1
|
Kim HR, Lee H, Kim TH, Gil M, Kim DW. Natural killer cell activity and its relationship with disease activity in rheumatoid arthritis patients. Hum Immunol 2025; 86:111185. [PMID: 39626408 DOI: 10.1016/j.humimm.2024.111185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 01/25/2025]
Abstract
The aim of this study was to explore the relationship between natural killer cell activity (NKA) and disease activity of rheumatoid arthritis (RA). We retrospectively reviewed 259 patients' data including RA markers associated with disease activity and NKA measured by a blood NKA test. Patients were divided into two groups based on their NKA levels, a low NKA group (NKA < 100 pg/mL) and a high NKA group (NKA 100-250 pg/mL). The low NKA group exhibited heightened RA characteristics, including increased seropositivity, anti-cyclic citrullinated peptide (anti-CCP) antibodies, erythrocyte sedimentation rate (ESR), 28-joint disease activity score, tender joints, visual analog scale (VAS), and TNF-α antagonist usage. A negative correlation was observed between NKA and RA severity metrics, including rheumatoid factor (RF), anti-CCP antibodies, ESR, C-reactive protein, tender and swollen joints, and VAS scores. Logistic regression analysis indicated that factors such as seropositivity, elevated RF and anti-CCP antibodies, increased tender and swollen joints, higher VAS scores, and the employment of biological agents were linked with higher chances of belonging to the lower NKA group. Comparable trends were found within the seropositive RA patient subset. Our findings highlight a significant link between diminished NKA levels and exacerbated RA symptoms.
Collapse
Affiliation(s)
- Hye Rim Kim
- NKMAX Co., Ltd., Seongnam, Republic of Korea
| | - Hyeja Lee
- NKMAX Co., Ltd., Seongnam, Republic of Korea
| | - Tae Hee Kim
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Minchan Gil
- NKMAX Co., Ltd., Seongnam, Republic of Korea.
| | - Dong Wook Kim
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
2
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Vissers LTW, van Ostaijen-ten Dam MM, Melsen JE, van der Spek YM, Kemna KP, Lankester AC, van der Burg M, Mohseny AB. Potential role of B- and NK-cells in the pathogenesis of pediatric aplastic anemia through deep phenotyping. Front Immunol 2024; 15:1328175. [PMID: 39229270 PMCID: PMC11368747 DOI: 10.3389/fimmu.2024.1328175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Introduction Pediatric patients with unexplained bone marrow failure (BMF) are often categorized as aplastic anemia (AA). Based on the accepted hypothesis of an auto-immune mechanism underlying AA, immune suppressive therapy (IST) might be effective. However, due to the lack of diagnostic tools to identify immune AA and prognostic markers to predict IST response together with the unequaled curative potential of hematopoietic stem cell transplantation (HSCT), most pediatric severe AA patients are momentarily treated by HSCT if available. Although several studies indicate oligoclonal T-cells with cytotoxic activities towards the hematopoietic stem cells, increasing evidence points towards defective inhibitory mechanisms failing to inhibit auto-reactive T-cells. Methods We aimed to investigate the role of NK- and B-cells in seven pediatric AA patients through a comprehensive analysis of paired bone marrow and peripheral blood samples with spectral flow cytometry in comparison to healthy age-matched bone marrow donors. Results We observed a reduced absolute number of NK-cells in peripheral blood of AA patients with a skewed distribution towards CD56bright NK-cells in a subgroup of patients. The enriched CD56bright NK-cells had a lower expression of CD45RA and TIGIT and a higher expression of CD16, compared to healthy donors. Functional analysis revealed no differences in degranulation. However, IFN-γ production and perforin expression of NK-cells were reduced in the CD56bright-enriched patient group. The diminished NK-cell function in this subgroup might underly the auto-immunity. Importantly, NK-function of AA patients with reduced CD56bright NK-cells was comparable to healthy donors. Also, B-cell counts were lower in AA patients. Subset analysis revealed a trend towards reduction of transitional B-cells in both absolute and relative numbers compared to healthy controls. As these cells were previously hypothesized as regulatory cells in AA, decreased numbers might be involved in defective inhibition of auto-reactive T-cells. Interestingly, even in patients with normal distribution of precursor B-cells, the transitional compartment was reduced, indicating partial differentiation failure from immature to transitional B-cells or a selective loss. Discussion Our findings provide a base for future studies to unravel the role of transitional B-cells and CD56bright NK-cells in larger cohorts of pediatric AA patients as diagnostic markers for immune AA and targets for therapeutic interventions.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Monique M. van Ostaijen-ten Dam
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Janine E. Melsen
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Yanna M. van der Spek
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Koen P. Kemna
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Arjan C. Lankester
- Pediatric Hematology and Stem Cell Transplantation Unit, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| | - Alexander B. Mohseny
- Pediatric Hematology and Stem Cell Transplantation Unit, Department of Pediatrics, Leiden University Medical Center, Willem Alexander Children’s Hospital, Leiden, Netherlands
| |
Collapse
|
4
|
Anioke I, Duquenne L, Parmar R, Mankia K, Shuweihdi F, Emery P, Ponchel F. Lymphocyte subset phenotyping for the prediction of progression to inflammatory arthritis in anti-citrullinated-peptide antibody-positive at-risk individuals. Rheumatology (Oxford) 2024; 63:1720-1732. [PMID: 37676828 PMCID: PMC11147546 DOI: 10.1093/rheumatology/kead466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
OBJECTIVES Inflammatory arthritis (IA) is considered the last stage of a disease continuum, where features of systemic autoimmunity can appear years before clinical synovitis. Time to progression to IA varies considerably between at-risk individuals, therefore the identification of biomarkers predictive of progression is of major importance. We previously reported on the value of three CD4+T cell subsets as biomarkers of progression. Here, we aim to establish the value of 18 lymphocyte subsets (LS) for predicting progression to IA. METHODS Participants were recruited based on a new musculoskeletal complaint and being positive for anti-citrullinated-peptide antibody. Progression (over 10 years) was defined as the development of clinical synovitis. LS analysis was performed for lymphocyte lineages, naive/memory subsets, inflammation-related cells (IRC) and regulatory cells (Treg/B-reg). Modelling used logistic/Cox regressions. RESULTS Of 210 patients included, 93 (44%) progressed to IA, 41/93 (44%) within 12 months (rapid progressors). A total of 5/18 LS were associated with progression [Treg/CD4-naïve/IRC (adjusted P < 0.0001), CD8 (P = 0.021), B-reg (P = 0.015)] and three trends (NK-cells/memory-B-cells/plasmablasts). Unsupervised hierarchical clustering using these eight subsets segregated three clusters of patients, one cluster being enriched [63/109(58%)] and one poor [10/45(22%)] in progressors. Combining all clinical and LS variables, forward logistic regression predicted progression with accuracy = 85.7% and AUC = 0.911, selecting smoking/rheumatoid-factor/HLA-shared-epitope/tender-joint-count-78 and Treg/CD4-naive/CD8/NK-cells/B-reg/plasmablasts. To predict rapid progression, a Cox regression was performed resulting in a model combining smoking/rheumatoid factor and IRC/CD4-naive/Treg/NK-cells/CD8+T cells (AUC = 0.794). CONCLUSION Overall, progression was predicted by specific LS, suggesting potential triggers for events leading to the development of IA, while rapid progression was associated with a different set of subsets.
Collapse
Affiliation(s)
- Innocent Anioke
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Department of Medical Laboratory Sciences, Enugu Campus, University of Nigeria, Enugu State, Nigeria
| | - Laurence Duquenne
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Rekha Parmar
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Farag Shuweihdi
- Leeds Institute of Health Sciences, University of Leeds, School of Medicine, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Yandamuri SS, Filipek B, Lele N, Cohen I, Bennett JL, Nowak RJ, Sotirchos ES, Longbrake EE, Mace EM, O’Connor KC. A Noncanonical CD56dimCD16dim/- NK Cell Subset Indicative of Prior Cytotoxic Activity Is Elevated in Patients with Autoantibody-Mediated Neurologic Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:785-800. [PMID: 38251887 PMCID: PMC10932911 DOI: 10.4049/jimmunol.2300015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD), myelin oligodendrocyte glycoprotein Ab disease, and autoimmune myasthenia gravis (MG) are autoantibody-mediated neurologic conditions where autoantibodies can induce Ab-dependent cellular cytotoxicity (ADCC), a NK cell-mediated effector function. However, whether ADCC is a pathogenic mechanism in patients with these conditions has not been confirmed. We sought to characterize circulatory NK cells using functional assays, phenotyping, and transcriptomics to elucidate their role in pathology. NK cells from NMOSD patients and MG patients with elevated disease burden exhibited reduced ADCC and CD56dimCD16hi NK cells, along with an elevated frequency of CD56dimCD16dim/- NK cells. We determined that ADCC induces a similar phenotypic shift in vitro. Bulk RNA sequencing distinguished the CD56dimCD16dim/- population from the canonical CD56dimCD16hi cytotoxic and CD56hiCD16- immunomodulatory subsets, as well as CD56hiCD16+ NK cells. Multiparameter immunophenotyping of NK cell markers, functional proteins, and receptors similarly showed that the CD56dimCD16dim/- subset exhibits a unique profile while still maintaining expression of characteristic NK markers CD56, CD94, and NKp44. Notably, expression of perforin and granzyme is reduced in comparison with CD56dimCD16hi NK cells. Moreover, they exhibit elevated trogocytosis capability, HLA-DR expression, and many chemokine receptors, including CCR7. In contrast with NMOSD and MG, myelin oligodendrocyte glycoprotein Ab disease NK cells did not exhibit functional, phenotypic, or transcriptomic perturbations. In summary, CD56dimCD16dim/- NK cells are a distinct peripheral blood immune cell population in humans elevated upon prior cytotoxic activity by the CD56dimCD16hi NK cell subset. The elevation of this subset in NMOSD and MG patients suggests prior ADCC activity.
Collapse
Affiliation(s)
- Soumya S. Yandamuri
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
| | - Beata Filipek
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz; Lodz, Poland
| | - Nikhil Lele
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Inessa Cohen
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Jeffrey L. Bennett
- Departments of Neurology and Ophthalmology, Programs in Neuroscience and Immunology, University of Colorado School of Medicine, Anschutz Medical Campus; Aurora, CO, United States
| | - Richard J. Nowak
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Elias S. Sotirchos
- Department of Neurology, Johns Hopkins University; Baltimore, MD, United States
| | - Erin E. Longbrake
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center; New York, NY, United States
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine; New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, United States
| |
Collapse
|
6
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
7
|
Wei L, Xiang Z, Zou Y. The Role of NKG2D and Its Ligands in Autoimmune Diseases: New Targets for Immunotherapy. Int J Mol Sci 2023; 24:17545. [PMID: 38139373 PMCID: PMC10744089 DOI: 10.3390/ijms242417545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Natural killer (NK) cells and CD8+ T cells can clear infected and transformed cells and generate tolerance to themselves, which also prevents autoimmune diseases. Natural killer group 2 member D (NKG2D) is an important activating immune receptor that is expressed on NK cells, CD8+ T cells, γδ T cells, and a very small percentage of CD4+ T cells. In contrast, the NKG2D ligand (NKG2D-L) is generally not expressed on normal cells but is overexpressed under stress. Thus, the inappropriate expression of NKG2D-L leads to the activation of self-reactive effector cells, which can trigger or exacerbate autoimmunity. In this review, we discuss the role of NKG2D and NKG2D-L in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), type I diabetes (T1DM), inflammatory bowel disease (IBD), and celiac disease (CeD). The data suggest that NKG2D and NKG2D-L play a pathogenic role in some autoimmune diseases. Therefore, the development of strategies to block the interaction of NKG2D and NKG2D-L may have therapeutic effects in some autoimmune diseases.
Collapse
Affiliation(s)
| | | | - Yizhou Zou
- Department of Immunology, School of Basic Medical, Central South University, Changsha 410083, China; (L.W.); (Z.X.)
| |
Collapse
|
8
|
Pascual-García S, Martínez-Peinado P, López-Jaén AB, Navarro-Blasco FJ, Montoyo-Pujol YG, Roche E, Peiró G, Sempere-Ortells JM. Analysis of Novel Immunological Biomarkers Related to Rheumatoid Arthritis Disease Severity. Int J Mol Sci 2023; 24:12351. [PMID: 37569732 PMCID: PMC10418816 DOI: 10.3390/ijms241512351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid factor (RF) and anti-citrullinated protein antibodies (ACPAs) are the most frequently used rheumatoid arthritis (RA) diagnostic markers, but they are unable to anticipate the patient's evolution or response to treatment. The aim of this study was to identify possible severity biomarkers to predict an upcoming flare-up or remission period. To address this objective, sera and anticoagulated blood samples were collected from healthy controls (HCs; n = 39) and from early RA (n = 10), flare-up (n = 5), and remission (n = 16) patients. We analyzed leukocyte phenotype markers, regulatory T cells, cell proliferation, and cytokine profiles. Flare-up patients showed increased percentages of cluster of differentiation (CD)3+CD4- lymphocytes (p < 0.01) and granulocytes (p < 0.05) but a decreased natural killer (NK)/T lymphocyte ratio (p < 0.05). Analysis of leukocyte markers by principal component analysis (PCA) and receiver operating characteristic (ROC) curves showed that CD45RO+ (p < 0.0001) and CD45RA+ (p < 0.0001) B lymphocyte expression can discriminate between HCs and early RA patients, while CD3+CD4- lymphocyte percentage (p < 0.0424) and CD45RA+ (p < 0.0424), CD62L+ (p < 0.0284), and CD11a+ (p < 0.0185) B lymphocyte expression can differentiate between flare-up and RA remission subjects. Thus, the combined study of these leukocyte surface markers could have potential as disease severity biomarkers for RA, whose fluctuations could be related to the development of the characteristic pro-inflammatory environment.
Collapse
Affiliation(s)
- Sandra Pascual-García
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | | | - Ana B. López-Jaén
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
| | - Francisco J. Navarro-Blasco
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Rheumatology Unit, University General Hospital of Elche, 03203 Elche, Spain
| | - Yoel G. Montoyo-Pujol
- Medical Oncology Department, Dr. Balmis University General Hospital, Pintor Baeza 12, 03010 Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Enrique Roche
- Biochemistry and Cell Therapy Unit, Institute of Bioengineering, Miguel Hernandez University of Elche, 03202 Elche, Spain
| | - Gloria Peiró
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
- Pathology Department, Dr. Balmis University General Hospital, Pintor Baeza 12, 03010 Alicante, Spain
| | - José M. Sempere-Ortells
- Department of Biotechnology, University of Alicante, 03690 San Vicente del Raspeig, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| |
Collapse
|
9
|
Hojjatipour T, Aslani S, Salimifard S, Mikaeili H, Hemmatzadeh M, Gholizadeh Navashenaq J, Ahangar Parvin E, Jadidi-Niaragh F, Mohammadi H. NK cells - Dr. Jekyll and Mr. Hyde in autoimmune rheumatic diseases. Int Immunopharmacol 2022; 107:108682. [DOI: 10.1016/j.intimp.2022.108682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
|
10
|
Angiogenic Properties of NK Cells in Cancer and Other Angiogenesis-Dependent Diseases. Cells 2021; 10:cells10071621. [PMID: 34209508 PMCID: PMC8303392 DOI: 10.3390/cells10071621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenesis of many serious diseases, including cancer, is closely related to disturbances in the angiogenesis process. Angiogenesis is essential for the progression of tumor growth and metastasis. The tumor microenvironment (TME) has immunosuppressive properties, which contribute to tumor expansion and angiogenesis. Similarly, the uterine microenvironment (UME) exerts a tolerogenic (immunosuppressive) and proangiogenic effect on its cells, promoting implantation and development of the embryo and placenta. In the TME and UME natural killer (NK) cells, which otherwise are capable of killing target cells autonomously, enter a state of reduced cytotoxicity or anergy. Both TME and UME are rich with factors (e.g., TGF-β, glycodelin, hypoxia), which support a conversion of NK cells to the low/non-cytotoxic, proangiogenic CD56brightCD16low phenotype. It is plausible that the phenomenon of acquiring proangiogenic and low cytotoxic features by NK cells is not only limited to cancer but is a common feature of different angiogenesis-dependent diseases (ADDs). In this review, we will discuss the role of NK cells in angiogenesis disturbances associated with cancer and other selected ADDs. Expanding the knowledge of the mechanisms responsible for angiogenesis and its disorders contributes to a better understanding of ADDs and may have therapeutic implications.
Collapse
|
11
|
Soret P, Le Dantec C, Desvaux E, Foulquier N, Chassagnol B, Hubert S, Jamin C, Barturen G, Desachy G, Devauchelle-Pensec V, Boudjeniba C, Cornec D, Saraux A, Jousse-Joulin S, Barbarroja N, Rodríguez-Pintó I, De Langhe E, Beretta L, Chizzolini C, Kovács L, Witte T, Bettacchioli E, Buttgereit A, Makowska Z, Lesche R, Borghi MO, Martin J, Courtade-Gaiani S, Xuereb L, Guedj M, Moingeon P, Alarcón-Riquelme ME, Laigle L, Pers JO. A new molecular classification to drive precision treatment strategies in primary Sjögren's syndrome. Nat Commun 2021; 12:3523. [PMID: 34112769 PMCID: PMC8192578 DOI: 10.1038/s41467-021-23472-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 02/08/2023] Open
Abstract
There is currently no approved treatment for primary Sjögren's syndrome, a disease that primarily affects adult women. The difficulty in developing effective therapies is -in part- because of the heterogeneity in the clinical manifestation and pathophysiology of the disease. Finding common molecular signatures among patient subgroups could improve our understanding of disease etiology, and facilitate the development of targeted therapeutics. Here, we report, in a cross-sectional cohort, a molecular classification scheme for Sjögren's syndrome patients based on the multi-omic profiling of whole blood samples from a European cohort of over 300 patients, and a similar number of age and gender-matched healthy volunteers. Using transcriptomic, genomic, epigenetic, cytokine expression and flow cytometry data, combined with clinical parameters, we identify four groups of patients with distinct patterns of immune dysregulation. The biomarkers we identify can be used by machine learning classifiers to sort future patients into subgroups, allowing the re-evaluation of response to treatments in clinical trials.
Collapse
Affiliation(s)
- Perrine Soret
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | | | - Emiko Desvaux
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
| | | | - Bastien Chassagnol
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Sandra Hubert
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Christophe Jamin
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
- CHU de Brest, Brest, France
| | - Guillermo Barturen
- Department of Medical Genomics, Center for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Guillaume Desachy
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | | | - Cheïma Boudjeniba
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Divi Cornec
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
- CHU de Brest, Brest, France
| | - Alain Saraux
- LBAI, UMR1227, Univ Brest, Inserm, Brest, France
- CHU de Brest, Brest, France
| | | | - Nuria Barbarroja
- Reina Sofia Hospital, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Ignasi Rodríguez-Pintó
- Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Ellen De Langhe
- Skeletal Biology and Engineering Research Center, KU Leuven and Division of Rheumatology, UZ Leuven, Belgium
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Carlo Chizzolini
- Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland
| | | | - Torsten Witte
- Klinik für Immunologie und Rheumatologie, Medical University Hannover, Hannover, Germany
| | | | - Anne Buttgereit
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | - Zuzanna Makowska
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | - Ralf Lesche
- Pharmaceuticals Division, Bayer Pharma Aktiengesellschaft, Berlin, Germany
| | | | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Sophie Courtade-Gaiani
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Laura Xuereb
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Mickaël Guedj
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Philippe Moingeon
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | - Marta E Alarcón-Riquelme
- Department of Medical Genomics, Center for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Laurence Laigle
- Institut de Recherches Internationales Servier, Departments of Translational Medicine and Immuno-Inflammatory Diseases Research and Development, Suresnes, France
| | | |
Collapse
|
12
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Gianchecchi E, Delfino DV, Fierabracci A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front Immunol 2021; 12:616853. [PMID: 33679757 PMCID: PMC7933577 DOI: 10.3389/fimmu.2021.616853] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Siena, Italy
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Domenico V. Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
14
|
Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:e1250. [PMID: 33552511 PMCID: PMC7850912 DOI: 10.1002/cti2.1250] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.
Collapse
Affiliation(s)
- Yuyan Yang
- Tsinghua University School of Medicine Beijing China.,Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Jessica Day
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | | | - Ian P Wicks
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | - Cynthia Louis
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
15
|
Clavijo-Salomon MA, Salcedo R, Roy S, das Neves RX, Dzutsev A, Sales-Campos H, Borbely KSC, Silla L, Orange JS, Mace EM, Barbuto JAM, Trinchieri G. Human NK cells prime inflammatory DC precursors to induce Tc17 differentiation. Blood Adv 2020; 4:3990-4006. [PMID: 32841340 PMCID: PMC7448590 DOI: 10.1182/bloodadvances.2020002084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/14/2020] [Indexed: 12/27/2022] Open
Abstract
Adaptive immune responses are acknowledged to evolve from innate immunity. However, limited information exists regarding whether encounters between innate cells direct the generation of specialized T-cell subsets. We aim to understand how natural killer (NK) cells modulate cell-mediated immunity in humans. We found that human CD14+CD16- monocytes that differentiate into inflammatory dendritic cells (DCs) are shaped at the early stages of differentiation by cell-to-cell interactions with NK cells. Although a fraction of monocytes is eliminated by NK-cell-mediated cytotoxicity, the polarization of interferon-γ (IFN-γ) at the NKp30-stabilized synapses triggers a stable IFN-γ signature in surviving monocytes that persists after their differentiation into DCs. Notably, NK-cell-instructed DCs drive the priming of type 17 CD8+ T cells (Tc17) with the capacity to produce IFN-γ and interleukin-17A. Compared with healthy donors, this cellular network is impaired in patients with classical NK-cell deficiency driven by mutations in the GATA2 gene. Our findings reveal a previously unrecognized connection by which Tc17-mediated immunity might be regulated by NK-cell-mediated tuning of antigen-presenting cells.
Collapse
Affiliation(s)
- Maria A Clavijo-Salomon
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Center of Translational Research in Oncology, Institute of Cancer of São Paulo (ICESP), Medical School, University of São Paulo, São Paulo, Brazil
| | - Rosalba Salcedo
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Soumen Roy
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rodrigo X das Neves
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Amiran Dzutsev
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Helioswilton Sales-Campos
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Karen Steponavicius-Cruz Borbely
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Nutrition Faculty, Federal University of Alagoas, Maceio, Brazil
- Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, Brazil
| | - Lucia Silla
- Cellular Technology and Therapy Center, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Jordan S Orange
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; and
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, and
- Cell and Molecular Therapy Center (NETCEM), University of São Paulo, São Paulo, Brazil
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, and
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Elemam NM, Hachim MY, Hannawi S, Maghazachi AA. Differentially Expressed Genes of Natural Killer Cells Can Distinguish Rheumatoid Arthritis Patients from Healthy Controls. Genes (Basel) 2020; 11:genes11050492. [PMID: 32365786 PMCID: PMC7290970 DOI: 10.3390/genes11050492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, while its molecular triggers are not fully understood. A few studies have shown that natural killer (NK) cells may play either a pathogenic or a protective role in RA. In this study, we sought to explore NK cell markers that could be plausibly used in evaluating the differences among healthy controls and RA patients. Publicly available transcriptome datasets from RA patients and healthy volunteers were analyzed, in order to identify differentially expressed genes (DEGs) between 1. different immune cells as compared to NK cells, and 2. NK cells of RA patients and healthy controls. The identified DEGs were validated using 16 healthy controls and 17 RA patients. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll density gradient method, while NK cells were isolated using RosetteSep technique. RNA was extracted and gene expression was assessed using RT-qPCR. All selected genes were differentially expressed in NK cells compared to PBMCs. CD56, CXCL16, PECAM-1, ITGB7, BTK, TLR10, and IL-1β were significantly upregulated, while CCL2, CCR4, RELA and IBTK were downregulated in the NK cells of RA patients when compared to healthy controls. Therefore, these NK specific genes might be used as promising biomarkers for RA diagnosis.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
- Correspondence:
| | - Mahmood Yaseen Hachim
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| | - Suad Hannawi
- Department of Rheumatology, Ministry of Health and Prevention, Dubai 1853, UAE;
| | - Azzam A. Maghazachi
- College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (M.Y.H.); (A.A.M.)
| |
Collapse
|
17
|
Frizinsky S, Haj-Yahia S, Machnes Maayan D, Lifshitz Y, Maoz-Segal R, Offengenden I, Kidon M, Agmon-Levin N. The innate immune perspective of autoimmune and autoinflammatory conditions. Rheumatology (Oxford) 2019; 58:vi1-vi8. [PMID: 31769855 PMCID: PMC6878844 DOI: 10.1093/rheumatology/kez387] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Innate immunity is one of two immune defence system arms. It is present at birth and does not require 'learning' through exposure to foreign organisms. It activates various mechanisms collectively to eliminate pathogens and hold an infection until the adaptive response are mounted. The innate immune system consists of four elements: the epithelial barrier, cells (e.g. macrophages, NK cells), plasma proteins (e.g. complement) and cytokines. These components act in concert to induce complex processes, as well as recruitment, activation and differentiation of adaptive responses. The innate response is more than just the 'first line of defence', as it essentially withholds the vast majority of any intruder, has a complex interplay with the adaptive arm and is crucial for survival of the host. Finally, yet importantly, a myriad of diseases has been linked with innate immune dysregulation. In this mini-review we will shed some light on these conditions, particularly regarding autoinflammatory ones.
Collapse
Affiliation(s)
- Shirly Frizinsky
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Soad Haj-Yahia
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Diti Machnes Maayan
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Lifshitz
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ramit Maoz-Segal
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Irean Offengenden
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
| | - Mona Kidon
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nancy Agmon-Levin
- Clinical Immunology, Angioedema and Allergy Unit, The Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Hashomer, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Disturbances in NK Cells in Various Types of Hemophagocytic Lymphohistiocytosis in a Population of Polish Children. J Pediatr Hematol Oncol 2019; 41:e277-e283. [PMID: 31107368 DOI: 10.1097/mph.0000000000001514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disease associated with immune system hyperactivation and the appearance of serious systemic disturbances. The purpose of this study was an assessment of natural killer (NK) cell disturbances in a group of children with clinical signs of HLH. A total of 43 children with HLH and 17 healthy children were enrolled in the study. NK phenotyping, intracellular perforin staining, and cytotoxicity tests were performed by using the flow cytometry method. HLH patients were divided into 6 HLH types: 9% infection-related HLH; 7% malignancy-related HLH; 21% macrophage activating syndrome; 12% familial hemophagocytic lymphohistiocytosis; 2% X-linked lymphoproliferative syndrome; and 49% as HLH of unknown background. A positive correlation was observed between cytotoxicity and NK cells in children with HLH (P=0.01). In all HLH groups, the percentage of NK cells was significantly lower than in the control population. The spontaneous cytotoxicity was significantly lower in HLH patients. The results presented in this study indicate the importance of impaired function and the number of NK cells in the pathogenesis of HLH. Nonetheless, the background of disturbances seems to be different in various cases.
Collapse
|
19
|
Schulte-Wrede U, Sörensen T, Grün JR, Häupl T, Hirseland H, Steinbrich-Zöllner M, Wu P, Radbruch A, Poddubnyy D, Sieper J, Syrbe U, Grützkau A. An explorative study on deep profiling of peripheral leukocytes to identify predictors for responsiveness to anti-tumour necrosis factor alpha therapies in ankylosing spondylitis: natural killer cells in focus. Arthritis Res Ther 2018; 20:191. [PMID: 30157966 PMCID: PMC6116509 DOI: 10.1186/s13075-018-1692-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 07/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background Therapeutic targeting of tumour necrosis factor (TNF)-α is highly effective in ankylosing spondylitis (AS) patients. However, since one-third of anti-TNF-treated AS patients do not show an adequate clinical response there is an urgent need for new biomarkers that would aid clinicians in their decision-making to select appropriate therapeutic options. Thus, the aim of this explorative study was to identify cell-based biomarkers in peripheral blood that could be used for a pre-treatment stratification of AS patients. Methods A high-dimensional, multi-parametric flow cytometric approach was applied to identify baseline predictors in 31 AS patients before treatment with the TNF blockers adalimumab (TNF-neutralisation) and etanercept (soluble TNF receptor). Results As the major result, the frequencies of natural killer (NK) cells, and in particular CD8-positive (CD8+) NK cell subsets, were most predictive for therapeutic outcome in AS patients. While an inverse correlation between classical CD56+/CD16+ NK cells and reduction of disease activity was observed, the CD8+ NK cell subset behaved in the opposite direction. At baseline, responders showed significantly increased frequencies of CD8+ NK cells compared with non-responders. Conclusions This is the first study demonstrating that the composition of the NK cell compartment has predictive power for prediction of therapeutic outcome for anti-TNF-α blockers, and we identified CD8+ NK cells as a potential new player in the TNF-α-driven chronic inflammatory immune response of AS. Electronic supplementary material The online version of this article (10.1186/s13075-018-1692-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ursula Schulte-Wrede
- German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Immune Monitoring Core Facility, Charitéplatz 1, 10117, Berlin, Germany
| | - Till Sörensen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim R Grün
- German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Immune Monitoring Core Facility, Charitéplatz 1, 10117, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Bioinformatics Group, Berlin, Germany
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Hirseland
- German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Immune Monitoring Core Facility, Charitéplatz 1, 10117, Berlin, Germany
| | - Marta Steinbrich-Zöllner
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peihua Wu
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Immune Monitoring Core Facility, Charitéplatz 1, 10117, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Cell Biology Group, Berlin, Germany
| | - Denis Poddubnyy
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Epidemiology Unit, Berlin, Germany
| | - Joachim Sieper
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uta Syrbe
- Department of Gastroenterology, Infectiology and Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Grützkau
- German Rheumatism Research Center Berlin (DRFZ), an Institute of the Leibniz-Association, Immune Monitoring Core Facility, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
20
|
Wilk AJ, Blish CA. Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 2018; 103:629-641. [PMID: 29350874 PMCID: PMC6133712 DOI: 10.1002/jlb.6ri0917-390r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
NK cells are innate lymphocytes with important roles in immunoregulation, immunosurveillance, and cytokine production. Originally defined on the functional basis of their "natural" ability to lyse tumor targets and thought to be a relatively homogeneous group of lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to the combinatorial expression of an array of activating and inhibitory receptors. Diversification of NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we review the genetic, developmental, and environmental sources of NK cell diversity with a particular focus on deep profiling and single-cell technologies that will enable a more thorough and accurate dissection of this intricate and poorly understood lymphocyte lineage.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
21
|
Rezaiemanesh A, Abdolmaleki M, Abdolmohammadi K, Aghaei H, Pakdel FD, Fatahi Y, Soleimanifar N, Zavvar M, Nicknam MH. Immune cells involved in the pathogenesis of ankylosing spondylitis. Biomed Pharmacother 2018; 100:198-204. [DOI: 10.1016/j.biopha.2018.01.108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
|
22
|
Gianchecchi E, Delfino DV, Fierabracci A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun Rev 2018; 17:142-154. [PMID: 29180124 DOI: 10.1016/j.autrev.2017.11.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pathogenesis of autoimmunity remains to be fully elucidated, although the contribution of genetic and environmental factors is generally recognized. Despite autoimmune conditions are principally due to T and B lymphocytes, NK cells also appear to play a role in the promotion and/or maintenance of altered adaptive immune responses or in peripheral tolerance mechanisms. Although NK cells are components of the innate immune system, they shows characteristics of the adaptive immune system, such as the expansion of pathogen-specific cells, the generation of long-lasting "memory" cells able to persist upon cognate antigen encounter, and the possibility to induce an increased secondary recall response to re-challenge. Human NK cells are generally identified as CD56+CD3-, conversely CD56+CD3+ cells represent a mixed population of NK-like T (NK T) cells and antigen-experienced T cells showing the up-regulation of several NK cell markers. CD56dim constitute about 90% of NK cells in the peripheral blood, they are mature and involved in cytotoxicity responses; CD56bright instead are more immature, mostly involved in cytokine production, having only a limited role in cytolytic responses, keen to leave the blood vessels as the principal population observed in lymph nodes. NK cells have been identified also in non-lymphoid tissues since, in pathologic conditions, they can quickly reach the target organs. A cross-talk between NK with dendritic cells and T cells is established throughout different receptor-ligand bindings. Several studies support the correlation between NK cell number and/or functional alterations, such as a defective cytotoxic activity and several autoimmune conditions. Among the different autoimmune pathologies and even within the same disease, NK cell function is significantly different either promoting or even protecting against the onset of the autoimmune condition. In this Review, we discuss recent literature supporting the role played by NK cells, as a bridge between innate and adaptive immunity, in the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy
| | | | - Alessandra Fierabracci
- Type 1 Diabetes Centre, Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy.
| |
Collapse
|
23
|
Chowdhury AC, Chaurasia S, Mishra SK, Aggarwal A, Misra R. IL-17 and IFN-γ producing NK and γδ-T cells are preferentially expanded in synovial fluid of patients with reactive arthritis and undifferentiated spondyloarthritis. Clin Immunol 2017; 183:207-212. [DOI: 10.1016/j.clim.2017.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 01/27/2017] [Accepted: 03/03/2017] [Indexed: 01/13/2023]
|
24
|
Li J, Wei Y, Li X, Zhu D, Nie B, Zhou J, Lou L, Dong B, Wu A, Che Y, Chen M, Zhu L, Mu M, Chai L. Herbal formula Xian-Fang-Huo-Ming-Yin regulates differentiation of lymphocytes and production of pro-inflammatory cytokines in collagen-induced arthritis mice. Altern Ther Health Med 2017; 17:12. [PMID: 28056922 PMCID: PMC5216578 DOI: 10.1186/s12906-016-1526-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Xian-Fang-Huo-Ming-Yin (XFHM), a traditional herbal formula, has been used to treat sores and carbuncles for hundreds of years in Asia. Nowadays, its clinical effects in treatment of rheumatoid arthritis (RA) have been validated. In this study, we want to study its possible molecular mechanisms of regulating the differentiation of lymphocytes and production of pro-inflammatory cytokines in collagen-induced arthritis (CIA) mice for RA treatment. Methods A high performance liquid chromatography-electrospray ionization/mass spectrometer (HPLC-ESI/MSn) system was used to analyze the constituents of XFHM granules. An arthritics mouse model was induced by collagen and leflunomide (LEF) was used as a positive control medicine. Pathological changes at the metatarsophalangeal joint were studied through Safranin O and immunohistochemical staining. The differentiation of T, B and NK cells was examined by flow cytometry and pro-inflammatory cytokines were assayed using an Inflammation Antibody Array assay. The expression of key molecules of the nuclear factor κB (NF-κB) and Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathways in spleen were studied by western-blot analysis. Results In our study. 21 different dominant chemical constituents were identified in XFHM. Treatment with XFHM suppressed the pathological changes in arthrosis of CIA. Additionally, XFHM down-regulated the proliferation and differentiation of CD3+ T cells and CD3−CD19+ B cells significantly. However, XFHM had no significant effect on CD3−NK1.1+ NK cells. Further study showed that the production of pro-inflammatory cytokines had been suppressed by inhibiting the activation of NF-κB and JAK/STAT signaling. Conclusions XFHM can regulate and maintain the immunologic balance of lymphocytic immunity and inhibit the production of pro-inflammatory cytokines, thus suppressing the pathological changes of RA. Therefore, XFHM may be used as an application of traditional medicine against RA in modern complementary and alternative therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1526-x) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Liu Y, Mu R, Gao YP, Dong J, Zhu L, Ma Y, Li YH, Zhang HQ, Han D, Zhang Y, McInnes IB, Zhang J, Shen B, Yang G, Li ZG. A Cytomegalovirus Peptide-Specific Antibody Alters Natural Killer Cell Homeostasis and Is Shared in Several Autoimmune Diseases. Cell Host Microbe 2016; 19:400-8. [PMID: 26962948 DOI: 10.1016/j.chom.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/14/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Human cytomegalovirus (hCMV), a ubiquitous beta-herpesvirus, has been associated with several autoimmune diseases. However, the direct role of hCMV in inducing autoimmune disorders remains unclear. Here we report the identification of an autoantibody that recognizes a group of peptides with a conserved motif matching the Pp150 protein of hCMV (anti-Pp150) and is shared among patients with various autoimmune diseases. Anti-Pp150 also recognizes the single-pass membrane protein CIP2A and induces the death of CD56(bright) NK cells, a natural killer cell subset whose expansion is correlated with autoimmune disease. Consistent with this finding, the percentage of circulating CD56(bright) NK cells is reduced in patients with several autoimmune diseases and negatively correlates with anti-Pp150 concentration. CD56(bright) NK cell death occurs via both antibody- and complement-dependent cytotoxicity. Our findings reveal that a shared hCMV-induced autoantibody is involved in the decrease of CD56(bright) NK cells and may thus contribute to the onset of autoimmune disorders.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Rong Mu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China
| | - Ya-Ping Gao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lei Zhu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China
| | - Yuyuan Ma
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Yu-Hui Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China
| | - He-Qiu Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Dong Han
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yu Zhang
- Department of Immunology, Peking University, Beijing 100191, China
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jingang Zhang
- Beijing Institute of Transfusion Medicine, Beijing 100850, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China.
| | - Zhan-Guo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing 100044, China.
| |
Collapse
|
26
|
Oboshi W, Aki K, Tada T, Watanabe T, Yukimasa N, Ueno I, Saito K, Hosoi E. Flow Cytometric Evaluation of Surface CD56 Expression on Activated Natural Killer Cells as Functional Marker. THE JOURNAL OF MEDICAL INVESTIGATION 2016; 63:199-203. [PMID: 27644558 DOI: 10.2152/jmi.63.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Surface CD56 is the most important cell marker for defining NK cells. However, the relationship between the expression of surface CD56 and NK cell activity has not yet been elucidated in detail. Thirteen healthy volunteers were enrolled in the present study. Peripheral blood mononuclear cells (PBMCs) were stimulated with rIL-2 or rIL-12 (1, 10, 100 U/mL) for 18 h at 37°C. After incubation, surface CD56 expression on NK cells was evaluated using a flow cytometric analysis. A colorimetric-based lactate dehydrogenase (LDH) assay was used for experiments on cytotoxicity. IFN-γ mRNA gene expression was quantified by real-time PCR. The expression level of surface CD56 on NK cells, cytotoxicity, and IFN-γ mRNA gene expression were significantly increased by the rIL-2 and rIL-12 stimulations. In addition, a positive correlation was found between surface CD56 expression and cytotoxic activity or IFN-γ mRNA gene expression. We revealed that the quantification of surface CD56 expression was applicable to the evaluation of cytotoxicity and IFN-γ production in activated NK cells. These results suggest that the measurement of surface CD56 expression represent an easy and rapidly reproducible technique to evaluate the activated state of NK cells and monitor NK cell activity in immunotherapy. J. Med. Invest. 63: 199-203, August, 2016.
Collapse
Affiliation(s)
- Wataru Oboshi
- Subdivision of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Tokushima University
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gaur P, Misra R, Aggarwal A. Natural killer cell and gamma delta T cell alterations in enthesitis related arthritis category of juvenile idiopathic arthritis. Clin Immunol 2015; 161:163-9. [PMID: 26244610 DOI: 10.1016/j.clim.2015.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/09/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
Abstract
Enthesitis related arthritis (ERA) is associated with increased frequency of Th17 cells and synovial fluid (SF) IL-17 levels. Natural killer (NK) and gamma delta T cells have been recently shown to produce IL-17, thus we studied the NK and gamma delta-T cells in peripheral blood (PB) of 50 ERA, 16 other JIA patients and 19 healthy controls. We have analyzed the frequency of NK (total, CD56dim, CD56bright) and gamma delta-T cells, perforin and KIR3DL1/2 expression on NK cells and IL-17 and IFN-gamma production by them using flow cytometry. ERA patients had more NK cells with reduced perforin expression and IFN-gamma production but increased KIR3DL1/2 expression and IL-17 production as compared to controls. Also IL-17 producing gamma delta-T were increased in PB of ERA patients. Paired SF samples had NK cells with reduced perforin and KIR3DL expression. Thus increased NK and gamma delta-T cells may contribute to the inflammation in ERA by producing IL-17.
Collapse
Affiliation(s)
- Priyanka Gaur
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ramnath Misra
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
28
|
Spada R, Rojas JM, Pérez-Yagüe S, Mulens V, Cannata-Ortiz P, Bragado R, Barber DF. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol 2015; 97:583-98. [PMID: 25583577 DOI: 10.1189/jlb.4a0714-326r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NK cells are a major component of the immune system, and alterations in their activity are correlated with various autoimmune diseases. In the present work, we observed an increased expression of the NKG2D ligand MICA in SLE patients' kidneys but not healthy subjects. We also show glomerulus-specific expression of the NKG2D ligands Rae-1 and Mult-1 in various murine SLE models, which correlated with a higher number of glomerular-infiltrating NK cells. As the role of NK cells in the immunopathogenesis of SLE is poorly understood, we explored NK cell differentiation and activity in tissues and organs in SLE-prone murine models by use of diseased and prediseased MRL/MpJ and MRL/lpr mice. We report here that phenotypically iNK cells accumulate only in the spleen but not in BM or kidneys of diseased mice. Infiltrating NK cells in kidneys undergoing a lupus nephritic process showed a more mature, activated phenotype compared with kidney, as well as peripheral NK cells from prediseased mice, as determined by IFN-γ and STAT5 analysis. These findings and the presence of glomerulus-specific NKG2D ligands in lupus-prone mice identify a role for NK cells and NKG2D ligands in the lupus nephritic process, which could aid in understanding their role in human SLE.
Collapse
Affiliation(s)
- Roberto Spada
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - José M Rojas
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Sonia Pérez-Yagüe
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Vladimir Mulens
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Pablo Cannata-Ortiz
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Rafael Bragado
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| | - Domingo F Barber
- *Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain; and Department of Immunology and Pathology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Spain
| |
Collapse
|
29
|
Mandal A, Viswanathan C. Natural killer cells: In health and disease. Hematol Oncol Stem Cell Ther 2014; 8:47-55. [PMID: 25571788 DOI: 10.1016/j.hemonc.2014.11.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/07/2014] [Accepted: 11/22/2014] [Indexed: 01/26/2023] Open
Abstract
Natural killer (NK) cells constitute our bodies' frontline defense system, guarding against tumors and launching attacks against infections. The activities of NK cells are regulated by the interaction of various receptors expressed on their surfaces with cell surface ligands. While the role of NK cells in controlling tumor activity is relatively clear, the fact that they are also linked to various other disease conditions is now being highlighted. Here, we present an overview of the role of NK cells during normal body state as well as under diseased state. We discuss the possible utilization of these powerful cells as immunotherapeutic agents in combating diseases such as asthma, autoimmune diseases, and HIV-AIDS. This review also outlines current challenges in NK cell therapy.
Collapse
Affiliation(s)
- Arundhati Mandal
- Regenerative Medicine, Reliance Life Sciences Pvt Ltd, Dhirubhai Ambani Life Sciences Centre, R-282, TTC Industrial Area of MIDC, Thane Belapur Road, Rabale, Navi Mumbai 400 701, India
| | - Chandra Viswanathan
- Regenerative Medicine, Reliance Life Sciences Pvt Ltd, Dhirubhai Ambani Life Sciences Centre, R-282, TTC Industrial Area of MIDC, Thane Belapur Road, Rabale, Navi Mumbai 400 701, India.
| |
Collapse
|
30
|
Daien CI, Gailhac S, Audo R, Mura T, Hahne M, Combe B, Morel J. High levels of natural killer cells are associated with response to tocilizumab in patients with severe rheumatoid arthritis. Rheumatology (Oxford) 2014; 54:601-8. [DOI: 10.1093/rheumatology/keu363] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
31
|
Richter J, Capková K, Hříbalová V, Vannucci L, Danyi I, Malý M, Fišerová A. Collagen-induced arthritis: severity and immune response attenuation using multivalent N-acetyl glucosamine. Clin Exp Immunol 2014; 177:121-33. [PMID: 24588081 DOI: 10.1111/cei.12313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 01/23/2023] Open
Abstract
Rheumatoid arthritis is an autoimmunity leading to considerable impairment of quality of life. N-acetyl glucosamine (GlcNAc) has been described previously as a potent modulator of experimental arthritis in animal models and is used for osteoarthritis treatment in humans, praised for its lack of adverse effects. In this study we present a comprehensive immunological analysis of multivalent GlcNAc-terminated glycoconjugate (GC) application in the treatment of collagen-induced arthritis (CIA) and its clinical outcome. We used immunohistochemistry and FACS to describe conditions on the inflammation site. Systemic and clinical effects were evaluated by FACS, cytotoxicity assay, ELISA, cytometric bead array (CBA), RT-PCR and clinical scoring. We found reduced inflammatory infiltration, NKG2D expression on NK and suppression of T, B and antigen-presenting cells (APC) in the synovia. On the systemic level, GCs prevented the activation of monocyte- and B cell-derived APCs, the rise of TNF-α and IFN-γ levels, and subsequent type II collagen (CII)-specific IgG2a formation. Moreover, we detected an increase of anti-inflammatory IL-4 mRNA in the spleen. Similar to the synovia, the GCs caused a significant reduction of NKG2D-expressing NK cells in the spleen without influencing their lytic function. GCs effectively postponed the onset of arthritic symptoms, reduced their severity and in 18% (GN8P) and 31% (GN4C) of the cases completely prevented their appearance. Our data prove that GlcNAc glycoconjugates prevent the inflammatory response, involving proinflammatory cytokine rise, APC activation and NKG2D expression, leading to the attenuation of clinical symptoms. These results support the glycobiological approach to the treatment of collagen-induced arthritis/rheumatoid arthritis (CIA/RA) as a way of bringing new prospects for more effective therapeutic interventions.
Collapse
Affiliation(s)
- J Richter
- Laboratory of Molecular Biology and Immunology, Institute of Microbiology, ASCR v.v.i., Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
32
|
Conigliaro P, Triggianese P, Perricone C, Chimenti MS, Di Muzio G, Ballanti E, Guarino MD, Kroegler B, Gigliucci G, Grelli S, Perricone R. Restoration of peripheral blood natural killer and B cell levels in patients affected by rheumatoid and psoriatic arthritis during etanercept treatment. Clin Exp Immunol 2014; 177:234-43. [PMID: 24666401 DOI: 10.1111/cei.12335] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/01/2022] Open
Abstract
Etanercept (ETN) is an anti-tumour necrosis factor (TNF)-α agent used in rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Few studies focused on the effects of anti-TNF-α on peripheral blood cells. We aimed to evaluate peripheral blood cells in RA and PsA patients during ETN treatment and to explore their relationships with disease activity. RA (n = 82) and PsA (n = 32) patients who started ETN were included into the study and evaluated prospectively before the beginning of ETN therapy and after 14, 22, 54 and 102 weeks. Patients were studied in terms of disease activity score on 28 joints (DAS28), clinical response and laboratory findings. Natural killer (NK) cells, B cells and T cells were characterized by immunophenotyping. Both the RA and the PsA patients showed reduced NK and B cell count before ETN treatment compared with controls. A negative correlation was demonstrated between DAS28 and B cell count in RA patients at baseline. Sustained significant increase of NK and B cells up to normal levels was observed in RA and PsA patients along ETN treatment. Increase of NK cell count was associated with a good-moderate clinical response to ETN in both RA and PsA patients. During ETN treatment peripheral blood NK and B cells levels were restored in RA and PsA patients. Correlations between NK and B cells with disease activity were observed, suggesting that those effects could be mediated by ETN treatment.
Collapse
Affiliation(s)
- P Conigliaro
- Department of Medicina dei Sistemi, Rheumatology, Allergology and Clinical Immunology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Role of cytolytic impairment of natural killer and natural killer T-cell populations in rheumatoid arthritis. Clin Rheumatol 2014; 33:1067-78. [PMID: 24797770 DOI: 10.1007/s10067-014-2641-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/24/2014] [Accepted: 04/17/2014] [Indexed: 01/13/2023]
Abstract
Innate immunity has been widely accepted as one of the major cause for the alteration of immune system and progression of autoimmune diseases. Natural killer (NK) cells and natural killer T (NKT) cells have not been explored in clinical studies for their cytolytic components in association with rheumatoid arthritis (RA). The literature available for these potential candidates is controversial in terms of their protective or pathogenic role in disease severity of RA. Present study explained the role of NK and NKT cell populations and intracellular expression of caspases, perforin, granzymes A and B in the pathogenesis of RA in patients. DAS28 score was measured as the disease severity. Immunochemical parameters were studied by using monoclonal antibodies (mAbs) against different cell types in flow cytometry. Results indicated that that whatsoever is the change in percentage cell populations, ratio of NK and NKT cell populations always remained poised even in the disease state. Reactive oxygen species (ROS) levels were elevated with increased intracellular active caspase-3, perforin and granzyme expression in RA patients. Their elevated expressions were positively correlated with DAS28 suggesting the pathogenic role in RA. The expressions of pro-inflammatory cytokines were enhanced while the anti-inflammatory cytokine expressions were diminished in the patients. Present study may point towards futuristic therapeutic targets which can fascinate the pharmaceutical industries to selectively target these molecules in designing the therapeutic strategy of RA patients.
Collapse
|
34
|
Sakly K, Lahmar R, Nefzi F, Hammami S, Harzallah O, Sakly N, Sakly W, Hassine M, Mahjoub S, Ghedira I, Feki S. Phenotypic abnormalities of peripheral blood mononuclear cells in patients with Behçet's disease and association with HLA-B51 expression. Immunol Invest 2014; 43:463-78. [PMID: 24661088 DOI: 10.3109/08820139.2014.886260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to investigate the subclasses and the immunophenotypic profile of peripheral mononuclear cells in patients with Behçet's disease (BD) and to assess associations between the expression of HLA-B51 antigen and that of other cell markers. Thirty healthy volunteer blood donors and forty patients with BD were enrolled into this study. Phenotyping was performed using two color flow cytometry. HLA-B51 typing was performed using the complement dependent microlymphocytotoxicity assay. Unlike controls, patients with BD presented a modified immunophenotypic profile of lymphocytes. Compared to those in the remission phase, patients with active BD showed an increased mean of MFI ratio of CD56 on CD16+CD56+ cells (32.47 ± 14.26 versus 23.87 ± 10.3; p = 0.032), increased absolute numbers of CD4(-)CD8(bright) and CD4(+)CD8(+) cells (657.1 ± 463.6 cells/µL versus 319.24 ± 116.4 cells/µL; p = 0.017 and 40.77 ± 36.41 cells/µL versus 10.77 ± 9.78 cells/µL; p < 0.0001, respectively) and an elevated mean of MFI ratio of CD19 on B cells (252.3 ± 56.7 versus 205.67 ± 32.3; p = 0.021). However, expression of HLA-B51 was not associated with any specific immunophenotypic profile. In conclusion, abnormal immunophenotypic profile of peripheral lymphocytes was found in patients with BD, especially in active phase, reflecting an immune dysregulation. Moreover, HLA-B51 expression was not found to be related to the expression of other cell markers.
Collapse
Affiliation(s)
- K Sakly
- Research Unit 03/UR/07 "Autoimmunity and Allergy", Faculty of Pharmacy, University of Monastir , Monastir , Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoshida K, Komai K, Shiozawa K, Mashida A, Horiuchi T, Tanaka Y, Nose M, Hashiramoto A, Shiozawa S. Role of the MICA polymorphism in systemic lupus erythematosus. ACTA ACUST UNITED AC 2013; 63:3058-66. [PMID: 21702010 DOI: 10.1002/art.30501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study the genetic contribution of major histocompatibility complex class I polypeptide-related sequence A (MICA), important in natural killer (NK) cell function, in patients with systemic lupus erythematosus (SLE). METHODS Japanese patients with SLE (n=716), those with rheumatoid arthritis (RA) (n=327), and healthy control subjects (n=351) were genotyped for the Val129 Met polymorphism (rs1051792) and transmembrane (TM) alanine-encoding GCT repeats, termed A4, A5, A5.1, A6, and A9, in the MICA gene. Recombinant human MICA-GST fusion proteins were tested on the NK cell line NK92MI for the expression of NK group 2, member D (NKG2-D), NK cell-mediated cytotoxicity, and interferon-γ (IFNγ) production. RESULTS The MICA 129Met allele, TMA9 allele, and 129Met/Met genotype were positively associated with SLE (corrected P [Pcorr]=0.01 and odds ratio [OR] 1.3, Pcorr=0.003 and OR 1.6, and Pcorr=0.02 and OR 1.8, respectively), while the MICA 129Val allele was negatively associated with SLE (Pcorr=0.01, OR 0.8). The MICA 129Met;A9 haplotype was also associated with SLE (Pcorr=0.0006, OR 1.8), and there was an additive genetic effect between the MICA 129Met;A9 haplotype and HLA-DRB1*15:01. When NK92MI cells were incubated in vitro with recombinant human disease-associated 129Met;A9 (the combination of polymorphisms at 129Met and TMA9), expression of NKG2-D on NK92MI cells and cytotoxicity of the NK cells were inhibited, but production of IFNγ from NK92MI cells was enhanced. CONCLUSION The MICA polymorphism is genetically associated with SLE, and MICA appears to contribute to the pathogenesis of SLE by modulating NK cell function.
Collapse
Affiliation(s)
- Kohsuke Yoshida
- Department of Medicine, Kobe University Graduate School of Health Sciences, and Center for Rheumatic Diseases, Kobe University Hospital, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schleinitz N, Vély F, Harlé JR, Vivier E. Natural killer cells in human autoimmune diseases. Immunology 2010; 131:451-8. [PMID: 21039469 DOI: 10.1111/j.1365-2567.2010.03360.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells have been implicated in tumour surveillance and in the early control of several microbial infections. In autoimmune disease their involvement in these processes has been evaluated in animal models, with conflicting results. Both a disease-controlling and a disease-promoting role have been suggested. In human autoimmune disease only a few studies, mainly descriptive, have demonstrated qualitative and quantitative modification of NK cells. These changes were observed on blood- or tissue-infiltrating NK cells. Taken together with our expanding knowledge of the genetical variability of NK cell receptors and NK cell physiology, these findings pave the way for the dissection of the role of NK cells in human autoimmune diseases. NK cells may be directly involved in these diseases through their potential autoreactivity or through their interaction with dendritic cells, macrophages or T lymphocytes, thereby inducing excessive inflammation or favouring the adaptive autoimmune response. Thus, NK cells may be implicated in the onset, the maintenance or the progression of autoimmune diseases. Some reports also suggest the involvement of NK cells in the treatment of human autoimmune disease by biotherapies. All these observations suggest that NK cells are involved in the complex processes of autoimmune diseases. Nevertheless, further careful analysis of NK cells at different steps of these diseases, in different tissues and through combined genetical and functional studies will contribute to a better understanding of their role in autoimmune diseases. This knowledge might allow the development of new therapeutic strategies based on NK cells for the treatment of some autoimmune diseases.
Collapse
|