current therapies for lung cancer and discovery of novel drug candidates. 1,2,3 triazole compounds have emerged as an important class of prospective chemotherapeutic drugs for the treatment of lung cancer, with promising anti-lung cancer activity shown via a variety of pathways. They may interact with a various enzymes and receptors in cancer cells, causing cell cycle arrest and the activation of apoptosis. The present study aims to investigate the cytotoxic potential of institutional molecule based on 1,2,3 triazole [IIIM(S)-RS98] on multiple cancer cell lines. The compound was found to be most active on A549 cells and displayed the selectivity index as 8.16 in normal cells (e.g. HEK293). The in vitro findings revealed that IIIM(S)-RS98 induced apoptosis, loss of mitochondrial membrane potential, enhanced ROS and nitric oxide levels, and arrest cells in the G1 phase of the cell cycle. It inhibits the cell migration and clonogenic potential of A549 cells. Additionally, the downregulation of PI3K and p-Akt pathway leads to the activation of pro-apoptotic proteins Bax, downregulation of bcl2, activation of caspase 9, cleaved caspase 3, and cleaved parp1 expression and finally contribute towards apoptosis. Furthermore, molecular docking analysis indicated the interactions of IIIM(S)-RS98 with the apoptotic target proteins. The results demonstrated the potential of IIIM(S)-RS98 in the therapy of lung cancer.
Collapse
Affiliation(s)
- Rigzin Dolkar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gourav Paudwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Davinder Singh
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chittaranjan Behera
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sumera Banoo Malik
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Syed Mudassir Ali
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Harjot Kaur
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Amit Nargotra
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shashank K Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Ko HH, Chou HYE, Hou HH, Kuo WT, Liu WW, Yen-Ping Kuo M, Cheng SJ. Oleanolic acid inhibits aldo-keto reductase family 1 member B10-induced cancer stemness and avoids cisplatin-based chemotherapy resistance via the Snail signaling pathway in oral squamous cell carcinoma cell lines. J Dent Sci 2025; 20:100-108. [PMID: 39873100 PMCID: PMC11762581 DOI: 10.1016/j.jds.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Indexed: 01/30/2025] Open
Abstract
Background/purpose Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy. Materials and methods Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells. Stemness, epithelial mesenchymal transition (EMT) markers, and CDDP drug resistance in overexpressed AKR1B10 were also identified. Results Upregulated AKR1B10 in OSCC significantly increased cell motility and aggregation. The results also showed that the canonical TGF-β1-Smad3 pathway was involved in arecoline-induced AKR1B10 expression, further increasing cancer stemness with CDDP resistance via the Snail-dependent EMT pathway. Moreover, oleanolic acid (OA) and ROS/RNS (reactive oxygen/nitrogen species) inhibitors effectively reversed AKR1B10-induced CDDP-resistance. Conclusion Arecoline-induced ROS/RNS to hyper-activate AKR1B10 in tumor sphere cells via the TGF-β1-Smad3 pathway. Furthermore, AKR1B10 enhanced CDDP resistance in OSCC cells via EMT-inducing markers. Finally, Finally, OA may efficiently target CDDP resistance, reverse stemness in OSCC cells, and have the potential as a novel anticancer drug.
Collapse
Affiliation(s)
- Hui-Hsin Ko
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Han-Yi E. Chou
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Han Hou
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Ting Kuo
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Wen Liu
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Shih-Jung Cheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- School of Dentistry, National Taiwan University, Taipei, Taiwan
- Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Zeman RJ, Brown AM, Wen X, Ouyang N, Etlinger JD. Tempol, a Superoxide Dismutase Mimetic, Inhibits Wallerian Degeneration Following Spinal Cord Injury by Preventing Glutathione Depletion and Aldose Reductase Activation. J Neurotrauma 2024; 41:2186-2198. [PMID: 39083435 PMCID: PMC11807894 DOI: 10.1089/neu.2024.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Spinal cord contusion injury results in Wallerian degeneration of spinal cord axonal tracts, which are necessary for locomotor function. Axonal swelling and loss of axonal density at the contusion site, characteristic of Wallerian degeneration, commence within hours of injury. Tempol, a superoxide dismutase mimetic, was previously shown to reduce the loss of spinal cord white matter and improve locomotor function in an experimental model of spinal cord contusion, suggesting that tempol treatment might inhibit Wallerian degeneration of spinal cord axons. Here, we report that tempol partially inhibits Wallerian degeneration, resulting in improved locomotor recovery. We previously reported that Wallerian degeneration is reduced by inhibitors of aldose reductase (AR), which converts glucose to sorbitol in the polyol pathway. We observed that tempol inhibited sorbitol production in the injured spinal cord to the same extent as the AR inhibitor, sorbinil. Tempol also prevented post-contusion upregulation of AR (AKR1B10) protein expression within degenerating axons, as previously observed for AR inhibitors. Additionally, we hypothesized that tempol inhibits axonal degeneration by preventing loss of the glutathione pool due to polyol pathway activity. Consistent with our hypothesis, tempol treatment resulted in greater glutathione content in the injured spinal cord, which was correlated with increased expression and activity of gamma glutamyl cysteine ligase (γGCL; EC 6.3.2.2), the rate-limiting enzyme for glutathione synthesis. Administration of the γGCL inhibitor buthionine sulfoximine abolished all observed effects of tempol administration. Together, these results support a pathological role for polyol pathway activation in glutathione depletion, resulting in Wallerian degeneration after spinal cord injury (SCI). Interestingly, methylprednisolone, oxandrolone, and clenbuterol, which are known to spare axonal tracts after SCI, were equally effective in inhibiting polyol pathway activation. These results suggest that prevention of AR activation is a common target of many disparate post-SCI interventions.
Collapse
Affiliation(s)
- Richard J. Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Abraham M. Brown
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Xialing Wen
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Nengtai Ouyang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| | - Joseph D. Etlinger
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
4
|
Guo M, Wang T, Ge W, Ren C, Ko BCB, Zeng X, Cao D. Role of AKR1B10 in inflammatory diseases. Scand J Immunol 2024; 100:e13390. [PMID: 38769661 DOI: 10.1111/sji.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Inflammation is an important pathophysiological process in many diseases; it has beneficial and harmful effects. When exposed to various stimuli, the body triggers an inflammatory response to eliminate invaded pathogens and damaged tissues to maintain homeostasis. However, uncontrollable persistent or excessive inflammatory responses may damage tissues and induce various diseases, such as metabolic diseases (e.g. diabetes), autoimmune diseases, nervous system-related diseases, digestive system-related diseases, and even tumours. Aldo-keto reductase 1B10 (AKR1B10) is an important player in the development and progression of multiple diseases, such as tumours and inflammatory diseases. AKR1B10 is upregulated in solid tumours, such as hepatocellular carcinoma (HCC), non-small cell lung carcinoma, and breast cancer, and is a reliable serum marker. However, information on the role of AKR1B10 in inflammation is limited. In this study, we summarized the role of AKR1B10 in inflammatory diseases, including its expression, functional contribution to inflammatory responses, and regulation of signalling pathways related to inflammation. We also discussed the role of AKR1B10 in glucose and lipid metabolism and oxidative stress. This study provides novel information and increases the understanding of clinical inflammatory diseases.
Collapse
Affiliation(s)
- Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjun Ge
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chenran Ren
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ben Chi-Bun Ko
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Jang TH, Lin SC, Yang YY, Lay JD, Chang CL, Yao CJ, Huang JS, Chuang SE. The Role of AKR1B10 in Lung Cancer Malignancy Induced by Sublethal Doses of Chemotherapeutic Drugs. Cancers (Basel) 2024; 16:2428. [PMID: 39001490 PMCID: PMC11240762 DOI: 10.3390/cancers16132428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Chemotherapy remains a cornerstone in lung cancer treatment, yet emerging evidence suggests that sublethal low doses may inadvertently enhance the malignancy. This study investigates the paradoxical effects of sublethal low-dose chemotherapy on non-small-cell lung cancer (NSCLC) cells, emphasizing the role of Aldo-keto reductase family 1 member B10 (AKR1B10). We found that sublethal doses of chemotherapy unexpectedly increased cancer cell migration approximately 2-fold and invasion approximately threefold, potentially promoting metastasis. Our analysis revealed a significant upregulation of AKR1B10 in response to taxol and doxorubicin treatment, correlating with poor survival rates in lung cancer patients. Furthermore, silencing AKR1B10 resulted in a 1-2-fold reduction in cell proliferation and a 2-3-fold reduction in colony formation and migration while increasing chemotherapy sensitivity. In contrast, the overexpression of AKR1B10 stimulated growth rate by approximately 2-fold via ERK pathway activation, underscoring its potential as a target for therapeutic intervention. The reversal of these effects upon the application of an ERK-specific inhibitor further validates the significance of the ERK pathway in AKR1B10-mediated chemoresistance. In conclusion, our findings significantly contribute to the understanding of chemotherapy-induced adaptations in lung cancer cells. The elevated AKR1B10 expression following sublethal chemotherapy presents a novel molecular mechanism contributing to the development of chemoresistance. It highlights the need for strategic approaches in chemotherapy administration to circumvent the inadvertent enhancement of cancer aggressiveness. This study positions AKR1B10 as a potential therapeutic target, offering a new avenue to improve lung cancer treatment outcomes by mitigating the adverse effects of sublethal chemotherapy.
Collapse
Affiliation(s)
- Te-Hsuan Jang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Sheng-Chieh Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Yu Yang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jong-Ding Lay
- Department of Nursing, National Taichung University of Science and Technology, Taichung 40343, Taiwan
| | - Chih-Ling Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chih-Jung Yao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jhy-Shrian Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 60002, Taiwan
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
6
|
Lu J, Kang T, Zhang Z. Diagnostic value of aldo‑keto reductase family 1 member B10 in human nasopharyngeal carcinoma. Mol Clin Oncol 2023; 19:89. [PMID: 37854325 PMCID: PMC10580245 DOI: 10.3892/mco.2023.2685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/21/2023] [Indexed: 10/20/2023] Open
Abstract
Aldo-keto reductase family 1 member B10 (AKR1B10) is a potential marker of several types of cancer; however, the role of AKR1B10 in nasopharyngeal carcinoma (NPC) remains unclear. In the present study, AKR1B10 RNA-seq data and clinical information were obtained from The Cancer Genome Atlas head and neck squamous cell carcinoma (HNSCC) database to evaluate the role of AKR1B10 in HNSCC. There was no statistically significant difference in the expression of AKR1B10 between HNSCC tissues and adjacent normal tissues, and high AKR1B10 expression was not associated with poor overall survival according to the public database. The present study further examined the role of AKR1B10 in patients with NPC using data obtained from the Gene Expression Omnibus database. Analysis of the GSE53819 and GSE61218 datasets showed that the there were no significant differences in the expression levels of AKR1B10 between NPC tissues and normal tissues. However, analysis of the GSE103611 dataset indicated that AKR1B10 may be associated with distance metastasis following radical treatment in NPC. Finally, serum samples from patients with NPC and healthy controls were collected and analyzed. The results revealed that AKR1B10 levels were significantly increased in samples from patients with NPC compared with those from healthy controls, and the area under the receiver operating characteristic curve was 0.909. In conclusion, unlike tissue AKR1B10 expression, serum AKR1B10 levels may be a promising biomarker for the diagnosis of NPC.
Collapse
Affiliation(s)
- Jinping Lu
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, P.R. China
| | - Ting Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 516060, P.R. China
| | - Zhenlin Zhang
- Department of Clinical Laboratory and Medical Research Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
7
|
Salihi A, Al-Naqshabandi MA, Khudhur ZO, Housein Z, Hama HA, Abdullah RM, Hussen BM, Alkasalias T. Gasotransmitters in the tumor microenvironment: Impacts on cancer chemotherapy (Review). Mol Med Rep 2022; 26:233. [PMID: 35616143 PMCID: PMC9178674 DOI: 10.3892/mmr.2022.12749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Nitric oxide, carbon monoxide and hydrogen sulfide are three endogenous gasotransmitters that serve a role in regulating normal and pathological cellular activities. They can stimulate or inhibit cancer cell proliferation and invasion, as well as interfere with cancer cell responses to drug treatments. Understanding the molecular pathways governing the interactions between these gases and the tumor microenvironment can be utilized for the identification of a novel technique to disrupt cancer cell interactions and may contribute to the conception of effective and safe cancer therapy strategies. The present review discusses the effects of these gases in modulating the action of chemotherapies, as well as prospective pharmacological and therapeutic interfering approaches. A deeper knowledge of the mechanisms that underpin the cellular and pharmacological effects, as well as interactions, of each of the three gases could pave the way for therapeutic treatments and translational research.
Collapse
Affiliation(s)
- Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region 44001, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region 44002, Iraq
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-17165 Stockholm, Sweden
| | - Mohammed A. Al-Naqshabandi
- Department of Clinical Biochemistry, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Zhikal Omar Khudhur
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan Region 44001, Iraq
| | - Zjwan Housein
- Department of Medical Laboratory Technology, Technical Health and Medical College, Erbil Polytechnique University, Erbil, Kurdistan Region 44002, Iraq
| | - Harmand A. Hama
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region 44002, Iraq
| | - Ramyar M. Abdullah
- College of Medicine, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44002, Iraq
| | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, Kurdistan Region 44002, Iraq
- Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
8
|
Phoo NLL, Dejkriengkraikul P, Khaw-On P, Yodkeeree S. Transcriptomic Profiling Reveals AKR1C1 and AKR1C3 Mediate Cisplatin Resistance in Signet Ring Cell Gastric Carcinoma via Autophagic Cell Death. Int J Mol Sci 2021; 22:ijms222212512. [PMID: 34830394 PMCID: PMC8623627 DOI: 10.3390/ijms222212512] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
Signet ring cell gastric carcinoma (SRCGC) is a lethal malignancy that has developed drug resistance to cisplatin therapies. The aim of this study was to characterize the acquisition of the cisplatin-resistance SRCGC cell line (KATO/DDP cells) and to understand the molecular mechanisms underlying cisplatin resistance. Transcriptomic and bioinformatic analyses were used to identify the candidate gene. This was confirmed by qPCR and Western blot. Aldoketoreductase1C1 and 1C3 (AKR1C1 and AKR1C3) were the most promising molecules in KATO/DDP cells. A specific inhibitor of AKR1C1 (5PBSA) and AKR1C3 (ASP9521) was used to enhance cisplatin-induced KATO/DPP cell death. Although cisplatin alone induced KATO/DDP apoptosis, a combination treatment of cisplatin and the AKR1C inhibitors had no influence on percent cell apoptosis. In conjunction with the autophagy inhibitor, 3MA, attenuated the effects of 5PBSA or ASP9521 to enhance cisplatin-induced cell death. These results indicated that AKR1C1 and 1C3 regulated cisplatin-induced KATO/DDP cell death via autophagy. Moreover, cisplatin in combination with AKR1C inhibitors and N-acetyl cysteine increased KATO/DDP cells' viability when compared with a combination treatment of cisplatin and the inhibitors. Taken together, our results suggested that AKR1C1 and 1C3 play a crucial role in cisplatin resistance of SRCGC by regulating redox-dependent autophagy.
Collapse
Affiliation(s)
- Nang Lae Lae Phoo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patompong Khaw-On
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (N.L.L.P.); (P.D.); (P.K.-O.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
9
|
Endo S, Matsunaga T, Nishinaka T. The Role of AKR1B10 in Physiology and Pathophysiology. Metabolites 2021; 11:332. [PMID: 34063865 PMCID: PMC8224097 DOI: 10.3390/metabo11060332] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
AKR1B10 is a human nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase belonging to the aldo-keto reductase (AKR) 1B subfamily. It catalyzes the reduction of aldehydes, some ketones and quinones, and interacts with acetyl-CoA carboxylase and heat shock protein 90α. The enzyme is highly expressed in epithelial cells of the stomach and intestine, but down-regulated in gastrointestinal cancers and inflammatory bowel diseases. In contrast, AKR1B10 expression is low in other tissues, where the enzyme is upregulated in cancers, as well as in non-alcoholic fatty liver disease and several skin diseases. In addition, the enzyme's expression is elevated in cancer cells resistant to clinical anti-cancer drugs. Thus, growing evidence supports AKR1B10 as a potential target for diagnosing and treating these diseases. Herein, we reviewed the literature on the roles of AKR1B10 in a healthy gastrointestinal tract, the development and progression of cancers and acquired chemoresistance, in addition to its gene regulation, functions, and inhibitors.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan;
| |
Collapse
|
10
|
Aldo Keto Reductases AKR1B1 and AKR1B10 in Cancer: Molecular Mechanisms and Signaling Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:65-82. [PMID: 33945128 DOI: 10.1007/5584_2021_634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Deregulation of metabolic pathways has increasingly been appreciated as a major driver of cancer in recent years. The principal cancer-associated alterations in metabolism include abnormal uptake of glucose and amino acids and the preferential use of metabolic pathways for the production of biomass and nicotinamide adenine dinucleotide phosphate (NADPH). Aldo-keto reductases (AKRs) are NADPH dependent cytosolic enzymes that can catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from NADPH. Aldose reductase, also known as AKR1B1, catalyzes the conversion of excess glucose to sorbitol and has been studied extensively for its role in a number of diabetic pathologies. In recent years, however, high expression of the AKR1B and AKR1C family of enzymes has been strongly associated with worse outcomes in different cancer types. This review provides an overview of the catalysis-dependent and independent data emerging on the molecular mechanisms of the functions of AKRBs in different tumor models with an emphasis of the role of these enzymes in chemoresistance, inflammation, oxidative stress and epithelial-to-mesenchymal transition.
Collapse
|
11
|
Caffeic acid phenethyl ester potentiates gastric cancer cell sensitivity to doxorubicin and cisplatin by decreasing proteasome function. Anticancer Drugs 2020; 30:251-259. [PMID: 30489290 DOI: 10.1097/cad.0000000000000715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caffeic acid phenethyl ester (CAPE) is a major propolis component that possesses a variety of pharmacological properties such as antioxidant and anticancer effects. Herein, we investigated the effectiveness of CAPE on cytotoxicity of clinically used anticancer drugs, doxorubicin (DXR) and cisplatin (CDDP), in parental and the drug-resistant cells of stomach (MKN45) and colon (LoVo) cancers. Concomitant treatment with CAPE potentiated apoptotic effects of DXR and CDDP against the parental cells. The treatment significantly reduced the production of reactive oxygen species elicited by DXR but did not affect the DXR-mediated accumulation of 4-hydroxy-2-nonenal, a lipid peroxidation-derived aldehyde. Intriguingly, treatment of parental MKN45 cells with CAPE alone reduced 26S proteasome-based proteolytic activities, in which a chymotrypsin-like activity was most affected. This effect of CAPE was the most prominent among those of eight flavonoids and nine cinnamic acid derivatives and was also observed in parental LoVo cells. In the DXR-resistant or CDDP-resistant cells, the chymotrypsin-like activity was highly up-regulated and significantly decreased by CAPE treatment, which sensitized the resistant cells to DXR and CDDP. Reverse transcription-PCR analysis showed that CAPE treatment led to downregulation of five proteasome subunits (PSMB1-PSMB5) and three immunoproteasome subunits (PSMB8-PSMB10) in DXR-resistant MKN45 cells. The results suggest that CAPE enhances sensitivity of these cancer cells and their chemoresistant cells to DXR and CDDP, most notably through decreasing proteasome function. Thus, CAPE may be valuable as an adjuvant for DXR or CDDP chemotherapy in gastric cancer.
Collapse
|
12
|
4′-Fluoropyrrolidinononanophenone elicits neuronal cell apoptosis through elevating production of reactive oxygen and nitrogen species. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00550-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Girotti AW, Fahey JM, Korytowski W. Nitric oxide-elicited resistance to anti-glioblastoma photodynamic therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:401-414. [PMID: 33073206 PMCID: PMC7558220 DOI: 10.20517/cdr.2020.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme is a highly aggressive primary brain malignancy that resists most conventional chemoand radiotherapeutic interventions. Nitric oxide (NO), a short lived free radical molecule produced by inducible NO synthase (iNOS) in glioblastomas and other tumors, is known to play a key role in tumor persistence, progression, and chemo/radiotherapy resistance. Site-specific and minimally invasive photodynamic therapy (PDT), based on oxidative damage resulting from non-ionizing photoactivation of a sensitizing agent, is highly effective against glioblastoma, but resistance also exists in this case. Studies in the authors' laboratory have shown that much of the latter is mediated by iNOS/NO. For example, when glioblastoma U87 or U251 cells sensitized in mitochondria with 5-aminolevulinic acid -induced protoporphyrin IX were exposed to a moderate dose of visible light, the observed apoptosis was strongly enhanced by an iNOS activity inhibitor or NO scavenger, indicating that iNOS/NO had increased cell resistance to photokilling. Moreover, cells that survived the photochallenge proliferated, migrated, and invaded more aggressively than controls, and these responses were also driven predominantly by iNOS/NO. Photostress-upregulated iNOS rather than basal enzyme was found to be responsible for all the negative effects described. Recognition of NO-mediated hyper-resistance/hyper-aggression in PDT-stressed glioblastoma has stimulated interest in how these responses can be prevented or at least minimized by pharmacologic adjuvants such as inhibitors of iNOS activity or transcription. Recent developments along these lines and their clinical potential for improving anti-glioblastoma PDT are discussed.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jonathan M. Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Witold Korytowski
- Department of Biophysics, Jagiellonian University, Krakow 31-008, Poland
| |
Collapse
|
14
|
Fan L, Zheng N, Peng F, Zhao Z, Fan D, Cai S, Tao L, Wang Q. Nitric oxide affects cisplatin cytotoxicity oppositely in A2780 and A2780-CDDP cells via the connexin32/gap junction. Cancer Sci 2020; 111:2779-2788. [PMID: 32342615 PMCID: PMC7419057 DOI: 10.1111/cas.14436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
Chemoresistance is a main obstacle in ovarian cancer therapy and new treatment strategies and further information regarding the mechanism of the medication cisplatin are urgently needed. Nitric oxide has a critical role in modulating the activity of chemotherapeutic drugs. Our previous work showed that connexin32 contributed to cisplatin resistance. However, whether nitric oxide is involved in connexin32-mediated cisplatin resistance remains unknown. In this study, using A2780 and A2780 cisplatin-resistant cells, we found that S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, attenuated cisplatin toxicity by decreasing gap junctions in A2780 cells. Enhancement of gap junctions using retinoic acid reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin toxicity. In A2780 cisplatin-resistant cells, however, S-nitroso-N-acetyl-penicillamine enhanced cisplatin toxicity by decreasing connexin32 expression. Downregulation of connexin32 expression by small interfering RNA exacerbated the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity and upregulation of connexin32 expression by pcDNA transfection reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity. Our study suggests for the first time that combining cisplatin with nitric oxide in clinical therapies for ovarian cancer should be avoided before cisplatin resistance emerges. The present study provides a productive area of further study for increasing the efficacy of cisplatin by combining cisplatin with the specific inhibitors or enhancers of nitric oxide in clinical treatment.
Collapse
Affiliation(s)
- Lixia Fan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
- Department of Basic Medicine and Biomedical EngineeringSchool of Stomatology and MedicineFoshan UniversityFoshanPeople’s Republic of China
| | - Ningze Zheng
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Fuhua Peng
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Ziyu Zhao
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Di Fan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Shaoyi Cai
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Liang Tao
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Qin Wang
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| |
Collapse
|
15
|
Girotti AW. Nitric Oxide-Mediated Resistance to Antitumor Photodynamic Therapy. Photochem Photobiol 2020; 96:500-505. [PMID: 31545517 PMCID: PMC7085955 DOI: 10.1111/php.13163] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
As an antitumor modality based on sensitizer photoexcitation by tumor-directed light, photodynamic therapy (PDT) has the advantage of being site-specific compared with conventional chemotherapy or radiotherapy. Like these other therapies, however, PDT is often limited by pre-existing or acquired resistance. One type of resistance, discovered in the author's laboratory, involves nitric oxide (NO) generated by inducible nitric oxide synthase (iNOS) in tumor cells. Using human breast, prostate and brain cancer cell lines, we have shown that iNOS is dramatically upregulated after a moderate PDT challenge sensitized by 5-aminolevulinic acid-induced protoporphyrin IX. The elevated NO not only elicited a greater resistance to cell photokilling, but also an increase in the growth and migration/invasion rate of surviving cells. Greater iNOS/NO-based resistance was also demonstrated at the in vivo level using a breast tumor xenograft model. More recent studies have shown that NO from PDT-targeted cells can stimulate a progrowth/promigration response in non-targeted bystander cells. These novel effects of NO, their negative impact on PDT efficacy and possible mitigation thereof by anti-iNOS/NO pharmacologic agents will be discussed.
Collapse
Affiliation(s)
- Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226-3548
| |
Collapse
|
16
|
Novel Atg4B inhibitors potentiate cisplatin therapy in lung cancer cells through blockade of autophagy. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Zhan M, Wang H, Xu SW, Yang LH, Chen W, Zhao SX, Shen H, Liu Q, Yang RM, Wang J. Variants in oxidative stress-related genes affect the chemosensitivity through Nrf2-mediated signaling pathway in biliary tract cancer. EBioMedicine 2019; 48:143-160. [PMID: 31590928 PMCID: PMC6838379 DOI: 10.1016/j.ebiom.2019.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Oxidative stress and their effectors play critical roles in carcinogenesis and chemoresistance. However, the role of oxidative stress-related genes variants in biliary tract cancer (BTC) chemoresistance remains unknown. In this work, we aim to investigate oxidative stress-dependent molecular mechanisms underlying chemoresistance, and find potential biomarkers to predict chemotherapy response for BTC. METHODS Sixty-six SNPs in 21 oxidative stress-related genes were genotyped and analyzed in 367 BTC patients. Immunoblot, immunohistochemical, immunofluorescent, quantitative PCR, chromatin immunoprecipitation analysis and study of animal xenograft models were performed to discover oxidative stress-related susceptibility genes underlying chemoresistance mechanism of BTC. FINDINGS We found that 3 functional polymorphisms (CAT_rs769217, GPX4_rs4807542, and GSR_rs3779647), which were shown to affect their respective gene expression levels, modified the effect of chemotherapy on overall survival (OS). We then demonstrated that knockdown of GPX4, CAT, or GSR induced chemoresistance through elevation of ROS level and activation of Nrf2-ABCG2 pathway in BTC cell lines. Moreover, the association between Nrf2 expression and BTC prognosis is only found in patients who received chemotherapy. Knockdown of Nrf2 enhanced chemosensitivity or even eliminated postoperative recurrence in BTC xenograft mouse models. Importantly, upon chemotherapy treatment patients harboring high oxidative stress-related score received higher survival benefit from adjuvant chemotherapy compared with patients with low oxidative stress-related score. INTERPRETATION The result of our study suggests, for the first time, that the oxidative stress-related score calculated by combining variations in CAT, GPX4, and GSR or Nrf2 expression could be used for predicting the chemosensitivity of BTC patients. FUND: This work was supported by the National Science Foundation of China, Foundation of Shanghai Shen Kang Hospital Development Center, and Shanghai Outstanding Academic Leaders Plan.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sun-Wang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lin-Hua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang-Xia Zhao
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China
| | - Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui-Meng Yang
- The Core Laboratory in Medical Center of Clinical Research, Department of Endocrinology, Shanghai Ninth People's Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiao Tong University (SJTU) School of Medicine, Shanghai 200011, China.
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
18
|
Newton JM, Hanoteau A, Liu HC, Gaspero A, Parikh F, Gartrell-Corrado RD, Hart TD, Laoui D, Van Ginderachter JA, Dharmaraj N, Spanos WC, Saenger Y, Young S, Sikora AG. Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition. J Immunother Cancer 2019; 7:216. [PMID: 31409394 PMCID: PMC6693252 DOI: 10.1186/s40425-019-0698-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) for solid tumors, including those targeting programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), have shown impressive clinical efficacy, however, most patients do not achieve durable responses. One major therapeutic obstacle is the immunosuppressive tumor immune microenvironment (TIME). Thus, we hypothesized that a strategy combining tumor-directed radiation with TIME immunomodulation could improve ICI response rates in established solid tumors. METHODS Using a syngeneic mouse model of human papillomavirus (HPV)-associated head and neck cancer, mEER, we developed a maximally effective regimen combining PD-1 and CTLA-4 inhibition, tumor-directed radiation, and two existing immunomodulatory drugs: cyclophosphamide (CTX) and a small-molecule inducible nitric oxide synthase (iNOS) inhibitor, L-n6-(1-iminoethyl)-lysine (L-NIL). We compared the effects of the various combinations of this regimen on tumor growth, overall survival, establishment of immunologic memory, and immunologic changes with flow cytometry and quantitative multiplex immunofluorescence. RESULTS We found PD-1 and CTLA-4 blockade, and radiotherapy alone or in combination, incapable of clearing established tumors or reversing the unfavorable balance of effector to suppressor cells in the TIME. However, modulation of the TIME with cyclophosphamide (CTX) and L-NIL in combination with dual checkpoint inhibition and radiation led to rejection of over 70% of established mEER tumors and doubled median survival in the B16 melanoma model. Anti-tumor activity was CD8+ T cell-dependent and led to development of immunologic memory against tumor-associated HPV antigens. Immune profiling revealed that CTX/L-NIL induced remodeling of myeloid cell populations in the TIME and tumor-draining lymph node and drove subsequent activation and intratumoral infiltration of CD8+ effector T cells. CONCLUSIONS Overall, this study demonstrates that modulation of the immunosuppressive TIME is required to unlock the benefits of ICIs and radiotherapy to induce immunologic rejection of treatment-refractory established solid tumors.
Collapse
Affiliation(s)
- Jared M. Newton
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Houston, TX USA
| | - Aurelie Hanoteau
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX USA
| | - Hsuan-Chen Liu
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Houston, TX USA
| | - Angelina Gaspero
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX USA
| | - Falguni Parikh
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX USA
| | - Robyn D. Gartrell-Corrado
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, NY USA
| | - Thomas D. Hart
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, NY USA
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Neeraja Dharmaraj
- Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - William C. Spanos
- Department of Surgery, University of South Dakota, Sanford School of Medicine, Vermillion, SD USA
| | - Yvonne Saenger
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, NY USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Andrew G. Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX USA
- Department of Cell and Gene Therapy, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
19
|
Fang CY, Lin YH, Chen CL. Overexpression of AKR1B10 predicts tumor recurrence and short survival in oral squamous cell carcinoma patients. J Oral Pathol Med 2019; 48:712-719. [PMID: 31237374 DOI: 10.1111/jop.12891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Aldo-keto reductase family 1 member B10 (AKR1B10) is an enzyme implicated in physiological xenobiotic detoxification and also in pathological carcinogenesis. Overexpression of AKR1B10 has been reported in oral squamous cell carcinoma (OSCC), but its correlation with clinical prognosis is controversial. The aim of this study was to investigate and clarify the role of AKR1B10 in OSCC carcinogenesis. METHODS Tumor tissue specimens were surgically obtained from 107 patients with OSCC. The expression of AKR1B10 was analyzed by immunohistochemistry to explore the relationship between the level of AKR1B10 and clinicopathological features of OSCC patients. Kaplan-Meier survival and Cox proportional hazard analysis were used to determine the prognostic value of AKR1B10 in OSCC. RESULTS High expression of AKR1B10 was found to be associated with tumor size (P = 0.043), perineural invasion (P = 0.012), and recurrence (P = 0.001) in OSCC. Cox model analysis revealed that high expression of AKR1B10 is significantly associated with poor overall and disease-free survival in OSCC patients. With the combination of clinicopathological factors in analysis, we found that the expression level of AKR1B10 was a practical indicator that could categorize OSCC patients into different risk groups. High expression of AKR1B10 was associated with a reduced survival in patients with well and moderately differentiated OSCC and even a high incidence of tumor recurrence in the patients with late-stage (III and IV) disease. CONCLUSION We validated and expanded data on the expression of AKR1B10 in OSCC, suggesting that it is a valuable biomarker for prognostic prediction of recurrence and survival in OSCC.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ho Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Fahey JM, Girotti AW. Nitric Oxide Antagonism to Anti-Glioblastoma Photodynamic Therapy: Mitigation by Inhibitors of Nitric Oxide Generation. Cancers (Basel) 2019; 11:E231. [PMID: 30781428 PMCID: PMC6406633 DOI: 10.3390/cancers11020231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 12/14/2022] Open
Abstract
Many studies have shown that low flux nitric oxide (NO) produced by inducible NO synthase (iNOS/NOS2) in various tumors, including glioblastomas, can promote angiogenesis, cell proliferation, and migration/invasion. Minimally invasive, site-specific photodynamic therapy (PDT) is a highly promising anti-glioblastoma modality. Recent research in the authors' laboratory has revealed that iNOS-derived NO in glioblastoma cells elicits resistance to 5-aminolevulinic acid (ALA)-based PDT, and moreover endows PDT-surviving cells with greater proliferation and migration/invasion aggressiveness. In this contribution, we discuss iNOS/NO antagonism to glioblastoma PDT and how this can be overcome by judicious use of pharmacologic inhibitors of iNOS activity or transcription.
Collapse
Affiliation(s)
- Jonathan M Fahey
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
21
|
Gaseous signaling molecules and their application in resistant cancer treatment: from invisible to visible. Future Med Chem 2019; 11:323-336. [PMID: 30802141 DOI: 10.4155/fmc-2018-0403] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer remains a critical obstacle for efficient chemotherapy. Many MDR reversal agents have been discovered but failed in clinical trials due to severe toxic effects. Gaseous signaling molecules (GSMs), such as oxygen, nitric oxide, hydrogen sulfide and carbon monoxide, play key roles in regulating cell biological function and MDR. Compared with other toxic chemosensitizing agents, GSMs are endogenous and biocompatible molecules with little side effects. Research show that GSM modulators, including pharmaceutical formulations of GSMs (combined with conventional chemotherapeutic drugs) and GSM-donors (small molecules with GSMs releasing property), can overcome or reverse MDR. This review discusses the roles of these four GSMs in modulating MDR, and summarizes GSMs modulators in treating cancers with drug resistance.
Collapse
|
22
|
Hanoteau A, Newton JM, Krupar R, Huang C, Liu HC, Gaspero A, Gartrell RD, Saenger YM, Hart TD, Santegoets SJ, Laoui D, Spanos C, Parikh F, Jayaraman P, Zhang B, Van der Burg SH, Van Ginderachter JA, Melief CJM, Sikora AG. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer 2019; 7:10. [PMID: 30646957 PMCID: PMC6332704 DOI: 10.1186/s40425-018-0485-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemoradiotherapy (CRT) remains one of the most common cancer treatment modalities, and recent data suggest that CRT is maximally effective when there is generation of an anti-tumoral immune response. However, CRT has also been shown to promote immunosuppressive mechanisms which must be blocked or reversed to maximize its immune stimulating effects. METHODS Therefore, using a preclinical model of human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC), we developed a clinically relevant therapy combining CRT and two existing immunomodulatory drugs: cyclophosphamide (CTX) and the small molecule inducible nitric oxide synthase (iNOS) inhibitor L-n6-(1-iminoethyl)-lysine (L-NIL). In this model, we treated the syngeneic HPV-HNSCC mEER tumor-bearing mice with fractionated (10 fractions of 3 Gy) tumor-directed radiation and weekly cisplatin administration. We compared the immune responses induced by CRT and those induced by combinatory treatment (CRT + CTX/L-NIL) with flow cytometry, quantitative multiplex immunofluorescence and by profiling immune-related gene expression changes. RESULTS We show that combination treatment favorably remodels the tumor myeloid immune microenvironment including an increase in anti-tumor immune cell types (inflammatory monocytes and M1-like macrophages) and a decrease in immunosuppressive granulocytic myeloid-derived suppressor cells (MDSCs). Intratumoral T cell infiltration and tumor antigen specificity of T cells were also improved, including a 31.8-fold increase in the CD8+ T cell/ regulatory T cell ratio and a significant increase in tumor antigen-specific CD8+ T cells compared to CRT alone. CTX/LNIL immunomodulation was also shown to significantly improve CRT efficacy, leading to rejection of 21% established tumors in a CD8-dependent manner. CONCLUSIONS Overall, these data show that modulation of the tumor immune microenvironment with CTX/L-NIL enhances susceptibility of treatment-refractory tumors to CRT. The combination of tumor immune microenvironment modulation with CRT constitutes a translationally relevant approach to enhance CRT efficacy through enhanced immune activation.
Collapse
Affiliation(s)
- Aurelie Hanoteau
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Jared M. Newton
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Rosemarie Krupar
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck and Research Center Borstel, Leibniz Lung Center, Lubeck and Borstel, Germany
| | - Chen Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Hsuan-Chen Liu
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX USA
| | - Angelina Gaspero
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Robyn D. Gartrell
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, USA
| | - Yvonne M. Saenger
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, USA
| | - Thomas D. Hart
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center/New York Presbyterian, New York, USA
| | - Saskia J. Santegoets
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Damya Laoui
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | - Chad Spanos
- Department of Surgery, University of South Dakota Sanford School of Medicine, Vermillion, SD USA
| | - Falguni Parikh
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Padmini Jayaraman
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Sjoerd H. Van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jo A. Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, Brussels, Belgium
| | | | - Andrew G. Sikora
- Department of Otolaryngology-Head and Neck surgery, Baylor College of Medicine, Houston, TX USA
- Department of Cell and Gene Therapy, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
23
|
Maiuthed A, Bhummaphan N, Luanpitpong S, Mutirangura A, Aporntewan C, Meeprasert A, Rungrotmongkol T, Rojanasakul Y, Chanvorachote P. Nitric oxide promotes cancer cell dedifferentiation by disrupting an Oct4:caveolin-1 complex: A new regulatory mechanism for cancer stem cell formation. J Biol Chem 2018; 293:13534-13552. [PMID: 29986880 DOI: 10.1074/jbc.ra117.000287] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Cancer stem cells (CSCs) are unique populations of cells that can self-renew and generate different cancer cell lineages. Although CSCs are believed to be a promising target for novel therapies, the specific mechanisms by which these putative therapeutics could intervene are less clear. Nitric oxide (NO) is a biological mediator frequently up-regulated in tumors and has been linked to cancer aggressiveness. Here, we search for targets of NO that could explain its activity. We find that it directly affects the stability and function of octamer-binding transcription factor 4 (Oct4), known to drive the stemness of lung cancer cells. We demonstrated that NO promotes the CSC-regulatory activity of Oct4 through a mechanism that involves complex formation between Oct4 and the scaffolding protein caveolin-1 (Cav-1). In the absence of NO, Oct4 forms a molecular complex with Cav-1, which promotes the ubiquitin-mediated proteasomal degradation of Oct4. NO promotes Akt-dependent phosphorylation of Cav-1 at tyrosine 14, disrupting the Cav-1:Oct4 complex. Site-directed mutagenesis and computational modeling studies revealed that the hydroxyl moiety at tyrosine 14 of Cav-1 is crucial for its interaction with Oct4. Both removal of the hydroxyl via mutation to phenylalanine and phosphorylation lead to an increase in binding free energy (ΔGbind) between Oct4 and Cav-1, destabilizing the complex. Together, these results unveiled a novel mechanism of CSC regulation through NO-mediated stabilization of Oct4, a key stem cell transcription factor, and point to new opportunities to design CSC-related therapeutics.
Collapse
Affiliation(s)
- Arnatchai Maiuthed
- From the Department of Pharmacology and Physiology.,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences
| | - Narumol Bhummaphan
- Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences.,the Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sudjit Luanpitpong
- the Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700 Thailand, and
| | - Apiwat Mutirangura
- the Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, and
| | | | - Arthitaya Meeprasert
- Structural and Computational Biology Research Group, and Department of Biochemistry, Faculty of Science
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Group, and Department of Biochemistry, Faculty of Science.,Ph.D. Program in Bioinformatics and Computational Biology
| | - Yon Rojanasakul
- WVU Cancer Institute, West Virginia University, Morgantown, West Virginia 26506
| | - Pithi Chanvorachote
- From the Department of Pharmacology and Physiology, .,Cell-based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences
| |
Collapse
|
24
|
Fahey JM, Stancill JS, Smith BC, Girotti AW. Nitric oxide antagonism to glioblastoma photodynamic therapy and mitigation thereof by BET bromodomain inhibitor JQ1. J Biol Chem 2018; 293:5345-5359. [PMID: 29440272 DOI: 10.1074/jbc.ra117.000443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Endogenous nitric oxide (NO) generated by inducible NO synthase (iNOS) promotes glioblastoma cell proliferation and invasion and also plays a key role in glioblastoma resistance to chemotherapy and radiotherapy. Non-ionizing photodynamic therapy (PDT) has anti-tumor advantages over conventional glioblastoma therapies. Our previous studies revealed that glioblastoma U87 cells up-regulate iNOS after a photodynamic challenge and that the resulting NO not only increases resistance to apoptosis but renders surviving cells more proliferative and invasive. These findings were largely based on the effects of inhibiting iNOS activity and scavenging NO. Demonstrating now that iNOS expression in photostressed U87 cells is mediated by NF-κB, we hypothesized that (i) recognition of acetylated lysine (acK) on NF-κB p65/RelA by bromodomain and extra-terminal (BET) protein Brd4 is crucial; and (ii) by suppressing iNOS expression, a BET inhibitor (JQ1) would attenuate the negative effects of photostress. The following evidence was obtained. (i) Like iNOS, Brd4 protein and p65-acK levels increased severalfold in photostressed cells. (ii) JQ1 at minimally toxic concentrations had no effect on Brd4 or p65-acK up-regulation after PDT but strongly suppressed iNOS, survivin, and Bcl-xL up-regulation, along with the growth and invasion spurt of PDT-surviving cells. (iii) JQ1 inhibition of NO production in photostressed cells closely paralleled that of growth/invasion inhibition. (iv) Finally, at 1% the concentration of iNOS inhibitor 1400W, JQ1 reduced post-PDT cell aggressiveness to a far greater extent. This is the first evidence for BET inhibitor targeting of iNOS expression in cancer cells and how such targeting can markedly improve therapeutic efficacy.
Collapse
Affiliation(s)
- Jonathan M Fahey
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Jennifer S Stancill
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Brian C Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| | - Albert W Girotti
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226-3548
| |
Collapse
|
25
|
de Assis LVM, Moraes MN, Magalhães-Marques KK, Castrucci AMDL. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensitive system of the skin. Eur J Cell Biol 2018; 97:150-162. [PMID: 29395480 DOI: 10.1016/j.ejcb.2018.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 11/25/2022] Open
Abstract
The mammalian skin has a photosensitive system comprised by several opsins, including rhodopsin (OPN2) and melanopsin (OPN4). Recently, our group showed that UVA (4.4 kJ/m2) leads to immediate pigment darkening (IPD) in murine normal and malignant melanocytes. We show the role of OPN2 and OPN4 as UVA sensors: UVA-induced IPD was fully abolished when OPN4 was pharmacologically inhibited by AA9253 or when OPN2 and OPN4 were knocked down by siRNA in both cell lines. Our data, however, demonstrate that phospholipase C/protein kinase C pathway, a classical OPN4 pathway, is not involved in UVA-induced IPD in either cell line. Nonetheless, in both cell types we have shown that: a) intracellular calcium signal is necessary for UVA-induced IPD; b) the involvement of CaMK II, whose inhibition, abolished the UVA-induced IPD; c) the role of CAMK II/NOS/sGC/cGMP pathway in the process since inhibition of either NOS or sGC abolished the UVA-induced IPD. Taken altogether, we show that OPN2 and OPN4 participate in IPD induced by UVA in murine normal and malignant melanocytes through a conserved common pathway. Interestingly, upon knockdown of OPN2 or OPN4, the UVA-driven IPD is completely lost, which suggests that both opsins are required and cooperatively signal in murine both cell lines. The participation of OPN2 and OPN4 system in UVA radiation-induced response, if proven to take place in human skin, may represent an interesting pharmacological target for the treatment of depigmentary disorders and skin-related cancer.
Collapse
Affiliation(s)
- Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Keila Karoline Magalhães-Marques
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
26
|
Endo S, Xia S, Suyama M, Morikawa Y, Oguri H, Hu D, Ao Y, Takahara S, Horino Y, Hayakawa Y, Watanabe Y, Gouda H, Hara A, Kuwata K, Toyooka N, Matsunaga T, Ikari A. Synthesis of Potent and Selective Inhibitors of Aldo-Keto Reductase 1B10 and Their Efficacy against Proliferation, Metastasis, and Cisplatin Resistance of Lung Cancer Cells. J Med Chem 2017; 60:8441-8455. [PMID: 28976752 DOI: 10.1021/acs.jmedchem.7b00830] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aldo-keto reductase 1B10 (AKR1B10) is overexpressed in several extraintestinal cancers, particularly in non-small-cell lung cancer, where AKR1B10 is a potential diagnostic marker and therapeutic target. Selective AKR1B10 inhibitors are required because compounds should not inhibit the highly related aldose reductase that is involved in monosaccharide and prostaglandin metabolism. Currently, 7-hydroxy-2-(4-methoxyphenylimino)-2H-chromene-3-carboxylic acid benzylamide (HMPC) is known to be the most potent competitive inhibitor of AKR1B10, but it is nonselective. In this study, derivatives of HMPC were synthesized by removing the 4-methoxyphenylimino moiety and replacing the benzylamide with phenylpropylamide. Among them, 4c and 4e showed higher AKR1B10 inhibitory potency (IC50 4.2 and 3.5 nM, respectively) and selectivity than HMPC. The treatments with the two compounds significantly suppressed not only migration, proliferation, and metastasis of lung cancer A549 cells but also metastatic and invasive potentials of cisplatin-resistant A549 cells.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Shuang Xia
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Miho Suyama
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Hiroaki Oguri
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Dawei Hu
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshinori Ao
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Satoyuki Takahara
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan
| | - Yoshikazu Horino
- Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Yoshihiro Hayakawa
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, University of Toyama , Toyama 930-0194, Japan
| | - Yurie Watanabe
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- School of Pharmacy, Showa University , Tokyo 142-8555, Japan
| | - Akira Hara
- Faculty of Engineering, Gifu University , Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University , Gifu 501-1193, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Science, University of Toyama , Toyama 930-8555, Japan.,Graduate School of Science and Engineering, University of Toyama , Toyama 930-8555, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu 501-1196, Japan
| |
Collapse
|
27
|
Hara A, Endo S, Matsunaga T, El-Kabbani O, Miura T, Nishinaka T, Terada T. Human carbonyl reductase 1 participating in intestinal first-pass drug metabolism is inhibited by fatty acids and acyl-CoAs. Biochem Pharmacol 2017; 138:185-192. [PMID: 28450226 DOI: 10.1016/j.bcp.2017.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
Human carbonyl reductase 1 (CBR1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, reduces a variety of carbonyl compounds including endogenous isatin, prostaglandin E2 and 4-oxo-2-nonenal. It is also a major non-cytochrome P450 enzyme in the phase I metabolism of carbonyl-containing drugs, and is highly expressed in the intestine. In this study, we found that long-chain fatty acids and their CoA ester derivatives inhibit CBR1. Among saturated fatty acids, myristic, palmitic and stearic acids were inhibitory, and stearic acid was the most potent (IC50 9µM). Unsaturated fatty acids (oleic, elaidic, γ-linolenic and docosahexaenoic acids) and acyl-CoAs (palmitoyl-, stearoyl- and oleoyl-CoAs) were more potent inhibitors (IC50 1.0-2.5µM), and showed high inhibitory selectivity to CBR1 over its isozyme CBR3 and other SDR superfamily enzymes (DCXR and DHRS4) with CBR activity. The inhibition by these fatty acids and acyl-CoAs was competitive with respect to the substrate, showing the Ki values of 0.49-1.2µM. Site-directed mutagenesis of the substrate-binding residues of CBR1 suggested that the interactions between the fatty acyl chain and the enzyme's Met141 and Trp229 are important for the inhibitory selectivity. We also examined CBR1 inhibition by oleic acid in cellular levels: The fatty acid effectively inhibited CBR1-mediated 4-oxo-2-nonenal metabolism in colon cancer DLD1 cells and increased sensitivity to doxorubicin in the drug-resistant gastric cancer MKN45 cells that highly express CBR1. The results suggest a possible new food-drug interaction through inhibition of CBR1-mediated intestinal first-pass drug metabolism by dietary fatty acids.
Collapse
Affiliation(s)
- Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Satoshi Endo
- Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| | | | - Ossama El-Kabbani
- Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takeshi Miura
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Toru Nishinaka
- Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| | - Tomoyuki Terada
- Faculty of Pharmacy, Osaka Ohtani University, Osaka 584-8540, Japan
| |
Collapse
|
28
|
Ko HH, Cheng SL, Lee JJ, Chen HM, Kuo MYP, Cheng SJ. Expression of AKR1B10 as an independent marker for poor prognosis in human oral squamous cell carcinoma. Head Neck 2017; 39:1327-1332. [PMID: 28301069 DOI: 10.1002/hed.24759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aldo-keto reductase family 1 member B10 (AKR1B10) is implicated in xenobiotic detoxification and has disparate functions in tumorigenesis that are dependent on the cell types. The purpose of this study was to investigate the clinicopathological significance of AKR1B10 as a prognostic marker for oral squamous cell carcinomas (OSCCs). METHODS AKR1B10 protein expression was analyzed by immunohistochemistry in 77 patients with OSCC. RESULTS The AKR1B10 labeling score for OSCCs (1.16 ± 1.14) was significantly higher than that for normal oral mucosa (0.10 ± 0.23; p < .0001). High expression of AKR1B10 significantly correlated with large tumor size (p = .041), advanced TNM classification (p = .037), and patient's areca quid chewing habit (p = .025). Multivariate analysis revealed that high AKR1B10 labeling score >1.16 (hazard ratio, 3.647; p = .001) significantly correlated with mortality. CONCLUSION AKR1B10 overexpression is an independent poor prognostic biomarker for OSCC. AKR1B10 inhibitors may be promising in clinical trials against OSCC. © 2017 Wiley Periodicals, Inc. Head Neck 39: 1327-1332, 2017.
Collapse
Affiliation(s)
- Hui-Hsin Ko
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Shih-Lung Cheng
- Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li, Taiwan
| | - Jang-Jaer Lee
- School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsin-Ming Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan.,Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Mark Yen-Ping Kuo
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Shih-Jung Cheng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,School of Dentistry, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| |
Collapse
|
29
|
Girotti AW. Modulation of the Anti-Tumor Efficacy of Photodynamic Therapy by Nitric Oxide. Cancers (Basel) 2016; 8:E96. [PMID: 27775600 PMCID: PMC5082386 DOI: 10.3390/cancers8100096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) produced by nitric oxide synthase (NOS) enzymes is a free radical molecule involved in a wide variety of normophysiologic and pathophysiologic processes. Included in the latter category are cancer promotion, progression, and resistance to therapeutic intervention. Animal tumor photodynamic therapy (PDT) studies several years ago revealed that endogenous NO can reduce PDT efficacy and that NOS inhibitors can alleviate this. Until relatively recently, little else was known about this anti-PDT effect of NO, including: (a) the underlying mechanisms; (b) type(s) of NOS involved; and (c) whether active NO was generated in vascular cells, tumor cells, or both. In addressing these questions for various cancer cell lines exposed to PDT-like conditions, the author's group has made several novel findings, including: (i) exogenous NO can scavenge lipid-derived free radicals arising from photostress, thereby protecting cells from membrane-damaging chain peroxidation; (ii) cancer cells can upregulate inducible NOS (iNOS) after a PDT-like challenge and the resulting NO can signal for resistance to photokilling; (iii) photostress-surviving cells with elevated iNOS/NO proliferate and migrate/invade more aggressively; and (iv) NO produced by photostress-targeted cells can induce greater aggressiveness in non-targeted bystander cells. In this article, the author briefly discusses these various means by which NO can interfere with PDT and how this may be mitigated by use of NOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
30
|
Matsunaga T, Saito H, Endo S, Iguchi K, Soda M, El-Kabbani O, Hara A, Ikari A. Roles of aldo-keto reductases 1B10 and 1C3 and ATP-binding cassette transporter in docetaxel tolerance. Free Radic Res 2016; 50:1296-1308. [PMID: 27629782 DOI: 10.1080/10715762.2016.1236373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Docetaxel (DTX) is widely used for treatment of inveterate lung and prostate cancers, but its continuous administration elicits the hyposensitivity. Here, we established the DTX-resistant variants of human lung cancer A549 and androgen-independent prostate cancer Du145 cells and found that the resistance development provoked aberrant up-regulations of aldo-keto reductase (AKR) 1B10 and AKR1C3 in A549 and Du145 cells, respectively. In addition, the sensitivity to the DTX toxicity was significantly decreased and increased by overexpression and knockdown of the two AKR isoforms, respectively. Furthermore, the resistant cells exhibited a decreased level of reactive 4-hydroxy-2-nonenal formed during DTX treatment, and the decrease was alleviated by adding the AKR inhibitors, inferring that the two AKRs confer the chemoresistance through elevating the antioxidant properties. The development of DTX resistance was also associated with enhanced expression of an ATP-binding cassette (ABC) transporter ABCB1 among the ABC transporter isoforms. The combined treatment with inhibitors of the two AKRs and ABCB1 additively sensitized the resistant cells to DTX. Intriguingly, the AKR1B10 inhibitor also suppressed the lung cancer cross-resistance against cisplatin. The results suggest that combined treatment with AKRs (1B10 and 1C3) and ABCB1 inhibitors exerts overcoming effect against the cancer resistance to DTX and cisplatin, and can be used as the adjuvant therapy.
Collapse
Affiliation(s)
| | - Haruhi Saito
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | - Satoshi Endo
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| | - Kazuhiro Iguchi
- b Laboratory of Community Pharmacy, Gifu Pharmaceutical University , Gifu , Japan
| | - Midori Soda
- c Laboratory of Pharmaceutics , Gifu Pharmaceutical University , Gifu , Japan
| | | | - Akira Hara
- e Faculty of Engineering , Gifu University , Gifu , Japan
| | - Akira Ikari
- a Laboratory of Biochemistry, Gifu Pharmaceutical University , Gifu , Japan
| |
Collapse
|
31
|
Inhibition of aldo-keto reductase family 1 member B10 by unsaturated fatty acids. Arch Biochem Biophys 2016; 609:69-76. [PMID: 27665999 DOI: 10.1016/j.abb.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/21/2022]
Abstract
A human member of the aldo-keto reductase (AKR) superfamily, AKR1B10, is a cytosolic NADPH-dependent reductase toward various carbonyl compounds including reactive aldehydes, and is normally expressed in intestines. The enzyme is overexpressed in several extraintestinal cancers, and suggested as a potential target for cancer treatment. We found that saturated and cis-unsaturated fatty acids inhibit AKR1B10. Among the saturated fatty acids, myristic acid was the most potent, showing the IC50 value of 4.2 μM cis-Unsaturated fatty acids inhibited AKR1B10 more potently, and linoleic, arachidonic, and docosahexaenoic acids showed the lowest IC50 values of 1.1 μM. The inhibition by these fatty acids was reversible and kinetically competitive with respect to the substrate, showing the Ki values of 0.24-1.1 μM. These fatty acids, except for α-linoleic acid, were much less inhibitory to structurally similar aldose reductase. Site-directed mutagenesis study suggested that the fatty acids interact with several active site residues of AKR1B10, of which Gln114, Val301 and Gln303 are responsible for the inhibitory selectivity. Linoleic and arachidonic acids also effectively inhibited AKR1B10-mediated 4-oxo-2-nonenal metabolism in HCT-15 cells. Thus, the cis-unsaturated fatty acids may be used as an adjuvant therapy for treatment of cancers that up-regulate AKR1B10.
Collapse
|
32
|
Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-γ-dependent mechanism. Chem Biol Interact 2016; 256:142-53. [PMID: 27417252 DOI: 10.1016/j.cbi.2016.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
Cisplatin (cis-diamminedichloroplatinum, CDDP) is one of the most effective chemotherapeutic drugs that are used for treatment of patients with gastrointestinal cancer cells, but its continuous administration often evokes the development of chemoresistance. In this study, we investigated alterations in antioxidant molecules and functions using a newly established CDDP-resistant variant of gastric cancer MKN45 cells, and found that aldo-keto reductase 1B10 (AKR1B10) is significantly up-regulated with acquisition of the CDDP resistance. In the nonresistant MKN45 cells, the sensitivity to cytotoxic effect of CDDP was decreased and increased by overexpression and silencing of AKR1B10, respectively. In addition, the AKR1B10 overexpression markedly suppressed accumulation and cytotoxicity of 4-hydroxy-2-nonenal that is produced during lipid peroxidation by CDDP treatment, suggesting that the enzyme acts as a crucial factor for facilitation of the CDDP resistance through inhibiting induction of oxidative stress by the drug. Transient exposure to CDDP and induction of the CDDP resistance decreased expression of peroxisome proliferator-activated receptor-γ (PPARγ) in MKN45 and colon cancer LoVo cells. Additionally, overexpression of PPARγ in the cells elevated the sensitivity to the CDDP toxicity, which was further augmented by concomitant treatment with a PPARγ ligand rosiglitazone. Intriguingly, overexpression of AKR1B10 in the cells resulted in a decrease in PPARγ expression, which was recovered by addition of an AKR1B10 inhibitor oleanolic acid, inferring that PPARγ is a downstream target of AKR1B10-dependent mechanism underlying the CDDP resistance. Combined treatment with the AKR1B10 inhibitor and PPARγ ligand elevated the CDDP sensitivity, which was almost the same level as that in the parental cells. These results suggest that combined treatment with the AKR1B10 inhibitor and PPARγ ligand is an effective adjuvant therapy for overcoming CDDP resistance of gastrointestinal cancer cells.
Collapse
|
33
|
Huang L, He R, Luo W, Zhu YS, Li J, Tan T, Zhang X, Hu Z, Luo D. Aldo-Keto Reductase Family 1 Member B10 Inhibitors: Potential Drugs for Cancer Treatment. Recent Pat Anticancer Drug Discov 2016; 11:184-196. [PMID: 26844556 PMCID: PMC5403964 DOI: 10.2174/1574892811888160304113346] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 01/11/2023]
Abstract
Cytosolic NADPH-dependent reductase AKR1B10 is a member of the aldo-keto reductase (AKR) superfamily. This enzyme is normally expressed in the gastrointestinal tract. However, it is overexpressed in many solid tumors, such as hepatocarcinoma, lung cancer and breast cancer. AKR1B10 may play a role in the formation and development of carcinomas through multiple mechanisms including detoxification of cytotoxic carbonyls, modulation of retinoic acid level, and regulation of cellular fatty acid synthesis and lipid metabolism. Studies have suggested that AKR1B10 may be a useful biomarker for cancer diagnosis and a potential target for cancer treatment. Over the last decade, a number of AKR1B10 inhibitors including aldose reductase inhibitors (ARIs), endogenous substances, natural-based derivatives and synthetic compounds have been developed, which could be novel anticancer drugs. This review provides an overview on related articles and patents about AKR1B10 inhibitors, with a focus on their inhibition selectivity and mechanism of function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zheng Hu
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Postdoctoral Mobile Stations of Central South University, Affiliated the First Peoples Hospital of Chenzhou of University of South China, Chenzhou 432000, P.R.China.
| | | |
Collapse
|
34
|
Girotti AW. Role of Endogenous Nitric Oxide in Hyperaggressiveness of Tumor Cells that Survive a Photodynamic Therapy Challenge. Crit Rev Oncog 2016; 21:353-363. [PMID: 29431083 DOI: 10.1615/critrevoncog.2017020909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many malignant tumors exploit nitric oxide (NO) for a survival, growth, and migration/invasion advantage, and also to withstand the cytotoxic effects of chemo- and radiotherapies. Endogenous NO has also been shown to antagonize photodynamic therapy (PDT), a unique minimally invasive modality involving a photosensitizing (PS) agent, PS-exciting light in the visible- to near-infrared range, and molecular oxygen. The anti-PDT effects of NO were discovered about 20 years ago, but the underlying mechanisms are still not fully understood. More recent studies in the author's laboratory using breast, prostate, and brain cancer cell lines have shown that inducible NO synthase (iNOS/NOS2) is dramatically upregulated after a PDT challenge using 5-aminolevulinic acid (ALA-) -induced protoporphyrin IX as the PS. The parallel increase in NO resulted not only in a greater resistance to cell killing but also in a striking increase in the growth and migration/invasion rate of surviving cells. These in vitro findings and their recent recapitulation at the in vivo level are discussed in this article, along with how iNOS/NO's negative effects on PDT can be attenuated by the use of select iNOS inhibitors as PDT adjuvants.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226-3548, USA
| |
Collapse
|
35
|
Morikawa Y, Kezuka C, Endo S, Ikari A, Soda M, Yamamura K, Toyooka N, El-Kabbani O, Hara A, Matsunaga T. Acquisition of doxorubicin resistance facilitates migrating and invasive potentials of gastric cancer MKN45 cells through up-regulating aldo-keto reductase 1B10. Chem Biol Interact 2015; 230:30-9. [PMID: 25686905 DOI: 10.1016/j.cbi.2015.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 12/12/2022]
Abstract
Continuous exposure to doxorubicin (DOX) accelerates hyposensitivity to the drug-elicited lethality of gastric cells, with increased risks of the recurrence and serious cardiovascular side effects. However, the detailed mechanisms underlying the reduction of DOX sensitivity remain unclear. In this study, we generated a DOX-resistant variant upon continuously treating human gastric cancer MKN45 cells with incremental concentrations of the drug, and investigated whether the gain of DOX resistance influences gene expression of four aldo-keto reductases (AKRs: 1B10, 1C1, 1C2 and 1C3). RT-PCR analysis revealed that among the enzymes AKR1B10 is most highly up-regulated during the chemoresistance induction. The up-regulation of AKR1B10 was confirmed by analyses of Western blotting and enzyme activity. The DOX sensitivity of MKN45 cells was reduced and elevated by overexpression and inhibition of AKR1B10, respectively. Compared to the parental MKN45 cells, the DOX-resistant cells had higher migrating and invasive abilities, which were significantly suppressed by addition of AKR1B10 inhibitors. Zymographic and real-time PCR analyses also revealed significant increases in secretion and expression of matrix metalloproteinase (MMP) 2 associated with DOX resistance. Moreover, the overexpression of AKR1B10 in the parental cells remarkably facilitated malignant progression (elevation of migrating and invasive potentials) and MMP2 secretion, which were lowered by the AKR1B10 inhibitors. These results suggest that AKR1B10 is a DOX-resistance gene in the gastric cancer cells, and is responsible for elevating the migrating and invasive potentials of the cells through induction of MMP2.
Collapse
Affiliation(s)
- Yoshifumi Morikawa
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Chihiro Kezuka
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Midori Soda
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Keiko Yamamura
- Laboratory of Clinical Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Naoki Toyooka
- Graduate School of Science and Technology for Research, University of Toyama, Toyama 930-8555, Japan
| | - Ossama El-Kabbani
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Akira Hara
- Faculty of Engineering, Gifu University, Gifu 501-1193, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan.
| |
Collapse
|