1
|
Demir R, Sarıtaş S, Bechelany M, Karav S. Lactoferrin: Properties and Potential Uses in the Food Industry. Int J Mol Sci 2025; 26:1404. [PMID: 40003872 PMCID: PMC11855648 DOI: 10.3390/ijms26041404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Lactoferrin (LF) is an 80 kDa glycoprotein that contains approximately 700 amino acids and is a member of the transferrin family. The essential properties of LF, including antimicrobial, antiviral, anticancer, anti-inflammatory, antioxidant, and probiotic effects, have been studied for decades. The iron chelation activity of LF is significantly associated with its antimicrobial, anti-inflammatory, and antioxidant properties. Owing to its probiotic and prebiotic activity, LF also facilitates the growth of beneficial microorganisms and iron-defense immediate-effect properties on pathogens. Additionally, the ability to regulate cell signaling pathways and immune responses makes LF a prominent modulatory protein. These diverse characteristics of LF have gained interest in its therapeutic potential. Studies have suggested that LF could serve as an alternative source to antibiotics in severe infections and illnesses. LF has also gained interest in the food industry for its potential as an additive to fortify products such as yogurt, infant formula, and meat derivatives while also improving the shelf life of foods and providing antimicrobial and antioxidant activity. Prior to using LF in the food industry, the safety and toxicity of food processing are necessary to be investigated. These safety investigations are crucial for addressing potential harm or side effects and ensuring a healthy lifestyle. This review discusses the attributes and safety of LF, particularly its exploitation in the food industry.
Collapse
Affiliation(s)
- Ranya Demir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (R.D.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (R.D.); (S.S.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (R.D.); (S.S.)
| |
Collapse
|
2
|
Goulding DA, Bonnet N, Horcajada MN, Baruchet M, Bermont F, Hauser J, Macrì S, Pisa E, Nembrini C, Vidal K, O'Brien NM, O'Mahony JA, O'Regan J. The impact of complexation or complex coacervation of lactoferrin and osteopontin on simulated infant gastrointestinal digestion, intestinal inflammation, and in vivo bone development. Food Funct 2024; 15:9928-9940. [PMID: 39259160 DOI: 10.1039/d4fo02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Lactoferrin (LF) and osteopontin (OPN) are bioactive milk proteins which can form heteroprotein complexes and complex coacervates. This research studied the effect of LF-OPN complexation and complex coacervation on the simulated infant gastrointestinal digestion of LF with subsequent examination of gut and bone health bioactivities in preclinical models. In an infant digestion model, the proteolytic profile of LF was unaltered by the pre-association of LF and OPN. Gastric proteolysis of LF was increased when the model gastric pH was reduced from 5.3 to 4.0, but less so when complexed with OPN. In a model of intestinal inflammation, undigested (79% inhibition) and gastric digestates (26% inhibition) of LF, but not gastrointestinal digestates, inhibited lipopolysaccharide (LPS)-induced NF-κB activation in intestinal epithelial cells. LF-OPN complexation sustained the inhibitory effect (21-43% of the undigested effect, depending on the type of complex) of LF after gastrointestinal digestion, suggesting that the peptides produced were different. In a neonatal rodent model used to study bone development, coacervating LF and OPN improved bone structures with a significant increase of trabecular proportion (BV/TV increase by 21.7%). This resulted in an 11.3% increase in stiffness of bones. Feeding the LF and OPN proteins in coacervate format also increased the levels of OPN, P1NP and M-CSF in blood, signifying a more pronounced impact on bone development. This research demonstrated that LF-OPN complexation and complex coacervation can delay simulated infant gastrointestinal digestion of LF and protect or improve the bioactivity of the proteins.
Collapse
Affiliation(s)
- David A Goulding
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| | - Nicolas Bonnet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Marie-Noëlle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Michael Baruchet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Flavien Bermont
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Jonas Hauser
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Nembrini
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Karine Vidal
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, 1000 Lausanne 26, Switzerland
| | - Nora M O'Brien
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Jonathan O'Regan
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- Nestlé Development Centre Nutrition, Wyeth Nutritionals Ireland, Askeaton, Co. Limerick, V94 E7P9, Ireland.
| |
Collapse
|
3
|
Ubuzima P, Nshimiyimana E, Mukeshimana C, Mazimpaka P, Mugabo E, Mbyayingabo D, Mohamed AS, Habumugisha J. Exploring biological mechanisms in orthodontic tooth movement: Bridging the gap between basic research experiments and clinical applications - A comprehensive review. Ann Anat 2024; 255:152286. [PMID: 38810763 DOI: 10.1016/j.aanat.2024.152286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
OBJECTIVES The molecular mechanisms behind orthodontic tooth movements (OTM) were investigated by clarifying the role of chemical messengers released by cells. METHODS Using the Cochrane library, Google scholar, and PubMed databases, a literature search was conducted, and studies published from 1984 to 2024 were considered. RESULTS Both bone growth and remodeling may occur when a tooth is subjected to mechanical stress. These chemicals have a significant effect on the stimulation and regulation of osteoblasts, osteoclasts, and osteocytes during alveolar bone remodeling. This regulation can take place in pathological conditions, such as periodontal diseases, or during OTM alone. This comprehensive review outlines key molecular mechanisms underlying OTM and explores various clinical assumptions associated with specific molecules and their functional domains during this process. Furthermore, clinical applications of certain molecules such as relaxin, prostaglandin E (PGE), and interleukin-1β (IL-1β) in accelerating OTM have been reported. Our findings underscore the existing gap between OTM clinical applications and basic research investigations. CONCLUSION A comprehensive understanding of orthodontic treatment is enriched by insights into biological systems. We reported the activation of osteoblasts, osteoclast precursor cells, osteoclasts, and osteocytes in response to mechanical stress, leading to targeted cellular and molecular interventions and facilitating rapid and regulated alveolar bone remodeling during tooth movement. Despite the shortcomings of clinical studies in accelerating OTM, this review highlights the crucial role of biological agents in this process and advocates for prioritizing high-quality human studies in future research to gain further insights from clinical trials.
Collapse
Affiliation(s)
- Pascal Ubuzima
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China; School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eugene Nshimiyimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Christelle Mukeshimana
- Department of Orthodontics, Affliated Hospital of Stomatology, Anhui Medical University Hefei, 69 Meishan Road, Hefei, Anhui, China
| | - Patrick Mazimpaka
- School of Dentistry, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Eric Mugabo
- Department of Orthodontics, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, 72 Xiangya Road, Changsha, Hunan 410000, China
| | - Dieudonne Mbyayingabo
- Department of Orthodontics, Stomatological Hospital of Xi'an Jiaotong University, 98 XiWu Road, Xi'an, Shaanxi 710004, China
| | | | - Janvier Habumugisha
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kitaku, Okayama 700-8525, Japan; Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
4
|
Lafuente-Ibáñez-de-Mendoza I, Marichalar-Mendia X, Setién-Olarra A, García-de-la-Fuente AM, Martínez-Conde-Llamosas R, Aguirre-Urizar JM. Genetic polymorphisms of inflammatory and bone metabolism related proteins in a population with dental implants of the Basque Country. A case-control study. BMC Oral Health 2024; 24:659. [PMID: 38840172 PMCID: PMC11155173 DOI: 10.1186/s12903-024-04319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Peri-implantitis (PI) is a frequent inflammatory disorder characterised by progressive loss of the supporting bone. Not all patients with recognised risk factors develop PI. The aim of this study is to evaluate the presence of single nucleotide polymorphisms (SNP) of inflammatory and bone metabolism related proteins in a population treated with dental implants from the Basque Country (Spain). METHODS We included 80 patients with diagnosis of PI and 81 patients without PI, 91 women and 70 men, with a mean age of 60.90 years. SNPs of BMP-4, BRINP3, CD14, FGF-3, FGF-10, GBP-1, IL-1α, IL-1β, IL-10, LTF, OPG and RANKL proteins were selected. We performed a univariate and bivariate analysis using IBM SPSS® v.28 statistical software. RESULTS Presence of SNPs GBP1 rs7911 (p = 0.041) and BRINP3 rs1935881 (p = 0.012) was significantly more common in patients with PI. Patients with PI who smoked (> 10 cig/day) showed a higher presence of OPG rs2073617 SNP (p = 0.034). Also, BMP-4 rs17563 (p = 0.018) and FGF-3 rs1893047 (p = 0.014) SNPs were more frequent in patients with PI and Type II diabetes mellitus. CONCLUSIONS Our findings suggest that PI could be favoured by an alteration in the osseointegration of dental implants, based on an abnormal immunological response to peri-implant infection in patients from the Basque Country (Spain).
Collapse
Affiliation(s)
- Irene Lafuente-Ibáñez-de-Mendoza
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Stomatology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Xabier Marichalar-Mendia
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Department of Nursery I, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Spain.
| | - Amaia Setién-Olarra
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Nursery I, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Ana María García-de-la-Fuente
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Stomatology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | | | - José Manuel Aguirre-Urizar
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Stomatology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| |
Collapse
|
5
|
Galik E, Resnick B, Mocci E, Renn CL, Song Y, Dorsey SG. Differential Gene Expression in Pain-Related Genes are not Affected by the Presence of Dementia. Pain Manag Nurs 2024; 25:145-151. [PMID: 38135606 PMCID: PMC11016462 DOI: 10.1016/j.pmn.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/24/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Prior work has demonstrated differences in the transcriptome between those with and without chronic musculoskeletal pain. AIMS The aim of this study was to explore whether pain-related gene expression is similar between individuals with and without dementia. DESIGN This was a descriptive study using a one-time assessment. SETTINGS PARTICIPANTS/SUBJECTS: A total of 20 older adults living in a continuing care retirement community, 50% of whom had dementia were inlcuded in this study. All were female and the mean age of participants was 89 (SD = 6). METHODS Pain was evaluated based on the PROMIS Pain Intensity Short Form 3a. Whole blood was collected by venipuncture into Tempus vacutainer tubes (3 ml) and the RNA was extracted at the Translational Genomics Laboratory at the University of Maryland Baltimore. Analyses included a differential expression analysis, a weighted gene co-expression network analysis, and a pathway enrichment analysis. RESULTS Eighty-three genes were differentially expressed between individuals with and without pain (p <.05). After normalizing gene counts and removing the low expressed genes, 18,028 genes were left in the final analysis. There was no clustering of the samples related to study variables of pain or dementia. CONCLUSION The findings from this study provided some preliminary support that pain-related gene expression is similar between individuals with and without dementia.
Collapse
Affiliation(s)
- Elizabeth Galik
- From the University of Maryland School of Nursing, Baltimore, Maryland.
| | - Barbara Resnick
- From the University of Maryland School of Nursing, Baltimore, Maryland
| | - Evelina Mocci
- From the University of Maryland School of Nursing, Baltimore, Maryland
| | - Cynthia L Renn
- From the University of Maryland School of Nursing, Baltimore, Maryland
| | - Yang Song
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Susan G Dorsey
- From the University of Maryland School of Nursing, Baltimore, Maryland
| |
Collapse
|
6
|
Anand N. Antiparasitic activity of the iron-containing milk protein lactoferrin and its potential derivatives against human intestinal and blood parasites. FRONTIERS IN PARASITOLOGY 2024; 2:1330398. [PMID: 39816822 PMCID: PMC11731944 DOI: 10.3389/fpara.2023.1330398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2025]
Abstract
An iron-containing milk protein named lactoferrin (Lf) has demonstrated antiparasitic and immunomodulatory properties against a variety of human parasites. This protein has shown its capability to bind and transport iron molecules in the vicinity of the host-pathogen environment. The ability of parasites to sequester the iron molecule and to increase their pathogenicity and survival depends on the availability of iron sources. Lf protein has suggested a iron chelating effect on parasites iron and, hence, has shown its antiparasitic effect. Since the parasites have a complex life cycle and have developed drug resistance, vaccines and other treatments are a handful. Therefore, therapeutic research focusing on natural treatment regimens that target the parasite and are non-toxic to host cells is urgently needed. The antiparasitic efficacy of Lf protein has been extensively studied over the past 40 years using both in vitro and in vivo studies. This review article highlighted past important studies on Lf protein that revealed its potential antiparasitic activity against various intracellular and extracellular intestinal or blood-borne human parasites. This review article structures the role of Lf protein in its various forms, such as native, peptide, and nanoformulation, laying the groundwork for its function as an antiparasitic agent and its possible known mechanisms of action.
Collapse
Affiliation(s)
- Namrata Anand
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
7
|
Calderipe CB, Soares AC, Dos Santos Giorgis R, Fogaça ACM, Torriani MA, Grave LQ, Schuch LF, Vasconcelos ACU. What is the effect of lactoferrin on oral and jawbone tissue repair? A systematic review. Br J Oral Maxillofac Surg 2024; 62:4-14. [PMID: 38042716 DOI: 10.1016/j.bjoms.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/26/2023] [Accepted: 10/26/2023] [Indexed: 12/04/2023]
Abstract
Currently, there is growing interest in the potential use of lactoferrin (LTF), a member of the transferrin family, for the improvement of tissue healing. In this sense, a literature search was conducted to integrate data published on the effect of LTF on jawbone repair. PubMed/MEDLINE, Scopus, Embase, Web of Science, LILACS, and Cochrane databases were retrieved according to the PRISMA 2020 statement. Articles in English, Spanish, and Portuguese were recovered, with no year restriction. In vitro, in vivo, and clinical studies were selected. A total of 742 articles were retrieved, 11 of which met the inclusion criteria (5 in vitro and 5 in vivo studies, and one clinical trial). The included data demonstrated wide variations in study design and LTF therapy protocols. Cell proliferation and viability were the primary outcomes evaluated in the in vitro studies, all of which reported a potential effect of LTF on the repair process. Of three in vivo studies, one reported a reduction in the overall healing rate, whereas the other two showed that LTF inhibited bone resorption and increased bone formation. The clinical trial's findings showed that LTF is a potential promoter of wound repair in patients with medication-related osteonecrosis of the jaws. Overall, data from the studies support a potential effect of LTF therapy on the process of jawbone repair.
Collapse
Affiliation(s)
- Camila Barcellos Calderipe
- Department of Oral Diagnosis, Piracicaba School of Dentistry, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Alini Cardoso Soares
- Diagnostic Center of Oral Diseases, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Rafael Dos Santos Giorgis
- Oral Surgery Department, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | | | - Marcos Antonio Torriani
- Oral Surgery Department, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Luisa Quevedo Grave
- Diagnostic Center of Oral Diseases, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil
| | - Lauren Frenzel Schuch
- Molecular Pathology Area, School of Dentistry, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Ana Carolina Uchoa Vasconcelos
- Diagnostic Center of Oral Diseases, Dental School, Federal University of Pelotas - UFPel, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
8
|
Abd El-Hack ME, Abdelnour SA, Kamal M, Khafaga AF, Shakoori AM, Bagadood RM, Naffadi HM, Alyahyawi AY, Khojah H, Alghamdi S, Jaremko M, Świątkiewicz S. Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed Pharmacother 2023; 164:114967. [PMID: 37290189 DOI: 10.1016/j.biopha.2023.114967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Afnan M Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Rehab M Bagadood
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hind M Naffadi
- Department of medical genetics,college of medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Areej Y Alyahyawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hanan Khojah
- Pharmacognosy Department, Faculty of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of clinical pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
9
|
Pall E, Roman A, Olah D, Beteg FI, Cenariu M, Spînu M. Enhanced Bioactive Potential of Functionalized Injectable Platelet-Rich Plasma. Molecules 2023; 28:molecules28041943. [PMID: 36838930 PMCID: PMC9967773 DOI: 10.3390/molecules28041943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Injectable platelet-rich fibrin (iPRF) is a frequently used platelet concentrate used for various medical purposes both in veterinary and human medicine due to the regenerative potential of hard and soft tissues, and also because of its antimicrobial effectiveness. This in vitro study was carried out to assess the cumulative antimicrobial and antibiofilm effect of iPRF functionalized with a multifunctional glycoprotein, human lactoferrin (Lf). Thus, the ability to potentiate cell proliferation was tested on keratinocytes and evaluated by the CCK8 test. The combinations of iPRF and Lf induced an increase in the proliferation rate after 24 h. The average cell viability of treated cultures (all nine variants) was 102.87% ± 1.00, and the growth tendency was maintained even at 48 h. The highest proliferation rate was observed in cultures treated with 7% iPRF in combination with 50 µg/mL of Lf, with an average viability of 102.40% ± 0.80. The antibacterial and antibiofilm activity of iPRF, of human lactoferrin and their combination were tested by agar-well diffusion (Kirby-Bauer assay), broth microdilution, and crystal violet assay against five reference bacterial strains. iPRF showed antimicrobial and antibiofilm potential, but with variations depending on the tested bacterial strain. The global analysis of the results indicates an increased antimicrobial potential at the highest concentration of Lf mixed with iPRF. The study findings confirmed the hypothesized enhanced bioactive properties of functionalized iPRF against both Gram-positive and Gram-negative biofilm-producing bacteria. These findings could be further applied, but additional studies are needed to evaluate the mechanisms that are involved in these specific bioactive properties.
Collapse
Affiliation(s)
- Emoke Pall
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
- Correspondence: (E.P.); (M.C.)
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Diana Olah
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Florin Ioan Beteg
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| | - Mihai Cenariu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
- Correspondence: (E.P.); (M.C.)
| | - Marina Spînu
- Department of Clinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400374 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Chang Y, Ping A, Chang C, Betz VM, Cai L, Ren B. Lactoferrin Mediates Enhanced Osteogenesis of Adipose-Derived Stem Cells: Innovative Molecular and Cellular Therapy for Bone Repair. Int J Mol Sci 2023; 24:ijms24021749. [PMID: 36675267 PMCID: PMC9864243 DOI: 10.3390/ijms24021749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/17/2023] Open
Abstract
A prospective source of stem cells for bone tissue engineering is adipose-derived stem cells (ADSCs), and BMP-2 has been proven to be highly effective in promoting the osteogenic differentiation of stem cells. Rarely has research been conducted on the impact of lactoferrin (LF) on ADSCs' osteogenic differentiation. As such, in this study, we examined the effects of LF and BMP-2 to assess the ability of LF to stimulate ADSCs' osteogenic differentiation. The osteogenic medium was supplemented with the LF at the following concentrations to culture ADSCs: 0, 10, 20, 50, 100, and 500 μg/mL. The Cell Counting Kit-8 (CCK-8) assay was used to measure the proliferation of ADSCs. Calcium deposition, alkaline phosphatase (ALP) staining, real-time polymerase chain reaction (RT-PCR), and an ALP activity assay were used to establish osteogenic differentiation. RNA sequencing analysis was carried out to investigate the mechanism of LF boosting the osteogenic development of ADSCs. In the concentration range of 0-100 μg/mL, LF concentration-dependently increased the proliferative vitality and osteogenic differentiation of ADSCs. At a dose of 500 μg/mL, LF sped up and enhanced differentiation, but inhibited ADSCs from proliferating. LF (100 and 500 μg/mL) produced more substantial osteoinductive effects than BMP-2. The PI3 kinase/AKT (PI3K/AKT) and IGF-R1 signaling pathways were significantly activated in LF-treated ADSCs. The in vitro study results showed that LF could effectively promote osteogenic differentiation of ADSCs by activating the PI3K/AKT and IGF-R1 pathways. In our in vitro investigation, an LF concentration of 100 μg/mL was optimal for osteoinduction and proliferation. Our study suggests that LF is an attractive alternative to BMP-2 in bone tissue engineering. As a bioactive molecule capable of inducing adipose stem cells to form osteoblasts, LF is expected to be clinically used in combination with biomaterials as an innovative molecular and cellular therapy to promote bone repair.
Collapse
Affiliation(s)
- Yiqiang Chang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Ansong Ping
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
| | - Chunyu Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province and Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Volker M. Betz
- Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital LMU Munich, 81377 Munich, Germany
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| | - Bin Ren
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China
- Correspondence: (L.C.); (B.R.); Tel.: +86-138-8609-6467 (L.C.); +86-136-5175-6946 (B.R.)
| |
Collapse
|
11
|
Nagashima D, Ishibashi Y, Kawaguchi S, Furukawa M, Toho M, Ohno M, Nitto T, Izumo N. Human Recombinant Lactoferrin Promotes Differentiation and Calcification on MC3T3-E1 Cells. Pharmaceutics 2022; 15:pharmaceutics15010060. [PMID: 36678689 PMCID: PMC9861834 DOI: 10.3390/pharmaceutics15010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Lactoferrin (LF), known to be present in mammalian milk, has been reported to promote the proliferation of osteoblasts and suppress bone resorption by affecting osteoclasts. However, the mechanisms underlying the effects of human sources LF on osteoblast differentiation have not yet been elucidated, and almost studies have used LF from bovine sources. The presented study aimed to characterize the molecular mechanisms of bovine lactoferrin (IF-I) and human recombinant lactoferrin (LF-II) on MC3T3-E1 pre-osteoblast cells. MC3T3-E1 cells were treated with LF, ascorbic acid, and β-glycerophosphate (β-GP). Cell proliferation was analyzed using the MTT assay. Alkaline phosphatase activation and osteopontin expression levels were evaluated via cell staining and immunocytochemistry. The differentiation markers were examined using quantitative real-time PCR. The cell viability assay showed the treatment of 100 μg/mL LF significantly increased; however, it was suppressed by the simultaneous treatment of ascorbic acid and β-GP. Alizarin red staining showed that the 100 μg/mL treatment of LF enhanced calcification. Quantitative real-time PCR showed a significant increase in osterix expression. The results suggest that treatment with both LFs enhanced MC3T3-E1 cell differentiation and promoted calcification. The mechanisms of calcification suggest that LFs are affected by an increase in osterix and osteocalcin mRNA levels.
Collapse
Affiliation(s)
- Daichi Nagashima
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Pharmaceutical Education Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Yukiko Ishibashi
- Department of Biochemistry, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Sachiko Kawaguchi
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Megumi Furukawa
- Pharmaceutical Education Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Masahiro Toho
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | | | - Takeaki Nitto
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
- Correspondence: ; Tel.: +81-45-859-1300
| |
Collapse
|
12
|
Ong R, Cornish J, Wen J. Nanoparticular and other carriers to deliver lactoferrin for antimicrobial, antibiofilm and bone-regenerating effects: a review. Biometals 2022; 36:709-727. [PMID: 36512300 PMCID: PMC9745744 DOI: 10.1007/s10534-022-00455-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Bone and joint infections are a rare but serious problem worldwide. Lactoferrin’s antimicrobial and antibiofilm activity coupled with its bone-regenerating effects may make it suitable for improving bone and joint infection treatment. However, free lactoferrin (LF) has highly variable oral bioavailability in humans due to potential for degradation in the stomach and small intestine. It also has a short half-life in blood plasma. Therefore, encapsulating LF in nanocarriers may slow degradation in the gastrointestinal tract and enhance LF absorption, stability, permeability and oral bioavailability. This review will summarize the literature on the encapsulation of LF into liposomes, solid lipid nanoparticles, nanostructured lipid carriers, polymeric micro and nanoparticles and hydroxyapatite nanocrystals. The fabrication, characterization, advantages, disadvantages and applications of each system will be discussed and compared.
Collapse
Affiliation(s)
- Ray Ong
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jillian Cornish
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| | - Jingyuan Wen
- grid.9654.e0000 0004 0372 3343Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, 1142 New Zealand
| |
Collapse
|
13
|
Human Milk Microbiome and Microbiome-Related Products: Potential Modulators of Infant Growth. Nutrients 2022; 14:nu14235148. [PMID: 36501178 PMCID: PMC9737635 DOI: 10.3390/nu14235148] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Infant growth trajectory may influence later-life obesity. Human milk provides a wide range of nutritional and bioactive components that are vital for infant growth. Compared to formula-fed infants, breastfed infants are less likely to develop later-onset obesity, highlighting the potential role of bioactive components present in human milk. Components of particular interest are the human milk microbiota, human milk oligosaccharides (HMOs), short-chain fatty acids (SCFAs), and antimicrobial proteins, each of which influence the infant gut microbiome, which in turn has been associated with infant body composition. SCFAs and antimicrobial proteins from human milk may also systemically influence infant metabolism. Although inconsistent, multiple studies have reported associations between HMOs and infant growth, while studies on other bioactive components in relation to infant growth are sparse. Moreover, these microbiome-related components may interact with each other within the mammary gland. Here, we review the evidence around the impact of human milk microbes, HMOs, SCFAs, and antimicrobial proteins on infant growth. Breastfeeding is a unique window of opportunity to promote optimal infant growth, with aberrant growth trajectories potentially creating short- and long-term public health burdens. Therefore, it is important to understand how bioactive components of human milk influence infant growth.
Collapse
|
14
|
Enzyme-Linked Aptamer Kits for Rapid, Visual, and Sensitive Determination of Lactoferrin in Dairy Products. Foods 2022; 11:foods11233763. [PMID: 36496570 PMCID: PMC9736959 DOI: 10.3390/foods11233763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Lactoferrin (Lf), as a popular nutritional fortification in dairy products, has the ability regulate the body's immune system and function as a broad-spectrum antibacterial, which is of great significance to the growth and development of infants and children. Herein, an indirect competitive enzyme-linked aptamer assay (ELAA) kit was established for rapid, sensitive, and visual determination of Lf in dairy products. In the construction, the Lf aptamer was conjugated with horseradish peroxidase (HRP) as the recognition probe and aptamer complementary strand (cDNA) were anchored onto the microplate as the capture probe. The recognition probes were first mixed with a sample solution and specifically bound with the contained Lf, then added into the microplate in which the free recognition probes in the mixture were captured by the capture probe. After washing, the remaining complex of cDNA/Aptamer/HRP in the microplate was conducted with a chromogenic reaction through HRP, efficiently catalyzing the substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB), therefore the color shade would directly reflect Lf concentration. Under the optimization conditions, a good linear relationship (R2, 0.9901) was obtained in the wide range of 25-500 nM with the detection limit of 14.01 nM and a good specificity, as well as the reliable recoveries. Furthermore, the ELAA kits achieved the Lf determination with an accuracy of 79.71~116.99% in eleven samples, which consisted of three kinds of dairy products: including goat milk powder, cow milk powder, and nutrition drop. Moreover, the results were also validated by the high-performance capillary electrophoresis (HPCE) method. The ELAA kit provides a simple and convenient determination for Lf in dairy products, and it is highly expected to be commercialized.
Collapse
|
15
|
Gavile CM, Kazmers NH, Novak KA, Meeks HD, Yu Z, Thomas JL, Hansen C, Barker T, Jurynec MJ. Familial Clustering and Genetic Analysis of Severe Thumb Carpometacarpal Joint Osteoarthritis in a Large Statewide Cohort. J Hand Surg Am 2022; 47:923-933. [PMID: 36184273 PMCID: PMC9547951 DOI: 10.1016/j.jhsa.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Our goals were to identify individuals who required surgery for thumb carpometacarpal (CMC) joint osteoarthritis (OA), determine if CMC joint OA clusters in families, define the magnitude of familial risk of CMC joint OA, identify risk factors associated with CMC joint OA, and identify rare genetic variants that segregate with familial CMC joint OA. METHODS We searched the Utah Population Database to identify a cohort of CMC joint OA patients who required surgery. Affected individuals were mapped to pedigrees to identify high-risk families with excess clustering of CMC joint OA. Cox regression models were used to calculate familial risk of CMC joint OA in related individuals. Risk factors were evaluated using logistic regression models. Whole exome sequencing was used to identify rare coding variants associated with familial CMC joint OA. RESULTS We identified 550 pedigrees with excess clustering of severe CMC joint OA. The relative risk of CMC joint OA requiring surgical treatment was elevated significantly in first- and third-degree relatives of affected individuals, and significant associations with advanced age, female sex, obesity, and tobacco use were observed. We discovered candidate genes that dominantly segregate with severe CMC joint OA in 4 independent families, including a rare variant in Chondroitin Sulfate Synthase 3 (CHSY3). CONCLUSIONS Familial clustering of severe CMC joint OA was observed in a statewide population. Our data indicate that genetic and environmental factors contribute to the disease process, further highlighting the multifactorial nature of the disease. Genomic analyses suggest distinct biological processes are involved in CMC joint OA pathogenesis. CLINICAL RELEVANCE Awareness of associated comorbidities may guide the diagnosis of CMC joint OA in at-risk populations and help identify individuals who may not do well with nonoperative treatment. Further pursuit of the genes associated with severe CMC joint OA may lead to assays for detection of early stages of disease and have therapeutic potential.
Collapse
Affiliation(s)
| | | | - Kendra A Novak
- Department of Orthopaedics, University of Utah, Salt Lake City, UT
| | - Huong D Meeks
- Huntsman Cancer Institute, Utah Population Database, University of Utah, Salt Lake City, UT
| | - Zhe Yu
- Huntsman Cancer Institute, Utah Population Database, University of Utah, Salt Lake City, UT
| | - Joy L Thomas
- Intermountain Healthcare, Precision Genomics, St. George, UT
| | - Channing Hansen
- Intermountain Healthcare, Biorepository, South Salt Lake City, UT
| | - Tyler Barker
- Department of Orthopaedics, University of Utah, Salt Lake City, UT; Intermountain Healthcare, Precision Genomics, Murray, UT; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Michael J Jurynec
- Department of Orthopaedics, University of Utah, Salt Lake City, UT; Department of Human Genetics, University of Utah, Salt Lake City, UT.
| |
Collapse
|
16
|
Lin X, Zhang H, Liu J, Wu CL, McDavid A, Boyce BF, Xing L. Aged Callus Skeletal Stem/Progenitor Cells Contain an Inflammatory Osteogenic Population With Increased IRF and NF-κB Pathways and Reduced Osteogenic Potential. Front Mol Biosci 2022; 9:806528. [PMID: 35755815 PMCID: PMC9218815 DOI: 10.3389/fmolb.2022.806528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
Skeletal stem/progenitor cells (SSPCs) are critical for fracture repair by providing osteo-chondro precursors in the callus, which is impaired in aging. However, the molecular signatures of callus SSPCs during aging are not known. Herein, we performed single-cell RNA sequencing on 11,957 CD45-CD31-Ter119- SSPCs isolated from young and aged mouse calluses. Combining unsupervised clustering, putative makers, and DEGs/pathway analyses, major SSPC clusters were annotated as osteogenic, proliferating, and adipogenic populations. The proliferating cluster had a differentiating potential into osteogenic and adipogenic lineages by trajectory analysis. The osteoblastic/adipogenic/proliferating potential of individual clusters was further evidenced by elevated expression of genes related to osteoblasts, adipocytes, or proliferation. The osteogenic cluster was sub-clustered into house-keeping and inflammatory osteogenic populations that were decreased and increased in aged callus, respectively. The majority of master regulators for the inflammatory osteogenic population belong to IRF and NF-κB families, which was confirmed by immunostaining, RT-qPCR, and Western blot analysis. Furthermore, cells in the inflammatory osteogenic sub-cluster had reduced osteoblast differentiation capacity. In conclusion, we identified 3 major clusters in callus SSPCs, confirming their heterogeneity and, importantly, increased IRF/NF-κB-mediated inflammatory osteogenic population with decreased osteogenic potential in aged cells.
Collapse
Affiliation(s)
- X. Lin
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - H. Zhang
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - J. Liu
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
| | - C L. Wu
- Center for Musculoskeletal Research, Rochester, NY, United States
| | - A. McDavid
- Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - B. F. Boyce
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
- Center for Musculoskeletal Research, Rochester, NY, United States
| | - L. Xing
- Department of Pathology and Laboratory Medicine, Rochester, NY, United States
- Center for Musculoskeletal Research, Rochester, NY, United States
| |
Collapse
|
17
|
Postnikova LA, Patkin EL. The possible effect of lactoferrin on the epigenetic characteristics of early mammalian embryos exposed to bisphenol A. Birth Defects Res 2022; 114:1199-1209. [PMID: 35451577 DOI: 10.1002/bdr2.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The main objective of this review was to state a hypothetical mechanism of the antitoxic effect of lactoferrin (Lf) on embryos exposed to bisphenol A (BPA). On this basis, it is possible to suggest Lf as a potential protective health component before conception upon toxic effects and viral infections. METHODS The narrative review was performed using systematic review methods to identify relevant literature. The resources required for this study were obtained by searching the electronic database PubMed (MEDLINE). Articles were searched using the keywords "BPA," "lactoferrin," "DNA-methylation," "epigenetic," "mammals," "human," and "mouse." The inclusion criteria were as follows: (a) primary or original research; (b) study of epigenetic modification; and (c) study focuses on early mammalian development. RESULTS Presented data demonstrate that Lf can modulate epigenetical characteristic, such as DNA methylation and reactive oxygen species (ROS), and, thereby, may serve as a potential readily available pharmaceutical product. CONCLUSION Suggested hypothesis is based on the important interrelated role of changes in epigenetic modifications and oxidative stress in early embryogenesis under the influence of BPA and virus infection as a cause of the development of pathologies in the adult organism.
Collapse
Affiliation(s)
- Liubov A Postnikova
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Eugene L Patkin
- Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
18
|
Koca CG, Yıldırım B, Ozmen O, Dikilitas A, Cicek MF, Simsek AT, Gungor MA, Tuncay E. Effect of single-dose locally applied lactoferrin on autograft healing in peri-implant bone in rat models. Injury 2022; 53:858-867. [PMID: 35042599 DOI: 10.1016/j.injury.2021.11.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Immediate dental implant installation into fresh extraction sockets has become a common surgical technique and yields successful clinical results. In addition, complete contact may not be possible with this procedure cause of defects between the bone wall and the implant surface. Therefore, different graft materials have been used in the literature to increase the peri‑implant bone volume. The aim of the present study was to evaluate the effect of single-dose and locally applied lactoferrin on autograft healing in peri‑implant area and bone implant contact value. Twenty-four Sprague-Dawley rats were included in this study. Firstly, a trephine drill was used for creating a cylindrical bony defects (6.5 mm in diameter and 3 mm in depth) under sterile saline irrigation in the lateral side of the femur. Subsequently, implant beds -2.5 mm diameter and 6 mm depth - were prepared in the middle of each defect with special implant drills. All of the implants were installed and primary stability was achieved. Rats were randomly divided into 3 groups (n = 8 each): Group-1 had empty defects, Group-2 had defects filled with autograft, and Group-3 had defects filled with autograft and lactoferrin solution (100 μg/ml) combination. All of the rats were sacrificed at postoperative 4th week and samples were analyzed with micro-computed tomography, histomorphometry and immunohistochemistry respectively. It was found that Group 3 had the least area of fibrous tissue (6.75±0.83mm2) according to the other 2 groups (p<0.001). On the other hand, Group 3 had the highest osteoblast number (25.50±3.29), osteoclast number (21.25±1.03), newly formed bone area (20.50±1.30 mm2), total healing area (22.62±0.93 mm2), defect closure rate (80.37±1.40%), bone implant contact value (23.2%±0.6%), and percentage bone volume (18.2%±0.3%) (p<0.001). Matrix metalloproteinase-3 expression was found to be highest in Group 3 by immunohistochemistry analysis. In this study it was observed that the results of the different analysis techniques supported each other. According to these findings it can be stated that a single-dose and locally applied lactoferrin solution plays an important role in the autograft healing in peri‑implant area and increasing bone implant contact value. These findings will shed light on further clinical studies of implant osseointegration.
Collapse
Affiliation(s)
- Cansu Gul Koca
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Usak University, Usak, Turkey.
| | - Bengisu Yıldırım
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ahu Dikilitas
- Department of Periodontology, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Muhammed Fatih Cicek
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Aysıla Tekeli Simsek
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Mehmet Ali Gungor
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | | |
Collapse
|
19
|
Effects of lactoferrin on osteogenic differentiation and related gene expressions of osteoblast precursor cells MC3T3-E1 under mechanical strain. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
We aimed to evaluate the effects of lactoferrin (LF) on the osteogenic differentiation and related gene expressions of mouse embryonic osteoblast precursor cells MC3T3-E1 under mechanical strain. MC3T3-E1 cells were randomly divided into control, strain loading, LF and strain loading + LF groups. Alkaline phosphatase (ALP) activity was measured. Cytoskeletal morphology was measured by rhodamine-phalloidin staining. Formation of mineralized nodules was observed by alizarin red staining. The expressions of differentiation-related genes type I collagen (COL-1), interleukin-6 (IL-6) and osteocalcin (OCN) were determined by RT-PCR, and those of p-Runx2 and p-ERK1/2 proteins were detected by Western blotting. The number of ALP positive cells and expressions of OCN, COL-1 and IL-6 were significantly elevated (P<0.05). The optical density of strain loading + LF group was higher than those in strain loading and LF groups after incubation for 4 and 7 days (P<0.05). The cell volume and extension range were elevated in strain loading + LF group compared with those in strain loading group. The amount of mineralized nodules in strain loading + LF group was significantly higher than those in strain loading and LF groups, while it was slightly higher in LF group than that in strain loading group. The expressions of p-ERK1/2 and p-Runx2 in strain loading + LF group exceeded those in strain loading and LF groups (P<0.05). The synergistic action of LF and mechanical strain can effectively promote the proliferation, differentiation and mineralization of osteoblasts, probably being associated with the ERK1/2 signaling pathway.
Collapse
|
20
|
Sustained Delivery of Lactoferrin Using Poloxamer Gels for Local Bone Regeneration in a Rat Calvarial Defect Model. MATERIALS 2021; 15:ma15010212. [PMID: 35009359 PMCID: PMC8745849 DOI: 10.3390/ma15010212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 01/02/2023]
Abstract
Lactoferrin (LF) is a multifunctional milk glycoprotein that promotes bone regeneration. Local delivery of LF at the bone defect site is a promising approach for enhancement of bone regeneration, but efficient systems for sustained local delivery are still largely missing. The aim of this study was to investigate the potential of the poloxamers for sustained delivery of LF to enhance local bone regeneration. The developed LF/poloxamer formulations were liquid at room temperature (20 °C) transforming to a sustained releasing gel depot at body temperature (37 °C). In vitro release studies demonstrated an initial burst release (~50%), followed by slower release of LF for up to 72 h. Poloxamer, with and without LF, increased osteoblast viability at 72 h (p < 0.05) compared to control, and the immune response from THP-1 cells was mild when compared to the suture material. In rat calvarial defects, the LF/poloxamer group had lower bone volume than the controls (p = 0.0435). No difference was observed in tissue mineral density and lower bone defect coverage scores (p = 0.0267) at 12 weeks after surgery. In conclusion, LF/poloxamer formulations support cell viability and do not induce an unfavourable immune response; however, LF delivery via the current formulation of LF200/poloxamer gel did not demonstrate enhanced bone regeneration and was not compatible with the rat calvarial defect model.
Collapse
|
21
|
Odatsu T, Kuroshima S, Shinohara A, Valanezhad A, Sawase T. Lactoferrin with Zn-ion protects and recovers fibroblast from H 2O 2-induced oxidative damage. Int J Biol Macromol 2021; 190:368-374. [PMID: 34487781 DOI: 10.1016/j.ijbiomac.2021.08.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Lactoferrin (LF) has attracted great attention due to its various bioactivities, which depend on the degree of saturation with different cations. This study focused on the synergistic effect of LF and Zn2+ on human gingival fibroblasts (hGFs), considering antioxidant activities, cell proliferation, and collagen gene expression levels in these cells to improve the wound healing. The hGFs were cultured in an experimental medium, containing 1000 μg/mL of LF and various concentrations of ZnCl2. The cells were subjected to oxidative damage by exposure to 600 μM H2O2 for 30 min before incubation in the experimental medium. The cell proliferation rate and the relative gene expression levels of genes associated with apoptosis, antioxidant enzymes, and collagen were compared. H2O2 decomposition by LF was also measured using a colorimetric assay. LF enhanced hGF proliferation and the expression of collagen. Furthermore, LF directly scavenged H2O2 and prevented lipid peroxidation by enhancing the expression of glutathione peroxidase 4 gene expression, resulting in the prevention of apoptosis and recovery of the cells from H2O2-induced oxidative damage. The addition of ZnCl2 enhanced these results. The results indicated that LF with Zn-ion could play an important role in modulating the functions related to wound healing.
Collapse
Affiliation(s)
- Tetsurou Odatsu
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan.
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Ayano Shinohara
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Alireza Valanezhad
- Department of Dental and Biomaterials Science, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
22
|
Xiao X, Cheng Y, Huang L, Liu R, Zou S, Chen J. Gavage-administered lactoferrin promotes palatal expansion stability in a dose-dependent manner. Oral Dis 2021; 29:254-264. [PMID: 34343383 DOI: 10.1111/odi.13989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the effects of different lactoferrin concentrations on mid-palatal suture bone remodeling during palatal expansion and relapse in rats. MATERIALS AND METHODS Thirty-two 5-week-old male Wistar rats were randomly divided into four groups: EO (expansion only), E+LF1 (expansion plus 10 mg/kg/day daily LF), E+LF2 (expansion plus 100 mg/kg/day daily LF), and E+LF3 (expansion plus 1 g/kg/day daily LF). Thereafter, micro-computed tomography and micro-morphology of the mid-palatal suture were analyzed on day 7 and day 14, respectively. RESULTS The arch widths were increased in all the four groups after expansion, and there was no significant difference among them on day 7. After relapse, however, the arch width in the E+LF3 group was significantly larger compared with EO group. In E+LF3 group and E+LF2 group, new bone formation and osteoblast number were enhanced with up-regulated expression of osteocalcin and collagen type I, while the expression of cathepsin K-positive cells was downregulated in E+LF3 group. CONCLUSION Lactoferrin gavage administration might increase the stability of palatal expansion and reduce relapse in a concentration-dependent manner by enhancing bone formation and inhibiting resorption. LF administration may be promising for optimizing the maxillary expansion outcome.
Collapse
Affiliation(s)
- Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Nanjing Stomatological Hospital, Medical school of Nanjing University, Nanjing, China
| | - Li Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Li YQ, Guo C. A Review on Lactoferrin and Central Nervous System Diseases. Cells 2021; 10:cells10071810. [PMID: 34359979 PMCID: PMC8307123 DOI: 10.3390/cells10071810] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Central nervous system (CNS) diseases are currently one of the major health issues around the world. Most CNS disorders are characterized by high oxidative stress levels and intense inflammatory responses in affected tissues. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, plays a significant role in anti-inflammatory, antibacterial, antiviral, reactive oxygen species (ROS) modulator, antitumor immunity, and anti-apoptotic processes. Previous studies have shown that Lf is abnormally expressed in a variety of neurological diseases, especially neurodegenerative diseases. Recently, the promotion of neurodevelopment and neuroprotection by Lf has attracted widespread attention, and Lf could be exploited both as an active therapeutic agent and drug nanocarrier. However, our understanding of the roles of Lf proteins in the initiation or progression of CNS diseases is limited, especially the roles of Lf in regulating neurogenesis. This review highlights recent advances in the understanding of the major pharmacological effects of Lf in CNS diseases, including neurodegenerative diseases, cerebrovascular disease, developmental delays in children, and brain tumors.
Collapse
Affiliation(s)
| | - Chuang Guo
- Correspondence: ; Tel.: +86-24-8365-6109
| |
Collapse
|
24
|
Xu D, Song W, Zhang J, Liu Y, Lu Y, Zhang X, Liu Q, Yuan T, Liu R. Osteogenic effect of polymethyl methacrylate bone cement with surface modification of lactoferrin. J Biosci Bioeng 2021; 132:132-139. [PMID: 34052115 DOI: 10.1016/j.jbiosc.2021.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022]
Abstract
Polymethyl methacrylate (PMMA) bone cement is a commonly used filling material in orthopedic surgery. Its good and stable performances make it the most widely used in all kinds of bone cement. With the advancement of the application and research of PMMA bone cement by surgeons, its disadvantages such as non-degradation and non-bioactivity are gradually exposed. In recent years, the biological functions of lactoferrin (LF) have been gradually explored, especially its role in promoting osteogenesis. In this study, LF was modified on the surface of solidified PMMA bone cement (LF/PMMA bone cement) by physical/chemical mixed modification and verified by cytological experiments in vitro. In vitro studies have implicated that PMMA bone cement modified with LF can improve the attachment, expansion, proliferation, extracellular matrix secretion and osteogenic differentiation of mouse preosteoblasts (MC3T3-E1) cells, indicating biocompatibility. This experiment provides a novel insight for improving the biological activity of PMMA bone cement and lays a foundation for broadening the clinical application of PMMA bone cement.
Collapse
Affiliation(s)
- Derui Xu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Wenlong Song
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Jun Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Yanting Liu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Yanyan Lu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Xuewei Zhang
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Qinyi Liu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China.
| | - Tianyang Yuan
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| | - Rui Liu
- Department of Spine Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130040, China
| |
Collapse
|
25
|
Wang R, Wang J, Liu H, Gao Y, Zhao Q, Ling S, Wang S. Sensitive immunoassays based on specific monoclonal IgG for determination of bovine lactoferrin in cow milk samples. Food Chem 2021; 338:127820. [PMID: 32827899 DOI: 10.1016/j.foodchem.2020.127820] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 02/03/2023]
Abstract
Lactoferrin (LF), a bioactive multifunctional protein of the transferrin family, is found mainly in the secretions of all mammals, especially in milk. In the present study, a hybridoma cell (LF8) secreting IgG against bovine LF was screened, and the purified LF8 mAb showed high specificity and affinity to bovine LF. The linear range of ic-ELISA to detect LF was 9.76 ~ 625 ng/mL, with a limit of detection (LOD) of 0.01 ng/mL. The average recovery of intra- and inter-assay were (104.45 ± 4.12)% and (107.13 ± 4.72)%, respectively. The LOD of colloidal gold- and AuNFs-based strip by naked eye were 9.7 and 2.4 ng/mL, respectively, and the detection time was less than 10 min without any samples pretreatment and expensive equipment. The developed ELISA and lateral flow immunosensors based on specific IgG could be used directly for rapid detection of the bovine LF content in cow milk samples.
Collapse
Affiliation(s)
- Rongzhi Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juncheng Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haimei Liu
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yehong Gao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiang Zhao
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sumei Ling
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Marine Biotechnology of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Wen P, Zhang W, Wang P, Zhang Y, Zhang W, Zhao Y, Guo H. Osteogenic effects of the peptide fraction derived from pepsin-hydrolyzed bovine lactoferrin. J Dairy Sci 2021; 104:3853-3862. [PMID: 33551166 DOI: 10.3168/jds.2020-19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/04/2020] [Indexed: 11/19/2022]
Abstract
Osteoporosis is a common disease that frequently occurs in the older population, particularly in postmenopausal women. It severely compromises the health of the older population, and the drugs commonly used to treat osteoporosis have a variety of adverse effects. Lactoferrin (LF) is a protein present in milk that has recently been found to exhibit osteogenic activity. Lactoferrin is nontoxic and harmless, suggesting that it may have excellent biocompatibility and tolerability after human consumption. Oral consumption of LF in an ovariectomized rat model has been found to ameliorate osteoporosis. However, the mechanism underlying this effect remains to be clarified. In this study, bovine LF (bLF) was first hydrolyzed by pepsin for 1 h, and the hydrolyzed mixture was freeze-dried and collected. The hydrolyzed mixture was then separated into 5 components (E1-E5), of which E3 had the greatest effect in promoting proliferation of osteoblasts (MC3T3-E1). Component E3 was further isolated into 21 components with preparative reversed phase HPLC, and the E3-15 component had maximal bioactivity. With HPLC-mass spectrometry and peptide sequencing, E3-15 was identified to contain amino acids 97 to 208 from the bLF N terminus. Then, E3-15 was divided into 6 different peptide segments (P1-P6), and the corresponding segments were generated by solid-phase synthesis. Only the P1 peptide (amino acids 97-122 from the N terminus of bLF) significantly promoted osteoblast proliferation. The bioactivity of P1 toward osteoblast cells and alkaline phosphatase activity were tested as a function of P1 concentration, and a nonlinear effect was observed.
Collapse
Affiliation(s)
- P Wen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - W Zhang
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - P Wang
- Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Y Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - W Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Zhao
- Department of Grain Science and Industry, Kansas State University, Manhattan 66506.
| | - H Guo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Beijing Laboratory of Food Quality and Safety, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
27
|
Tsatsanis A, McCorkindale AN, Wong BX, Patrick E, Ryan TM, Evans RW, Bush AI, Sutherland GT, Sivaprasadarao A, Guennewig B, Duce JA. The acute phase protein lactoferrin is a key feature of Alzheimer's disease and predictor of Aβ burden through induction of APP amyloidogenic processing. Mol Psychiatry 2021; 26:5516-5531. [PMID: 34400772 PMCID: PMC8758478 DOI: 10.1038/s41380-021-01248-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/17/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Amyloidogenic processing of the amyloid precursor protein (APP) forms the amyloid-β peptide (Aβ) component of pathognomonic extracellular plaques of AD. Additional early cortical changes in AD include neuroinflammation and elevated iron levels. Activation of the innate immune system in the brain is a neuroprotective response to infection; however, persistent neuroinflammation is linked to AD neuropathology by uncertain mechanisms. Non-parametric machine learning analysis on transcriptomic data from a large neuropathologically characterised patient cohort revealed the acute phase protein lactoferrin (Lf) as the key predictor of amyloid pathology. In vitro studies showed that an interaction between APP and the iron-bound form of Lf secreted from activated microglia diverted neuronal APP endocytosis from the canonical clathrin-dependent pathway to one requiring ADP ribosylation factor 6 trafficking. By rerouting APP recycling to the Rab11-positive compartment for amyloidogenic processing, Lf dramatically increased neuronal Aβ production. Lf emerges as a novel pharmacological target for AD that not only modulates APP processing but provides a link between Aβ production, neuroinflammation and iron dysregulation.
Collapse
Affiliation(s)
- Andrew Tsatsanis
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Andrew N. McCorkindale
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Bruce X. Wong
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Ellis Patrick
- grid.1013.30000 0004 1936 834XFaculty of Science, School of Mathematics and Statistics, University of Sydney, Camperdown, NSW Australia
| | - Tim M. Ryan
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Robert W. Evans
- grid.7728.a0000 0001 0724 6933School of Engineering and Design, Brunel University, London, UK
| | - Ashley I. Bush
- grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| | - Greg T. Sutherland
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW Australia
| | - Asipu Sivaprasadarao
- grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK
| | - Boris Guennewig
- grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Brain and Mind Centre and School of Medical Sciences, The University of Sydney, Camperdown, NSW Australia
| | - James A. Duce
- grid.5335.00000000121885934The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK ,grid.9909.90000 0004 1936 8403Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, West Yorkshire UK ,grid.1008.90000 0001 2179 088XMelbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC Australia
| |
Collapse
|
28
|
Huang L, Yang Z, Liu R, Xiao X, Zhou C, Yin X, Zou S, Chen J. Lactoferrin promotes osteogenesis of MC3T3-E1 cells induced by mechanical strain in an extracellular signal-regulated kinase 1/2-dependent manner. Am J Orthod Dentofacial Orthop 2020; 159:e113-e121. [PMID: 33280973 DOI: 10.1016/j.ajodo.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION This study aimed to investigate the role of lactoferrin (LF) in the mechanical strain-induced osteogenesis of nontransformed osteoblastic cells (MC3T3-E1 cells) and related mechanism. METHODS MC3T3-E1 cells were cultured in vitro and treated with 100 μg/mL LF, followed by a 2000 μ mechanical strain load. U0126 was used to determine the role of extracellular signal-regulated kinase 1/2 (Erk1/2). Alizarin red S staining was performed to observe the cell mineralization potential. The osteogenic results were analyzed by reverse transcription-polymerase chain reaction and western blotting. RESULTS The expression of Col1, Alp, Ocn, Bsp, and Opn mRNA and p-Erk1/2 proteins was significantly upregulated under mechanical strain load. In addition, mineralized nodule formation was increased. After adding LF, the expression of the biomarkers and the formation of mineralized nodules were further promoted. On treatment with the Erk1/2 inhibitor U0126, the expression of Col1, Alp, and p-Erk1/2 mRNA and protein was significantly downregulated. CONCLUSIONS These findings demonstrate that LF promotes osteogenic activity by activating osteogenesis-related biomarkers, corroborating that the effects of mechanical strain depend on Erk1/2 signaling pathway.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenjin Yang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Ruojing Liu
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyue Xiao
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Zhytnik L, Maasalu K, Reimann E, Märtson A, Kõks S. RNA sequencing analysis reveals increased expression of interferon signaling genes and dysregulation of bone metabolism affecting pathways in the whole blood of patients with osteogenesis imperfecta. BMC Med Genomics 2020; 13:177. [PMID: 33228694 PMCID: PMC7684725 DOI: 10.1186/s12920-020-00825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic disorder in which the patients suffer from numerous fractures, skeletal deformities and bluish sclera. The disorder ranges from a mild form to severe and lethal cases. The main objective of this pilot study was to compare the blood transcriptional landscape of OI patients with COL1A1 pathogenic variants and their healthy relatives, in order to find out different gene expression and dysregulated molecular pathways in OI. METHODS We performed RNA sequencing analysis of whole blood in seven individuals affected with different OI severity and their five unaffected relatives from the three families. The data was analyzed using edgeR package of R Bioconductor. Functional profiling and pathway analysis of the identified differently expressed genes was performed with g:GOSt and MinePath web-based tools. RESULTS We identified 114 differently expressed genes. The expression of 79 genes was up-regulated, while 35 genes were down-regulated. The functional analysis identified a presence of dysregulated interferon signaling pathways (IFI27, IFITM3, RSAD12, GBP7). Additionally, the expressions of the genes related to extracellular matrix organization, Wnt signaling, vitamin D metabolism and MAPK-ERK 1/2 pathways were also altered. CONCLUSIONS The current pilot study successfully captured the differential expression of inflammation and bone metabolism pathways in OI patients. This work can contribute to future research of transcriptional bloodomics in OI. Transcriptional bloodomics has a strong potential to become a major contributor to the understanding of OI pathological mechanisms, the discovery of phenotype modifying factors, and the identification of new therapeutic targets. However, further studies in bigger cohorts of OI patients are needed to confirm the findings of the current work.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia.
| | - Katre Maasalu
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopedics, Tartu University Hospital, Puusepa 8, 51014, Tartu, Estonia
- Department of Traumatology and Orthopedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
30
|
Yang Z, Ni J, Kuang L, Gao Y, Tao S. Identification of genes and pathways associated with subchondral bone in osteoarthritis via bioinformatic analysis. Medicine (Baltimore) 2020; 99:e22142. [PMID: 32925767 PMCID: PMC7489699 DOI: 10.1097/md.0000000000022142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/15/2020] [Accepted: 08/09/2020] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis (OA) is a high prevalent musculoskeletal problem, which can cause severe pain, constitute a huge social and economic burden, and seriously damage the quality of life. This study was intended to identify genetic characteristics of subchondral bone in patients with OA and to elucidate the potential molecular mechanisms involved. Data of gene expression profiles (GSE51588), which contained 40 OA samples and 10 normal samples, was obtained from the Gene Expression Omnibus (GEO). The raw data were integrated to obtain differentially expressed genes (DEGs) and were further analyzed with bioinformatic analysis. The protein-protein interaction (PPI) networks were built and analyzed via Search Tool for the Retrieval of Interacting Genes (STRING). The significant modules and hub genes were identified via Cytoscape. Moreover, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis were performed. Totally 235 DEGs were differentially expressed in the subchondral bone from OA patients compared with those of normal individuals, of which 78 were upregulated and 157 were downregulated. Eight hub genes were identified, including DEFA4, ARG1, LTF, RETN, PGLYRP1, OLFM4, ORM1, and BPI. The enrichment analyses of the DEGs and significant modules indicated that DEGs were mainly involved in inflammatory response, extracellular space, RAGE receptor binding, and amoebiasis pathway. The present study provides a novel and in-depth understanding of pathogenesis of the OA subchondral bone at molecular level. DEFA4, ARG1, LTF, RETN, PGLYRP1, OLFM4, ORM1, and BPI may be the new candidate targets for diagnosis and therapies on patients with OA in the future.
Collapse
Affiliation(s)
- Zhanyu Yang
- Department of Orthopaedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University
- Hunan Provincial Emergency Center
| | - Jiangdong Ni
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Letian Kuang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yongquan Gao
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan
| | - Shibin Tao
- Department of Orthopaedics, Qinghai University Affiliated Hospital, Xining, Qinghai, P.R. China
| |
Collapse
|
31
|
Shang N, Bhullar KS, Wu J. Ovotransferrin Exhibits Osteogenic Activity Partially via Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Activation in MC3T3-E1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9427-9435. [PMID: 32786820 DOI: 10.1021/acs.jafc.0c04064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ovotransferrin, a major protein in egg white, induces osteoblast proliferation and survival in vitro. However, it is unclear which receptor(s) drive the beneficial activities of this bioactive glycoprotein. We examined the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the actions of ovotransferrin on osteoblasts. Here, we showed that LRP1 in part regulates osteogenic action of ovotransferrin. Mouse osteoblasts, MC3T3-E1, with LRP1 deletion displayed diminished osteogenic activity. Our findings indicate that the bone-stimulatory impact of ovotransferrin on RUNX2, COL1A2, and Ca2+ signaling is LRP1-dependent. This shows that LRP1 not only acts as a scavenger receptor but also participates in ovotransferrin-mediated gene transcription. However, some of the key bone formatting factors such as ALP synthesis and serine residue phosphorylation of Akt by ovotransferrin remained independent of LRP1. Overall, this study shows that LRP1-ovotransferrin interaction might underline in part the ability of ovotransferrin to promote bone formation.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
32
|
Pall E, Roman A. Lactoferrin Functionalized Biomaterials: Tools for Prevention of Implant-Associated Infections. Antibiotics (Basel) 2020; 9:E522. [PMID: 32824241 PMCID: PMC7459815 DOI: 10.3390/antibiotics9080522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is one of the most important biotechnologies in the biomedical field. It requires the application of the principles of scientific engineering in order to design and build natural or synthetic biomaterials feasible for the maintenance of tissues and organs. Depending on the specific applications, the selection of the proper material remains a significant clinical concern. Implant-associated infection is one of the most severe complications in orthopedic implant surgeries. The treatment of these infections is difficult because the surface of the implant serves not only as a substrate for the formation of the biofilm, but also for the selection of multidrug-resistant bacterial strains. Therefore, a promising new approach for prevention of implant-related infection involves development of new implantable, non-antibiotic-based biomaterials. This review provides a brief overview of antimicrobial peptide-based biomaterials-especially those coated with lactoferrin.
Collapse
Affiliation(s)
- Emoke Pall
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania;
| |
Collapse
|
33
|
Janarthanan G, Tran HN, Cha E, Lee C, Das D, Noh I. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111008. [DOI: 10.1016/j.msec.2020.111008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
|
34
|
Icriverzi M, Dinca V, Moisei M, Evans RW, Trif M, Roseanu A. Lactoferrin in Bone Tissue Regeneration. Curr Med Chem 2020; 27:838-853. [PMID: 31258057 DOI: 10.2174/0929867326666190503121546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/15/2018] [Accepted: 12/13/2018] [Indexed: 11/22/2022]
Abstract
Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.
Collapse
Affiliation(s)
- Madalina Icriverzi
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania.,University of Bucharest, Faculty of Biology, Bucharest, Romania
| | - Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics, Magurele RO-077125, Romania
| | - Magdalena Moisei
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Robert W Evans
- Brunel University, School of Engineering and Design, London, United Kingdom
| | - Mihaela Trif
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Anca Roseanu
- Ligand-Receptor Interaction Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
35
|
Owen R, Bahmaee H, Claeyssens F, Reilly GC. Comparison of the Anabolic Effects of Reported Osteogenic Compounds on Human Mesenchymal Progenitor-derived Osteoblasts. Bioengineering (Basel) 2020; 7:E12. [PMID: 31972962 PMCID: PMC7148480 DOI: 10.3390/bioengineering7010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/10/2023] Open
Abstract
There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound's action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17β-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.
Collapse
Affiliation(s)
- Robert Owen
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Hossein Bahmaee
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
- Department of Materials Science and Engineering, University of Sheffield, Kroto Research Institute, Sheffield S3 7HQ, UK
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The Pam Liversidge Building, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK; (H.B.); (F.C.); (G.C.R.)
| |
Collapse
|
36
|
De Leon-Rodriguez LM, Park YE, Naot D, Musson DS, Cornish J, Brimble MA. Design, characterization and evaluation of β-hairpin peptide hydrogels as a support for osteoblast cell growth and bovine lactoferrin delivery. RSC Adv 2020; 10:18222-18230. [PMID: 35692623 PMCID: PMC9122575 DOI: 10.1039/d0ra03011b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
The use of peptide hydrogels is of growing interest in bone regeneration. Self-assembling peptides form hydrogels and can be used as injectable drug delivery matrices. Injected into the defect site, they can gel in situ, and release factors that aid bone growth. We report on the design, synthesis and characterization of three β-hairpin peptide hydrogels, and on their osteoblast cytocompatibility as well as delivery of the lactoferrin glycoprotein, a bone anabolic factor. Osteoblasts cultured in hydrogels of the peptide with sequence NH2-Leu-His-Leu-His-Leu-Lys-Leu-Lys-Val-dPro-Pro-Thr-Lys-Leu-Lys-Leu-His-Leu-His-Leu-Arg-Gly-Asp-Ser-CONH2 (H4LMAX-RGDS) increased the osteoblast cell number and the cells appeared healthy after seven days. Furthermore, we showed that H4LMAX-RGDS was capable of releasing up to 60% of lactoferrin (pre-encapsulated in the gel) over five days while retaining the rest of the glycoprotein. Thus, H4LMAX-RGDS hydrogels are cytocompatible with primary osteoblasts and capable of delivering bio-active lactoferrin that increases osteoblast cell number. Self-assembling peptide H4LMAX-RGDS hydrogels, designed to enhance bone regeneration, are cytocompatible and capable of delivering the bone anabolic factor lactoferrin to increase osteoblast cell number.![]()
Collapse
Affiliation(s)
| | - Young-Eun Park
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Dorit Naot
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - David S. Musson
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Jillian Cornish
- Department of Medicine
- University of Auckland
- Auckland 1023
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
37
|
Jahan M, Francis N, Wang B. Serum lactoferrin concentration of primiparous sow during gestation and lactation, and comparison between sow-fed and formula-fed piglets. Transl Anim Sci 2019; 3:1410-1415. [PMID: 32704905 PMCID: PMC7200499 DOI: 10.1093/tas/txz145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/19/2019] [Indexed: 11/13/2022] Open
Abstract
Lactoferrin (LF) is a sialylated iron-binding glycoprotein, occurring in several biological secretions like milk, saliva, and seminal fluids and is a major component of a mammalian innate immune system. It plays multiple protective roles against large group of microorganisms and performs anti-inflammatory and anti-cancer activities. The concentration of serum LF in gilt (primiparous sow) and their piglets remains unknown. We determined serum LF concentration in gilts during gestation and lactation to that of 19-d-old piglets, including sow-fed and formula-fed piglets using enzyme-linked immunosorbent assay (ELISA). We found that the concentration of serum LF in gilts varied during gestation (0.77 ± 0.10 µg/mL) and lactation (0.62 ± 0.11 µg/mL). The mean concentration of serum LF in gilts (0.72 ± 0.06 µg/mL) was significantly higher than that of piglets (0.42 ± 0.07 µg/mL, P = 0.004). Additionally, a marginal significant difference (P =0.06) was observed for serum LF concentration in sow-fed piglets (0.42 ± 0.03 µg/mL) at 19 d old compared to that of formula-fed piglets (0.33 ± 0.04 µg/mL) at 37 d old. This study provides noble information regarding the serum LF concentration in the healthy gilts and piglets and thereby the data can be used as a standard reference point for future studies on the role of LF in pig reproduction.
Collapse
Affiliation(s)
- Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Nidhish Francis
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia.,School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
38
|
Liu S, Liu HB, Wang HL, Zhi Y, Feng XL, Jia XD. Evaluation of behavioral profiles in mice fed with milk supplemented diets derived from human lactoferrin gene-modified cows. Regul Toxicol Pharmacol 2019; 104:133-140. [DOI: 10.1016/j.yrtph.2019.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/15/2023]
|
39
|
Huang HC, Lin H, Huang MC. Lactoferrin promotes hair growth in mice and increases dermal papilla cell proliferation through Erk/Akt and Wnt signaling pathways. Arch Dermatol Res 2019; 311:411-420. [PMID: 31006055 PMCID: PMC6546667 DOI: 10.1007/s00403-019-01920-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/04/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Hair loss affects men and women of all ages. Dermal papilla (DP) plays a crucial role in regulating the growth and cycling of hair follicles. Lactoferrin (LF) exhibits a wide range of biological functions, including antimicrobial activity and growth regulation. However, its effect on DP and its role in hair growth remain unknown. In this study, we found that bovine LF (bLF) promoted the proliferation of DP cells and enhanced the phosphorylation of Erk and Akt. The bLF-mediated proliferation was significantly blocked by the Erk phosphorylation inhibitor PD98059 or the Akt phosphorylation inhibitor LY294002. Moreover, biotin-labeled bLF could bind to DP cells, and the binding was independent of lipoprotein receptor-related protein 1, a known LF receptor. Importantly, bLF stimulated hair growth in both young and aged mice. Moreover, we also found that bLF significantly induced the expression of Wnt signaling-related proteins, including Wnt3a, Wnt7a, Lef1, and β-catenin. The bLF-mediated DP cell proliferation could be significantly reversed by the Wnt pathway inhibitor XAV939. Our findings suggest that bLF promotes hair growth in mice and stimulates proliferation of DP cells through Erk/Akt and Wnt signaling pathways. This study highlights a great potential of the use of bLF in developing drugs to treat hair loss.
Collapse
Affiliation(s)
| | - Hsuan Lin
- Renorigin Innovation Institute Co. Ltd., Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, No. 1, Sec. 1, Ren'ai Road, Taipei, 100, Taiwan.
| |
Collapse
|
40
|
Bhandari D, Rafiq S, Gat Y, Gat P, Waghmare R, Kumar V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09823-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Lycopus lucidus Turcz Inhibits the Osteoclastogenesis in RAW 264.7 Cells and Bone Loss in Ovariectomized Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3231784. [PMID: 30915145 PMCID: PMC6409043 DOI: 10.1155/2019/3231784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/24/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Lycopus lucidus (LL) is a perennial herb that is traditionally used in Asia to treat edema, wound healing, and gynecological diseases such as irregular menstruation and menstrual pain. We hypothesized that LL would decrease the risk of developing osteoporosis, which is a condition related to gynecological diseases. In this study, we aimed to investigate the effect of a water extract of LL on osteoclastogenesis in vitro and osteoporosis in vivo. In vitro study, we used RAW 264.7 cells as osteoclast precursor cell. Osteoclast differentiation was induced by receptor activator nuclear factor-kappa B ligand (RANKL). We investigated the effect of LL on RANKL-induced osteoclastogenesis, tartrate-resistant acid phosphatase (TRAP) activity, and osteoclast-related genes. In vivo study, we used ovariectomized- (OVX-) induced osteoporosis rat model. OVX-induced Sprague-Dawley rats were randomly separated into sham, OVX, 17β-estradiol (100 μg/kg), wLL-L (15.2 mg/kg), and wLL-H (152 mg/kg) groups. Drugs were administered orally once daily for 9 weeks. wLL inhibited the formation of TRAP-positive osteoclasts; TRAP activity; pit formation; transcription factors (the nuclear factor of activated T-cell cytoplasmic 1 and c-fos); and osteoclast-related genes such as TRAP, carbonic anhydrase II, cathepsin K, osteoclast-associated receptor, and the d2 isoform of the vacuolar ATPase Vo domain. Also, wLL prevented loss of the trabecular area in the OVX femur without change of estrogen level. These results indicate that wLL is able to inhibit osteoclastogenesis and protect bone loss in the OVX-induced osteoporosis model without the influence of hormones like estrogen.
Collapse
|
42
|
Zhang J, Di W, Gong P, Lin K, Lyu L, Zhang L, Han X, Ma Y. Direct and fast capture lactoferrin from cheese whey on nanoparticles of Fe3O4 combined with concanavalin A. Food Chem 2019; 274:314-318. [DOI: 10.1016/j.foodchem.2018.08.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 08/19/2018] [Accepted: 08/24/2018] [Indexed: 11/25/2022]
|
43
|
Kaleb K, Vesztrocy AW, Altenhoff A, Dessimoz C. Expanding the Orthologous Matrix (OMA) programmatic interfaces: REST API and the OmaDB packages for R and Python. F1000Res 2019; 8:42. [PMID: 31001419 PMCID: PMC6464060 DOI: 10.12688/f1000research.17548.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2019] [Indexed: 11/28/2022] Open
Abstract
The Orthologous Matrix (OMA) is a well-established resource to identify orthologs among many genomes. Here, we present two recent additions to its programmatic interface, namely a REST API, and user-friendly R and Python packages called
OmaDB. These should further facilitate the incorporation of OMA data into computational scripts and pipelines. The REST API can be freely accessed at
https://omabrowser.org/api. The R OmaDB package is available as part of Bioconductor at
http://bioconductor.org/packages/OmaDB/, and the omadb Python package is available from the Python Package Index (PyPI) at
https://pypi.org/project/omadb/.
Collapse
Affiliation(s)
- Klara Kaleb
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Alex Warwick Vesztrocy
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adrian Altenhoff
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Christophe Dessimoz
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Computer Science, University College London, London, WC1E 6BT, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, 1015, Switzerland.,Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
44
|
Cheng Y, Sun J, Zhou Z, Pan J, Zou S, Chen J. Effects of lactoferrin on bone resorption of midpalatal suture during rapid expansion in rats. Am J Orthod Dentofacial Orthop 2018; 154:115-127. [PMID: 29957309 DOI: 10.1016/j.ajodo.2017.09.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The aim of this study was to investigate the effect of lactoferrin (LF) on bone resorption of rats' midpalatal sutures during rapid palatal expansion. METHODS Sixty male 5-week-old Wistar rats were randomly divided into 3 groups: expansion only (EO), expansion plus LF (E + LF), and sham device (control). RESULTS Microcomputed tomography showed that the bone volume/tissue volume ratio and the relative bone mineral density of the suture bone were significantly increased in the E + LF group compared with the EO group. Histochemical staining suggested that the activity of osteoblast-like cells and the amount of new bone formation were stimulated in the E + LF group whereas the activity of osteoclasts showed no obvious difference between groups. On the other hand, the immunohistochemical and the real-time polymerase chain reaction results showed that the expressions of receptor activator of nuclear factor kappa B ligand and osteoprotegerin had no significant difference between the EO and E + LF groups. CONCLUSIONS These findings demonstrated that LF could stimulate bone volume and bone density in midpalatal sutures during the suture remodeling process under tensile force. However, this enhancement effect was not caused by the reduction of bone resorption.
Collapse
Affiliation(s)
- Ye Cheng
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Zeyuan Zhou
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Pan
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Velliyagounder K, Bahdila D, Pawar S, Fine DH. Role of lactoferrin and lactoferrin‐derived peptides in oral and maxillofacial diseases. Oral Dis 2018; 25:652-669. [DOI: 10.1111/odi.12868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/20/2018] [Accepted: 03/17/2018] [Indexed: 12/30/2022]
Affiliation(s)
- K Velliyagounder
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - D Bahdila
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - S Pawar
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| | - DH Fine
- Department of Oral BiologyRutgers School of Dental Medicine Newark New Jersey
| |
Collapse
|
46
|
Shang N, Wu J. Egg White Ovotransferrin Shows Osteogenic Activity in Osteoblast Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:2775-2782. [PMID: 29502401 DOI: 10.1021/acs.jafc.8b00069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ovotransferrin, the major protein in egg white, is a member of transferrin family. The objective of this study was to study the effects of ovotransferrin on cell proliferation, differentiation, mineralization and osteoclastogenesis of bone osteoblast cells. Effect of ovotransferrin (concentrations ranging from 1 to 1000 μg/mL) on the proliferation, differentiation, and mineralization of mouse osteoblast cells MC3T3-E1 was determined by 5-bromo-2-deoxyuridine (BrdU) incorporation assay, Western blot, immunofluorescence, and Alizarin-S red staining, respectively. Our results showed that ovotransferrin stimulated cell proliferation (enhanced BrdU incorporation), differentiation (enhanced expression of alkaline phosphatase and type-I collagen), and mineralization (increased calcium deposits) in a dose-dependent manner. Furthermore, ovotransferrin could increase the expression of osteoprotegerin (OPG) while decreasing the expression of receptor activator of nuclear factor kappa-B ligand (RANKL), suggesting its role in inhibition of bone resorption. This study demonstrated for the first time that ovotransferrin might promote bone formation while preventing bone resorption, which might open up a new application of egg white protein ovotransferrin as a functional ingredient in bone health management.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton , Alberta , Canada T6G 2P5
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science , University of Alberta , Edmonton , Alberta , Canada T6G 2P5
| |
Collapse
|
47
|
Zhang JL, Han X, Shan YJ, Zhang LW, Du M, Liu M, Yi HX, Ma Y. Effect of bovine lactoferrin and human lactoferrin on the proliferative activity of the osteoblast cell line MC3T3-E1 in vitro. J Dairy Sci 2017; 101:1827-1833. [PMID: 29290425 DOI: 10.3168/jds.2017-13161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 11/10/2017] [Indexed: 11/19/2022]
Abstract
We conducted a comparative in vitro study on the proliferative effects of natural human lactoferrin (nhLF) and bovine lactoferrin (bLF) on osteoblasts. We investigated cell proliferation, cell survival, cell cycle, and mRNA and protein expression of proliferating cell nuclear antigen. Results indicated that treatment with 100 μg/mL of bLF or nhLF promoted the proliferation and sustenance of osteoblasts, and increased the length of the G2/M and S phases compared with the untreated osteoblasts. Results of real-time quantitative PCR and Western blot showed that mRNA and protein expression of proliferating cell nuclear antigen by osteoblasts treated with bLF or nhLF were greater than those of the untreated control. At the same concentration, bLF demonstrated a greater effect on osteoblast proliferation than did nhLF. This study provides insights of significance in the utlization of bLF in healthy food formulas.
Collapse
Affiliation(s)
- J L Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - X Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China.
| | - Y J Shan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - L W Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China; College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - M Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - M Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| | - H X Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Y Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Multiple dietary components have the potential to positively affect bone mineral density in early life and reduce loss of bone mass with aging. In addition, regular weight-bearing physical activity has a strong positive effect on bone through activation of osteocyte signaling. We will explore possible synergistic effects of dietary components and mechanical stimuli for bone health by identifying dietary components that have the potential to alter the response of osteocytes to mechanical loading. RECENT FINDINGS Several (sub)cellular aspects of osteocytes determine their signaling towards osteoblasts and osteoclasts in response to mechanical stimuli, such as the osteocyte cytoskeleton, estrogen receptor α, the vitamin D receptor, and the architecture of the lacunocanalicular system. Potential modulators of these features include 1,25-dihydroxy vitamin D3, several forms of vitamin K, and the phytoestrogen genistein. Multiple dietary components potentially affect osteocyte function and therefore may have a synergistic effect on bone health when combined with a regime of physical activity.
Collapse
Affiliation(s)
- Hubertine M E Willems
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Takehana K, Hatate K, Yamagishi N. Serum activities of two bone markers in captive Asian elephants (Elephas maximus) at different ages. J Vet Med Sci 2017; 80:63-67. [PMID: 29151445 PMCID: PMC5797861 DOI: 10.1292/jvms.17-0465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The blood biochemical analysis of bone markers could have a role in the early diagnosis of metabolic bone disease in animals; however, there is limited information on bone markers in captive Asian elephants
(Elephas maximus). Serum samples from ten captive Asian elephants were obtained to clarify the relationship between age and the blood bone markers tartrate-resistant acid phosphatase isoform 5b
(TRAP5b) and bone specific alkaline phosphatase (BALP). Serum TRAP5b and BALP activities were negatively correlated with age. A positive correlation was observed between TRAP5b activity and BALP activity. These results
may contribute to the health management of captive Asian elephants.
Collapse
Affiliation(s)
- Kazuya Takehana
- Ichihara Elephant Kingdom Zoological Park, Ichihara, Chiba 290-0521, Japan
| | - Kaoru Hatate
- Department of Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8550, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Norio Yamagishi
- Department of Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8550, Japan.,United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
50
|
Kot A, Zhong ZA, Zhang H, Lay YAE, Lane NE, Yao W. Sex dimorphic regulation of osteoprogenitor progesterone in bone stromal cells. J Mol Endocrinol 2017; 59:351-363. [PMID: 28871061 PMCID: PMC5633481 DOI: 10.1530/jme-17-0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
Abstract
Increasing peak bone mass is a promising strategy to prevent osteoporosis. A mouse model of global progesterone receptor (PR) ablation showed increased bone mass through a sex-dependent mechanism. Cre-Lox recombination was used to generate a mouse model of osteoprogenitor-specific PR inactivation, which recapitulated the high bone mass phenotype seen in the PR global knockout mouse mode. In this work, we employed RNA sequencing analysis to evaluate sex-independent and sex-dependent differences in gene transcription of osteoprogenitors of wild-type and PR conditional knockout mice. PR deletion caused marked sex hormone-dependent changes in gene transcription in male mice as compared to wild-type controls. These transcriptional differences revealed dysregulation in pathways involving immunomodulation, osteoclasts, bone anabolism, extracellular matrix interaction and matrix interaction. These results identified many potential mechanisms that may explain our observed high bone mass phenotype with sex differences when PR was selectively deleted in the MSCs.
Collapse
Affiliation(s)
- Alexander Kot
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Zhendong A Zhong
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Center for Cancer and Cell BiologyProgram in Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Hongliang Zhang
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
- Department of Emergency MedicineCenter for Difficult Diagnoses and Rare Diseases, Second Xiangya Hospital of the Central-South University, Changsha, Hunan, China
| | - Yu-An Evan Lay
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Nancy E Lane
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| | - Wei Yao
- Center for Musculoskeletal HealthDepartment of Internal Medicine, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|