1
|
Hyderi Z, Kannappan A, Ravi AV. The Multifaceted Applications of Seaweed and Its Derived Compounds in Biomedicine and Nutraceuticals: A Promising Resource for Future. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:491-505. [PMID: 39655722 DOI: 10.1002/pca.3482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 04/12/2025]
Abstract
The increasing demand for global food resources and over-dependence on terrestrial agroecosystems pose a significant challenge to the sustainable production of food commodities. Macroalgae are an essential source of food production in the marine environment, and their cultivation is a promising approach to alleviate the impending global food insecurity due to key factors, such as independence from terrestrial agriculture, rapid growth rate, unique biochemical composition, and carbon capture potential. Moreover, in many countries, seaweed has been used as food for decades because of its health and nutritional benefits. Seaweed contains bioactive components that are beneficial against various pathological conditions, including cancer, type 2 diabetes, and neurological disorders. Furthermore, the natural products derived from macroalgae have also been found to have immunostimulatory and antimicrobial properties. Macroalgae are also a significant source of rare sugars such as L-fucose, L-rhamnose, and glucuronic acid. Besides sugars, other bioactive components have been widely reported for their potential in cosmeceuticals. We have outlined the nutrient composition and functional properties of different species of macroalgae, with an emphasis on their potential as value-added products to the functional food market. Beyond being nutritional powerhouses, the variety of biological activities in human health and biomedicine makes them excellent candidates for developing novel drugs. Therefore, this review summarizes the pharmaceutical applications of macroalgae and suggests potential strategies for incorporating macroalgae-derived bioactive compounds into therapeutic products.
Collapse
Affiliation(s)
- Zeeshan Hyderi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Arunachalam Kannappan
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, Alagappa University, Karaikudi, India
| |
Collapse
|
2
|
Bilbao-Kareaga A, Calvache D, Sargsyan R, Ardura A, Garcia-Vazquez E. In-depth analysis of microplastics reported from animal and algae seafood species: Implications for consumers and environmental health. MARINE POLLUTION BULLETIN 2024; 206:116742. [PMID: 39059219 DOI: 10.1016/j.marpolbul.2024.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Macroalgae are able to retain environmental microplastics (MPs). The potential ingestion of MP through Atlantic agar Gelidium corneum and different animal species (hake, glass eels, mussels, topshells, anemones, sea cucumbers) that are seafood resources in Spain, was estimated from published MPs data calculating daily dose and annual ingestion rate. The study region was Asturias (SW Bay of Biscay). Lower MP ingestion rate from algae than from any animal analysed revealed a reduced risk of MP intake, probably because the alga is harvested from quite clean subtidal zones. However, MP bioconcentration in Atlantic agar was higher than in sea cucumbers, mussels or glass eels. Compared with other algae, G. corneum ranked the highest for MP retention rate, perhaps for its intricate branching and gelatinous surface, suggesting a possible use in MP bioremediation. More experimental studies in MP uptake by macroalgae are recommended to understand their implication in the accumulation of this pollutant.
Collapse
Affiliation(s)
- Amaia Bilbao-Kareaga
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Diana Calvache
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Roza Sargsyan
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Alba Ardura
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| |
Collapse
|
3
|
Rautela I, Thapliyal P, Sahni S, Rayal R, Sharma MD. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
4
|
The natural substances with anti-allergic properties in food allergy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Okeke ES, Nweze EJ, Chibuogwu CC, Anaduaka EG, Chukwudozie KI, Ezeorba TPC. Aquatic Phlorotannins and Human Health: Bioavailability, Toxicity, and Future Prospects. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211056144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Medicinal chemists and pharmacognosists have relied on terrestrial sources for bioactive phytochemicals to manage and treat disease conditions. However, minimal interest is given to sea life, especially macroalgae and their inherent phytochemical reserves. Phlorotannins are a special class of phytochemicals mainly predominant in brown algae of marine and estuarine habitats. Phlorotannins are formed through the polymerization of phloroglucinol residues and derivatives via the polyketide (acetate–malonate) pathway. Studies over the past decades have implicated phlorotannins with several bioactivities, including anti-herbivory, antioxidants, anti-inflammatory, anti-microbial, anti-proliferative, anti-diabetic, radio-protective, adipogenic, anti-allergic, and anti-human immunodeficiency virus (anti-HIV) properties. All these activities are reflected in their applications as nutraceuticals and cosmeceutical agents. This article reviews the chemical composition of phlorotannins, their biological roles, and their applications. Moreover, very few studies on phlorotannin bioavailability, safety, and toxicity have been thoroughly reviewed. The paper concludes by suggesting exciting research questions for further studies.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of General Studies, University of Nigeria, Nsukka, Nigeria
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, P.R. China
- Organization of African Academic Doctor, Nairobi, Kenya
| | - Ekene John Nweze
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | | | | | | | - Timothy Prince Chidike Ezeorba
- Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Sugiura Y, Katsuzaki H, Imai K, Amano H. The Anti-Allergic and Anti-Inflammatory Effects of Phlorotannins from the Edible Brown Algae, Ecklonia sp. and Eisenia sp. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211060924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Because the number of people suffering from allergies has significantly increased, improved ways of treating these conditions by medical, pharmaceutical, and dietary means are required. Large numbers of studies on allergy have been conducted, and many anti-allergic compounds have been found. Phenolic compounds from terrestrial plants, including catechins and flavonoids, possess anti-allergic properties. Although polyphenols are present in some brown algae, their anti-allergic activities were not studied in detail before the 1990s. The focus was on the algal polyphenols, collectively called phlorotannins (eg., eckol, 6,6′-bieckol, 8,8′-bieckol, dieckol, and phlorofucofuroeckol-A), and research was conducted to clarify their anti-allergic activities. This review summarizes the anti-allergic effects of phlorotannins isolated from the brown alga, Eisenia nipponica, and related reports by other research groups.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| |
Collapse
|
7
|
Choi SI, Han HS, Kim JM, Park G, Jang YP, Shin YK, Ahn HS, Lee SH, Lee KT. Eisenia bicyclis Extract Repairs UVB-Induced Skin Photoaging In Vitro and In Vivo: Photoprotective Effects. Mar Drugs 2021; 19:693. [PMID: 34940692 PMCID: PMC8709268 DOI: 10.3390/md19120693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/13/2023] Open
Abstract
Chronic exposure to ultraviolet B (UVB) is a major cause of skin aging. The aim of the present study was to determine the photoprotective effect of a 30% ethanol extract of Eisenia bicyclis (Kjellman) Setchell (EEB) against UVB-induced skin aging. By treating human dermal fibroblasts (Hs68) with EEB after UVB irradiation, we found that EEB had a cytoprotective effect. EEB treatment significantly decreased UVB-induced matrix metalloproteinase-1 (MMP-1) production by suppressing the activation of mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) signaling and enhancing the protein expression of tissue inhibitors of metalloproteinases (TIMPs). EEB was also found to recover the UVB-induced degradation of pro-collagen by upregulating Smad signaling. Moreover, EEB increased the mRNA expression of filaggrin, involucrin, and loricrin in UVB-irradiated human epidermal keratinocytes (HaCaT). EEB decreased UVB-induced reactive oxygen species (ROS) generation by upregulating glutathione peroxidase 1 (GPx1) and heme oxygenase-1 (HO-1) expression via nuclear factor erythroid-2-related factor 2 (Nrf2) activation in Hs68 cells. In a UVB-induced HR-1 hairless mouse model, the oral administration of EEB mitigated photoaging lesions including wrinkle formation, skin thickness, and skin dryness by downregulating MMP-1 production and upregulating the expression of pro-collagen type I alpha 1 chain (pro-COL1A1). Collectively, our findings revealed that EEB prevents UVB-induced skin damage by regulating MMP-1 and pro-collagen type I production through MAPK/AP-1 and Smad pathways.
Collapse
Affiliation(s)
- Se-In Choi
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
| | - Jae-Min Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Geonha Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
| | - Young-Pyo Jang
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (G.P.); (Y.-P.J.)
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Hye-Shin Ahn
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (H.-S.A.); (S.-H.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (S.-I.C.); (H.-S.H.); (J.-M.K.)
- Department of Biomedical and Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
8
|
Tong T, Liu X, Yu C. Extraction and Nano-Sized Delivery Systems for Phlorotannins to Improve Its Bioavailability and Bioactivity. Mar Drugs 2021; 19:625. [PMID: 34822496 PMCID: PMC8622035 DOI: 10.3390/md19110625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
This review aims to provide an informative summary of studies on extraction and nanoencapsulation of phlorotannins to improve their bioavailability and bioactivity. The origin, structure, and different types of phlorotannins were briefly discussed, and the extraction/purification/characterization methods for phlorotannins were reviewed, with a focus on techniques to improve the bioactivities and bioavailability of phlorotannins via nano-sized delivery systems. Phlorotannins are promising natural polyphenol compounds that have displayed high bioactivities in several areas: anticancer, anti-inflammation, anti-HIV, antidiabetic, and antioxidant. This review aims to provide a useful reference for researchers working on developing better utilization strategies for phlorotannins as pharmaceuticals, therapeuticals, and functional food supplements.
Collapse
Affiliation(s)
- Tianjian Tong
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Xiaoyang Liu
- National Engineering Research Center for Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
9
|
Correlation between the seasonal variations in phlorotannin content and the antiallergic effects of the brown alga Ecklonia cava subsp. stolonifera. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Sugiura Y, Usui M, Katsuzaki H, Imai K, Tanaka R, Matsushita T, Miyata M. Dieckol isolated from a brown alga, Eisenia nipponica, suppresses ear swelling from allergic inflammation in mouse. J Food Biochem 2021; 45:e13659. [PMID: 33595108 DOI: 10.1111/jfbc.13659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/26/2020] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
We previously found a lipophilic fraction of the methanol/chloroform extract of a brown alga, Eisenia nipponica, that had an antiallergic effect in a murine ear swelling test. In this study, we purified the active component from the lipophilic fraction using high performance liquid chromatography and analyzed the mass and nuclear magnetic resonance spectra. This uncovered the phlorotannin dieckol, which exhibited antiallergic effects in an ear swelling test using mice sensitized by arachidonic acid, 12-O-tetradecanoylphorbol-13-acetate, and oxazolone. Mechanistic investigations indicated that dieckol suppressed degranulation, chemical mediator release, and the expression of mRNA such as cyclooxygenase-2, interleukin-6, and tumor necrosis factor-α in rat basophilic leukemia-2H3 cells. In summary, we isolated dieckol from E. nipponica and demonstrated its antiallergic mechanisms. PRACTICAL APPLICATIONS: As the incidence of allergies increases worldwide, so too does the demand for food components with antiallergic and anti-inflammatory properties. Given this trend, we focused on a brown alga that displays a variety of bioactivities. Here, we have isolated dieckol from the antiallergic lipophilic fraction of E. nipponica and found that it possesses diverse physiological activities that may prevent lifestyle-related diseases. Consequently, dieckol or the alga containing this phlorotannin could be used as a health food ingredient to combat not only allergies, but also variety of disorders including the undesirable effects of aging.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Masakatsu Usui
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Ryusuke Tanaka
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Teruo Matsushita
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Masaaki Miyata
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
11
|
Abidizadegan M, Peltomaa E, Blomster J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front Pharmacol 2021; 11:618836. [PMID: 33603668 PMCID: PMC7884888 DOI: 10.3389/fphar.2020.618836] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
Microalgae produce a variety of bioactive components that provide benefits to human and animal health. Cryptophytes are one of the major groups of microalgae, with more than 20 genera comprised of 200 species. Recently, cryptophytes have attracted scientific attention because of their characteristics and biotechnological potential. For example, they are rich in a number of chemical compounds, such as fatty acids, carotenoids, phycobiliproteins and polysaccharides, which are mainly used for food, medicine, cosmetics and pharmaceuticals. This paper provides a review of studies that assess protective algal compounds and introduce cryptophytes as a remarkable source of bioactive components that may be usable in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Environmental Laboratory, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Elina Peltomaa
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Hakim MM, Patel IC. A review on phytoconstituents of marine brown algae. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00147-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
From the last few years, the development and discovery of bioactive compounds and their potential properties from marine algae have been enhanced significantly. The coastal area is a huge storehouse for propitious algae. It has been the genuine reality that the consequence of marine algae as a source of different compounds is increasing.
Main body
Numerous advanced research devices are available for the discovery of synthetic compounds but still many researchers are working on natural bioactive compounds to discover their biological properties, which are useful to society. Marine algae are taking the preponderance of consideration from investigators owing to its phenomenon of biological activity like anti-cancer, anti-viral, cholesterol-reducing, and many more. A variety of compounds are collected from algae with specific purposes as they remain in an extremely ambitious and hard state; this condition is responsible for the synthesis of very particularly effective bioactive compounds. The present article is concentrating on the brown algae of the Gujarat coast, phlorotannins, polyphenol, phytosterol from brown algae, and their various applications. The main importance has been given to the secondary metabolites and various applications of marine brown algae.
Conclusion
From this review, it can be concluded that the prominent bioactive compounds from brown algae can cure many serious diseases. Besides, the potential biological activities of a special bioactive compound may represent the interest in the industry of pharmaceuticals, cosmeceutical, and functional foods.
Collapse
|
13
|
Biris-Dorhoi ES, Michiu D, Pop CR, Rotar AM, Tofana M, Pop OL, Socaci SA, Farcas AC. Macroalgae-A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients 2020; 12:E3085. [PMID: 33050561 PMCID: PMC7601163 DOI: 10.3390/nu12103085] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Nowadays, one of the most important research directions that concerns the scientific world is to exploit the earth's resources in a sustainable way. Considering the increasing interest in finding new sources of bioactive molecules and functional products, many research studies focused their interest on demonstrating the sustainability of exploiting marine macroalgal biomass as feedstock for wastewater treatment and natural fertilizer, conversion into green biofuels, active ingredients in pharmaceutical and nutraceutical products, or even for the production of functional ingredients and integration in the human food chain. The objective of the present paper was to provide an overview on the recent progress in the exploitation of different macroalgae species as a source of bioactive compounds, mainly emphasizing the latter published data regarding their potential bioactivities, health benefits, and industrial applications.
Collapse
Affiliation(s)
- Elena-Suzana Biris-Dorhoi
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Delia Michiu
- Department of Food Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania;
| | - Carmen R. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Ancuta M. Rotar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Maria Tofana
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Oana L. Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Sonia A. Socaci
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| | - Anca C. Farcas
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (E.-S.B.-D.); (C.R.P.); (A.M.R.); (M.T.); (O.L.P.)
| |
Collapse
|
14
|
Vo TS, Le TT, Kim SY, Ngo DH. The role of myricetin from Rhodomyrtus tomentosa (Aiton) Hassk fruits on downregulation of FcɛRI-mediated mast cell activation. J Food Biochem 2020; 44:e13143. [PMID: 31910490 DOI: 10.1111/jfbc.13143] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Rhodomyrtus tomentosa was reported to contain various bioactive metabolites, especially phenolic compounds. In the present study, the suppressive activity of phenolic compound from R. tomentosa fruits on mast cell activation was investigated in vitro. The result showed that myricetin was isolated from R. tomentosa fruits and its characterization was identified by nuclear magnetic resonance spectroscopy. Notably, myricetin was found to be effective in inhibition of mast cell degranulation by attenuating the release of β-hexosaminidase and the elevation of intracellular calcium. Moreover, myricetin exhibited inhibitory effect on the production of IL-4 and Tumor necrosis factor alpha (TNF-α) in a concentration-dependent manner. Furthermore, high antioxidant activity of myricetin due to scavenging 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ABTS+ radicals was also evidenced. Notably, the activation of FcɛRI-mediated signaling molecules including Syk, PLCγ, and NF-κB was also suppressed by myricetin treatment. Accordingly, myricetin from R. tomentosa fruits could be suggested as a functional food for the amelioration of allergic diseases. PRACTICAL APPLICATIONS: Polyphenol have been shown to exert various biological activities and health beneficial effects. Results from the present study revealed that myricetin from R. tomentosa fruits possesses the inhibitory effect on allergic response in mast cells. Therefore, myricetin from R. tomentosa fruits could be developed as a functional ingredient for the amelioration of allergic diseases.
Collapse
Affiliation(s)
- Thanh Sang Vo
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Tin Thanh Le
- Faculty of Chemistry, Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
| | - So-Yeon Kim
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, South Korea
| | - Dai-Hung Ngo
- Faculty of Natural Sciences, Thu Dau Mot University, Thu Dau Mot City, Vietnam
| |
Collapse
|
15
|
Wang K, Pramod SN, Pavase TR, Ahmed I, Lin H, Liu L, Tian S, Lin H, Li Z. An overview on marine anti-allergic active substances for alleviating food-induced allergy. Crit Rev Food Sci Nutr 2019; 60:2549-2563. [PMID: 31441662 DOI: 10.1080/10408398.2019.1650716] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Food provides energy and various nutrients and is the most important substance for the survival of living beings. However, for allergic people, certain foods cause strong reactions, and sometimes even cause shock or death. Food allergy has been recognized by the World Health Organization (WHO) as a major global food safety issue which affect the quality of life of nearly 5% of adults and 8% of children, and the incidence continues to rise but there is no effective cure. Drug alleviation methods for food allergies often have shortcomings such as side effects, poor safety, and high cost. At present, domestic and foreign scientists have turned to research and develop various new, safe and efficient natural sources of hypoallergenic or anti-allergic drugs or foods. There are many kinds of anti-allergic substances obtained from the plants and animals have been reported. Besides, probiotics and bifidobacteria also have certain anti-allergic effects. Of all the sources of anti-allergic substances, the ocean is rich in effective active substances due to its remarkable biodiversity and extremely complex living environment, and plays a huge role in the field of anti-food allergy. In this paper, the anti-food allergic bioactive substances isolated from marine organisms encompassing marine microbial, plant, animal sources and their mechanism were reviewed and the possible targets of anti-allergic substances exerting effects are illustrated by drawing. In addition, the development prospects of marine anti-allergic market are discussed and forecasted, which can provide reference for future research on anti-allergic substances.
Collapse
Affiliation(s)
- Kexin Wang
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Siddanakoppalu Narayana Pramod
- Laboratory for Immunomodulation and Inflammation Biology, Department of Studies and Research in Biochemistry, Sahyadri Science College (Autonomous), Kuvempu University, Shivamogga, Karnataka, India
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hang Lin
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Liangyu Liu
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Shenglan Tian
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Food Safety Laboratory, Ocean University of China, Qingdao, P.R. China
| |
Collapse
|
16
|
Manandhar B, Paudel P, Seong SH, Jung HA, Choi JS. Characterizing Eckol as a Therapeutic Aid: A Systematic Review. Mar Drugs 2019; 17:E361. [PMID: 31216636 PMCID: PMC6627842 DOI: 10.3390/md17060361] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 12/23/2022] Open
Abstract
The marine biosphere is a treasure trove of natural bioactive secondary metabolites and the richest source of structurally diverse and unique compounds, such as phlorotannins and halo-compounds, with high therapeutic potential. Eckol is a precursor compound representing the dibenzo-1,4-dioxin class of phlorotannins abundant in the Ecklonia species, which are marine brown algae having a ubiquitous distribution. In search of compounds having biological activity from macro algae during the past three decades, this particular compound has attracted massive attention for its multiple therapeutic properties and health benefits. Although several varieties of marine algae, seaweed, and phlorotannins have already been well scrutinized, eckol deserves a place of its own because of the therapeutic properties it possesses. The relevant information about this particular compound has not yet been collected in one place; therefore, this review focuses on its biological applications, including its potential health benefits and possible applications to restrain diseases leading to good health. The facts compiled in this review could contribute to novel insights into the functions of eckol and potentially enable its use in different uninvestigated fields.
Collapse
Affiliation(s)
- Bandana Manandhar
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju 54896, Korea.
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
17
|
Kim JH, Lee S, Park S, Park JS, Kim YH, Yang SY. Slow-Binding Inhibition of Tyrosinase by Ecklonia cava Phlorotannins. Mar Drugs 2019; 17:E359. [PMID: 31208149 PMCID: PMC6627058 DOI: 10.3390/md17060359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Tyrosinase inhibitors improve skin whitening by inhibiting the formation of melanin precursors in the skin. The inhibitory activity of seven phlorotannins (1-7), triphlorethol A (1), eckol (2), 2-phloroeckol (3), phlorofucofuroeckol A (4), 2-O-(2,4,6-trihydroxyphenyl)-6,6'-bieckol (5), 6,8'-bieckol (6), and 8,8'-bieckol (7), from Ecklonia cava was tested against tyrosinase, which converts tyrosine into dihydroxyphenylalanine. Compounds 3 and 5 had IC50 values of 7.0 ± 0.2 and 8.8 ± 0.1 μM, respectively, in competitive mode, with Ki values of 8.2 ± 1.1 and 5.8 ± 0.8 μM. Both compounds showed the characteristics of slow-binding inhibitors over the time course of the enzyme reaction. Compound 3 had a single-step binding mechanism and compound 5 a two-step-binding mechanism. With stable AutoDock scores of -6.59 and -6.68 kcal/mol, respectively, compounds 3 and 5 both interacted with His85 and Asn260 at the active site.
Collapse
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu, Yongin-si, Gyeonggi-do 16827, Korea.
| | - Sunggun Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Saerom Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Ji Soo Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
18
|
Gurpilhares DDB, Cinelli LP, Simas NK, Pessoa A, Sette LD. Marine prebiotics: Polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chem 2019; 280:175-186. [PMID: 30642484 DOI: 10.1016/j.foodchem.2018.12.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023]
Abstract
Utilization of marine algae has increased considerably over the past decades, since biodiversity within brown, red and green marine algae offers possibilities of finding a variety of bioactive compounds. Marine algae are rich sources of dietary fibre. The remarkable positive effects of seaweed dietary fibre on human body are related to their prebiotic activity over the gastrointestinal tract (GIT) microbiota. However, dietary modulation of microorganisms present in GIT can be influenced by different factors such as type and source of the dietary fibre, their molecular weight, type of extraction and purification methods employed, composition and modification of polysaccharide and oligosaccharide. This review will demonstrate evidence that polysaccharides and oligosaccharides from marine algae can be used as prebiotics, emphasizing their use in human health, their application as food and other possible applications. Furthermore, an important approach of microbial enzymes employment during extraction, modification or production of those prebiotics is highlighted.
Collapse
Affiliation(s)
- Daniela de Borba Gurpilhares
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Aluizio da Silva Gomes, 50, Granja dos Cavaleiros, 27930-560 Macaé, RJ, Brazil
| | - Leonardo Paes Cinelli
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Aluizio da Silva Gomes, 50, Granja dos Cavaleiros, 27930-560 Macaé, RJ, Brazil; Grupo de Glicofármacos - Laboratório Integrado de Prospecção em Produtos Bioativos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Aluizio da Silva Gomes, 50, Granja dos Cavaleiros, 27930-560 Macaé, RJ, Brazil
| | - Naomi Kato Simas
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Av. Carlos Chagas Filho, 373. Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Adalberto Pessoa
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, Bloco 16, 05508-900 São Paulo, SP, Brazil
| | - Lara Durães Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP, Av. 24A, 1515, Bela Vista, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
19
|
Barbosa M, Lopes G, Andrade PB, Valentão P. Bioprospecting of brown seaweeds for biotechnological applications: Phlorotannin actions in inflammation and allergy network. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Abstract
Natural marine-derived compounds show excellent biological activities. Isolation, characterization and applications of marine derived compounds show a promising way to develop novel drugs to treat various diseases. Phlorotannins are one of the main compounds which are commonly isolated from the brown seaweeds. The structural unit of phlorotannins is made-up of polyphenolic units. Due to the unique structures, phlorotannins show a variety of biological activities such as antibacterial, antioxidant, anti-inflammatory, antiproliferative, antitumor, antidiabetics, radio protective, antiadipogenic, and anti-allergic effects. In the current chapter, we have discussed general information on phlorotannins, extraction procedure and their biological activities in detail. From the scientific literature, phlorotannins can be potentially useful in the development of pharmaceuticals, nutraceuticals and cosmeceuticals.
Collapse
|
21
|
Barbosa M, Lopes G, Valentão P, Ferreres F, Gil-Izquierdo Á, Pereira DM, Andrade PB. Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food Chem 2018; 265:233-241. [PMID: 29884379 DOI: 10.1016/j.foodchem.2018.05.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/13/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022]
Abstract
The anti-allergenicity of phlorotannin-targeted extracts from four edible seaweed species of Fucus genus was evaluated herein for the first time. Extracts were able to act upon cellular events triggered by immunological reaction (IgE/antigen), and on cellular events downstream the Ca2+ influx caused by a chemical stimulus (calcium ionophore A23187), preventing degranulation of RBL-2H3 cells. Furthermore, a dose-dependent behaviour towards allergy-related enzymatic systems was observed for all the phlorotannin extracts. Linear correlations were found between reduction of the allergic mediators released and the total phlorotannin content, as well as between the enzyme inhibition and the amount of phlorotannins in the extracts. These results point to a multi-target anti-allergic capacity of phlorotannin-targeted extracts, which displayed effects on different critical steps of the allergic response, contributing to the valorisation of Fucus spp. both as food and for nutraceutical applications.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Graciliana Lopes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
22
|
Park SR, Kim JH, Jang HD, Yang SY, Kim YH. Inhibitory activity of minor phlorotannins from Ecklonia cava on α-glucosidase. Food Chem 2018; 257:128-134. [PMID: 29622188 DOI: 10.1016/j.foodchem.2018.03.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/21/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022]
Abstract
α-Glucosidase is an enzyme that plays a key role in raising blood sugar level and is considered a good target for developing drugs to treat type 2 diabetes. This study was performed to evaluate the inhibition of the catalytic reaction of α-glucosidase by minor phlorotannin derivatives (1-5) from Ecklonia cava. These derivatives demonstrated inhibitory activity, with IC50 values ranging from 2.3 ± 0.1 to 59.8 ± 0.8 μM. Among the phlorotannins identified, compounds 2 and 3-5 were revealed to be non-competitive and competitive inhibitors, respectively. Furthermore, a fluorescence-quenching study of receptor-ligand binding was performed to calculate the kinetic parameters (Ksv, Kq, and K). These signal data indicated a 1:1 ratio of ligand-receptor binding. The binding conformations of the phlorotannin ligands were visually solved through molecular simulation. In conclusion, these minor phlorotannins may serve as α-glucosidase inhibitors targeted for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sae Rom Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeoungeup, Jeollabuk-do 56212, Republic of Korea
| | - Hae Dong Jang
- Department of Food and Nutrition, Hannam University, Daejeon 34134, Republic of Korea
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
23
|
Sugiura Y, Usui M, Katsuzaki H, Imai K, Kakinuma M, Amano H, Miyata M. Orally Administered Phlorotannins from Eisenia arborea Suppress Chemical Mediator Release and Cyclooxygenase-2 Signaling to Alleviate Mouse Ear Swelling. Mar Drugs 2018; 16:E267. [PMID: 30072652 PMCID: PMC6117712 DOI: 10.3390/md16080267] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 01/29/2023] Open
Abstract
Phlorotannin is the collective term for polyphenols derived from brown algae belonging to the genera Ascopyllum, Ecklonia, Eisenia, Fucus and Sargassum etc. Since the incidence of allergies is currently increasing in the world, there is a focus on phlorotannins having anti-allergic and anti-inflammatory effects. In this study, six purified phlorotannins (eckol; 6,6'-bieckol; 6,8'-bieckol; 8,8'-bieckol; phlorofucofuroeckol (PFF)-A and PFF-B) from Eisenia arborea, orally administered to mice, were examined for their suppression effects on ear swelling. In considering the suppression, we also examined whether the phlorotannins suppressed release of chemical mediators (histamine, leukotriene B₄ and prostaglandin E₂), and mRNA expression and/or the activity of cyclooxygenase-2 (COX-2), using RBL-2H3 cells, a cultured mast cell model. Results showed that the phlorotnannins exhibited suppression effects in all experiments, with 6,8'-bieckol, 8,8'-bieckol and PFF-A showing the strongest of these effects. In conclusion, orally administered phlorotannins suppress mouse ear swelling, and this mechanism apparently involves suppression of chemical mediator release and COX-2 mRNA expression or activity. This is the first report of the anti-allergic effects of the orally administered purified phlorotannins in vivo. Phlorotannins show potential for use in functional foods or drugs.
Collapse
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| | - Masakatsu Usui
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Makoto Kakinuma
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Hideomi Amano
- Laboratory of Marine Biochemistry, Graduate School of Bioresources, Mie University, Tsu 514-8507, Japan.
| | - Masaaki Miyata
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki 759-6595, Japan.
| |
Collapse
|
24
|
Chye FY, Ooi PW, Ng SY, Sulaiman MR. Fermentation-Derived Bioactive Components from Seaweeds: Functional Properties and Potential Applications. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1412375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fook Yee Chye
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Pei Wan Ooi
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Seah Young Ng
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Mohd Rosni Sulaiman
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
25
|
Sugiura Y, Usui M, Katsuzaki H, Imai K, Miyata M. Anti-inflammatory Effects of 6,6′-bieckol and 6,8′-bieckol from Eisenia arborea on Mouse Ear Swelling. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshimasa Sugiura
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Masakatsu Usui
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| | - Hirotaka Katsuzaki
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University
| | - Kunio Imai
- Laboratory of Bioorganic Chemistry, Graduate School of Bioresources, Mie University
| | - Masaaki Miyata
- Laboratory of Food Function and Biochemistry, Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University
| |
Collapse
|
26
|
Synergistic Effects of Sulfated Polysaccharides from Mexican Seaweeds against Measles Virus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8502123. [PMID: 27419139 PMCID: PMC4933867 DOI: 10.1155/2016/8502123] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022]
Abstract
Sulfated polysaccharides (SPs) extracted from five seaweed samples collected or cultivated in Mexico (Macrocystis pyrifera, Eisenia arborea, Pelvetia compressa, Ulva intestinalis, and Solieria filiformis) were tested in this study in order to evaluate their effect on measles virus in vitro. All polysaccharides showed antiviral activity (as measured by the reduction of syncytia formation) and low cytotoxicity (MTT assay) at inhibitory concentrations. SPs from Eisenia arborea and Solieria filiformis showed the highest antiviral activities (confirmed by qPCR) and were selected to determine their combined effect. Their synergistic effect was observed at low concentrations (0.0274 μg/mL and 0.011 μg/mL of E. arborea and S. filiformis SPs, resp.), which exhibited by far a higher inhibitory effect (96% syncytia reduction) in comparison to the individual SP effects (50% inhibition with 0.275 μg/mL and 0.985 μg/mL of E. arborea and S. filiformis, resp.). Time of addition experiments and viral penetration assays suggest that best activities of these SPs occur at different stages of infection. The synergistic effect would allow reducing the treatment dose and toxicity and minimizing or delaying the induction of antiviral resistance; sulfated polysaccharides of the tested seaweed species thus appear as promising candidates for the development of natural antiviral agents.
Collapse
|
27
|
Celis-Plá PSM, Bouzon ZL, Hall-Spencer JM, Schmidt EC, Korbee N, Figueroa FL. Seasonal biochemical and photophysiological responses in the intertidal macroalga Cystoseira tamariscifolia (Ochrophyta). MARINE ENVIRONMENTAL RESEARCH 2016; 115:89-97. [PMID: 26724873 DOI: 10.1016/j.marenvres.2015.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/19/2015] [Accepted: 11/28/2015] [Indexed: 05/16/2023]
Abstract
Seasonal changes in the biochemistry and photophysiology of the brown macroalga Cystoseira tamariscifolia was analyzed in southern Spain. Total carbon and nitrogen contents, phenolic compounds, antioxidant and photosynthetic activities were seasonally determined over two years. Carbon, nitrogen and photoprotective phenolic contents were higher in winter and spring than in summer and autumn. Antioxidant levels were highest in spring and we found a positive correlation between phenolic content and antioxidant activity (EC50). Photosynthetic capacity (ETRmax) and photosynthetic efficiency (αETR) were also highest in spring, and there was a positive correlation between ETRmax and the amount of phenols present. Increased irradiance in spring enhanced algal productivity, antioxidant activity and the production of photoprotective compounds but in summer nutrient depletion due to thermal stratification of coastal waters reduced photosynthetic activity and the photoprotective capacity of C. tamariscifolia. Electron microscopy showed that phenols occurred in the cytoplasm of cortical cells inside physodes. Spring would be the best period to harvest C. tamariscifolia to extract photoprotectors and antioxidants for potential commercial uses, although the environmental impacts would need to be carefully assessed.
Collapse
Affiliation(s)
- Paula S M Celis-Plá
- Departamento de Ecología, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain; Laboratorio de Botánica, Facultad de Farmacia, Universidad de Barcelona, Joan XXIII s/n, 08028 Barcelona, Spain.
| | - Zenilda L Bouzon
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476 Florianópolis, SC, Brazil
| | - Jason M Hall-Spencer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Eder C Schmidt
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88049-900, CP 476 Florianópolis, SC, Brazil
| | - Nathalie Korbee
- Departamento de Ecología, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Félix L Figueroa
- Departamento de Ecología, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
28
|
Seaweed (Eucheuma cottonii) reduced inflammation, mucin synthesis, eosinophil infiltration and MMP-9 expressions in asthma-induced rats compared to Loratadine. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
29
|
Meillisa A, Woo HC, Chun BS. Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chem 2015; 171:70-7. [PMID: 25308644 DOI: 10.1016/j.foodchem.2014.08.097] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/21/2014] [Accepted: 08/22/2014] [Indexed: 11/16/2022]
Abstract
Polysaccharides are the major components of brown seaweed, accounting for approximately 40-65% of the total mass. The majority of the brown seaweed polysaccharides consists of alginate (40% of dry matter), a linear hetero-polysaccharides commonly developed in fields. However, depolymerisation of alginate is required to recover high-value compounds. In this report, depolymerisation was performed using subcritical water hydrolysis (SWH) at 180-260°C, with a ratio of material to water of 1:25 (w/v) and 1% formic acid as a catalyst. Sugar recovery was higher at low temperatures in the presence of catalyst. The antioxidant properties of Saccharina japonica showed the best activity at 180°C in the presence of a catalyst. The mass spectra produced using MALDI-TOF showed that polysaccharides and oligosaccharides were produced during hydrothermal treatment. Hydrolysis treatment at 180°C in the presence of a catalyst may be useful for modifying the structure of S. japonica and purified alginate.
Collapse
Affiliation(s)
- Aviannie Meillisa
- Department of Food Science and Technology, Pukyong National University, 608-737, 45 Yongso-ro, Nam-gu, Busan, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 608-739, 365 Sinseon-ro, Nam-gu, Busan, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 608-737, 45 Yongso-ro, Nam-gu, Busan, Republic of Korea.
| |
Collapse
|
30
|
Sugiura Y, Nagayama K, Kinoshita Y, Tanaka R, Matsushita T. The anti-allergic effect of the ethyl acetate fraction from anEcklonia kuromeextract. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2014.880665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
31
|
The anti-inflammatory effects of phlorotannins from Eisenia arborea on mouse ear edema by inflammatory inducers. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Determination of singlet oxygen quenching and antioxidant activity of Bieckols isolated from the brown alga Eisenia bicyclis. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2017-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Isaza Martínez JH, Torres Castañeda HG. Preparation and Chromatographic Analysis of Phlorotannins. J Chromatogr Sci 2013; 51:825-38. [DOI: 10.1093/chromsci/bmt045] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Beneficial effects of marine algal compounds in cosmeceuticals. Mar Drugs 2013; 11:146-64. [PMID: 23344156 PMCID: PMC3564164 DOI: 10.3390/md11010146] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/19/2012] [Accepted: 12/12/2012] [Indexed: 11/21/2022] Open
Abstract
The name “cosmeceuticals” is derived from “cosmetics and pharmaceuticals”, indicating that a specific product contains active ingredients. Marine algae have gained much importance in cosmeceutical product development due to their rich bioactive compounds. In the present review, marine algal compounds (phlorotannins, sulfated polysaccharides and tyrosinase inhibitors) have been discussed toward cosmeceutical application. In addition, atopic dermatitis and the possible role of matrix metalloproteinase (MMP) in skin-related diseases have been explored extensively for cosmeceutical products. The proper development of marine algae compounds will be helpful in cosmeceutical product development and in the development of the cosmeceutical industry.
Collapse
|
35
|
Phlorofucofuroeckol-A, a potent inhibitor of aldo-keto reductase family 1 member B10, from the edible brown alga Eisenia bicyclis. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s13765-012-2169-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Antiallergic benefit of marine algae in medicinal foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 64:267-75. [PMID: 22054954 DOI: 10.1016/b978-0-12-387669-0.00021-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The prevalence of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis has increased during the past two decades and contributed a great deal to morbidity and an appreciable mortality in the world. Until now, few novel efficacious drugs have been discovered to treat, control, or even cure these disorders with a low adverse-effect profile. Meanwhile, glucocorticoids are still the mainstay for the treatment of allergic disease. Therefore, it is essential to isolate novel antiallergic therapeutics from natural resources. Recently, marine algae have received much attention as they are a valuable source of chemically diverse bioactive compounds with numerous health benefit effects. This contribution focuses on antiallergic agents derived from marine algae and presents an overview of their potential application in medicinal foods for the treatment of allergic disorders.
Collapse
|
37
|
Senevirathne M, Kim SK. Marine macro- and microalgae as potential agents for the prevention of asthma: hyperresponsiveness and inflammatory subjects. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 64:277-86. [PMID: 22054955 DOI: 10.1016/b978-0-12-387669-0.00022-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Asthma is a variable disease and various factors are affected to increase the asthmatic symptoms and level of asthma control. It is believed that the cause for this disease is a combination of genetic and environmental factors. Numerous medications are available at present to treat this disease but it has been failed to control number of incidences successfully. Hence, recently many researchers have paid their interest to identify potential drugs from marine-based resources such as marine algae. In vitro and in vivo experiments have been conducted with extracts or compounds from algae and found that they showed significant activities against asthma. Accordingly, many marine macro- and microalgae have been reported to have potential to ameliorate the effect of asthma. However, detailed studies are needed in relation to identify the molecular mechanism of this disease to apply those marine resources against asthma effectively. In this chapter, an attempt has been taken to discuss the potential antiasthmatic activity of marine macro- and microalgae.
Collapse
Affiliation(s)
- Mahinda Senevirathne
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | | |
Collapse
|
38
|
|
39
|
|
40
|
SUGIURA Y, TORII T, TANAKA R, MATSUSHITA T. Inhibitory Effect of Extracts from the Brown Alga, Ecklonia stolonifera, on Enzymes Responsible for Allergic Reactions and Degranulation in RBL-2H3 Cells. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Kang SM, Heo SJ, Kim KN, Lee SH, Jeon YJ. Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
42
|
|
43
|
|
44
|
LI YONG, QIAN ZHONGJI, KIM MOONMOO, KIM SEKWON. CYTOTOXIC ACTIVITIES OF PHLORETHOL AND FUCOPHLORETHOL DERIVATIVES ISOLATED FROM LAMINARIACEAE ECKLONIA CAVA. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00387.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Fusetani N. Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:191-222. [PMID: 20826228 PMCID: PMC7110230 DOI: 10.1016/j.cbpc.2010.08.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/25/2010] [Accepted: 08/25/2010] [Indexed: 11/23/2022]
Abstract
The peer-reviewed marine pharmacology literature in 2007-8 is covered in this review, which follows a similar format to the previous 1998-2006 reviews of this series. The preclinical pharmacology of structurally characterized marine compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 74 marine natural products. Additionally, 59 marine compounds were reported to affect the cardiovascular, immune and nervous systems as well as to possess anti-inflammatory effects. Finally, 65 marine metabolites were shown to bind to a variety of receptors and miscellaneous molecular targets, and thus upon further completion of mechanism of action studies, will contribute to several pharmacological classes. Marine pharmacology research during 2007-8 remained a global enterprise, with researchers from 26 countries, and the United States, contributing to the preclinical pharmacology of 197 marine compounds which are part of the preclinical marine pharmaceuticals pipeline. Sustained preclinical research with marine natural products demonstrating novel pharmacological activities, will probably result in the expansion of the current marine pharmaceutical clinical pipeline, which currently consists of 13 marine natural products, analogs or derivatives targeting a limited number of disease categories.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA.
| | | | | | | |
Collapse
|
46
|
Kim SK, Himaya SWA. Medicinal effects of phlorotannins from marine brown algae. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:97-109. [PMID: 22054941 DOI: 10.1016/b978-0-12-387669-0.00008-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brown seaweeds are popular and abundant food in East Asia and also well known for their medicinal effects due to presence of active phenolic constituents. Phlorotannins, the major phenolic group of brown algae, have extensively investigated for their vast array of bioactivities such as antioxidant, anti-inflammatory, anticancer, and antidiabetic. They possess promising activity in both in vitro and in vivo systems showing promising potential to further develop as therapeutic agents. In this chapter, attempts have taken to examine and categorize the reports available on active phlorotannins which have shown strong bioactivities.
Collapse
Affiliation(s)
- Se-Kwon Kim
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan, Republic of Korea.
| | | |
Collapse
|
47
|
Wijesekara I, Yoon NY, Kim SK. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors 2010; 36:408-14. [PMID: 20803523 DOI: 10.1002/biof.114] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/29/2010] [Indexed: 11/08/2022]
Abstract
The importance of bioactive derivatives as functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and characterization of novel functional ingredients with biological activities from seaweeds have gained much attention. Ecklonia cava Kjellman is an edible seaweed, which has been recognized as a rich source of bioactive derivatives mainly, phlorotannins. These phlorotannins exhibit various beneficial biological activities such as antioxidant, anticancer, antidiabetic, anti-human immunodeficiency virus, antihypertensive, matrix metalloproteinase enzyme inhibition, hyaluronidase enzyme inhibition, radioprotective, and antiallergic activities. This review focuses on biological activities of phlorotannins with potential health beneficial applications in functional foods, pharmaceuticals, and cosmeceuticals.
Collapse
Affiliation(s)
- Isuru Wijesekara
- Marine Biochemistry Laboratory, Department of Chemistry, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
48
|
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2010; 27:165-237. [DOI: 10.1039/b906091j] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Yoon NY, Lee SH, Yong-Li, Kim SK. Phlorotannins from Ishige okamurae and their acetyl- and butyrylcholinesterase inhibitory effects. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
50
|
Sugiura Y, Matsuda K, Okamoto T, Yamada Y, Imai K, Ito T, Kakinuma M, Amano H. The inhibitory effects of components from a brown alga, Eisenia arborea, on degranulation of mast cells and eicosanoid synthesis. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|