1
|
Ausec TR, Carr LL, Alina TB, Day NB, Goodwin AP, Shields CW. Combination Chemical and Mechanical Tumor Immunomodulation Using Cavitating Mesoporous Silica Nanoparticles. ACS APPLIED NANO MATERIALS 2024; 7:19109-19117. [PMID: 39421501 PMCID: PMC11486172 DOI: 10.1021/acsanm.4c03005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Combinatorial methods to repolarize tumor-associated macrophages from anti-inflammatory to pro-inflammatory phenotypes offers a promising route for cancer immunotherapy. However, most studies examine biochemical combinations alone. Therefore, we studied simultaneous chemical and mechanical stimuli as orthogonal cues for enhanced immunomodulation. We engineered the surfaces of hydrophobically functionalized mesoporous silica nanoparticles (F108-hMSNs) to encapsulate the immunomodulator resiquimod and kill cancer cells through high-intensity focused ultrasound (HIFU)-mediated inertial cavitation, releasing damage-associated molecular patterns (DAMPs) for prolonged macrophage stimulation. The HIFU doses alone did not affect cells, but in combination with F108-hMSNs, achieved significantly higher cancer cell death and DAMP generation. Inflammatory markers (CD86, MHC II, iNOS) were upregulated in tumor-associated-like macrophages treated with F108-hMSNs in the presence of HIFU and experienced the greatest inflammatory phenotypic shift of all conditions tested. This work suggests that chemical and mechanical activation facilitated by engineered nanoparticles offer a promising treatment against immunologically cold tumors.
Collapse
Affiliation(s)
- Taylor R. Ausec
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Lisa L. Carr
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Talaial B. Alina
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Nicole B. Day
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Andrew P. Goodwin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, United States
| |
Collapse
|
2
|
Goto K, Ueno T, Sakaue S. Induction of antigen-specific immunity by mesoporous silica nanoparticles incorporating antigen peptides. J Biosci Bioeng 2024:S1389-1723(24)00161-0. [PMID: 38890051 DOI: 10.1016/j.jbiosc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) are physically and chemically stable inorganic nanomaterials that have been attracting much attention as carriers for drug delivery systems in the field of nanomedicine. In the present study, we investigated the potential of MSN vaccines that incorporate antigen peptides for use in cancer immunotherapy. In vitro experiments demonstrated that fluorescently labeled MSNs accumulated in a line of mouse dendritic cells (DC2.4 cells), where the particles localized to the cytosol. These observations could suggest that MSNs have potential for use in delivering the loaded molecules into antigen-presenting cells, thereby stimulating the host acquired immune system. In vivo experiments demonstrated prolonged survival in mice implanted with ovalbumin (OVA)-expressing lymphoma cells (E.G7-OVA cells) following subcutaneous inoculation with MSNs incorporating OVA antigen peptides. Furthermore, OVA-specific immunoglobulin G antibodies and cytotoxic T lymphocytes were detected in the serum and the spleen cells, respectively, of mice inoculated with an MSN-OVA vaccine, indicating the induction of antigen-specific responses in both the humoral and cellular immune systems. These results suggested that the MSN therapies incorporating antigen peptides may serve as novel vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Koichi Goto
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Tomoya Ueno
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Saki Sakaue
- Division of Applied Life Sciences, Graduate School of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
3
|
Thomas SA, Yong HM, Rule AM, Gour N, Lajoie S. Air Pollution Drives Macrophage Senescence through a Phagolysosome-15-Lipoxygenase Pathway. Immunohorizons 2024; 8:307-316. [PMID: 38625119 PMCID: PMC11066713 DOI: 10.4049/immunohorizons.2300096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024] Open
Abstract
Urban particulate matter (PM; uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extrapulmonary disorders such as heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. Although it is known that uPM exposure impairs immune function, this deficit is multifaceted and incompletely understood, partly because of the use of particulates such as diesel exhaust particles as a surrogate for true uPM. uPM was collected from several locations in the United States, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages were stimulated with uPM or reference particulates (e.g., diesel exhaust particles) to assess senescence-related parameters. We report that uPM-exposed bone marrow-derived macrophages adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposure. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptors. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest that uPM exposure leads to macrophage senescence, which may contribute to immunopathology.
Collapse
Affiliation(s)
- Sarah A. Thomas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Naina Gour
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stephane Lajoie
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
4
|
Baudis S, Roch T, Balk M, Wischke C, Lendlein A, Behl M. Multivariate Analysis of Cellular Uptake Characteristics for a (Co)polymer Particle Library. ACS Biomater Sci Eng 2024; 10:1481-1493. [PMID: 38374768 PMCID: PMC10934412 DOI: 10.1021/acsbiomaterials.3c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
Controlling cellular responses to nanoparticles so far is predominantly empirical, typically requiring multiple rounds of optimization of particulate carriers. In this study, a systematic model-assisted approach should lead to the identification of key parameters that account for particle properties and their cellular recognition. A copolymer particle library was synthesized by a combinatorial approach in soap free emulsion copolymerization of styrene and methyl methacrylate, leading to a broad compositional as well as constitutional spectrum. The proposed structure-property relationships could be elucidated by multivariate analysis of the obtained experimental data, including physicochemical characteristics such as molar composition, molecular weight, particle diameter, and particle charge as well as the cellular uptake pattern of nanoparticles. It was found that the main contributors for particle size were the polymers' molecular weight and the zeta potential, while particle uptake is mainly directed by the particles' composition. This knowledge and the reported model-assisted procedure to identify relevant parameters affecting particle engulfment of particulate carriers by nonphagocytic and phagocytic cells can be of high relevance for the rational design of pharmaceutical nanocarriers and assessment of biodistribution and nanotoxicity, respectively.
Collapse
Affiliation(s)
- Stefan Baudis
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Toralf Roch
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Maria Balk
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Christian Wischke
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Karl-Liebknecht-Str.
24-25, 14476 Potsdam-Golm, Germany
| | - Marc Behl
- Institute
of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany
| |
Collapse
|
5
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
6
|
Thomas SA, Yong HM, Rule AM, Gour N, Lajoie S. Air pollution drives macrophage senescence through a phagolysosome-15-lipoxygenase pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574228. [PMID: 38260346 PMCID: PMC10802326 DOI: 10.1101/2024.01.04.574228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Urban particulate matter (uPM) poses significant health risks, particularly to the respiratory system. Fine particles, such as PM2.5, can penetrate deep into the lungs and exacerbate a range of health problems, including emphysema, asthma, and lung cancer. PM exposure is also linked to extra-pulmonary disorders like heart and neurodegenerative diseases. Moreover, prolonged exposure to elevated PM levels can reduce overall life expectancy. Senescence is a dysfunctional cell state typically associated with age but can also be precipitated by environmental stressors. This study aimed to determine whether uPM could drive senescence in macrophages, an essential cell type involved in particulate phagocytosis-mediated clearance. While it is known that uPM exposure impairs immune function, this deficit is multi-faceted and incompletely understood, partly due to the use of particulates such as diesel exhaust particle (DEP) as a surrogate for true uPM. uPM was collected from several locations in the USA, including Baltimore, Houston, and Phoenix. Bone marrow-derived macrophages (BMDMs) were stimulated with uPM or reference particulates (e.g., DEP) to assess senescence-related parameters. We report that uPM-exposed BMDMs adopt a senescent phenotype characterized by increased IL-1α secretion, senescence-associated β-galactosidase activity, and diminished proliferation. Exposure to allergens failed to elicit such a response, supporting a distinction between different types of environmental exposures. uPM-induced senescence was independent of key macrophage activation pathways, specifically inflammasome and scavenger receptor. However, inhibition of the phagolysosome pathway abrogated senescence markers, supporting this phenotype's attribution to uPM phagocytosis. These data suggest uPM exposure leads to macrophage senescence, which may contribute to immunopathology.
Collapse
Affiliation(s)
- Sarah A. Thomas
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Naina Gour
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Stephane Lajoie
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Pontes AP, van der Wal S, Ranamalla SR, Roelofs K, Tomuta I, Creemers LB, Rip J. Cell uptake and intracellular trafficking of bioreducible poly(amidoamine) nanoparticles for efficient mRNA translation in chondrocytes. Front Bioeng Biotechnol 2023; 11:1290871. [PMID: 38026902 PMCID: PMC10668025 DOI: 10.3389/fbioe.2023.1290871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Disulfide-containing poly(amidoamine) (PAA) is a cationic and bioreducible polymer, with potential use as a nanocarrier for mRNA delivery in the treatment of several diseases including osteoarthritis (OA). Successful transfection of joint cells with PAA-based nanoparticles (NPs) was shown previously, but cell uptake, endosomal escape and nanoparticle biodegradation were not studied in detail. In this study, C28/I2 human chondrocytes were transfected with NPs co-formulated with a PEG-polymer coating and loaded with EGFP mRNA for confocal imaging of intracellular trafficking and evaluation of transfection efficiency. Compared with uncoated NPs, PEG-coated NPs showed smaller particle size, neutral surface charge, higher colloidal stability and superior transfection efficiency. Furthermore, endosomal entrapment of these PEG-coated NPs decreased over time and mRNA release could be visualized both in vitro and in live cells. Importantly, cell treatment with modulators of the intracellular reducing environment showed that glutathione (GSH) concentrations affect translation of the mRNA payload. Finally, we applied a D-optimal experimental design to test different polymer-to-RNA loading ratios and dosages, thus obtaining an optimal formulation with up to ≈80% of GFP-positive cells and without toxic effects. Together, the biocompatibility and high transfection efficiency of this system may be a promising tool for intra-articular delivery of therapeutical mRNA in OA treatment.
Collapse
Affiliation(s)
| | | | - Saketh R. Ranamalla
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | | | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, Cluj-Napoca, Romania
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Rip
- 20Med Therapeutics BV, Leiden, Netherlands
| |
Collapse
|
8
|
Guo C, Zhao X, Ma R, Zhu L, Chen Y, Yang Z, Cai Z, Sun Z, Li Y. Silica nanoparticles promoted pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163430. [PMID: 37059130 DOI: 10.1016/j.scitotenv.2023.163430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Experimental evidence has pointed out silica nanoparticles (SiNPs) possessing a proatherogenic capability. However, the interplay between SiNPs and macrophages in the pathogenesis of atherosclerosis was poorly understood. Here, we demonstrated SiNPs could promote macrophage adhesion to endothelial cells, accompanied by elevated Vcam1 and Mcp1. Upon SiNPs stimuli, macrophages manifested enhanced phagocytic activity and a pro-inflammatory phenotype, as reflected by the transcriptional determination of M1/M2-related biomarkers. In particular, our data certified the increased macrophage M1 subset facilitated more lipid accumulation and resultant foam cell transformation in comparison to the M2 phenotype. More importantly, the mechanistic investigations revealed ROS-mediated PPARγ/NF-κB signaling was a key contributor to the above phenomena. That was, SiNPs caused ROS accumulation in macrophages, resulting in the deactivation of PPARγ, nuclear translocation of NF-κB, ultimately contributing to macrophage phenotype shift toward M1 and foam cell transformation. Collectively, we first revealed SiNPs facilitated pro-inflammatory macrophage and foam cell transformation via ROS/PPARγ/NF-κB signaling. These data would provide new insight into the atherogenic property of SiNPs in a macrophage model.
Collapse
Affiliation(s)
- Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lingnan Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yueyue Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Torres A, Collin-Faure V, Diemer H, Moriscot C, Fenel D, Gallet B, Cianférani S, Sergent JA, Rabilloud T. Repeated Exposure of Macrophages to Synthetic Amorphous Silica Induces Adaptive Proteome Changes and a Moderate Cell Activation. NANOMATERIALS 2022; 12:nano12091424. [PMID: 35564134 PMCID: PMC9105884 DOI: 10.3390/nano12091424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
Synthetic amorphous silica (SAS) is a nanomaterial used in a wide variety of applications, including the use as a food additive. Two types of SAS are commonly employed as a powder additive, precipitated silica and fumed silica. Numerous studies have investigated the effects of synthetic amorphous silica on mammalian cells. However, most of them have used an exposure scheme based on a single dose of SAS. In this study, we have used instead a repeated 10-day exposure scheme in an effort to better simulate the occupational exposure encountered in daily life by consumers and workers. As a biological model, we have used the murine macrophage cell line J774A.1, as macrophages are very important innate immune cells in the response to particulate materials. In order to obtain a better appraisal of the macrophage responses to this repeated exposure to SAS, we have used proteomics as a wide-scale approach. Furthermore, some of the biological pathways detected as modulated by the exposure to SAS by the proteomic experiments have been validated through targeted experiments. Overall, proteomics showed that precipitated SAS induced a more important macrophage response than fumed SAS at equal dose. Nevertheless, validation experiments showed that most of the responses detected by proteomics are indeed adaptive, as the cellular homeostasis appeared to be maintained at the end of the exposure. For example, the intracellular glutathione levels or the mitochondrial transmembrane potential at the end of the 10 days exposure were similar for SAS-exposed cells and for unexposed cells. Similarly, no gross lysosomal damage was observed after repeated exposure to SAS. Nevertheless, important functions of macrophages such as phagocytosis, TNFα, and interleukin-6 secretion were up-modulated after exposure, as was the expression of important membrane proteins such as the scavenger receptors, MHC-II, or the MAC-1 receptor. These results suggest that repeated exposure to low doses of SAS slightly modulates the immune functions of macrophages, which may alter the homeostasis of the immune system.
Collapse
Affiliation(s)
- Anaelle Torres
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Véronique Collin-Faure
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
| | - Hélène Diemer
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | - Christine Moriscot
- Integrated Structural Biology Grenoble (ISBG), European Molecular Biology Laboratory Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, 71 Avenue des Martyrs, 38042 Grenoble, France;
| | - Daphna Fenel
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Benoît Gallet
- Institute of Structural Biology (IBS), Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38044 Grenoble, France; (D.F.); (B.G.)
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Centre National de la Rech erche Scientifique, Hubert Curien Pluridisciplinary Institute UMR 7178, Strasbourg University, 67087 Strasbourg, France; (H.D.); (S.C.)
- Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France
| | | | - Thierry Rabilloud
- Chemistry and Biology of Metals Laboratory, Université Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l’Energie Atomique, Interdisciplinary Research Institute of Grenoble, 38054 Grenoble, France; (A.T.); (V.C.-F.)
- Correspondence: ; Tel.: +33-43-878-3212
| |
Collapse
|
10
|
Nazemidashtarjandi S, Sharma VM, Puri V, Farnoud AM, Burdick MM. Lipid Composition of the Cell Membrane Outer Leaflet Regulates Endocytosis of Nanomaterials through Alterations in Scavenger Receptor Activity. ACS NANO 2022; 16:2233-2248. [PMID: 35138811 PMCID: PMC10538024 DOI: 10.1021/acsnano.1c08344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the principles that guide the uptake of engineered nanomaterials (ENMs) by cells is of interest in biomedical and occupational health research. While evidence has started to accumulate on the role of membrane proteins in ENM uptake, the role of membrane lipid chemistry in regulating ENM endocytosis has remained largely unexplored. Here, we have addressed this issue by altering the plasma membrane lipid composition directly in live cells using a methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange method. Our observations, in an alveolar epithelial cell line and using silica nanoparticles, reveal that the lipid composition of the plasma membrane outer leaflet plays a significant role in ENM endocytosis and the intracellular fate of ENMs, by affecting nonspecific ENM diffusion into the cell, changing membrane fluidity, and altering the activity of scavenger receptors (SRs) involved in active endocytosis. These results have implications for understanding ENM uptake in different subsets of cells, depending on cell membrane lipid composition.
Collapse
Affiliation(s)
- Saeed Nazemidashtarjandi
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Vishva M Sharma
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, United States
| | - Monica M Burdick
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
- Biomedical Engineering Program, Ohio University, Athens, Ohio 45701, United States
- Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
11
|
Kamegawa R, Naito M, Uchida S, Kim HJ, Kim BS, Miyata K. Bioinspired Silicification of mRNA-Loaded Polyion Complexes for Macrophage-Targeted mRNA Delivery. ACS APPLIED BIO MATERIALS 2021; 4:7790-7799. [PMID: 35006762 DOI: 10.1021/acsabm.1c00704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vitro transcribed messenger RNA (mRNA) delivery to macrophages is a promising therapeutic modality for inflammatory diseases because it can modulate the immunological activity of macrophages. However, efficient macrophage-targeted mRNA delivery remains challenging. Herein, we fabricated silica-coated polyion complexes (PICs), termed SilPICs, via bioinspired silicification for stable encapsulation of mRNA and scavenger receptor (SR)-mediated macrophage targeting. Silica coating was readily performed by simply mixing mRNA-loaded PICs with tetramethyl orthosilicate in aqueous media at 25 °C. The silica shell formation was verified by a slight increase in size (∼18 nm), a conversion of ζ-potential from positive (+22 mV) to negative (-23 mV), the peak appearance derived from silanol groups and siloxane bonds in the IR spectra, and elemental analyses by scanning transmission electron microscopy-energy-dispersive X-ray spectrometry (STEM-EDS). The silica shell efficiently protected the mRNA payload from enzymatic degradation in a fetal bovine serum-containing medium. Meanwhile, the reversibility of the silica shell allowed mRNA release from SilPICs after silica dissolution into silicic acids under diluted conditions. Furthermore, SilPICs elicited 20-fold higher mRNA transfection efficiency in the macrophage cell line RAW264.7 compared to noncoated PICs, presumably due to the facilitated cellular internalization by the silica shell. These enhancements were compromised in the RAW264.7 cells incubated with dextran sulfate and poly(inosinic acid) as inhibitors of SR type A1 and were not observed in cultured CT26 colon cancer cells, which are SR-negative cells. Collectively, SilPIC is a promising mRNA delivery vehicle with both mRNA protectability and macrophage targetability.
Collapse
Affiliation(s)
- Rimpei Kamegawa
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Uchida
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Refsnes M, Skuland T, Øvrevik J, Låg M. Role of scavenger receptors in silica nanoparticle-induced cytokine responses in bronchial epithelial cells. Toxicol Lett 2021; 353:100-106. [PMID: 34653535 DOI: 10.1016/j.toxlet.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
A major challenge in nanoparticle (NP) research is to elucidate how NPs activate initial targets in cells, leading to cytotoxicity and inflammation. We have previously shown that silica (Si)NPs induce pro-inflammatory responses in bronchial epithelial cells (BEAS-2B) via mechanisms involving transforming growth factor (TGF)-α release, and activation of MAP-kinase p38 and JNK besides NF-κB (p65). In the present study, the roles of scavenger receptors (SRs) in SiNP-induced cytokine responses in BEAS-2B cells were examined by siRNA silencing. Cells exposed to Si10 and Si50 (nominal sizes 10 and 50 nm) showed marked interleukin (IL)-6, CXCL8, IL-1α, IL-1β responses. Transient knockdown of SR-B1, LOX-1 and CXCL16 reduced the Si10- and Si50-induced cytokine responses, to a different magnitude dependent on the particle size, SR and cytokine. Si10-induced TGF-α responses were also markedly reduced by knockdown of SR-B1 and CXCL16. Furthermore, the role of SR-B1 in Si10-induced phosphorylations of p65 and MAP-kinases p38 and JNK were examined, and no significant reductions were observed upon knockdown of SR-B1. In conclusion, LOX-1 and CXCL16 and especially SR-B1 seem to have important roles in mediating cytokine responses and TGF-α release due to SiNP exposure in BEAS-2B cells, without a down-stream role of MAP-kinase and NF-κB.
Collapse
Affiliation(s)
- Magne Refsnes
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway.
| | - Tonje Skuland
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| | - Johan Øvrevik
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| | - Marit Låg
- Section of Air Quality and Noise, Department of Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, N-0213, Oslo, Norway
| |
Collapse
|
13
|
Serum Lowers Bioactivity and Uptake of Synthetic Amorphous Silica by Alveolar Macrophages in a Particle Specific Manner. NANOMATERIALS 2021; 11:nano11030628. [PMID: 33802450 PMCID: PMC7999370 DOI: 10.3390/nano11030628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 12/02/2022]
Abstract
Various cell types are compromised by synthetic amorphous silica (SAS) if they are exposed to SAS under protein-free conditions in vitro. Addition of serum protein can mitigate most SAS effects, but it is not clear whether this is solely caused by protein corona formation and/or altered particle uptake. Because sensitive and reliable mass spectrometric measurements of SiO2 NP are cumbersome, quantitative uptake studies of SAS at the cellular level are largely missing. In this study, we combined the comparison of SAS effects on alveolar macrophages in the presence and absence of foetal calf serum with mass spectrometric measurement of 28Si in alkaline cell lysates. Effects on the release of lactate dehydrogenase, glucuronidase, TNFα and H2O2 of precipitated (SIPERNAT® 50, SIPERNAT® 160) and fumed SAS (AEROSIL® OX50, AEROSIL® 380 F) were lowered close to control level by foetal calf serum (FCS) added to the medium. Using a quantitative high resolution ICP-MS measurement combined with electron microscopy, we found that FCS reduced the uptake of particle mass by 9.9% (SIPERNAT® 50) up to 83.8% (AEROSIL® OX50). Additionally, larger particle agglomerates were less frequent in cells in the presence of FCS. Plotting values for lactate dehydrogenase (LDH), glucuronidase (GLU) or tumour necrosis factor alpha (TNFα) against the mean cellular dose showed the reduction of bioactivity with a particle sedimentation bias. As a whole, the mitigating effects of FCS on precipitated and fumed SAS on alveolar macrophages are caused by a reduction of bioactivity and by a lowered internalization, and both effects occur in a particle specific manner. The method to quantify nanosized SiO2 in cells is a valuable tool for future in vitro studies.
Collapse
|
14
|
A proteomic view of cellular responses of macrophages to copper when added as ion or as copper-polyacrylate complex. J Proteomics 2021; 239:104178. [PMID: 33662612 DOI: 10.1016/j.jprot.2021.104178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
Copper is an essential metal for life, but is toxic at high concentrations. In mammalian cells, two copper transporters are known, CTR1 and CTR2. In order to gain insights on the possible influence of the import pathway on cellular responses to copper, two copper challenges were compared: one with copper ion, which is likely to use preferentially CTR1, and one with a copper-polyacrylate complex, which will be internalized via the endosomal pathway and is likely to use preferentially CTR2. A model system consisting in the J774A1 mouse macrophage system, with a strong endosomal/lysosomal pathway, was used. In order to gain wide insights into the cellular responses to copper, a proteomic approach was used. The proteomic results were validated by targeted experiments, and showed differential effects of the import mode on cellular physiology parameters. While the mitochondrial transmembrane potential was kept constant, a depletion in the free glutahione content was observed with copper (ion and polylacrylate complex). Both copper-polyacrylate and polyacrylate induced perturbations in the cytoskeleton and in phagocytosis. Inflammatory responses were also differently altered by copper ion and copper-polyacrylate. Copper-polyacrylate also perturbed several metabolic enzymes. Lastly, enzymes were used as a test set to assess the predictive value of proteomics. SIGNIFICANCE: Proteomic profiling provides an in depth analysis of the alterations induced on cells by copper under two different exposure modes to this metal, namely as the free ion or as a complex with polyacrylate. The cellular responses were substantially different between the two exposure modes, although some cellular effects are shared, such as the depletion in free glutathione. Targeted experiments were used to confirm the proteomic results. Some metabolic enzymes showed altered activities after exposure to the copper-polyacrylate complex. The basal inflammatory responses were different for copper ion and for the copper-polyacrylate complex, while the two forms of copper inhibited lipopolysaccharide-induced inflammatory responses.
Collapse
|
15
|
Hayat SMG, Jaafari MR, Hatamipour M, Penson PE, Sahebkar A. Liposome Circulation Time is Prolonged by CD47 Coating. Protein Pept Lett 2021; 27:1029-1037. [PMID: 32282292 DOI: 10.2174/0929866527666200413100120] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Bio-degradable nano-particles have many applications as drug delivery vehicles because of their good bio-availability, controlled release, low toxicity and potential for encapsulation. However, the most important obstacle to nanoparticulate drug delivery is elimination by macrophages which reduces the residence time of nanoparticles in the blood. To overcome this problem, the surface of the nanoparticle can be passivated by coating with Polyethylene glycol (PEG). However, the use of PEG has its own disadvantages. CD47 receptor acts as a self marker on the surface of many cells and inhibits phagocytosis. This study used a CD47 mimicry peptide as a substitute for PEG to fabricate "stealth" nanoliposome with reduced macrophage clearance. METHODS Doxorubibin was used as a model drug because of its inherent fluorescence. Doxorubicin- containing liposomes were coated with different percentages of CD47 mimicry peptide (0.5% and 1%). PEG-functionalized doxorubicin-containing liposomes, were used as a comparator. The liposomal formulations were intravenously injected into mice. Serum was collected at pre-defined time points and tissue samples were taken at 24 hours. Fluorescence was used to determine the concentration doxorubicin in serum, heart, spleen, kidney, liver and lung tissues. RESULTS Tissue biodistribution and serum kinetic studies indicated that compared with PEG, the use of CD47 mimicry peptide increased the circulation time of doxorubicin in the circulation. Moreover, unwanted accumulation of doxorubicin in the reticuloendothelial tissues (liver and spleen), kidney and heart was significantly decreased by the CD47 mimicry peptide. CONCLUSION The use of a CD47 mimicry peptide on the surface of nanoliposomes improved the residence time of liposomal doxorubicin in the circulation. The accumulation of drug in non-target tissues was reduced, thereby potentially reducing toxicity.
Collapse
Affiliation(s)
- Seyed Mohammad Gheibi Hayat
- Department of Medical Biotechnology, Faculty Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences,
Mashhad, Iran,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical
Sciences, Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Ali HR, Selim SA, Aili D. Effects of macrophage polarization on gold nanoparticle-assisted plasmonic photothermal therapy. RSC Adv 2021; 11:25047-25056. [PMID: 35481041 PMCID: PMC9037012 DOI: 10.1039/d1ra03671h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor associated macrophages (TAM) are key pathogenic factors in neoplastic diseases. They are known to have plasticity and can polarize into two opposing phenotypes, including the tumoricidal M1 and the protumoral M2 phenotypes with high prevalence of M2-phentoypes in patients with poor prognosis. Strategies for targeting M2-TAM may consequently increase the efficacy of therapeutic strategies for cancer treatment. Gold nanorod-assisted plasmonic photothermal therapy (PPTT) has emerged as a promising treatment for cancer but the effects of macrophage polarization parameters in the performance of this new treatment modality is still unknown. Herein, human monocytic THP-1 cells were polarized into two opposite phenotypic macrophages (M1-TAM and M2-TAM) and their response to PPTT was examined. M2-TAM exhibits a three-fold increase in AuNP uptake compared to M1-TAM. Laser irradiation results in selective killing of pro-tumoral M2-TAM after treatment with AuNPs with limited effects on anti-tumoral M1-TAM. A positive correlation between the expression of CD206 marker and the AuNP uptake may indicate the role of CD206 in facilitating AuNP uptake. Our findings also suggest that the differences in AuNP avidity and uptake between the M1-TAM and M2-TAM phenotypes may be the rationale behind the effectiveness of PPTT in the treatment of solid tumors. A preferential uptake of gold nanoparticles by macrophages with a protumoral M2 phenotype result in efficient killing upon laser irradiation while keeping M1 phenotypes relatively undamaged.![]()
Collapse
Affiliation(s)
- Hala R. Ali
- Department of Bacteriology and Immunology
- Animal Health Research Institute (AHRI)
- Agriculture Research Center (ARC)
- Egypt
| | - Salah A. Selim
- Department of Microbiology
- Faculty of Veterinary Medicine
- Cairo University
- Giza
- Egypt
| | - Daniel Aili
- Laboratory of Molecular Materials
- Division of Biophysics and Bioengineering
- Department of Physics, Chemistry and Biology
- Linköping University
- SE-581 83 Linköping
| |
Collapse
|
17
|
How Reversible Are the Effects of Fumed Silica on Macrophages? A Proteomics-Informed View. NANOMATERIALS 2020; 10:nano10101939. [PMID: 33003391 PMCID: PMC7600894 DOI: 10.3390/nano10101939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Synthetic amorphous silica is one of the most used nanomaterials, and numerous toxicological studies have studied its effects. Most of these studies have used an acute exposure mode to investigate the effects immediately after exposure. However, this exposure modality does not allow the investigation of the persistence of the effects, which is a crucial aspect of silica toxicology, as exemplified by crystalline silica. In this paper, we extended the investigations by studying not only the responses immediately after exposure but also after a 72 h post-exposure recovery phase. We used a pyrolytic silica as the test nanomaterial, as this variant of synthetic amorphous silica has been shown to induce a more persistent inflammation in vivo than precipitated silica. To investigate macrophage responses to pyrolytic silica, we used a combination of proteomics and targeted experiments, which allowed us to show that most of the cellular functions that were altered immediately after exposure to pyrolytic silica at a subtoxic dose, such as energy metabolism and cell morphology, returned to normal at the end of the recovery period. However, some alterations, such as the inflammatory responses and some aldehyde detoxification proteins, were persistent. At the proteomic level, other alterations, such as proteins implicated in the endosomal/lysosomal pathway, were also persistent but resulted in normal function, thus suggesting cellular adaptation.
Collapse
|
18
|
Srijampa S, Buddhisa S, Ngernpimai S, Leelayuwat C, Proungvitaya S, Chompoosor A, Tippayawat P. Influence of Gold Nanoparticles with Different Surface Charges on Localization and Monocyte Behavior. Bioconjug Chem 2020; 31:1133-1143. [PMID: 32208651 DOI: 10.1021/acs.bioconjchem.9b00847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of gold nanoparticles (AuNP) has been established in nanocarriers, diagnostics, and biosensors. Access to the targeted sites of these nanomaterials could directly involve the first line of defense, the innate immune system. Charges of nanomaterials play a critical role in a number of aspects such as stabilization, cellular uptake, modulation, and function of cells. Interactions and modulations of the charged nanomaterials against the innate immune system may occur even at very low concentration. To understand the effects of charges on monocyte behavior, in this study, the positively and negatively charged AuNP (AuNP+ve and AuNP-ve) of the similar size and shape on cytotoxicity, recognition, cellular behavior, and function were evaluated in vitro using U937 human monocyte cells as an innate immunity model. Both types of AuNP at various concentrations (0-5 nM) exhibited low toxicity. In addition, the cellular internalization of the AuNP+ve and AuNP-ve, as determined by TEM, occurred by different mechanisms, and the internalization had no effect on cellular destruction, as implied by the low levels of %LDH. Interestingly, the AuNP+ve recognition and internalization seemingly entered cells through receptor dependence and strongly affected cellular response to express both pro-inflammatory (IL-1β) and anti-inflammatory (TGF-β) cytokines, while the AuNP-ve stimulated TNF-α expression. Nevertheless, the AuNP-treated cells maintained normal function when exposed to planktonic bacteria. Thus, these results indicated that one part of the immune system interacted with different surface-charged AuNP, suggesting appropiate immunomodulation in biomedicine.
Collapse
Affiliation(s)
- Sukanya Srijampa
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surachat Buddhisa
- Department of Medical Technology, Faculty of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sawinee Ngernpimai
- Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chanvit Leelayuwat
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Siriporn Proungvitaya
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng Road, Hua mak, Bangkapi, Bangkok 10240, Thailand
| | - Patcharaporn Tippayawat
- Biosensor Research Group for Non-Communicable Disease and Infectious Disease, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.,Department of Medical Technology, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
19
|
Chin DD, Poon C, Trac N, Wang J, Cook J, Joo J, Jiang Z, Maria NSS, Jacobs RE, Chung EJ. Collagenase-Cleavable Peptide Amphiphile Micelles as a Novel Theranostic Strategy in Atherosclerosis. ADVANCED THERAPEUTICS 2020; 3:1900196. [PMID: 34295964 PMCID: PMC8294202 DOI: 10.1002/adtp.201900196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 11/10/2022]
Abstract
Atherosclerosis is an inflammatory disease characterized by plaques that can cause sudden myocardial infarction upon rupture. Such rupture-prone plaques have thin fibrous caps due to collagenase degradation, and a noninvasive diagnostic tool and targeted therapy that can identify and treat vulnerable plaques and may inhibit the onset of acute cardiac events. Toward this goal, monocyte-binding, collagenase-inhibiting, and gadolinium-modified peptide amphiphile micelles (MCG PAMs) are developed. Monocyte chemoattractant protein-1 (MCP-1) binds to C-C chemokine receptor-2 expressed on pathological cell types present within plaques. Through the peptide binding motif of MCP-1, MCG PAMs bind to monocytes and vascular smooth muscle cells in vitro. Moreover, using magnetic resonance imaging, MCG PAMs show enhanced targeting and successful detection of plaques in diseased mice in vivo and act as contrast agents for molecular imaging. Through the collagenase-cleaving peptide sequence of collagen [VPMS-MRGG], MCG PAMs can compete for collagenases that degrade the fibrous cap of plaques, providing therapy. MCG PAM-treated mice show increased fibrous cap thickness by 61% and 113% histologically compared to nontargeting micelle- or PBS-treated mice (p = 0.0075 and 0.001, respectively). Overall, this novel multimodal nanoparticle offers new theranostic opportunities for noninvasive diagnosis and treatment of atherosclerotic plaques.
Collapse
Affiliation(s)
- Deborah D Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Jackson Cook
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Johan Joo
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Zhangjingyi Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| | - Naomi Sulit Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic, Institute and Keck School of Medicine, University of Southern California, Los Angeles 90033 CA, USA
| | - Russell E Jacobs
- Department of Physiology and Neuroscience, Zilkha Neurogenetic, Institute and Keck School of Medicine, University of Southern California, Los Angeles 90033 CA, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles USC 90089 CA, USA
| |
Collapse
|
20
|
|
21
|
Smith JN, Thomas DG, Jolley H, Kodali VK, Littke MH, Munusamy P, Baer DR, Gaffrey MJ, Thrall BD, Teeguarden JG. All that is silver is not toxic: silver ion and particle kinetics reveals the role of silver ion aging and dosimetry on the toxicity of silver nanoparticles. Part Fibre Toxicol 2018; 15:47. [PMID: 30518385 PMCID: PMC6282353 DOI: 10.1186/s12989-018-0283-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/20/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND When suspended in cell culture medium, nano-objects composed of soluble metals such as silver can dissolve resulting in ion formation, altered particle properties (e.g. mass, morphology, etc.), and modulated cellular dose. Cultured cells are exposed not just to nanoparticles but to a complex, dynamic mixture of altered nanoparticles, unbound ions, and ion-ligand complexes. Here, three different cell types (RAW 264.7 macrophages and bone marrow derived macrophages from wild-type C57BL/6 J mice and Scavenger Receptor A deficient (SR-A(-/-)) mice) were exposed to 20 and 110 nm silver nanoparticles, and RAW 264.7 cells were exposed to freshly mixed silver ions, aged silver ions (ions incubated in cell culture medium), and ions formed from nanoparticle dissolution. The In Vitro Sedimentation, Diffusion, Dissolution, and Dosimetry Model (ISD3) was used to predict dose metrics for each exposure scenario. RESULTS Silver nanoparticles, freshly mixed ions, and ions from nanoparticle dissolution were toxic, while aged ions were not toxic. Macrophages from SR-A(-/-) mice did not take up 20 nm silver nanoparticles as well as wild-types but demonstrated no differences in silver levels after exposure to 110 nm nanoparticles. Dose response modeling with ISD3 predicted dose metrics suggest that amount of ions in cells and area under the curve (AUC) of ion amount in cells are the most predictive of cell viability after nanoparticle and combined nanoparticle/dissolution-formed-ions exposures, respectively. CONCLUSIONS Results of this study suggest that the unbound silver cation is the ultimate toxicant, and ions formed extracellularly drive toxicity after exposure to nanoparticles. Applying computational modeling (ISD3) to better understand dose metrics for soluble nanoparticles allows for better interpretation of in vitro hazard assessments.
Collapse
Affiliation(s)
- Jordan N. Smith
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 93771 USA
| | - Dennis G. Thomas
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Hadley Jolley
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Vamsi K. Kodali
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Matthew H. Littke
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Prabhakaran Munusamy
- The Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Donald R. Baer
- The Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Matthew J. Gaffrey
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Brian D. Thrall
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Justin G. Teeguarden
- Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 93771 USA
| |
Collapse
|
22
|
Melby ES, Cui Y, Borgatta J, Mensch AC, Hang MN, Chrisler WB, Dohnalkova A, Van Gilder JM, Alvarez CM, Smith JN, Hamers RJ, Orr G. Impact of lithiated cobalt oxide and phosphate nanoparticles on rainbow trout gill epithelial cells. Nanotoxicology 2018; 12:1166-1181. [DOI: 10.1080/17435390.2018.1508785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Eric S. Melby
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - Yi Cui
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - Jaya Borgatta
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Arielle C. Mensch
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - Mimi N. Hang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - William B. Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alice Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| | - John M. Van Gilder
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Catherine M. Alvarez
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Jordan N. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert J. Hamers
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, (WI), USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, (WA), USA
| |
Collapse
|
23
|
Innate immunity to inhaled particles: A new paradigm of collective recognition. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Fritsch-Decker S, Marquardt C, Stoeger T, Diabaté S, Weiss C. Revisiting the stress paradigm for silica nanoparticles: decoupling of the anti-oxidative defense, pro-inflammatory response and cytotoxicity. Arch Toxicol 2018; 92:2163-2174. [DOI: 10.1007/s00204-018-2223-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
|
25
|
Xie L, Li Q, Dong R, Zhao K, Feng Y, Bao Z, Zhou M. Critical regulation of inflammation via class A scavenger receptor. Int J Chron Obstruct Pulmon Dis 2018; 13:1145-1155. [PMID: 29695898 PMCID: PMC5905844 DOI: 10.2147/copd.s153326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Inflammation is an important cause of COPD. Alveolar macrophages are the major innate immune cells that have an important role in COPD pathology. Class A scavenger receptor (SR-A) is a pattern recognition receptor expressed on macrophages. This study investigates the role of SR-A in COPD progression via regulation of inflammation. Patients and methods SR-A expression in COPD patients and control subjects (smokers and nonsmokers without COPD) was measured by immunohistochemistry, immunofluorescence, and real-time PCR. The cytokine levels in BAL were measured by enzyme-linked immunosorbent assay. To further prove our hypothesis, we treated RAW264.7 cells that overexpress SR-A with lipopolysaccharides, poly(I:C), cigarette smoke extract, and H1N1 influenza separated from patients for 24 h and examined the levels of inflammatory cytokines. Results In both groups, COPD and smokers without COPD, SR-A expression level was upregulated in alveolar macrophages. SR-A mRNA level was positively correlated with inflammatory cytokines and negatively correlated with FEV1% predicted in COPD patients. In RAW-SR-A cells, level of inflammatory cytokines was significantly higher when compared with control ones. Conclusion SR-A could increase inflammation stimulated by cigarette smoke extracts, bacteria, and virus, leading to long-term inflammation in COPD, and thus might be used as a new therapeutic target for COPD treatment.
Collapse
Affiliation(s)
- Liang Xie
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qingmin Li
- Department of Cardiology, Henan Provincial Peoples Hospital, Zhengzhou, China
| | - Ran Dong
- Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaishun Zhao
- Department of Respiratory Medicine, Jiading Central Hospital, Shanghai, China
| | - Yun Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyao Bao
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Müllebner A, Dorighello GG, Kozlov AV, Duvigneau JC. Interaction between Mitochondrial Reactive Oxygen Species, Heme Oxygenase, and Nitric Oxide Synthase Stimulates Phagocytosis in Macrophages. Front Med (Lausanne) 2018; 4:252. [PMID: 29404326 PMCID: PMC5786743 DOI: 10.3389/fmed.2017.00252] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/19/2017] [Indexed: 11/13/2022] Open
Abstract
Background Macrophages are cells of the innate immune system that populate every organ. They are required not only for defense against invading pathogens and tissue repair but also for maintenance of tissue homeostasis and iron homeostasis. Aim The aim of this study is to understand whether heme oxygenase (HO) and nitric oxide synthase (NOS) contribute to the regulation of nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and phagocytosis, two key components of macrophage function. Methods This study was carried out using resting J774A.1 macrophages treated with hemin or vehicle. Activity of NOS, HO, or NOX was inhibited using specific inhibitors. Reactive oxygen species (ROS) formation was determined by Amplex® red assay, and phagocytosis was measured using fluorescein isothiocyanate-labeled bacteria. In addition, we analyzed the fate of the intracellular heme by using electron spin resonance. Results We show that both enzymes NOS and HO are essential for phagocytic activity of macrophages. NOS does not directly affect phagocytosis, but stimulates NOX activity via nitric oxide-triggered ROS production of mitochondria. Treatment of macrophages with hemin results in intracellular accumulation of ferrous heme and an inhibition of phagocytosis. In contrast to NOS, HO products, including carbon monoxide, neither clearly affect NOX activity nor clearly affect phagocytosis, but phagocytosis is accelerated by HO-mediated degradation of heme. Conclusion Both enzymes contribute to the bactericidal activity of macrophages independently, by controlling different pathways.
Collapse
Affiliation(s)
- Andrea Müllebner
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Gabriel G Dorighello
- Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, Brazil
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
27
|
Prapainop K, Miao R, Åberg C, Salvati A, Dawson KA. Reciprocal upregulation of scavenger receptors complicates interpretation of nanoparticle uptake in non-phagocytic cells. NANOSCALE 2017; 9:11261-11268. [PMID: 28758667 DOI: 10.1039/c7nr03254d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles have great potential as drug delivery vehicles or as imaging agents for treatment and diagnosis of various diseases. It is therefore crucial to understand how nanoparticles are taken up by cells, both phagocytic and non-phagocytic. Small interference RNA has previously been used to isolate the effect of particular receptors in nanoparticle uptake by silencing their expression. Here we show that, when it comes to receptors with overlapping function, interpretation of such data has to be done with caution. We followed the uptake of silica nanoparticles by scavenger receptors in A549 lung epithelial cells. While we successfully knocked-down gene expression of several different receptors within the scavenger receptor family (SR-A1, MARCO, SR-BI, LOX-1 and LDLR) this caused reciprocal up and down regulation of the other scavenger receptors. Subsequent nanoparticle uptake experiments in silenced cells exhibit a complex behaviour, which could easily be misinterpreted if reciprocal regulation is not considered. Preliminary identification of the actual scavenger receptors involved can be found by disentangling the effects mathematically. Finally, we show that the effects are still present under more realistic biological conditions, namely at higher serum concentrations.
Collapse
Affiliation(s)
- Kanlaya Prapainop
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland.
| | | | | | | | | |
Collapse
|
28
|
Pallardy MJ, Turbica I, Biola-Vidamment A. Why the Immune System Should Be Concerned by Nanomaterials? Front Immunol 2017; 8:544. [PMID: 28555135 PMCID: PMC5431153 DOI: 10.3389/fimmu.2017.00544] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022] Open
Abstract
Particles possess huge specific surface area and therefore nanomaterials exhibit unique characteristics, such as special physical properties and chemical hyper-reactivity, which make them particularly attractive but also raise numerous questions concerning their safety. Interactions of nanomaterials with the immune system can potentially lead to immunosuppression, hypersensitivity (allergy), immunogenicity and autoimmunity, involving both innate and adaptive immune responses. Inherent physical and chemical NP characteristics may influence their immunotoxicity, i.e., the adverse effects that can result from exposure. This review will focus on the possible interaction of nanomaterials including protein aggregates with the innate immune system with specific emphasis on antigen-presenting cells, i.e., dendritic cells, macrophages and monocytes.
Collapse
Affiliation(s)
- Marc J Pallardy
- "Inflammation, Chimiokines and Immunopathology", INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Isabelle Turbica
- "Inflammation, Chimiokines and Immunopathology", INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Armelle Biola-Vidamment
- "Inflammation, Chimiokines and Immunopathology", INSERM UMR 996, Univ Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
29
|
Nishijima N, Hirai T, Misato K, Aoyama M, Kuroda E, Ishii KJ, Higashisaka K, Yoshioka Y, Tsutsumi Y. Human Scavenger Receptor A1-Mediated Inflammatory Response to Silica Particle Exposure Is Size Specific. Front Immunol 2017; 8:379. [PMID: 28421077 PMCID: PMC5377922 DOI: 10.3389/fimmu.2017.00379] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
The application of nanotechnology in the health care setting has many potential benefits; however, our understanding of the interactions between nanoparticles and our immune system remains incomplete. Although many of the biological effects of nanoparticles are negatively correlated with particle size, some are clearly size specific and the mechanisms underlying these size-specific biological effects remain unknown. Here, we examined the pro-inflammatory effects of silica particles in THP-1 cells with respect to particle size; a large overall size range with narrow intervals between particle diameters (particle diameter: 10, 30, 50, 70, 100, 300, and 1,000 nm) was used. Secretion of the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced by exposure to the silica particles had a bell-shaped distribution, where the maximal secretion was induced by silica nanoparticles with a diameter of 50 nm and particles with smaller or larger diameters had progressively less effect. We found that blockade of IL-1β secretion markedly inhibited TNF-α secretion, suggesting that IL-1β is upstream of TNF-α in the inflammatory cascade induced by exposure to silica particles, and that the induction of IL-1β secretion was dependent on both the NLRP3 inflammasome and on uptake of the silica particles into the cells via endocytosis. However, a quantitative analysis of silica particle uptake showed that IL-1β secretion was not correlated with the amount of silica particles taken up by the cells. Further investigation revealed that the induction of IL-1β secretion and uptake of silica nanoparticles with diameters of 50 or 100 nm, but not of 10 or 1,000 nm, was dependent on scavenger receptor (SR) A1. In addition, of the silica particles examined, only those with a diameter of 50 nm induced strong IL-1β secretion via activation of Mer receptor tyrosine kinase, a signal mediator of SR A1. Together, our results suggest that the SR A1-mediated pro-inflammatory response is dependent on ligand size and that both SR A1-mediated endocytosis and receptor-mediated signaling are required to produce the maximal pro-inflammatory response to exposure to silica particles.
Collapse
Affiliation(s)
- Nobuo Nishijima
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Toshiro Hirai
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kazuki Misato
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Michihiko Aoyama
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Suita, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, WPI Immunology Frontier Research Center (iFReC), Osaka University, Suita, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Japan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yasuo Yoshioka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan.,The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
30
|
Handa T, Hirai T, Izumi N, Eto SI, Tsunoda SI, Nagano K, Higashisaka K, Yoshioka Y, Tsutsumi Y. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice. NANOTECHNOLOGY 2017; 28:135101. [PMID: 28240988 DOI: 10.1088/1361-6528/aa5d7c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.
Collapse
Affiliation(s)
- Takayuki Handa
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gallud A, Bondarenko O, Feliu N, Kupferschmidt N, Atluri R, Garcia-Bennett A, Fadeel B. Macrophage activation status determines the internalization of mesoporous silica particles of different sizes: Exploring the role of different pattern recognition receptors. Biomaterials 2016; 121:28-40. [PMID: 28063981 DOI: 10.1016/j.biomaterials.2016.12.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/22/2016] [Accepted: 12/26/2016] [Indexed: 12/23/2022]
Abstract
Mesoporous silica-based particles are promising candidates for biomedical applications. Here, we address the importance of macrophage activation status for internalization of AMS6 (approx. 200 nm in diameter) versus AMS8 (approx. 2 μm) mesoporous silica particles and the role of different phagocytosis receptors for particle uptake. To this end, FITC-conjugated silica particles were used. AMS8 were found to be non-cytotoxic both for M-CSF-stimulated (anti-inflammatory) and GM-CSF-stimulated (pro-inflammatory) macrophages, whereas AMS6 exhibited cytotoxicity towards M-CSF-stimulated, but not GM-CSF-stimulated macrophages; this toxicity was, however, mitigated in the presence of serum. AMS8 triggered the secretion of pro-inflammatory cytokines in M-CSF-activated cells. Class A scavenger receptor (SR-A) expression was noted in both M-CSF and GM-CSF-stimulated macrophages, although the expression was higher in the former case, and gene silencing of SR-A resulted in a decreased uptake of AMS6 in the absence of serum. GM-CSF-stimulated macrophages expressed higher levels of the mannose receptor CD206 compared to M-CSF-stimulated cells, and uptake of AMS6, but not AMS8, was reduced following the downregulation of CD206 in GM-CSF-stimulated cells; particle uptake was also suppressed by mannan, a competitive ligand. These studies demonstrate that macrophage activation status is an important determinant of particle uptake and provide evidence for a role of different macrophage receptors for cell uptake of silica particles.
Collapse
Affiliation(s)
- Audrey Gallud
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Olesja Bondarenko
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Neus Feliu
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Natalia Kupferschmidt
- Department of Materials and Environmental Chemistry, Stockholm University, 106 91, Stockholm, Sweden
| | | | - Alfonso Garcia-Bennett
- Department of Chemistry and Biomolecular Science, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
32
|
Saikia J, Yazdimamaghani M, Moghaddam SPH, Ghandehari H. Differential Protein Adsorption and Cellular Uptake of Silica Nanoparticles Based on Size and Porosity. ACS APPLIED MATERIALS & INTERFACES 2016; 8:34820-34832. [PMID: 27998138 PMCID: PMC5538804 DOI: 10.1021/acsami.6b09950] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Slight alterations in nanoparticles' surface properties can significantly influence the corona composition which may alter their interaction with the biological milieu. Size and porosity of silica nanoparticles (SNPs) are known to be predominant factors influencing their dose-dependent toxicity. Little is known however about the extent and type of protein adsorption on SNPs as a function of physicochemical properties and the role this might play on mechanisms of cellular uptake and toxicity. In this work we investigated the influence of size and porosity of SNPs on protein adsorption, cellular uptake, and toxicity in RAW 264.7 macrophages. Toxicity of the SNPs was found to be concentration dependent, and the formation of the protein corona mitigated toxicity for all particles. Detailed analysis of the amount of proteins recovered from each nanoparticle revealed similarities in the protein adsorption profile as a function of size and porosity. The mechanism of uptake was highly dependent on size rather than porosity or the adsorbed proteins.
Collapse
Affiliation(s)
- Jiban Saikia
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mostafa Yazdimamaghani
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Seyyed Pouya Hadipour Moghaddam
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, United States
- Corresponding Author:
| |
Collapse
|
33
|
Mitchell HD, Markillie LM, Chrisler WB, Gaffrey MJ, Hu D, Szymanski CJ, Xie Y, Melby ES, Dohnalkova A, Taylor RC, Grate EK, Cooley SK, McDermott JE, Heredia-Langner A, Orr G. Cells Respond to Distinct Nanoparticle Properties with Multiple Strategies As Revealed by Single-Cell RNA-Seq. ACS NANO 2016; 10:10173-10185. [PMID: 27788331 DOI: 10.1021/acsnano.6b05452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells "overloaded" while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.
Collapse
Affiliation(s)
- Hugh D Mitchell
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Lye Meng Markillie
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - William B Chrisler
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Matthew J Gaffrey
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Dehong Hu
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Craig J Szymanski
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yumei Xie
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eric S Melby
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alice Dohnalkova
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ronald C Taylor
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Eva K Grate
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Scott K Cooley
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jason E McDermott
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Alejandro Heredia-Langner
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Galya Orr
- Earth & Biological Sciences Directorate and ‡National Security Directorate, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
34
|
Shannahan JH, Fritz KS, Raghavendra AJ, Podila R, Persaud I, Brown JM. From the Cover: Disease-Induced Disparities in Formation of the Nanoparticle-Biocorona and the Toxicological Consequences. Toxicol Sci 2016; 152:406-16. [PMID: 27255384 DOI: 10.1093/toxsci/kfw097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nanoparticle (NP) association with macromolecules in a physiological environment forms a biocorona (BC), which alters NP distribution, activity, and toxicity. While BC formation is dependent on NP physicochemical properties, little information exists on the influence of the physiological environment. Obese individuals and those with cardiovascular disease exist with altered serum chemistry, which is expected to influence BC formation and NP toxicity. We hypothesize that a BC formed on NPs following incubation in hyperlipidemic serum will result in altered NP-BC protein content, cellular association, and toxicity compared to normal serum conditions. We utilized Fe3O4 NPs, which are being developed as MRI contrast and tumor targeting agents to test our hypothesis. We used rat aortic endothelial cells (RAECs) within a dynamic flow in vitro exposure system to more accurately depict the in vivo environment. A BC was formed on 20nm PVP-suspended Fe3O4 NPs following incubation in water, 10% normal or hyperlipidemic rat serum. Addition of BCs resulted in increased hydrodynamic size and decreased surface charge. More cholesterol associated with Fe3O4 NPs after incubation in hyperlipidemic as compared with normal serum. Using quantitative proteomics, we identified unique differences in BC protein components between the 2 serum types. Under flow conditions, formation of a BC from both serum types reduced RAECs association of Fe3O4 NPs. Addition of BCs was found to exacerbate RAECs inflammatory gene responses to Fe3O4 NPs (Fe3O4-hyperlipidemic > Fe3O4-normal > Fe3O4) including increased expression of IL-6, TNF-α, Cxcl-2, VCAM-1, and ICAM-1. Overall, these findings demonstrate that disease-induced variations in physiological environments have a significant impact NP-BC formation, cellular association, and cell response.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- *Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristofer S Fritz
- *Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Achyut J Raghavendra
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634; Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625
| | - Ramakrishna Podila
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina, 29634; Clemson Nanomaterials Center and COMSET, Clemson University, Anderson, South Carolina, 29625
| | - Indushekar Persaud
- *Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jared M Brown
- *Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045;
| |
Collapse
|
35
|
Duan J, Kodali VK, Gaffrey MJ, Guo J, Chu RK, Camp DG, Smith RD, Thrall BD, Qian WJ. Quantitative Profiling of Protein S-Glutathionylation Reveals Redox-Dependent Regulation of Macrophage Function during Nanoparticle-Induced Oxidative Stress. ACS NANO 2016; 10:524-38. [PMID: 26700264 PMCID: PMC4762218 DOI: 10.1021/acsnano.5b05524] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Engineered nanoparticles (ENPs) are increasingly utilized for commercial and medical applications; thus, understanding their potential adverse effects is an important societal issue. Herein, we investigated protein S-glutathionylation (SSG) as an underlying regulatory mechanism by which ENPs may alter macrophage innate immune functions, using a quantitative redox proteomics approach for site-specific measurement of SSG modifications. Three high-volume production ENPs (SiO2, Fe3O4, and CoO) were selected as representatives which induce low, moderate, and high propensity, respectively, to stimulate cellular reactive oxygen species (ROS) and disrupt macrophage function. The SSG modifications identified highlighted a broad set of redox sensitive proteins and specific Cys residues which correlated well with the overall level of cellular redox stress and impairment of macrophage phagocytic function (CoO > Fe3O4 ≫ SiO2). Moreover, our data revealed pathway-specific differences in susceptibility to SSG between ENPs which induce moderate versus high levels of ROS. Pathways regulating protein translation and protein stability indicative of ER stress responses and proteins involved in phagocytosis were among the most sensitive to SSG in response to ENPs that induce subcytoxic levels of redox stress. At higher levels of redox stress, the pattern of SSG modifications displayed reduced specificity and a broader set pathways involving classical stress responses and mitochondrial energetics (e.g., glycolysis) associated with apoptotic mechanisms. An important role for SSG in regulation of macrophage innate immune function was also confirmed by RNA silencing of glutaredoxin, a major enzyme which reverses SSG modifications. Our results provide unique insights into the protein signatures and pathways that serve as ROS sensors and may facilitate cellular adaption to ENPs, versus intracellular targets of ENP-induced oxidative stress that are linked to irreversible cell outcomes.
Collapse
Affiliation(s)
- Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vamsi K. Kodali
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Matthew J. Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jia Guo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Rosalie K. Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David G. Camp
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Corresponding Authors: .
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Corresponding Authors: .
| |
Collapse
|
36
|
Shannahan JH, Bai W, Brown JM. Implications of scavenger receptors in the safe development of nanotherapeutics. ACTA ACUST UNITED AC 2015; 2:e811. [PMID: 26005702 DOI: 10.14800/rci.811] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomaterials (NMs) are being utilized in a variety of biomedical applications including drug delivery, diagnostics, and therapeutic targeting. These applications are made possible due to the unique physicochemical properties that are exhibited at the nanoscale. To ensure safe development of NMs for clinical use, it is necessary to understand their interactions with cells and specifically cell surface receptors, which will facilitate either their toxicity and/or clinical function. Recently our research and others have investigated the role of scavenger receptors in mediating NM-cell interactions and responses. Scavenger receptors are expressed by a variety of cell types that are first to encounter NMs during clinical use such as macrophages and endothelial cells. Scavenger receptors are recognized to facilitate uptake of a wide variety of ligands ranging from foreign substances to endogenous lipids/proteins. While interaction of NMs with scavenger receptors may allow therapeutic targeting in some instances, it also presents a challenge for the stealth delivery of NMs and avoidance of the scavenging capability of this class of receptors. Due to their role in facilitating immune responses, scavenger receptor-mediated inflammation is also of concern following NM delivery. The research highlighted in this brief review intends to summarize our current understanding regarding the consequences of NM-scavenger receptor interactions.
Collapse
Affiliation(s)
- Jonathan H Shannahan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Wei Bai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| |
Collapse
|
37
|
Munusamy P, Wang C, Engelhard MH, Baer DR, Smith JN, Liu C, Kodali V, Thrall BD, Chen S, Porter AE, Ryan MP. Comparison of 20 nm silver nanoparticles synthesized with and without a gold core: Structure, dissolution in cell culture media, and biological impact on macrophages. Biointerphases 2015; 10:031003. [PMID: 26178265 PMCID: PMC4506304 DOI: 10.1116/1.4926547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023] Open
Abstract
Widespread use of silver nanoparticles raises questions of environmental and biological impact. Many synthesis approaches are used to produce pure silver and silver-shell gold-core particles optimized for specific applications. Since both nanoparticles and silver dissolved from the particles may impact the biological response, it is important to understand the physicochemical characteristics along with the biological impact of nanoparticles produced by different processes. The authors have examined the structure, dissolution, and impact of particle exposure to macrophage cells of two 20 nm silver particles synthesized in different ways, which have different internal structures. The structures were examined by electron microscopy and dissolution measured in Rosewell Park Memorial Institute media with 10% fetal bovine serum. Cytotoxicity and oxidative stress were used to measure biological impact on RAW 264.7 macrophage cells. The particles were polycrystalline, but 20 nm particles grown on gold seed particles had smaller crystallite size with many high-energy grain boundaries and defects, and an apparent higher solubility than 20 nm pure silver particles. Greater oxidative stress and cytotoxicity were observed for 20 nm particles containing the Au core than for 20 nm pure silver particles. A simple dissolution model described the time variation of particle size and dissolved silver for particle loadings larger than 9 μg/ml for the 24-h period characteristic of many in-vitro studies.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Chongmin Wang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Donald R Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Jordan N Smith
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Chongxuan Liu
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Vamsi Kodali
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Brian D Thrall
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Box 999, Richland, Washington 99354
| | - Shu Chen
- Department of Materials and London Center for Nanotechnology, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Center for Nanotechnology, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| | - Mary P Ryan
- Department of Materials and London Center for Nanotechnology, Imperial College London, Exhibition Road, SW72AZ London, United Kingdom
| |
Collapse
|
38
|
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. NANO TODAY 2015; 10:487-510. [PMID: 26640510 PMCID: PMC4666556 DOI: 10.1016/j.nantod.2015.06.006] [Citation(s) in RCA: 910] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phagocytes are key cellular participants determining important aspects of host exposure to nanomaterials, initiating clearance, biodistribution and the tenuous balance between host tolerance and adverse nanotoxicity. Macrophages in particular are believed to be among the first and primary cell types that process nanoparticles, mediating host inflammatory and immunological biological responses. These processes occur ubiquitously throughout tissues where nanomaterials are present, including the host mononuclear phagocytic system (MPS) residents in dedicated host filtration organs (i.e., liver, kidney spleen, and lung). Thus, to understand nanomaterials exposure risks it is critical to understand how nanomaterials are recognized, internalized, trafficked and distributed within diverse types of host macrophages and how possible cell-based reactions resulting from nanomaterial exposures further inflammatory host responses in vivo. This review focuses on describing macrophage-based initiation of downstream hallmark immunological and inflammatory processes resulting from phagocyte exposure to and internalization of nanomaterials.
Collapse
Affiliation(s)
- Heather Herd Gustafson
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
| | - Dolly Holt-Casper
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
| | - David W. Grainger
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| | - Hamidreza Ghandehari
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
- University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
- University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| |
Collapse
|
39
|
Szymanski CJ, Munusamy P, Mihai C, Xie Y, Hu D, Gilles MK, Tyliszczak T, Thevuthasan S, Baer DR, Orr G. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles. Biomaterials 2015; 62:147-54. [PMID: 26056725 DOI: 10.1016/j.biomaterials.2015.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/25/2015] [Indexed: 11/19/2022]
Abstract
Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce(3+)/Ce(4+) ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce(3+)/Ce(4+) ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of the cells.
Collapse
Affiliation(s)
- Craig J Szymanski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Prabhakaran Munusamy
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Cosmin Mihai
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Yumei Xie
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Mary K Gilles
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tolek Tyliszczak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Donald R Baer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| |
Collapse
|
40
|
Effect of particle agglomeration in nanotoxicology. Arch Toxicol 2015; 89:659-75. [PMID: 25618546 DOI: 10.1007/s00204-015-1460-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 12/27/2022]
Abstract
The emission of engineered nanoparticles (ENPs) into the environment in increasing quantity and variety raises a general concern regarding potential effects on human health. Compared with soluble substances, ENPs exhibit additional dimensions of complexity, that is, they exist not only in various sizes, shapes and chemical compositions but also in different degrees of agglomeration. The effect of the latter is the topic of this review in which we explore and discuss the role of agglomeration on toxicity, including the fate of nanomaterials after their release and the biological effects they may induce. In-depth investigations of the effect of ENP agglomeration on human health are still rare, but it may be stated that outside the body ENP agglomeration greatly reduces human exposure. After uptake, agglomeration of ENPs reduces translocation across primary barriers such as lungs, skin or the gastrointestinal tract, preventing exposure of "secondary" organs. In analogy, also cellular ENP uptake and intracellular distribution are affected by agglomeration. However, agglomeration may represent a risk factor if it occurs after translocation across the primary barriers, and ENPs are able to accumulate within the tissue and thus reduce clearance efficiency.
Collapse
|
41
|
|
42
|
Love RJ, Patenaude M, Dorrington M, Bowdish DME, Hoare T, Jones KS. An investigation of scavenger receptor A mediated leukocyte binding to polyanionic and uncharged polymer hydrogels. J Biomed Mater Res A 2014; 103:1605-12. [PMID: 25087871 DOI: 10.1002/jbm.a.35297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/02/2014] [Accepted: 07/29/2014] [Indexed: 11/10/2022]
Abstract
Cell adhesion to biomaterials can be mediated in part by mechanisms aside from the traditionally recognized opsinization and integrin binding mechanisms. In this study, we investigated the role of scavenger receptor A (SR-A) in leukocyte binding to a series of well-controlled polyanionic and uncharged hydrogels based on a poly(N-isopropylacrylamide) backbone. The hydrogels were injected in the peritoneal cavity of SR-A knockout (KO) and wild-type mice using a minimally invasive procedure and allowed to set in situ. After 24 h, the hydrogels were recovered and analyzed, the peritoneal cavity was lavaged, and cytokine concentrations were assessed by ELISA. The polyanionic hydrogels retrieved from the KO animals were found to be completely devoid of adherent leukocytes, which were present in other materials regardless of the mouse strain in which they were injected. Results from a subsequent in vitro cellular adhesion study with a RAW264.7 cell line failed to yield a similarly definitive role for SR-A in the cellular binding of a polyanionic hydrogel. Taken together, the results of this study show that SR-A mediates leukocyte adhesion to a polyanionic hydrogel in the peritoneal cavity, but other adhesion mechanisms contribute to cellular binding in vitro.
Collapse
Affiliation(s)
- Ryan J Love
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Defence Research and Development Canada, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Verderio P, Avvakumova S, Alessio G, Bellini M, Colombo M, Galbiati E, Mazzucchelli S, Avila JP, Santini B, Prosperi D. Delivering colloidal nanoparticles to mammalian cells: a nano-bio interface perspective. Adv Healthc Mater 2014; 3:957-76. [PMID: 24443410 DOI: 10.1002/adhm.201300602] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/05/2013] [Indexed: 01/09/2023]
Abstract
Understanding the behavior of multifunctional colloidal nanoparticles capable of biomolecular targeting remains a fascinating challenge in materials science with dramatic implications in view of a possible clinical translation. In several circumstances, assumptions on structure-activity relationships have failed in determining the expected responses of these complex systems in a biological environment. The present Review depicts the most recent advances about colloidal nanoparticles designed for use as tools for cellular nanobiotechnology, in particular, for the preferential transport through different target compartments, including cell membrane, cytoplasm, mitochondria, and nucleus. Besides the conventional entry mechanisms based on crossing the cellular membrane, an insight into modern physical approaches to quantitatively deliver nanomaterials inside cells, such as microinjection and electro-poration, is provided. Recent hypotheses on how the nanoparticle structure and functionalization may affect the interactions at the nano-bio interface, which in turn mediate the nanoparticle internalization routes, are highlighted. In addition, some hurdles when this small interface faces the physiological environment and how this phenomenon can turn into different unexpected responses, are discussed. Finally, possible future developments oriented to synergistically tailor biological and chemical properties of nanoconjugates to improve the control over nanoparticle transport, which could open new scenarios in the field of nanomedicine, are addressed.
Collapse
Affiliation(s)
- Paolo Verderio
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Svetlana Avvakumova
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Giulia Alessio
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Michela Bellini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Miriam Colombo
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Elisabetta Galbiati
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “Luigi Sacco”; Università di Milano; Ospedale L. Sacco, via G. B. Grassi 74 20157 Milano Italy
| | - Jesus Peñaranda Avila
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Benedetta Santini
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
| | - Davide Prosperi
- Dipartimento di Biotecnologie e Bioscienze; Università di Milano-Bicocca; piazza della Scienza 2 20126 Milano Italy
- Laboratory of Nanomedicine and Clinical Biophotonics, Fondazione Don Carlo Gnocchi ONLUS; Via Capecelatro 66 20148 Milan Italy
| |
Collapse
|
44
|
Wijesundera KK, Izawa T, Tennakoon AH, Murakami H, Golbar HM, Katou-Ichikawa C, Tanaka M, Kuwamura M, Yamate J. M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol 2014; 96:382-92. [DOI: 10.1016/j.yexmp.2014.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/07/2014] [Indexed: 12/14/2022]
|
45
|
Paula AJ, Silveira CP, Martinez DST, Souza Filho AG, Romero FV, Fonseca LC, Tasic L, Alves OL, Durán N. Topography-driven bionano-interactions on colloidal silica nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3437-3447. [PMID: 24524580 DOI: 10.1021/am405594q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report here that the surface topography of colloidal mesoporous silica nanoparticles (MSNs) plays a key role on their bionano-interactions by driving the adsorption of biomolecules on the nanoparticle through a matching mechanism between the surface cavities characteristics and the biomolecules stereochemistry. This conclusion was drawn by analyzing the biophysicochemical properties of colloidal MSNs in the presence of single biomolecules, such as alginate or bovine serum albumin (BSA), as well as dispersed in a complex biofluid, such as human blood plasma. When dispersed in phosphate buffered saline media containing alginate or BSA, monodisperse spherical MSNs interact with linear biopolymers such as alginate and with a globular protein such as bovine serum albumin (BSA) independently of the surface charge sign (i.e. positive or negative), thus leading to a decrease in the surface energy and to the colloidal stabilization of these nanoparticles. In contrast, silica nanoparticles with irregular surface topographies are not colloidally stabilized in the presence of alginate but they are electrosterically stabilized by BSA through a sorption mechanism that implies reversible conformation changes of the protein, as evidenced by circular dichroism (CD). The match between the biomolecule size and stereochemistry with the nanoparticle surface cavities characteristics reflects on the nanoparticle surface area that is accessible for each biomolecule to interact and stabilize any non-rigid nanoparticles. On the other hand, in contact with variety of biomolecules such as those present in blood plasma (55%), MSNs are colloidally stabilized regardless of the topography and surface charge, although the identity of the protein corona responsible for this stabilization is influenced by the surface topography and surface charge. Therefore, the biofluid in which nanoparticles are introduced plays an important role on their physicochemical behavior synergistically with their inherent characteristics (e.g., surface topography).
Collapse
Affiliation(s)
- Amauri J Paula
- Department of Physics, Universidade Federal do Ceará , P.O. Box 6030, 60455-900, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW, Wang W, Pounds JG, Thrall BD. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS NANO 2013; 7:6997-7010. [PMID: 23808590 PMCID: PMC3756554 DOI: 10.1021/nn402145t] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although the potential human health impacts from exposure to engineered nanoparticles (ENPs) are uncertain, past epidemiological studies have established correlations between exposure to ambient air pollution particulates and the incidence of pneumonia and lung infections. Using amorphous silica and superparamagnetic iron oxide (SPIO) as model high production volume ENPs, we examined how macrophage activation by bacterial lipopolysaccharide (LPS) or the lung pathogen Streptococcus pneumoniae is altered by ENP pretreatment. Neither silica nor SPIO treatment elicited direct cytotoxic or pro-inflammatory effects in bone marrow-derived macrophages. However, pretreatment of macrophages with SPIO caused extensive reprogramming of nearly 500 genes regulated in response to LPS challenge, hallmarked by exaggerated activation of oxidative stress response pathways and suppressed activation of both pro- and anti-inflammatory pathways. Silica pretreatment altered regulation of only 67 genes, but there was strong correlation with gene sets affected by SPIO. Macrophages exposed to SPIO displayed a phenotype suggesting an impaired ability to transition from an M1 to M2-like activation state, characterized by suppressed IL-10 induction, enhanced TNFα production, and diminished phagocytic activity toward S. pneumoniae. Studies in macrophages deficient in scavenger receptor A (SR-A) showed SR-A participates in cell uptake of both the ENPs and S. pneumonia and co-regulates the anti-inflammatory IL-10 pathway. Thus, mechanisms for dysregulation of innate immunity exist by virtue that common receptor recognition pathways are used by some ENPs and pathogenic bacteria, although the extent of transcriptional reprogramming of macrophage function depends on the physicochemical properties of the ENP after internalization. Our results also illustrate that biological effects of ENPs may be indirectly manifested only after challenging normal cell function. Nanotoxicology screening strategies should therefore consider how exposure to these materials alters susceptibility to other environmental exposures.
Collapse
Affiliation(s)
- Vamsi Kodali
- Pacific Northwest National Laboratory (PNNL) Center for Nanotoxicology, and Biological Sciences Division, (PNNL), Richland, WA
| | - Matthew H. Littke
- Pacific Northwest National Laboratory (PNNL) Center for Nanotoxicology, and Biological Sciences Division, (PNNL), Richland, WA
| | | | - Justin G. Teeguarden
- Pacific Northwest National Laboratory (PNNL) Center for Nanotoxicology, and Biological Sciences Division, (PNNL), Richland, WA
| | - Liang Shi
- Pacific Northwest National Laboratory (PNNL) Center for Nanotoxicology, and Biological Sciences Division, (PNNL), Richland, WA
| | - Charles W. Frevert
- Department of Comparative Medicine, University of Washington, Seattle, WA
| | - Wei Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Joel G. Pounds
- Pacific Northwest National Laboratory (PNNL) Center for Nanotoxicology, and Biological Sciences Division, (PNNL), Richland, WA
| | - Brian D. Thrall
- Pacific Northwest National Laboratory (PNNL) Center for Nanotoxicology, and Biological Sciences Division, (PNNL), Richland, WA
- Correspondence: BD Thrall, Box 999, J4-02, Richland, WA, 99352, 509-371-7307 (phone), 509-371-7304 (FAX),
| |
Collapse
|
47
|
Mortensen NP, Hurst GB, Wang W, Foster CM, Nallathamby PD, Retterer ST. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity. NANOSCALE 2013; 5:6372-80. [PMID: 23736871 DOI: 10.1039/c3nr33280b] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO(-)) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 ± 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO(-) NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Biological and Nanoscale Systems Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | | | | |
Collapse
|
48
|
Love RJ, Jones KS. Transient inhibition of connective tissue infiltration and collagen deposition into porous poly(lactic-co-glycolic acid) discs. J Biomed Mater Res A 2013; 101:3599-606. [PMID: 23766241 DOI: 10.1002/jbm.a.34648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/12/2013] [Accepted: 02/11/2013] [Indexed: 11/11/2022]
Abstract
Connective tissue rapidly proliferates on and around biomaterials implanted in vivo, which impairs the function of the engineered tissues, biosensors, and devices. Glucocorticoids can be utilized to suppress tissue ingrowth, but can only be used for a limited time because they nonselectively arrest cell proliferation in the local environment. The present study examined use of a prolyl-4-hydroxylase inhibitor, 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (1,4-DPCA), to suppress connective tissue ingrowth in porous PLGA discs implanted in the peritoneal cavity for 28 days. The prolyl-4-hydroxylase inhibitor was found to be effective at inhibiting collagen deposition within and on the outer surface of the disc, and also limited connective tissue ingrowth, but not to the extent of glucocorticoid inhibition. Finally, it was discovered that 1,4-DPCA suppressed Scavenger Receptor A expression on a macrophage-like cell culture, which may account for the drug's ability to limit connective tissue ingrowth in vivo.
Collapse
Affiliation(s)
- Ryan J Love
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
49
|
Könczöl M, Weiss A, Stangenberg E, Gminski R, Garcia-Käufer M, Gieré R, Merfort I, Mersch-Sundermann V. Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells. Chem Res Toxicol 2013; 26:693-702. [PMID: 23607891 DOI: 10.1021/tx300503q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In a recent study, magnetite was investigated for its potential to induce toxic effects and influence signaling pathways. It was clearly demonstrated that ROS formation leads to mitochondrial damage and genotoxic effects in A549 cells. On the basis of these findings, we wanted to elucidate the origin of magnetite-mediated ROS formation and its influence on the cell cycle of A549 and H1299 human lung epithelial cells. Concentration- and size-dependent superoxide formation, measured by electron paramagnetic resonance (EPR), was observed. Furthermore, we could show that the GSH level decreased significantly after exposure to magnetite particles, while catalase (CAT) activity was increased. These effects were also dependent on particle size, albeit less pronounced than those observed with EPR. We were able to show that incubation of A549 cells prior to particle treatment with diphenyleneiodonium (DPI), a NADPH-oxidase (NOX) inhibitor, leads to decreased ROS formation, but this effect was not observed for the NOX inhibitor apocynin. Soluble iron does not contribute considerably to ROS production. Analysis of cell-cycle distribution revealed a pronounced sub-G1 peak, which cannot be linked to increased cell death. Western blot analysis did not show activation of p53 but upregulation of p21 in A549. Here, we were unexpectedly able to demonstrate that exposure to magnetite leads to p21-mediated G1-like arrest. This has been reported previously only for low concentrations of microtubule stabilization drugs. Importantly, the arrested sub-G1 cells were viable and showed no caspase 3/7 activation.
Collapse
Affiliation(s)
- Mathias Könczöl
- Department of Environmental Health Sciences, University Medical Center Freiburg , Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Foldbjerg R, Wang J, Beer C, Thorsen K, Sutherland DS, Autrup H. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines. Chem Biol Interact 2013; 204:28-38. [PMID: 23623845 DOI: 10.1016/j.cbi.2013.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/18/2013] [Accepted: 04/07/2013] [Indexed: 01/18/2023]
Abstract
Much of the concerns regarding engineered nanoparticle (NP) toxicity are based on knowledge from previous studies on particles in ambient air or occupational situations. E.g., the effects of exposure to silica dust particles have been studied intensely due to the carcinogenicity of crystalline silica. However, the increasing usage of engineered amorphous silica NPs has emphasized the need for further mechanistic insight to predict the consequences of exposure to the amorphous type of silica NPs. The present study focused on the in vitro biological effects following exposure to well-dispersed, BSA-stabilized, amorphous silica NPs whereas unmodified silica NPs where included for reasons of comparison. The cytotoxicity of the silica NPs was investigated in six different cell lines (A549, THP-1, CaCo-2, ASB-XIV, J-774A.1, and Colon-26) selected to explore the significance of organ and species sensitivity in vitro. Viability data demonstrated that macrophages were most sensitive to silica NP and interestingly, murine cell lines were generally found to be more sensitive than comparable human cell lines. Further studies were conducted in the human epithelial lung cell line, A549, to explore the molecular mechanism of silica toxicity. Generation of reactive oxygen species, one of the proposed toxicological mechanisms of NPs, was investigated in A549 cells by the dichlorofluorescin (DCF) assay to be significantly induced at NP concentrations above 113 μg/mL. However, induction of oxidative stress related pathways was not found after silica NP exposure for 24 h in gene array studies conducted in A549 cells at a relatively low NP concentration (EC20). Up-regulated genes (more than 2-fold) were primarily related to lipid metabolism and biosynthesis whereas down-regulated genes included several processes such as transcription, cell junction, extra cellular matrix (ECM)-receptor interaction and others. Thus, gene expression data proposes that several cellular processes other than oxidative stress could be affected by exposure to silica NPs.
Collapse
Affiliation(s)
- Rasmus Foldbjerg
- Department of Public Health, Aarhus University, Bartholins Allé 2, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|