1
|
Wang BJ, Chen YY, Chang HH, Chen RJ, Wang YJ, Lee YH. Zinc oxide nanoparticles exacerbate skin epithelial cell damage by upregulating pro-inflammatory cytokines and exosome secretion in M1 macrophages following UVB irradiation-induced skin injury. Part Fibre Toxicol 2024; 21:9. [PMID: 38419076 PMCID: PMC10900617 DOI: 10.1186/s12989-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnONPs) are common materials used in skin-related cosmetics and sunscreen products due to their whitening and strong UV light absorption properties. Although the protective effects of ZnONPs against UV light in intact skin have been well demonstrated, the effects of using ZnONPs on damaged or sunburned skin are still unclear. In this study, we aimed to reveal the detailed underlying mechanisms related to keratinocytes and macrophages exposed to UVB and ZnONPs. RESULTS We demonstrated that ZnONPs exacerbated mouse skin damage after UVB exposure, followed by increased transepidermal water loss (TEWL) levels, cell death and epithelial thickness. In addition, ZnONPs could penetrate through the damaged epithelium, gain access to the dermis cells, and lead to severe inflammation by activation of M1 macrophage. Mechanistic studies indicated that co-exposure of keratinocytes to UVB and ZnONPs lysosomal impairment and autophagy dysfunction, which increased cell exosome release. However, these exosomes could be taken up by macrophages, which accelerated M1 macrophage polarization. Furthermore, ZnONPs also induced a lasting inflammatory response in M1 macrophages and affected epithelial cell repair by regulating the autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. CONCLUSIONS Our findings propose a new concept for ZnONP-induced skin toxicity mechanisms and the safety issue of ZnONPs application on vulnerable skin. The process involved an interplay of lysosomal impairment, autophagy-mediated NLRP3 inflammasome and macrophage exosome secretion. The current finding is valuable for evaluating the effects of ZnONPs for cosmetics applications.
Collapse
Affiliation(s)
- Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 71710, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, 70403, Taiwan
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Hui-Hsuan Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 406040, Taiwan.
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
2
|
Gimeno-Benito I, Giusti A, Dekkers S, Haase A, Janer G. A review to support the derivation of a worst-case dermal penetration value for nanoparticles. Regul Toxicol Pharmacol 2020; 119:104836. [PMID: 33249100 DOI: 10.1016/j.yrtph.2020.104836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022]
Abstract
Data on dermal penetration of nanoparticles (NPs) was reviewed with the goal to establish a worst-case dermal penetration value for NPs. To this aim, the main focus was on studies providing quantitative dermal penetration data (29 studies). In vivo dermal penetration studies and ex vivo studies based on skin explants were included. These studies used NPs with different compositions, dimensions, and shapes. The overall results showed that skin is an efficient barrier for NPs, indistinctly of their properties. However, some studies reported that a small percentage of the applied NP dose penetrated the skin surface and reached deeper skin layers. The integrity of the skin layer and the product formulation were more critical determinants of dermal penetration than the NP properties. Most quantitative studies were based on elemental analysis such that it cannot be concluded if detected levels are attributable to a dissolved fraction or to the penetration of particles as such. Results of qualitative imaging studies suggest that at least a fraction of the levels reported in quantitative studies could be due to particle penetration. Altogether, based on the data compiled, we propose that 1% could be used as a worst-case dermal penetration value for nanoparticles within the boundaries of the properties of those included in our analysis.
Collapse
Affiliation(s)
| | - Anna Giusti
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max- Dohrn- Strasse 8-10, 10589, Berlin, Germany
| | - Susan Dekkers
- Rijksinstituut voor Volksgezondheid en Milieu (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Andrea Haase
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max- Dohrn- Strasse 8-10, 10589, Berlin, Germany
| | - Gemma Janer
- Leitat Technological Center, Innovació 2, 08225, Terrassa, Spain.
| |
Collapse
|
3
|
Agobe F, DeLouise LA. The Role of Extracellular Vesicles in the Skin and Their Interactions with Nanoparticles. WORLD JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2020; 1:17-21. [PMID: 39045530 PMCID: PMC11265537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EVs) include exosomes and microvesicles. They are released from cells under both physiological and pathological conditions. EVs can be isolated from a host of biological mediums, such as blood plasma, saliva, and skin. The role of EVs and their contents including RNA, proteins, and signaling molecules, depends on the specific cells and organs from which they are derived and diseased state. EVs play a key role in cell-to-cell communication. Although the role of EVs in skin biology is a developing field, recent literature suggests they play an important role in skin homeostasis, disease, and transdermal drug delivery. EVs have been shown to modulate skin pigmentation, and aid in the cutaneous wound healing process and the secretion of nanoparticles. This paper reviews the basics of EV biogenesis, their isolation and their role in skin. We also review what is currently known about how nanoparticles may impact the contents of EVs in the skin.
Collapse
Affiliation(s)
- Francesca Agobe
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| | - Lisa A. DeLouise
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| |
Collapse
|
4
|
Phelan-Dickinson SJ, Palmer BC, Chen Y, DeLouise LA. The UVR Filter Octinoxate Modulates Aryl Hydrocarbon Receptor Signaling in Keratinocytes via Inhibition of CYP1A1 and CYP1B1. Toxicol Sci 2020; 177:188-201. [PMID: 32603427 DOI: 10.1093/toxsci/kfaa091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ultraviolet radiation (UVR) is a consistent part of the environment that has both beneficial and harmful effects on human health. UVR filters in the form of commercial sunscreens have been widely used to reduce the negative health effects of UVR exposure. Despite their benefit, literature suggests that some filters can penetrate skin and have off-target biological effects. We noted that many organic filters are hydrophobic and contain aromatic rings, making them potential modulators of Aryl hydrocarbon Receptor (AhR) signaling. We hypothesized that some filters may be able to act as agonists or antagonists on the AhR. Using a luciferase reporter cell line, we observed that the UVR filter octinoxate potentiated the ability of the known AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), to activate the AhR. Cotreatments of keratinocytes with octinoxate and FICZ lead to increased levels of cytochrome P4501A1 (CYP1A1) and P4501B1 (CYP1B1) mRNA transcripts, in an AhR-dependent fashion. Mechanistic studies revealed that octinoxate is an inhibitor of CYP1A1 and CYP1B1, with IC50 values at approximately 1 µM and 586 nM, respectively. In vivo topical application of octinoxate and FICZ also elevated CYP1A1 and CYP1B1 mRNA levels in mouse skin. Our results show that octinoxate is able to indirectly modulate AhR signaling by inhibiting CYP1A1 and CYP1B1 enzyme function, which may have important downstream consequences for the metabolism of various compounds and skin integrity. It is important to continue studying the off-target effects of octinoxate and other UVR filters, because they are used on skin on a daily basis world-wide.
Collapse
Affiliation(s)
| | - Brian C Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York 14642
| | - Yue Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627
| | - Lisa A DeLouise
- Department of Environmental Medicine, University of Rochester Medical Center, New York 14642.,Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.,Department of Dermatology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
5
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
6
|
Influence of exposure dose, complex mixture, and ultraviolet radiation on skin absorption and bioactivation of polycyclic aromatic hydrocarbons ex vivo. Arch Toxicol 2019; 93:2165-2184. [DOI: 10.1007/s00204-019-02504-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
|
7
|
Palmer BC, Jatana S, Phelan-Dickinson SJ, DeLouise LA. Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact dermatitis. Sci Rep 2019; 9:5085. [PMID: 30911099 PMCID: PMC6434075 DOI: 10.1038/s41598-019-41493-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023] Open
Abstract
Amorphous silicon dioxide nanoparticles (SiNPs) are ubiquitous, and they are currently found in cosmetics, drugs, and foods. Biomedical research is also focused on using these nanoparticles as drug delivery and bio-sensing platforms. Due to the high potential for skin exposure to SiNPs, research into the effect of topical exposure on both healthy and inflammatory skin models is warranted. While we observe only minimal effects of SiNPs on healthy mouse skin, there is an immunomodulatory effect of these NPs in a model of allergic contact dermatitis. The effect appears to be mediated partly by keratinocytes and results in decreases in epidermal hyperplasia, inflammatory cytokine release, immune cell infiltration, and a subsequent reduction in skin swelling. Additional research is required to further our mechanistic understanding and to validate the extent of this immunomodulatory effect in human subjects in order to assess the potential prophylactic use of SiNPs for treating allergic skin conditions.
Collapse
Affiliation(s)
- Brian C. Palmer
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Samreen Jatana
- 0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA
| | - Sarah J. Phelan-Dickinson
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA ,0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA ,0000 0004 1936 9166grid.412750.5Department of Dermatology, University of Rochester Medical Center, Rochester, New York USA
| |
Collapse
|
8
|
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Ann Biomed Eng 2018; 47:1-21. [DOI: 10.1007/s10439-018-02124-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
|
9
|
Jatana S, Palmer BC, Phelan SJ, Gelein R, DeLouise LA. In vivo quantification of quantum dot systemic transport in C57BL/6 hairless mice following skin application post-ultraviolet radiation. Part Fibre Toxicol 2017; 14:12. [PMID: 28410606 PMCID: PMC5391571 DOI: 10.1186/s12989-017-0191-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/27/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm2 UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model. RESULTS Results indicate that QDs can penetrate mouse skin, regardless of UVR exposure, as evidenced by the increased cadmium in the local lymph nodes of all QD treated mice. The average % recovery for all treatment groups was 69.68% with ~66.84% of the applied dose recovered from the skin (both epicutaneous and intracutaneous). An average of 0.024% of the applied dose was recovered from the lymph nodes across various treatment groups. When QDs are applied 4 days post UV irradiation, at the peak of the skin barrier defect and LC migration to the local lymph node, there is an increased cellular presence of QD in the lymph node; however, AAS analysis of local lymph nodes display no difference in cadmium levels due to UVR treatment. CONCLUSIONS Our data suggests that Langerhans cells (LCs) can engulf QDs in skin, but transport to the lymph node may occur by both cellular (dendritic and macrophage) and non-cellular mechanisms. It is interesting that these specific nanoparticles were retained in skin similarly regardless of UVR barrier disruption, but the observed skin immune cell interaction with nanoparticles suggest a potential for immunomodulation, which we are currently examining in a murine model of skin allergy.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
| | - Brian C. Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Sarah J. Phelan
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Robert Gelein
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY USA
- Department of Dermatology, University of Rochester Medical Center, Dermatology and Biomedical Engineering, 601 Elmwood Avenue, Box 697, Rochester, NY 14642 USA
| |
Collapse
|
10
|
Palmer BC, DeLouise LA. Nanoparticle-Enabled Transdermal Drug Delivery Systems for Enhanced Dose Control and Tissue Targeting. Molecules 2016; 21:E1719. [PMID: 27983701 PMCID: PMC5639878 DOI: 10.3390/molecules21121719] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/28/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023] Open
Abstract
Transdermal drug delivery systems have been around for decades, and current technologies (e.g., patches, ointments, and creams) enhance the skin permeation of low molecular weight, lipophilic drugs that are efficacious at low doses. The objective of current transdermal drug delivery research is to discover ways to enhance skin penetration of larger, hydrophilic drugs and macromolecules for disease treatment and vaccination. Nanocarriers made of lipids, metals, or polymers have been successfully used to increase penetration of drugs or vaccines, control drug release, and target drugs to specific areas of skin in vivo. While more research is needed to identify the safety of nanocarriers, this technology has the potential to expand the use of transdermal routes of administration to a wide array of therapeutics. Here, we review the current state of nanoparticle skin delivery systems with special emphasis on targeting skin diseases.
Collapse
Affiliation(s)
- Brian C Palmer
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | - Lisa A DeLouise
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY 14627, USA.
- Department of Dermatology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
11
|
Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U, Lendlein A. Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges? J Control Release 2016; 242:3-15. [DOI: 10.1016/j.jconrel.2016.07.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
|
12
|
Reiss P, Carrière M, Lincheneau C, Vaure L, Tamang S. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials. Chem Rev 2016; 116:10731-819. [DOI: 10.1021/acs.chemrev.6b00116] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Reiss
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Marie Carrière
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-CIBEST/LAN, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Christophe Lincheneau
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Louis Vaure
- Université Grenoble Alpes, INAC-SyMMES, F-38054 Grenoble Cedex 9, France
- CEA, INAC-SyMMES-STEP/LEMOH, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
- CNRS, SPrAM, F-38054 Grenoble Cedex 9, France
| | - Sudarsan Tamang
- Department
of Chemistry, Sikkim University, Sikkim 737102, India
| |
Collapse
|
13
|
Jatana S, Callahan LM, Pentland AP, DeLouise LA. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study. COSMETICS 2016; 3:6. [PMID: 27453793 DOI: 10.3390/cosmetics3010006.impact] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin. QDs were mixed in 7 different vehicles, including 5 commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA) facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 hours rest ex vivo. Resting human skin 24 hours prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| | - Linda M Callahan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, NY 14642
| | - Alice P Pentland
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642; Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
14
|
Jatana S, Callahan LM, Pentland AP, DeLouise LA. Impact of Cosmetic Lotions on Nanoparticle Penetration through ex vivo C57BL/6 Hairless Mouse and Human Skin: A Comparison Study. COSMETICS 2016; 3. [PMID: 27453793 DOI: 10.3390/cosmetics3010006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Understanding the interactions of nanoparticles (NPs) with skin is important from a consumer and occupational health and safety perspective, as well as for the design of effective NP-based transdermal therapeutics. Despite intense efforts to elucidate the conditions that permit NP penetration, there remains a lack of translatable results from animal models to human skin. The objectives of this study are to investigate the impact of common skin lotions on NP penetration and to quantify penetration differences of quantum dot (QD) NPs between freshly excised human and mouse skin. QDs were mixed in 7 different vehicles, including 5 commercial skin lotions. These were topically applied to skin using two exposure methods; a petri dish protocol and a Franz diffusion cell protocol. QD presence in the skin was quantified using Confocal Laser Scanning Microscopy. Results show that the commercial vehicles can significantly impact QD penetration in both mouse and human skin. Lotions that contain alpha hydroxyl acids (AHA) facilitated NP penetration. Lower QD signal was observed in skin studied using a Franz cell. Freshly excised human skin was also studied immediately after the sub-cutaneous fat removal process, then after 24 hours rest ex vivo. Resting human skin 24 hours prior to QD exposure significantly reduced epidermal presence. This study exemplifies how application vehicles, skin processing and the exposure protocol can affect QD penetration results and the conclusions that maybe drawn between skin models.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642
| | - Linda M Callahan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, NY 14642
| | - Alice P Pentland
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642; Department of Dermatology, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
15
|
Ravichandran S, Sullivan MA, Callahan LM, Bentley KL, DeLouise LA. Development and characterization of antibody reagents for detecting nanoparticles. NANOSCALE 2015; 7:20042-20054. [PMID: 26568258 PMCID: PMC4685707 DOI: 10.1039/c5nr04882f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The increasing use of nanoparticles (NPs) in technological applications and in commercial products has escalated environmental health and safety concerns. The detection of NPs in the environment and in biological systems is challenged by limitations associated with commonly used analytical techniques. In this paper we report on the development and characterization of NP binding antibodies, termed NProbes. Phage display methodology was used to discover antibodies that bind NPs dispersed in solution. We present a proof-of-concept for the generation of NProbes and their use for detecting quantum dots and titanium dioxide NPs in vitro and in an ex vivo human skin model. Continued development and refinement of NProbes to detect NPs that vary in composition, shape, size, and surface coating will comprise a powerful tool kit that can be used to advance nanotechnology research particularly in the nanotoxicology and nanotherapeutics fields.
Collapse
Affiliation(s)
- Supriya Ravichandran
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
16
|
Lai L, Jin JC, Xu ZQ, Mei P, Jiang FL, Liu Y. Necrotic cell death induced by the protein-mediated intercellular uptake of CdTe quantum dots. CHEMOSPHERE 2015; 135:240-249. [PMID: 25965003 DOI: 10.1016/j.chemosphere.2015.04.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/06/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
The toxicity of CdTe QDs with nearly identical maximum emission wavelength but modified with four different ligands (MPA, NAC, GSH and dBSA) to HEK293 and HeLa cells were investigated using flow cytometry, spectroscopic and microscopic methods. The results showed that the cytotoxicity of QDs increased in a dose- and time-dependent manner. No appreciable fraction of cells with sub-G1 DNA content, the loss of membrane integrity, and the swelling of nuclei clearly indicated that CdTe QDs could lead to necrotic cell death in HEK293 cells. JC-1 staining and TEM images confirmed that QDs induced MPT, which resulted in mitochondrial swelling, collapse of the membrane potential. MPT is an important step in QDs-induced necrosis. Moreover, QDs induced MPT through the elevation of ROS. The fluorimetric assay and theoretical analysis demonstrated ROS production has been associated with the internalization of QDs with cells. Due to large surface/volume ratios of QDs, when QDs added in the culture medium, serum proteins in the culture medium will be adsorbed on the surface of QDs. This adsorption of serum protein will change the surface properties and size, and then mediate the cellular uptake of QDs via the clathrin-mediated endocytic pathway. After entering into cells, the translocation of QDs in cells is usually via endosomal or lysosomal vesicles. The rapid degradation of QDs in lysosome and the lysosomal destabilization induce cell necrosis. This study provides a basis for understanding the cytotoxicity mechanism of CdTe QDs, and valuable information for safe use of QDs in the future.
Collapse
Affiliation(s)
- Lu Lai
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jian-Cheng Jin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zi-Qiang Xu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan 430072, PR China
| | - Ping Mei
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecule Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Material Sciences, Hubei Engineering University, Xiaogan 432000, PR China.
| |
Collapse
|
17
|
Cutaneous penetration of soft nanoparticles via photodamaged skin: Lipid-based and polymer-based nanocarriers for drug delivery. Eur J Pharm Biopharm 2015; 94:94-105. [DOI: 10.1016/j.ejpb.2015.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 01/13/2023]
|
18
|
Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 2015; 45:837-72. [DOI: 10.3109/10408444.2015.1058747] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul Toxicol Pharmacol 2015; 72:310-22. [DOI: 10.1016/j.yrtph.2015.05.005] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/17/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022]
|
20
|
Lai L, Jin JC, Xu ZQ, Ge YS, Jiang FL, Liu Y. Spectroscopic and Microscopic Studies on the Mechanism of Mitochondrial Toxicity Induced by CdTe QDs Modified with Different Ligands. J Membr Biol 2015; 248:727-40. [DOI: 10.1007/s00232-015-9785-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 02/24/2015] [Indexed: 12/23/2022]
|
21
|
|
22
|
Osmond-McLeod MJ, Oytam Y, Kirby JK, Gomez-Fernandez L, Baxter B, McCall MJ. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology 2014; 8 Suppl 1:72-84. [PMID: 24266363 PMCID: PMC4179643 DOI: 10.3109/17435390.2013.855832] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 11/13/2022]
Abstract
Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn ((68)Zn) from (68)ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in (68)Zn/(64)Zn ratios, (68)Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of (68)Zn tracer were detected in internal organs of mice receiving topical applications of (68)ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of (68)Zn in organs of virgin mice treated with sunscreen containing (68)ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger (68)ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite (68)Zn absorption, which may have been in the form of soluble (68)Zn species or (68)ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications.
Collapse
Affiliation(s)
- Megan J Osmond-McLeod
- CSIRO Animal, Food and Health Sciences, CSIRO Advanced Materials TCP (Nanosafety) , North Ryde, NSW , Australia
| | | | | | | | | | | |
Collapse
|
23
|
Effect of zinc oxide nanomaterials-induced oxidative stress on the p53 pathway. Biomaterials 2013; 34:10133-42. [DOI: 10.1016/j.biomaterials.2013.09.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/06/2013] [Indexed: 11/16/2022]
|
24
|
Jatana S, DeLouise LA. Understanding engineered nanomaterial skin interactions and the modulatory effects of ultraviolet radiation skin exposure. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:61-79. [PMID: 24123977 DOI: 10.1002/wnan.1244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/11/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022]
Abstract
The study of engineered nanomaterials for the development of technological applications, nanomedicine, and nano-enabled consumer products is an ever-expanding discipline as is the concern over the impact of nanotechnology on human environmental health and safety. In this review, we discuss the current state of understanding of nanomaterial skin interactions with a specific emphasis on the effects of ultraviolet radiation (UVR) skin exposure. Skin is the largest organ of the body and is typically exposed to UVR on a daily basis. This necessitates the need to understand how UVR skin exposure can influence nanomaterial skin penetration, alter nanomaterial systemic trafficking, toxicity, and skin immune function. We explore the unique dichotomy that UVR has on inducing both deleterious and therapeutic effects in skin. The subject matter covered in this review is broadly informative and will raise awareness of potential increased risks from nanomaterial skin exposure associated with specific occupational and life style choices. The UVR-induced immunosuppressive response in skin raises intriguing questions that motivate future research directions in the nanotoxicology and nanomedicine fields.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|