1
|
Guo Y, Zhao Y, Wei Z, Cao J. Effects of exogenous insulin supplementation on lipid metabolism in peripartum obese dairy cows. Front Vet Sci 2025; 11:1468779. [PMID: 39881718 PMCID: PMC11774932 DOI: 10.3389/fvets.2024.1468779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Cows with high body condition scores experience more severe negative energy balance (NEB) and undergo mobilization of more body fat during the peripartum period, leading to more production of nonesterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA). Postpartum insulin secretion is lower, and insulin resistance is stronger in obese cows. Exogenous insulin supplementation has been hypothesized as a key approach for regulating NEFA in these cows. In this study, we assessed the effects of exogenous insulin supplementation on lipid metabolism, key genes regulated by insulin, and the underlying regulatory mechanism. We selected 181 periparturient multiparous obese dairy cows for the study. Cows in the insulin group (n = 96) received subcutaneous injections of 200 IU insulin (5 mL) on postpartum days 1 and 7, while cows in the control group (n = 85) received subcutaneous injections of 5 mL physiological saline on the same days. The incidence of ketosis was recorded and compared between the two groups. The results demonstrated that postpartum insulin injections significantly reduced the incidence of type II ketosis and delayed the onset time. Meanwhile, a cohort experiment was conducted on 20 cows selected from 181 field trial cows, with 10 cows in the insulin group and 10 cows in the control group. Blood samples were collected for biochemical indicators and subcutaneous adipose tissue was collected for paraffin-embedding and sectioning and RNA sequencing analysis. The results showed that insulin supplementation postpartum reduced concentrations of NEFA and BHBA as well as BCS loss, but did not affect glucose. Additionally, the expression of SREBF1 in insulin signaling pathway and the downstream-regulated lipogenesis network genes were successfully upregulated in insulin-treated healthy group. High expression of SREBF1 may be a key for postpartum insulin supplementation to improve insulin resistance, significantly reduce NEFA concentrations, and prevent or treat ketosis and fatty liver in obese cows. Postpartum administration of insulin could effectively decrease alterations of adipocytes size, which also fully validates that postpartum insulin supplementation promotes lipogenesis and reduces NEFA release.
Collapse
Affiliation(s)
| | | | | | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Faulconnier Y, Ye T, Leroux C. Negative energy balance by feed deprivation affects the adipose miRNome in the lactating goat. J Anim Sci 2025; 103:skaf044. [PMID: 40112186 PMCID: PMC12010703 DOI: 10.1093/jas/skaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
One of the main functions of ruminant adipose tissue (AT) is to store lipids for use in productive functions. Body fat mobilization is required during periods of negative energy balance (NEB) such as early lactation or undernutrition. Ruminant nutrition modifies the expression of adipose genes, the regulation of which is not fully understood. The expression of more than 60% of protein-coding genes is post-transcriptionally regulated by microRNAs (miRNAs, small non-coding RNAs, 18 to 25 nucleotides targeting messenger RNAs). Our aim was to characterize miRNA whose expression is regulated by nutrition in the lactating goat AT. Using high-throughput sequencing technology, miRNomes of the lactating AT were established from lactating goats fed a control diet ad libitum and after 48 h of food deprivation (FD) leading to an NEB. MiRNAs sequencing revealed 637 known miRNAs in omental AT of which 16 showed an expression modulated by FD; 14 were upregulated and 2 were downregulated. The network of miRNA-target enrichment identified 2 major miRNAs, miR-223-3p and miR-21-5p which were upregulated by FD and suggested an increase in inflammation of the AT with an NEB obtained after fasting during lactation. The target gene predictions of the differentially expressed miRNAs in AT indicated a significant enrichment in gene ontology functional categories of cell life including apoptosis, cell proliferation, and differentiation as well as in gene expression machinery including regulation of translation and transcription. These data suggest that miRNAs may play a key role in the regulation of AT remodeling.
Collapse
Affiliation(s)
- Yannick Faulconnier
- INRAE, VetAgro Sup, Université Clermont Auvergne, Saint-Genès-Champanelle, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université´ de Strasbourg, Illkirch, France
| | - Christine Leroux
- INRAE, VetAgro Sup, Université Clermont Auvergne, Saint-Genès-Champanelle, France
- Department of Food Science and Technology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
3
|
Kyriakaki P, Mavrommatis A, Tsiplakou E. The Interaction of Microalgae Dietary Inclusion and Forage-to-Concentrate Ratio on the Lipid Metabolism-Related Gene Expression in Subcutaneous Adipose Tissue of Dairy Goats. Animals (Basel) 2024; 14:3291. [PMID: 39595343 PMCID: PMC11591094 DOI: 10.3390/ani14223291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Long-chain polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA) have been shown to be effective in enhancing the quality of ruminant products, including meat and milk. However, under these dietary conditions, the de novo lipogenesis could be influenced, too. On the other hand, even if the forage-to-concentrate ratio (F:C) is also a key factor affecting lipid metabolism in small ruminants, there is scarce information about its interaction with dietary PUFA. This study investigates the potential of the F:C ratio as a lever to manipulate lipid metabolism in dairy goats under high dietary PUFA supplementation. For this purpose, twenty-two crossbred dairy goats [Alpine × Local (Greek) breeds] (BW = 50.6 ± 6.1 kg) at early lactation (70 ± 10 days in milk) during the age of 3-4 years old, were separated into two homogeneous subgroups (n = 11). In the first phase, each goat was fed 20 g Schizochytrium spp./day followed by either a high-forage (20 HF) or a high-grain (20 HG) diet, while in the second phase, each goat was fed 40 g Schizochytrium spp./day followed once again either a high-forage (40 HF) or a high-grain (40 HG) diet. The F:C ratio of a high-forage and high-grain diet was 60:40 and 40:60, respectively. Tail fat tissue samples were collected by biopsy on the 42nd day of each experimental phase (last day). Significant decreases (p < 0.05) in the gene expression of ACACA, CBR2, COX4I1, ELOVL5, ELOVL7, LEP, and SCD were presented in goats fed 40 g compared to those fed 20 g Schizochytrium spp., while the gene expression of ACACA, AGPAT2, AGPAT3, ELOVL5, ELOVL6, EPHX2, FASN, and SCD was decreased in high grain compared to high-forage diets. This study also indicated that with the aim to enrich goat products with PUFA by increasing their levels in the diet, lipid metabolism is negatively affected. However, a diet with higher forage inclusion can partially attenuate this condition.
Collapse
Affiliation(s)
| | | | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (P.K.); (A.M.)
| |
Collapse
|
4
|
Pinedo PJ, Manríquez D, Azocar J, De Vries A. Associations of automated body condition scores at dry-off and through early lactation with milk yield of Holstein cows. J Anim Sci 2023; 101:skad387. [PMID: 37978987 PMCID: PMC10750816 DOI: 10.1093/jas/skad387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023] Open
Abstract
The objective of this study was to analyze the associations of body condition score (BCS) and BCS change (∆BCS) during the dry period and the first 100 d of lactation with daily milk yield. Examining the involvement of health status in the associations between BCS and milk yield was a secondary objective of this research. Data included 12,042 lactations in 7,626 Holstein cows calving between April 2019 and January 2022 in a commercial dairy operation located in Colorado, USA. BCSs were generated daily by an automated BCS camera system located at the exit of the milking parlor. The assessment points selected for this study were dry-off (BCSdry), calving (BCS1), 7 DIM (BCS7), 14 DIM (BCS14), 21 DIM (BCS21), and nadir (nBCS; defined as the lowest daily BCS from calving to 100 DIM). Subsequently, these BCS were categorized considering quartiles (Q1 = 25% lowest BCS; Q4 = 25% greatest BCS), separately for primiparous and multiparous cows. Changes in BCS were calculated from dry-off to calving (multiparous); and from calving to 7 DIM, 14 DIM, 21 DIM, and nadir and assigned into quartile categories considering Q1 as the 25% of cows with the greatest decrease of BCS. Lactations were classified based on the number of health events before nadir as healthy, affected by one event, or having multiple events. Data were examined in primiparous and multiparous cows separately using ANOVA. The least square means for daily milk at 60 DIM and 305 DIM were calculated by category of BCS and ∆BCS at multiple time points and time periods. Subsequently, lactation curves were created by BCS and ∆BCS categories and by health status. Multivariable models included calving season and BCS1 as covariables. The largest differences in milk yield among categories of BCS and ∆BCS were identified for BCS originated at nadir and for the ∆BCS between calving and nadir. The differences in average daily milk yield between cows in the lowest and the greatest nBCS category (Q1 vs. Q4) were 3.3 kg/d (60 DIM) and 3.4 kg/d (305 DIM) for primiparous cows and 2.4 kg/d (60 DIM) and 2.1 kg/d (305 DIM) for multiparous cows. During the period from calving to nadir, primiparous cows in Q1 (greatest decrease of BCS) produced 4.3 kg/d (60 DIM) and 3.8 kg/d (305 DIM) more than cows in Q4. For multiparous cows, the differences were 3.0 kg/d (60 DIM) and 1.9 kg/d (305 DIM) in favor of Q1 cows. Overall, the associations between BCS and ∆BCS categories and milk yield were not consistent across time and they depended on the parity category. Nonetheless, as the assessment of BCS and ∆BCS approached the nadir, the association between greater milk yield and lower BCS or greater reduction in BCS became more evident.
Collapse
Affiliation(s)
- Pablo J Pinedo
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Diego Manríquez
- Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523, USA
- AgNext, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Albert De Vries
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Faulconnier Y, Boby C, Coulpier F, Lemoine S, Martin P, Leroux C. Comparative transcriptome analysis of goat (Capra hircus) adipose tissue reveals physiological regulation of body reserve recovery after the peak of lactation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100956. [PMID: 35016039 DOI: 10.1016/j.cbd.2021.100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Adipose tissue is the energy storage organ providing energy to other tissues, including mammary gland, that supports the achievement of successive lactation cycles. Our objective was to investigate the ability of goats to restore body fat reserves by comparing lipogenic enzyme activities and by transcriptomic RNA-Seq data at two different physiological stages, mid- and post-lactation. Key lipogenic enzyme activities were higher in goat omental adipose tissue during mid-lactation (74 days in milk) than during the post-lactation period (300 days postpartum). RNA-Sequencing analysis revealed 19,271 expressed genes in the omental adipose tissue. The comparison between adipose transcriptome analysis from mid- and post-lactation goats highlighted 252 differentially expressed genes (padj < 0.05) between these two physiological stages. The differential expression of 11 genes was confirmed by RT-qPCR. Functional genomic analysis revealed that 31% were involved in metabolic processes among which 38% in lipid metabolism. Most of the genes involved in lipid synthesis and those in lipid transport and storage were upregulated in adipose tissue of mid- compared to post-lactation goats. In addition, adipose tissue plasticity was emphasized by genes involved in cellular signaling and tissue integrity. Network analyses also highlighted three key regulators of lipid metabolism (LEP, APOE and HNF4A) and a key target gene (VCAM1). The greatest lipogenic enzyme activities with the upregulation of genes involved in lipid metabolism highlighted a higher recovery of lipid reserves after the lactation peak than 4 months post-lactation. This study contributes to a better understanding of the molecular mechanisms controlling the body lipid reserves management during the successive lactations.
Collapse
Affiliation(s)
- Yannick Faulconnier
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Céline Boby
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Fanny Coulpier
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Sophie Lemoine
- Genomics Core Facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Patrice Martin
- UMR1313 Génétique Animale et Biologie Intégrative, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
6
|
Buonaiuto G, Lopez-Villalobos N, Niero G, Degano L, Dadati E, Formigoni A, Visentin G. The application of Legendre Polynomials to model muscularity and body condition score in primiparous Italian Simmental cattle. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2032850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Giovanni Buonaiuto
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum – University of Bologna, Ozzano dell’Emilia (BO), Italy
| | | | - Giovanni Niero
- Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, University of Padova, Padova, Italy
| | - Lorenzo Degano
- Associazione Nazionale Allevatori Razza Pezzata Rossa Italiana (ANAPRI), Udine, Italy
| | | | - Andrea Formigoni
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum – University of Bologna, Ozzano dell’Emilia (BO), Italy
| | - Giulio Visentin
- Dipartimento di Scienze Mediche Veterinarie, Alma Mater Studiorum – University of Bologna, Ozzano dell’Emilia (BO), Italy
| |
Collapse
|
7
|
Chirivi M, Rendon CJ, Myers MN, Prom CM, Roy S, Sen A, Lock AL, Contreras GA. Lipopolysaccharide induces lipolysis and insulin resistance in adipose tissue from dairy cows. J Dairy Sci 2021; 105:842-855. [PMID: 34696909 DOI: 10.3168/jds.2021-20855] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/05/2021] [Indexed: 01/05/2023]
Abstract
Intense and protracted adipose tissue (AT) fat mobilization increases the risk of metabolic and inflammatory periparturient diseases in dairy cows. This vulnerability increases when cows have endotoxemia-common during periparturient diseases such as mastitis, metritis, and pneumonia-but the mechanisms are unknown. Fat mobilization intensity is determined by the balance between lipolysis and lipogenesis. Around parturition, the rate of lipolysis surpasses that of lipogenesis, leading to enhanced free fatty acid release into the circulation. We hypothesized that exposure to endotoxin (ET) increases AT lipolysis by activation of classic and inflammatory lipolytic pathways and reduction of insulin sensitivity. In experiment 1, subcutaneous AT (SCAT) explants were collected from periparturient (n = 12) Holstein cows at 11 ± 3.6 d (mean ± SE) before calving, and 6 ± 1 d and 13 ± 1.4 d after parturition. Explants were treated with the endotoxin lipopolysaccharide (LPS; 20 µg/mL; basal = 0 µg/mL) for 3 h. The effect of LPS on lipolysis was assessed in the presence of the β-adrenergic agonist and promoter of lipolysis isoproterenol (ISO; 1 µM; LPS+ISO). In experiment 2, SCAT explants were harvested from 24 nonlactating, nongestating multiparous Holstein dairy cows and exposed to the same treatments as in experiment 1 for 3 and 7 h. The effect of LPS on the antilipolytic responses induced by insulin (INS = 1 µL/L, LPS+INS) was established during ISO stimulation [ISO+INS, LPS+ISO+INS]. The characterization of lipolysis included the quantification of glycerol release and the assessment of markers of lipase activity [adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and phosphorylated HSL Ser563 (pHSL)], and insulin pathway activation (AKT, pAKT) using capillary electrophoresis. Inflammatory gene networks were evaluated by real-time quantitative PCR. In periparturient cows, LPS increased AT lipolysis by 67 ± 12% at 3 h across all time points compared with basal. In nonlactating cows, LPS was an effective lipolytic agent at 3 h and 7 h, increasing glycerol release by 115 ± 18% and 68.7 ± 16%, respectively, relative to basal. In experiment 2, LPS enhanced ATGL activity with minimal HSL activation at 3 h. In contrast, at 7 h, LPS increased HSL phosphorylation (i.e., HSL activity) by 123 ± 11%. The LPS-induced HSL lipolytic activity at 7 h coincided with the activation of the MEK/ERK inflammatory pathway. In experiment 2, INS reduced the lipolytic effect of ISO (ISO+INS: -63 ± 18%) and LPS (LPS+INS: -45.2 ± 18%) at 3 h. However, the antilipolytic effect of INS was lost in the presence of LPS at 7 h (LPS+INS: -16.3 ± 16%) and LPS+ISO+INS at 3 and 7 h (-3.84 ± 23.6% and -21.2 ± 14.6%). Accordingly, LPS reduced pAKT:AKT (0.11 ± 0.07) compared with basal (0.18 ± 0.05) at 7 h. Our results indicated that exposure to LPS activated the classic and inflammatory lipolytic pathways and reduced insulin sensitivity in SCAT. These data provide evidence that during endotoxemia, dairy cows may be more susceptible to lipolysis dysregulation and loss of adipocyte sensitivity to the antilipolytic action of insulin.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Madison N Myers
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824
| | - Crystal M Prom
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Sambit Roy
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Aritro Sen
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Sciences, Michigan State University, East Lansing 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
8
|
Hwang JH, Spurlock ME, Kube JC, Li XZ, Smith SB. Characterization of β-adrenergic receptors in bovine intramuscular and subcutaneous adipose tissue: comparison of lubabegron fumarate with β-adrenergic receptor agonists and antagonists. J Anim Sci 2021; 99:6333505. [PMID: 34337647 PMCID: PMC8326056 DOI: 10.1093/jas/skab116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
Chinese hamster ovary cell constructs expressing either the β 1-, β 2- or β 3-adrenergic receptor (AR) were used to determine whether a novel β-AR modulator, lubabegron fumarate (LUB; Experior, Elanco Animal Health) might exert greater potency for a specific β-AR subtype. EC50 values calculated based on cAMP accumulation in dose response curves indicate that LUB is highly selective for the β 3-AR subtype, with an EC50 of 6 × 10–9 M, with no detectible agonistic activity at the β 2-AR. We hypothesized that the accumulation of lipolytic markers would reflect the agonist activity at each of the β-receptor subtypes of the specific ligand; additionally, there would be differences in receptor subtype expression in subcutaneous (s.c.) and intrmuscular (i.m.) adipose tissues. Total RNA was extracted from adipose tissue samples and relative mRNA levels for β 1-, β2-, and β 3-AR were measured using real-time quantitative polymerase chain reaction. Fresh s.c. and i.m. adipose tissue explants were incubated with isoproterenol hydrochloride (ISO; β-AR pan-agonist), dobutamine hydrochloride (DOB; specific β 1-AA), salbutamol sulfate (SAL; specific β 2-AA), ractopamine hydrochloride (RAC), zilpaterol hydrochloride (ZIL), BRL-37344 (specific β 3-agonist), or LUB for 30 min following preincubation with theophylline (inhibitor of phosphodiesterase). Relative mRNA amounts for β 1-, β 2-, and β 3-AR were greater (P < 0.05) in s.c. than in i.m. adipose tissue. The most abundant β-AR mRNA in both adipose tissues was the β 2-AR (P < 0.05), with the β 1- and β 3-AR subtypes being minimally expressed in i.m. adipose tissue. ISO, RH, and ZH stimulated the release of glycerol and nonesterified fatty acid (NEFA) from s.c. adipose tissue, but these β-AR ligands did not alter concentrations of these lipolytic markers in i.m. adipose tissue. LUB did not affect glycerol or NEFA concentrations in s.c. or i.m. adipose tissue, but attenuated (P < 0.05) the accumulation of cAMP mediated by the β 1- and β 2-AR ligands DOB and SAL in s.c. adipose tissue. Collectively, these data indicate that bovine i.m. adipose tissue is less responsive than s.c. adipose tissue to β-adrenergic ligands, especially those that are agonists at the β 1- and β3-receptor subtypes. The minimal mRNA expression of the β 1- and β 3 subtypes in i.m. adipose tissue likely limits the response potential to agonists for these β-AR subtypes.
Collapse
Affiliation(s)
- Jinhee H Hwang
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | | | - John C Kube
- Elanco Animal Health, 2500 Innovation Way, Greenfield, IN 46140, USA
| | - Xiang Z Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Xu Q, Fan Y, Loor JJ, Liang Y, Sun X, Jia H, Zhao C, Xu C. All-trans retinoic acid controls differentiation, proliferation, and lipolysis in isolated subcutaneous adipocytes from peripartal Holstein cows. J Dairy Sci 2021; 104:4999-5008. [PMID: 33551168 DOI: 10.3168/jds.2020-19408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
Preadipocyte proliferation and differentiation are critical for normal adipose tissue development, including achieving a mature phenotype, characterized by its ability to accumulate triacylglycerol and release fatty acids. In nonruminants, it is well known that all-trans retinoic acid (ATRA), the most-active form of vitamin A, helps regulate proliferation, differentiation, and apoptosis in several types of cells including adipocytes. The purpose of this study was to evaluate the effect of ATRA on proliferation, apoptosis, differentiation, and lipolysis of primary bovine adipocytes isolated from subcutaneous adipose tissue of 5 healthy Holstein cows at 17 (±4 standard deviations) d postpartum. Cells were stimulated with increasing concentrations of ATRA (0.2, 2, and 20 nM) at the preconfluent (2 d) and postconfluent (8 d) preadipocyte stage or at the mature adipocyte stage (2 d). All concentrations of ATRA inhibited preconfluent preadipocyte proliferation with decreased proportion of S-phase cells and reduced protein abundance of cyclins (CCND1, CCND2, CCND3, CCNE1) and cyclin-dependent kinases (CDK2, CDK4, CDK6). Compared with vehicle, ATRA treatment induced apoptosis in preconfluent preadipocytes. Additionally, ATRA (0.2, 2, and 20 nM) supplementation also inhibited differentiation of postconfluent preadipocytes through downregulation of protein abundance of PPARγ and C/EBPα. After induction of differentiation, basal lipolysis in mature adipocytes increased upon treatment with all concentrations of ATRA. However, data on phosphorylated hormone-sensitive lipase or PLIN1 indicated that ATRA had no effect on epinephrine-stimulated lipolysis in mature adipocytes. Overall, these results demonstrate that ATRA might inhibit lipid accumulation by suppressing preadipocyte proliferation and differentiation, subsequently leading to apoptosis in postconfluent preadipocytes and promoting basal lipolysis in mature adipocytes. Overall, these in vitro responses provide some insights into the potential for nutritional management to modulate adipose tissue lipolysis, particularly in overconditioned cows during the dry period, which are more susceptible to suffer metabolic disorders due to excessive fat mobilization postpartum.
Collapse
Affiliation(s)
- Qiushi Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yunhui Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Xudong Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Hongdou Jia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chenxu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
10
|
Effects of dietary conjugated linoleic acid on metabolic status, BW and expression of genes related to lipid metabolism in adipose tissue of dairy cows during peripartum. Animal 2021; 15:100105. [PMID: 33579649 DOI: 10.1016/j.animal.2020.100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022] Open
Abstract
Conjugated linoleic acid (CLA) dietary supplementation reduces milk fat content and yield, but its effects on lipid metabolism and energy status remain controversial. The objective of this study was to investigate the effects of dietary CLA on adipose tissue (AT) mRNA abundance of genes related to lipid metabolism, plasma indicators of metabolic status, body condition score (BCS) and BW changes in dairy cows. Sixteen multiparous Holstein cows (3.2 ± 1.4 lactations, 615 ± 15 kg BW) were randomly assigned to treatments: 1) CLA; rumen-protected CLA (75 g/d) or 2) Control; equivalent amount of rumen inert fatty acid (FA) as the previous diet (78 g/d), from -20.2 ± 3.2 (mean ± SEM) to 21d relative to calving (d 0). Subcutaneous AT was biopsied from the tail-head region at d 21 to determine the mRNA abundance of genes related to lipid metabolism. Blood samples were collected at -20.2 ± 3.2, 0, 7, 14 and 21d relative to calving to determine plasma non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), insulin and glucose. Conjugated linoleic acid decreased milk fat yield and milk fat content by 15 and 16%, respectively. Cows fed CLA had lower plasma NEFA and BHBA and greater glucose and insulin concentrations (P < 0.05). Mean BCS at 21d postpartum was greater (P < 0.01; 2.89 vs 2.25), and BCS loss from the day of enrollment to 21d postpartum was reduced (P < 0.01; -0.13 vs -0.64) in the CLA group. The expression of acylcoenzyme A oxidase, carnitine palmitoyltransferase 1A, hormone-sensitive lipase, β2 adrenergic receptor and acetyl-CoA carboxylase was downregulated by CLA supplementation, whereas the expression of sterol regulatory element binding protein, lipoprotein lipase and peroxisome proliferator-activated receptor gamma was upregulated (P < 0.01). In summary, CLA-supplemented cows showed signs of better metabolic status and less severe fat mobilization. Moreover, CLA increased mRNA abundance of genes related to lipogenesis and decreased mRNA abundance of genes related to FA oxidation and lipolysis in the AT of dairy cows during early lactation.
Collapse
|
11
|
Szura G, Schäfers S, von Soosten D, Meyer U, Klüß J, Breves G, Dänicke S, Rehage J, Ruda L. Gain and loss of subcutaneous and abdominal adipose tissue depot mass of German Holstein dairy cows with different body conditions during the transition period. J Dairy Sci 2020; 103:12015-12032. [PMID: 33010909 DOI: 10.3168/jds.2019-17623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 05/25/2020] [Indexed: 11/19/2022]
Abstract
Subcutaneous adipose tissue (SCAT) and abdominal adipose tissue (AAT) depots are mobilized during the fresh cow period (FCP) and early lactation period (ELP) to counteract the negative energy balance (NEB). Earlier studies suggested that fat depots contribute differently to lipomobilization and may vary in functionality. Differences between the adipose depots might influence the development of metabolic disorders. Thus, the gain and loss of subcutaneous and abdominal adipose depot masses in Holstein cows with lower and higher body condition (mean body condition scores: 3.48 and 3.87, respectively) were compared in the period from d -42 to d 70 relative to parturition in this study. Animals of the 2 experimental groups represented adequately conditioned and overconditioned cows. Estimated depot mass (eDM) of SCAT, AAT, retroperitoneal, omental, and mesenteric adipose depots of 31 pluriparous German Holstein cows were determined via ultrasonography at d -42, 7, 28, and 70 relative to parturition. The cows were grouped according to the eDM of SCAT on d -42 [low body condition (LBC) group: n = 16, mean eDM 8.6 kg; high body condition (HBC) group: n = 15, mean eDM 15.6 kg]. Average daily change (prepartum gain and postpartum loss) in depot masses during dry period (DP; from d -42 to d 7), FCP (d 7 to d 28), and ELP (d 28 to d 70) were calculated and daily dry matter intake and lactation performance recorded. Cows of this study stored about 2 to 3 times more fat in AAT than in SCAT depots. After parturition, on average more adipose tissue mass was lost from the AAT than the SCAT depot (0.23 kg/d vs. 0.14 kg/d). Cows with high compared with low body condition had similar gains in AAT (0.33 kg/d) and SCAT (0.14 kg/d) masses during the DP but mobilized significantly more adipose tissue mass from both depots after calving (AAT, HBC vs. LBC: 0.30 vs. 0.17 kg/d; SCAT, HBC vs. LBC: 0.19 vs. 0.10 kg/d). Correlation analysis indicated a functional disparity between AAT and SCAT. In the case of AAT (R2 = 0.36), the higher the gain in adipose mass during DP, the higher the loss in FCP, but this was not the case for SCAT. During FCP, a greater NEB resulted in greater loss of mass from SCAT (R2 = 0.18). In turn, greater mobilization of SCAT mass led to a higher calculated feed efficiency (R2 = 0.18). However, AAT showed no such correlations. On the other hand, during ELP, loss of both SCAT and AAT mass correlated positively with feed efficiency (R2 = 0.35 and 0.33, respectively). The results indicate that feed efficiency may not be an adequate criterion for performance evaluation in cows during NEB. Greater knowledge of functional disparities between AAT and SCAT depots may improve our understanding of excessive lipomobilization and its consequences for metabolic health and performance of dairy cows during the transition period.
Collapse
Affiliation(s)
- G Szura
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - S Schäfers
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - D von Soosten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - U Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - J Klüß
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - G Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - J Rehage
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany.
| | - L Ruda
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| |
Collapse
|
12
|
The relationship of body condition and chewing time with body weight, the level of plasma cocaine and amphetamine regulated transcript, leptin and energy metabolites in cows until reaching the lactation peak. ACTA VET BRNO 2020. [DOI: 10.2754/avb202089010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined the relationship of body condition and chewing time (CT) with body weight (BW), the level of cocaine-and amphetamine-regulated transcript (CART), leptin and energy metabolites in cows until reaching the lactation peak. The results showed the greatest loss of BW between days 11 and 45 of lactation and a decrease in the body condition score (BCS) until day 75. Chewing time showed an increase from day 45 with the highest values after lactation peak. The CART and leptin concentrations demonstrate a reduction of both indices (P < 0.05) between days 11 and 75. The function of leptin as a factor positively correlating with BW and BCS was found. In the heaviest individuals and those with higher BCS, the blood leptin levels were higher. The results of beta-hydroxybutyrate (BHBA) indicate that cows with the lowest BCS had the most intensive energy transformation. This led to a higher BHBA concentration compared to the cows with high BCS (P < 0.05). The obtained results show that CART was most strongly negatively associated with CT (P < 0.05). For leptin, the tendency was the opposite and the correlation with CT was not significant. The results suggest that CT may be stronger regulated by CART, which has anorectic properties, than by appetite inhibiting leptin. Significant decrease of body condition during lactation is a great problem for dairy farmers. The explanation of the issue of the participation of CART and leptin in the regulation of body’s energy homeostasis may therefore be of importance for milk production.
Collapse
|
13
|
Fiore E, Tessari R, Morgante M, Gianesella M, Badon T, Bedin S, Mazzotta E, Berlanda M. Identification of Plasma Fatty Acids in Four Lipid Classes to Understand Energy Metabolism at Different Levels of Ketonemia in Dairy Cows Using Thin Layer Chromatography and Gas Chromatographic Techniques (TLC-GC). Animals (Basel) 2020; 10:E571. [PMID: 32235301 PMCID: PMC7222349 DOI: 10.3390/ani10040571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022] Open
Abstract
Excessive mobilization of adipose tissue in high milk producing dairy cows predisposes to metabolic diseases. The aim of this research was to identify the plasma fatty acids in four lipid classes as biomarkers for the diagnosis of hyperketonemia in bovines using thin layer chromatography and gas chromatographic techniques (TLC-GC). Sixty multiparous Holstein-Friesian dairy cows were enrolled in the study. Blood samples from the coccygeal vein were collected and β-hydroxybutyrate (BHB) was evaluated. All animals were divided into three groups on the basis of ketonemia: BHB < 0.50 mmol/L, 0.50 < BHB < 1.0 mmol/L, and BHB > 1.0 mmol/L. Plasma fatty acid concentrations were evaluated in four lipid classes: Free Fatty Acids (FFA), Triglycerides (TG), Cholesterol Esters (CE) And Phospholipids (PL). The concentration of fatty acids was analyzed using TLC-GC. The results showed the following significance in the lipid classes: 19 fatty acids were significant (p < 0.053) in FFA, nine fatty acids were significant (p < 0.050) in TG, eight fatty acids were significant (p < 0.050) in CE and three fatty acids were significant (p < 0.049) in PL. Eleven parameters were considered as predictive fatty acids related to animals in hyperketonemia. The FFA increased simultaneously with blood BHB levels, although the identified predictive fatty acids related to the TG and CE lipid classes decreased, meanwhile the BHB values increased. In the PL lipid class, no fatty acids were predictive.
Collapse
Affiliation(s)
- Enrico Fiore
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’ Università 16, 35020 Legnaro (PD), Italy; (R.T.); (M.M.); (M.G.); (T.B.); (S.B.); (E.M.); (M.B.)
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dirandeh E, Ghorbanalinia M, Rezaei-Roodbari A, Colazo MG. Relationship between body condition score loss and mRNA of genes related to fatty acid metabolism and the endocannabinoid system in adipose tissue of periparturient cows. Animal 2020; 14:1724-1732. [PMID: 32172713 DOI: 10.1017/s1751731120000476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The endocannabinoid system (ECS) controls feed intake and energy balance in nonruminants. Recent studies suggested that dietary management alters the expression of members of the ECS in the liver and endometrium of dairy cows. The aim of this study was to determine the relationship between body condition score (BCS) loss and the mRNA abundance of genes related to fatty acid metabolism and the ECS in the subcutaneous adipose tissue (AT) of dairy cows. The BCS was determined in multiparous (3.2 ± 0.5 lactations) Holstein cows at -21 and 42 days relative to calving (designated as d = 0). Cows were grouped into three categories according to BCS loss between both assessments as follows: (1) lost ≤0.25 unit (n = 8, low BCS loss (LBL)), (2) lost between 0.5 and 0.75 units (n = 8, moderate BCS loss (MBL)) and (3) lost ≥1 unit (n = 8, high BCS loss (HBL)). Concentrations of haptoglobin and non-esterified fatty acids (NEFAs) were determined in plasma. Real-time PCR was used to determine mRNA abundance of key genes related to fatty acid metabolism, inflammation and ECS in AT. Milk yield (kg/day) between week 2 and 6 post-calving was greater in the LBL group (49.4 ± 0.75) compared to MBL (47.9 ± 0.56) and HBL (47.4 ± 0.62) groups (P < 0.05). The overall mean plasma haptoglobin and NEFA concentrations were greater in MBL and HBL groups compared with the LBL group (P < 0.05). The mRNA abundance of TNF-α, Interleukin-6 (IL-6) and IL-1β was greatest at 21 and 42 days post-calving in HBL, intermediate in MBL and lowest in LBL groups, respectively. Cows in the HBL group had the greatest AT gene expression for carnitine palmitoyltransferase 1A, hormone sensitive lipase and adipose triglyceride lipase at 21 and 42 days post-calving (P < 0.05). Overall, mRNA abundance for very long chain acyl-CoA dehydrogenase and peroxisome proliferator-activated receptor gamma, which are related to NEFA oxidation, were greater in MBL and HBL groups compared to the LBL group at 42 days post-calving. However, mRNA abundance of fatty acid amide hydrolase was lower at 21 and 42 days post-calving in HBL cows than in LBL cows (P < 0.05). In summary, results showed a positive association between increased degree of BCS loss, inflammation and activation of the ECS network in AT of dairy cows. Findings suggest that the ECS might play an important role in fatty acid metabolism, development of inflammation and cow's adaptation to onset of lactation.
Collapse
Affiliation(s)
- E Dirandeh
- Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari, Mazandaran, Iran
| | - M Ghorbanalinia
- Department of Animal Science, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari, Mazandaran, Iran
| | - A Rezaei-Roodbari
- Department of Animal Science, University of Tehran, P.O. Box 5111, Karaj, Alborz, Iran
| | - M G Colazo
- Livestock and Crops Research Branch, Alberta Agriculture and Forestry, AB T6H 5T6, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Karis P, Jaakson H, Ling K, Bruckmaier RM, Gross JJ, Pärn P, Kaart T, Ots M. Body condition and insulin resistance interactions with periparturient gene expression in adipose tissue and lipid metabolism in dairy cows. J Dairy Sci 2020; 103:3708-3718. [PMID: 32008773 DOI: 10.3168/jds.2019-17373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
Abstract
Adipose tissue plays an important role in a cow's ability to adapt to the metabolic demands of lactation, because of its central involvement in energy metabolism and immunity. High adiposity and adipose tissue resistance to insulin are associated with excessive lipid mobilization. We hypothesized that the response to a glucose challenge differs between cows of different body condition 21 d before and after calving and that the responses are explainable by gene expression in subcutaneous adipose tissue (SAT). In addition, we aimed to investigate insulin resistance with gene expression in SAT and lipid mobilization around parturition. Multiparous Holstein cows were grouped according to body conditions score (BCS) 4 wk before calving, as follows: BCS ≤ 3.0 = thin (T, n = 14); BCS 3.25 to 3.5 = optimal (O, n = 14); BCS ≥ 3.75 = over-conditioned (OC, n = 14). We collected SAT on d -21 and d 21 relative to calving. A reverse-transcriptase quantitative (RT-q)PCR was used to measure gene expression related to lipid metabolism. One hour after the collection of adipose tissue, an intravenous glucose tolerance test was carried out, with administration of 0.15 g of glucose per kg of body weight (with a 40% glucose solution). Once weekly from the first week before calving to the third week after calving, a blood sample was taken. The transition to lactation was associated with intensified release of energy stored in adipose tissue, a decrease in the lipogenic genes lipoprotein lipase (LPL) and diacylglycerol O-acyltransferase 2 (DGAT2), and an increase in the lipolytic gene hormone-sensitive lipase (LIPE). On d -21, compared with T cows, OC cows had lower mRNA abundance of LPL and DGAT2, and the latency of fatty acid response after glucose infusion was also longer (8.5 vs. 23.3 min) in OC cows. Cows with higher insulin area under the curve on d -21 had concurrently lower LPL and DGAT2 gene expression and greater concentration of fatty acids on d -7, d 7, and d 14. In conclusion, high adiposity prepartum lowers the whole-body lipid metabolism response to insulin and causes reduced expression of lipogenic genes in SAT 3 weeks before calving. In addition, more pronounced insulin release after glucose infusion on d -21 is related to higher lipid mobilization around calving, indicating an insulin-resistant state, and is associated with lower expression of lipogenic genes in SAT.
Collapse
Affiliation(s)
- P Karis
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia.
| | - H Jaakson
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - K Ling
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001, Switzerland
| | - P Pärn
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - T Kaart
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - M Ots
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|
16
|
Minuti A, Bionaz M, Lopreiato V, Janovick NA, Rodriguez-Zas SL, Drackley JK, Loor JJ. Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows. J Anim Sci Biotechnol 2020; 11:1. [PMID: 31908775 PMCID: PMC6941259 DOI: 10.1186/s40104-019-0409-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Background The aim of the study was to investigate the effect of energy overfeeding during the dry period on adipose tissue transcriptome profiles during the periparturient period in dairy cows. Methods Fourteen primiparous Holstein cows from a larger cohort receiving a higher-energy diet (1.62 Mcal of net energy for lactation/kg of dry matter; 15% crude protein) for ad libitum intake to supply 150% (OVR) or 100% (CTR) of energy requirements from dry off until parturition were used. After calving, all cows received the same lactation diet. Subcutaneous adipose tissue (SAT) biopsies were collected at - 14, 1, and 14 d from parturition (d) and used for transcriptome profiling using a bovine oligonucleotide microarray. Data mining of differentially expressed genes (DEG) between treatments and due to sampling time was performed using the Dynamic Impact Approach (DIA) and Ingenuity Pathway Analysis (IPA). Results There was a strong effect of over-feeding energy on DEG with 2434 (False discovery rate-corrected P < 0.05) between OVR and CTR at - 14 d, and only 340 and 538 at 1 and 14 d. The most-impacted and activated pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database that were highlighted by DIA analysis at - 14 d in OVR vs. CTR included 9 associated with carbohydrate metabolism, with 'Pyruvate metabolism', 'Glycolysis/gluconeogenesis', and 'Pentose phosphate pathway' among the most-activated. Not surprisingly, OVR led to marked activation of lipid metabolism (e.g. 'Fatty acid biosynthesis' and 'Glycerolipid metabolism'). Unexpected metabolic pathways that were activated at - 14 d in OVR included several related to metabolism of amino acids (e.g. branched chain) and of cofactors and vitamins (thiamin). Among endocrine and immune system pathways, at - 14 d OVR led to marked activation of 'PPAR signalling' and 'Antigen processing and presentation'. Among key pathways affected over time in OVR, a number were related to translation (e.g. mTOR signaling), endocrine/immune signaling (CXCR4 and IGF1), and lipid metabolism (oxidative phosphorylation) with greater activation in OVR vs. CTR specifically at - 14 d. Although statistical differences for several pathways in OVR vs. CTR nearly disappeared at 1 and 14 vs. - 14 d, despite the well-known catabolic state of adipose depots after calving, the bioinformatics analyses suggested important roles for a number of signaling mechanisms at - 14 vs. 14 than 1 vs. -14 d. This was particularly evident in cows fed to meet predicted energy requirements during the dry period (CTR). Conclusions Data underscored a strong activation by overfeeding energy of anabolic processes in the SAT exclusively prepartum. The study confirmed that higher-energy diets prepartum drive a transcriptional cascade of events orchestrated in part by the activation of PPARγ that regulate preadipocyte differentiation and lipid storage in SAT. Novel aspects of SAT biology to energy overfeeding or change in physiologic state also were uncovered, including the role of amino acid metabolism, mTOR signaling, and the immune system.
Collapse
Affiliation(s)
- Andrea Minuti
- 1Department of Animal Sciences,Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Massimo Bionaz
- 2Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97330 USA
| | - Vincenzo Lopreiato
- 1Department of Animal Sciences,Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Nicole A Janovick
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Sandra L Rodriguez-Zas
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - James K Drackley
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| | - Juan J Loor
- 3Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801 USA
| |
Collapse
|
17
|
Gobikrushanth M, Macmillan K, Behrouzi A, Hoff B, Colazo M. The factors associated with postpartum body condition score change and its relationship with serum analytes, milk production and reproductive performance in dairy cows. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Impact of the severity of negative energy balance on gene expression in the subcutaneous adipose tissue of periparturient primiparous Holstein dairy cows: Identification of potential novel metabolic signals for the reproductive system. PLoS One 2019; 14:e0222954. [PMID: 31557215 PMCID: PMC6763198 DOI: 10.1371/journal.pone.0222954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
The severity of negative energy balance (NEB) in high-producing dairy cows has a high incidence among health diseases. The cow’s energy status during early lactation critically affects metabolic and reproductive parameters. The first objective of this study was to investigate by RNA-seq analysis and RT-qPCR the gene expression profile in white adipose tissue and by gene ontology and upstream regulation tools the relationships with energy metabolism and reproduction in two groups of primiparous dairy cows with extreme NEB statuses (NEB < -9 Mcal/day vs. NEB > -9 Mcal/day) around parturition. The second objective was to determine the potential involvement of a new adipokine identified as a candidate for the regulation of ovarian function in our RNA-seq analysis by using bovine primary granulosa culture, thymidine incorporation to determine cell proliferation and ELISA assays to measure progesterone secretion. The RNA-seq analysis revealed that 514 genes were over-expressed and 695 were under-expressed in the adipose tissue of cows with severe NEB (SNEB) and cows with moderate NEB (MNEB) during the -4 and 16 wkpp period. In addition, 491 genes were over-expressed and 705 genes were under-expressed in the adipose tissue of SNEB cows compared to MNEB cows. Among these differently expressed genes (DEGs), 298 were related to metabolic functions and 264 to reproductive traits. A set of 19 DEGs were validated by RT-qPCR, including CCL21 (C-C motif chemokine ligand 21). Moreover, CCL21, a gene known to be secreted by adipose tissue, was chosen for further analysis in plasma and ovaries. The use of next-generation sequencing technologies allowed us to characterise the transcriptome of white adipose tissue from primiparous cows with different levels of NEB during lactation. This study highlighted the alteration of the expression of genes related to lipid metabolism, including CCL21, which is released in the bloodstream and associated with the in vitro regulation of ovarian functions.
Collapse
|
19
|
Xu Q, Li X, Ma L, Loor JJ, Coleman DN, Jia H, Liu G, Xu C, Wang Y, Li X. Adipose tissue proteomic analysis in ketotic or healthy Holstein cows in early lactation1. J Anim Sci 2019; 97:2837-2849. [PMID: 31267132 DOI: 10.1093/jas/skz132] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Ketosis is a major metabolic disorder of high-yielding dairy cows during the transition period. Although metabolic adaptations of the adipose tissue are critical for a successful transition, beyond lipolysis, alterations within adipose tissue during ketosis are not well known. The objective of this study was to investigate the adipose tissue proteome of healthy or ketotic postpartum cows to gain insights into biological adaptations that may contribute to disease outcomes. Adipose tissue biopsy was collected on 5 healthy and 5 ketotic cows at 17 (±4) d postpartum and ketosis was defined according to the clinical symptoms and serum β-hydroxybutyrate concentration. Morphology micrographs stained by hematoxylin-eosin showed that adipocytes were smaller in ketotic cows than in healthy cows. The isobaric tag for relative and absolute quantification was applied to quantitatively identify differentially expressed proteins (DEP) in the adipose tissue. We identified a total of 924 proteins, 81 of which were differentially expressed between ketotic and healthy cows (P < 0.05 and fold changes >1.5 or <0.67). These DEP included enzymes and proteins associated with various carbohydrate, lipid, and amino acid metabolism processes. The top pathways differing between ketosis and control cows were glycolysis/gluconeogenesis, glucagon signaling pathway, cysteine and methionine metabolism, biosynthesis of amino acids, and the cGMP-PKG signaling pathway. The identified DEP were further validated by western blot and co-immunoprecipitation assay. Key enzymes associated with carbohydrate metabolism such as pyruvate kinase 2, pyruvate dehydrogenase E1 component subunit α), lactate dehydrogenase A , phosphoglucomutase 1, and 6-phosphofructokinase 1 were upregulated in ketotic cows. The expression and phosphorylation state of critical regulators of lipolysis such as perilipin-1 and hormone-sensitive lipase were also upregulated in ketotic cows. Furthermore, key proteins involved in maintaining innate immune response such as lipopolysaccharide binding protein and regakine-1 were downregulated in ketotic cows. Overall, data indicate that ketotic cows during the transition period have altered carbohydrate, lipid metabolism, and impaired immune function in the adipose tissue. This proteomics analysis in adipose tissue of ketotic cows identified several pathways and proteins that are components of the adaptation to ketosis.
Collapse
Affiliation(s)
- Qiushi Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, China
| | - Xiaobing Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, China
| | - Li Ma
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, China
| | - Juan J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, Mammalian NutriPhysioGenomics, University of Illinois, Urbana, IL
| | - Danielle N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, Mammalian NutriPhysioGenomics, University of Illinois, Urbana, IL
| | - Hongdou Jia
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, China
| | - Guowen Liu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, China
| | - Chuang Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yazhe Wang
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, China
| | - Xinwei Li
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, Jilin, China
| |
Collapse
|
20
|
Long-term effects of prior diets, dietary transition and pregnancy on adipose gene expression in dairy heifers. PLoS One 2019; 14:e0218723. [PMID: 31269511 PMCID: PMC6609222 DOI: 10.1371/journal.pone.0218723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 06/09/2019] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue is highly involved in whole-body metabolism and is the main site for lipid synthesis, storage and mobilization in ruminants. Therefore, knowledge about adipose tissue responses to different diets is important, especially in growing heifers as the feeding regimes of replacement heifers affect their future success as dairy cows. However, at gene expression level such knowledge is limited. As part of a larger feed trial, adipose tissue biopsies from 24 Norwegian Red heifers were collected at 12 months of age (12MO) and at month seven of gestation (PREG) and analyzed by next-generation mRNA sequencing. Between these two sampling points, all heifers had gone through a successful conception and a feed change from four dietary treatments of high or low energy (HE/LE) and protein (HP/LP) content (treatments LPHE, HPHE, LPLE and HPLE) to a low-energy, low-protein pregnancy feed given to all animals. Gene expression differences between different feed treatments at 12MO are described in an earlier publication from our group. The main objectives of this study were to investigate the long-term effects of diets differing in protein and energy density level on gene expression in adipose tissue of growing replacement dairy heifers. To achieve this, we examined the post-treatment effects between the treatment groups at month seven of gestation; 6 months after the termination of experimental feeding, and the long-term gene expression changes occurring in the adipose tissue between 12MO and PREG. Post-treatment group comparisons showed evidence of long-term effects of dietary treatment on adipose gene expression. Differences between protein treatments were smaller than between energy treatments. Adipose gene expression changes from 12MO to PREG were much larger for the HE than the LE treatments and seemed to mostly be explained by the characteristics of the diet change. 97 genes displayed a unidirectional expression change for all groups from 12MO to PREG, and are considered to be treatment-independent, possibly caused by pregnancy or increased age. This study provides candidate genes and key regulators for further studies on pregnancy preservation (TGFB1, CFD) and metabolic regulation and efficiency (PI3K, RICTOR, MAP4K4,) in dairy cattle.
Collapse
|
21
|
Marett L, Auldist M, Wales W, Macmillan K, Dunshea F, Leury B. Responses to metabolic challenges in dairy cows with high or low milk yield during an extended lactation. J Dairy Sci 2019; 102:4590-4605. [DOI: 10.3168/jds.2018-15513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
|
22
|
Liang Y, Batistel F, Parys C, Loor JJ. Methionine supply during the periparturient period enhances insulin signaling, amino acid transporters, and mechanistic target of rapamycin pathway proteins in adipose tissue of Holstein cows. J Dairy Sci 2019; 102:4403-4414. [PMID: 30879817 DOI: 10.3168/jds.2018-15738] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Enhanced postruminal supply of Met during the periparturient period increases dry matter intake and milk yield. In nonruminants, adipose tissue is responsive to AA supply, and can use AA as fuels or for protein synthesis regulated in part via insulin and mechanistic target of rapamycin (mTOR) signaling. Whether enhancing supply of Met has an effect on insulin and mTOR pathways in adipose tissue in peripartal cows is unknown. Multiparous Holstein cows were assigned from -28 to 60 d relative to parturition to a basal diet (control; 1.47 Mcal/kg of dry matter and 15.3% crude protein prepartum; 1.67 Mcal/kg and 17.7% crude protein postpartum) or the control plus ethyl-cellulose rumen-protected Met (RPM). The RPM was fed individually at a rate of 0.09% of dry matter intake prepartum and 0.10% postpartum. Subcutaneous adipose tissue harvested at -10, 10, and 30 d relative to parturition (days in milk) was used for quantitative PCR and Western blotting. A glucose tolerance test was performed at -12 and 12 d in milk to evaluate insulin sensitivity. Area under the curve for glucose in the pre- and postpartum tended to be smaller in cows fed Met. Enhanced Met supply led to greater overall mRNA abundance of Gln (SLC38A1), Glu (SLC1A1), l-type AA (Met, Leu, Val, Phe; SLC3A2), small zwitterionic α-AA (SLC36A1), and neutral AA (SLC1A5) transporters. Abundance of AKT1, RPS6KB1, and EIF4EBP1 was also upregulated in response to Met. A diet × day interaction was observed for protein abundance of insulin receptor due to Met cows having lower values at 30 d postpartum compared with controls. The diet × day interaction was significant for hormone-sensitive lipase due to Met cows having greater abundance at 10 d postpartum compared with controls. Enhanced Met supply upregulated protein abundance of insulin-responsive proteins phosphorylated (p)-AKT, peroxisome proliferator-activated receptor gamma, and fatty acid synthase. Overall abundance of solute carrier family 2 member 4 tended to be greater in cows fed Met. A diet × day interaction was observed for mTOR protein abundance due to greater values for RPM cows at 30 d postpartum compared with controls. Enhanced RPM supply upregulated overall protein abundance of solute carrier family 1 member 3, p-mTOR, and ribosomal protein S6. Overall, data indicate that mTOR and insulin signaling pathways in adipose tissue adapt to the change in physiologic state during the periparturient period. Further studies should be done to clarify whether the activation of p-AKT or increased availability of AA leads to the activation of mTOR.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - F Batistel
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - C Parys
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, 63457, Germany
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
23
|
Ferlay A, Chilliard Y. Responses of body fat mobilization to isoproterenol or epinephrine challenge in adult cows: influence of energy level, breed, and body fatness. J Anim Sci 2018; 96:331-342. [PMID: 29378004 PMCID: PMC6140918 DOI: 10.1093/jas/skx020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
The sustainability of livestock production systems facing climatic or economic changes is linked in part to the potential of the female ruminants to adapt to feeding constraints through metabolic and hormonal regulation, notably responses of body fat mobilization, depending on adipose tissue (AT) lipolysis. Our hypothesis was that these responses could change according to genotype (breed) and body fatness. Six fat, nonpregnant, nonlactating Charolais cows, six fat Holstein cows, and six lean Holstein cows were used in a 2 × 2 crossover design with two treatments (underfeeding or overfeeding, at 62% [low] or 128% [high] of maintenance energy requirements [MER], respectively) and two periods. Isoproterenol (ISO, a nonselective β-adrenergic agonist) or epinephrine (EPI, a β- and α2-adrenergic agonist) was injected (6 nmol/kg of lean mass). Blood samples were collected regularly from -20 to 75 min after the injection and then were analyzed for NEFA, glycerol, glucose, and L-lactate. Underfeeding greatly increased (P < 0.001) basal plasma NEFA concentrations (+467%, +264%, and +600% for fat Charolais, fat Holstein, and lean Holstein cows, respectively). For each drug, underfed cows had higher NEFA or glycerol responses to adrenergic challenges than overfed cows. Fat Charolais cows had higher basal plasma NEFA (P < 0.05) concentrations (+64.9%) than fat Holstein cows. The plasma NEFA or glycerol response at 5 min (P < 0.05) was higher for fat Charolais than for fat Holstein cows, whatever the injected drug. Basal plasma lactate concentration and lactate response to ISO or EPI were higher (P < 0.05) for fat Charolais cows than for fat Holstein cows. Fat Holstein cows had higher (P < 0.01) basal glycerol (+18.4%) than lean Holstein cows. This increase could be linked to the increased AT mass. ISO increased more lipolytic responses in fat than in lean Holstein cows, whereas EPI increased more these responses in lean than in fat Holstein cows (drug × fatness interaction), suggesting an increased antilipolytic effect due to α2-AR stimulation in fat cows. Breed had a significant effect on basal and stimulated fat mobilization as well as lactate concentrations, suggesting that the Charolais breed could be more sensitive to stress.
Collapse
Affiliation(s)
- A Ferlay
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| | - Y Chilliard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, 63122 Saint-Genès-Champanelle, France
| |
Collapse
|
24
|
Marett LC, Auldist MJ, Wales WJ, Macmillan KL, Dunshea FR, Leury BJ. Plasma glucose and nonesterified fatty acids response to epinephrine challenges in dairy cows during a 670-d lactation. J Dairy Sci 2018; 101:3501-3513. [PMID: 29397165 DOI: 10.3168/jds.2017-13614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 11/19/2022]
Abstract
This experiment investigated the metabolic response to a 2-dose epinephrine challenge of dairy cows undergoing an extended lactation. Twelve multiparous Holstein-Friesian cows that calved in late winter in a seasonally calving pasture-based dairying system were managed for a 670-d lactation by delaying rebreeding. In each of four 40-d experimental periods commencing at 73, 217, 422, and 520 (±9.1) d in milk (DIM), cows were offered a diet of perennial ryegrass (73 and 422 DIM) or pasture hay and silage (217 and 520 DIM), supplemented with 1 (CON; n = 6) or 6 kg of grain (GRN; n = 6) as a ration. Daily energy intake was approximately 160 and 215 MJ of metabolizable energy/cow for the CON and GRN treatments, respectively. At all other times, cows were managed as a single herd and grazed pasture supplemented with grain to an estimated daily total intake of 180 MJ of metabolizable energy/cow. Cows were fitted with a jugular catheter during the final week of each experimental period. Two doses of epinephrine (0.1 and 1.6 µg/kg of body weight) were infused via the catheter 2 h apart to each cow at approximately 100, 250, 460, and 560 DIM. Blood plasma concentrations of glucose and nonesterified fatty acids (NEFA) were measured before and after infusions. Cows in the GRN treatment had greater milk yield, milk fat and protein yields, and body weight than cows in the CON treatment. The maximum plasma glucose concentration was observed at 100 DIM for both the low and high doses of epinephrine. Thus, sensitivity and responsiveness to exogenous epinephrine were greater during early lactation, coinciding with increased priority of milk synthesis. Both the sensitivity and responsiveness to epinephrine decreased with decreasing milk yield, as measured by the acute appearance of NEFA in the plasma. Increased plasma glucose and NEFA clearance rates before 300 DIM indicated greater uptake of these substrates by the mammary gland for milk synthesis in early and mid lactation. These results support previous findings that major changes occur in terms of adipose tissue metabolism during extended lactations. Overall, sensitivity to epinephrine was not affected by diet, but responsiveness was greater in cows fed the GRN diet. The endocrine regulation of nutrient partitioning throughout traditional and extended lactations is complex, with many interactions between stage of lactation, diet, and milk yield potential.
Collapse
Affiliation(s)
- L C Marett
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria, Ellinbank, Victoria 3821, Australia.
| | - M J Auldist
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria, Ellinbank, Victoria 3821, Australia
| | - W J Wales
- Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria, Ellinbank, Victoria 3821, Australia
| | - K L Macmillan
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - F R Dunshea
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - B J Leury
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
25
|
Abstract
The adipose tissue serves an essential role for survival and reproduction in mammals, especially females. It serves primarily as an energy storage organ and is directly linked to the reproductive success of mammals. In wild animals, adipose tissue function is linked to seasonality of the food supply to support fetal growth and milk production. Adipose tissue depots in ruminants and non-ruminants can secrete many signal molecules (adipokines) that act as hormones and as pro- and anti-inflammatory cytokines. The visceral adipose tissue especially appears to be more endocrinologically active than other adipose depots. The endocrine function is important for the overall long-term regulation of energy metabolism and plays an important role in the adaptation to lactation in many mammalian species, including humans. Furthermore, endocrine signals from adipose tissue depots contribute to fertility modulation, immune function, and inflammatory response. Energy homeostasis is modulated by changes in feed intake, insulin sensitivity, and energy expenditure, processes that can be influenced by adipokines in the brain and in peripheral tissues.
Collapse
Affiliation(s)
- J P McNamara
- Department of Animal Sciences, Washington State University, Pullman, Washington 99163, USA; .,McNamara Research in Agriculture Firm, Pullman, Washington 99163, USA
| | - K Huber
- Functional Anatomy of Livestock, University of Hohenheim, 70559 Stuttgart, Germany;
| |
Collapse
|
26
|
Hardie L, VandeHaar M, Tempelman R, Weigel K, Armentano L, Wiggans G, Veerkamp R, de Haas Y, Coffey M, Connor E, Hanigan M, Staples C, Wang Z, Dekkers J, Spurlock D. The genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows. J Dairy Sci 2017; 100:9061-9075. [DOI: 10.3168/jds.2017-12604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
|
27
|
Bahnamiri HZ, Zali A, Ganjkhanlou M, Sadeghi M, Shahrbabak HM. Regulation of lipid metabolism in adipose depots of fat-tailed and thin-tailed lambs during negative and positive energy balances. Gene 2017; 641:203-211. [PMID: 29066304 DOI: 10.1016/j.gene.2017.10.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 02/09/2023]
Abstract
This study aimed to evaluate the effects of negative and positive energy balances on gene expression of regulators and enzymes controlling lipogenesis and lipolysis in muscle and adipose depots of fat-tailed and thin-tailed lambs. Lambs were slaughtered during neutral, negative and positive energy balances for sample collection. Real time q-PCR was conducted to measure the gene expression. Expression of PPARγ was increased in response to positive energy balance regardless of genotype and type of tissue (P<0.04). Expression of SREBF1 was reduced in response to negative and positive energy balances in fat-tailed lambs, whereas in thin-tailed lambs, downregulated SREBF1 was restored during positive energy balance (P<0.01). Enhancement in FABP4 expression in response to negative and positive energy balances was respectively higher in thin-tailed and fat-tailed lambs affected by interaction of genotype and energy balance (P<0.11). In thin-tailed lambs, the enhanced FABP4 expression in response to negative energy balance was considerably higher in mesenteric adipose depot, whereas in fat-tailed lambs, positive energy balance induced enhancement in FABP4 expression was considerably higher in fat-tail adipose depot. The results demonstrate that transcription regulation of lipogenesis and lipolysis during negative and positive energy balances occurs differently in fat-tailed and thin-tailed lambs. Thin-tailed and fat-tailed lambs are respectively more responsive to negative and positive energy balances and mesenteric and fat-tail adipose depots respectively in thin-tailed and fat-tailed lambs are the main adipose depots responsible for higher responsiveness of thin-tailed and fat-tailed lambs to negative and positive energy balances.
Collapse
Affiliation(s)
| | - Abolfazl Zali
- Department of Animal Science, University of Tehran, P.O. Box # 3158711167-4111, Karaj, Iran
| | - Mahdi Ganjkhanlou
- Department of Animal Science, University of Tehran, P.O. Box # 3158711167-4111, Karaj, Iran.
| | - Mostafa Sadeghi
- Department of Animal Science, University of Tehran, P.O. Box # 3158711167-4111, Karaj, Iran
| | | |
Collapse
|
28
|
Contreras GA, Strieder-Barboza C, Raphael W. Adipose tissue lipolysis and remodeling during the transition period of dairy cows. J Anim Sci Biotechnol 2017; 8:41. [PMID: 28484594 PMCID: PMC5420123 DOI: 10.1186/s40104-017-0174-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
Elevated concentrations of plasma fatty acids in transition dairy cows are significantly associated with increased disease susceptibility and poor lactation performance. The main source of plasma fatty acids throughout the transition period is lipolysis from adipose tissue depots. During this time, plasma fatty acids serve as a source of calories mitigating the negative energy balance prompted by copious milk synthesis and limited dry matter intake. Past research has demonstrated that lipolysis in the adipose organ is a complex process that includes not only the activation of lipolytic pathways in response to neural, hormonal, or paracrine stimuli, but also important changes in the structure and cellular distribution of the tissue in a process known as adipose tissue remodeling. This process involves an inflammatory response with immune cell migration, proliferation of the cellular components of the stromal vascular fraction, and changes in the extracellular matrix. This review summarizes current knowledge on lipolysis in dairy cattle, expands on the new field of adipose tissue remodeling, and discusses how these biological processes affect transition cow health and productivity.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Clarissa Strieder-Barboza
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - William Raphael
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
29
|
Bruckmaier RM, Gross JJ. Lactational challenges in transition dairy cows. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an16657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lactation evolved to be the core functional system of providing maternal care in mammalian species. The mammary gland provides an ideally composed nutrient source for the newborn. In addition, colostrum provides passive immunisation after birth, and each suckling process supports the establishment and maintenance of a close mother–offspring bonding. The importance of lactation for the survival of the offspring is represented by a high metabolic priority of the mammary gland within the organism of the lactating animal. Therefore, animal breeding for high milk production has been quite successful, and modern breeding methods have allowed an enormous increase in the performance within only few generations of cows. Mainly in early lactation, most of the available nutrients are directed to the mammary gland, both those from feed, and those mobilised from body tissue. Therefore, milk production can be maintained at a high level despite a negative energy balance. However, the high metabolic load and mobilisation of body tissue requires adequate endocrine and metabolic regulation, which can be successful or less successful in individual animals, i.e. the dairy cow population consists of both metabolically robust and metabolically vulnerable dairy cows. While robust animals adapt adequately, vulnerable cows show often high plasma concentrations of non-esterified fatty acids and β-hydroxybutyrate, and are prone to various production-related diseases. In pasture- or forage-based feeding systems, an additional challenge is a limited availability of nutrients for milk production. Forage feeding without complementary concentrate leads to enormous metabolic disorders in high-yielding cows, but is tolerated in dairy cows with a moderate genetic-performance level.
Collapse
|
30
|
Elis S, Desmarchais A, Freret S, Maillard V, Labas V, Cognié J, Briant E, Hivelin C, Dupont J, Uzbekova S. Effect of a long-chain n-3 polyunsaturated fatty acid–enriched diet on adipose tissue lipid profiles and gene expression in Holstein dairy cows. J Dairy Sci 2016; 99:10109-10127. [DOI: 10.3168/jds.2016-11052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
|
31
|
Nayeri S, Stothard P. Tissues, Metabolic Pathways and Genes of Key Importance in Lactating Dairy Cattle. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40362-016-0040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
McNamara JP. TRIENNIAL LACTATION SYMPOSIUM: Systems biology of regulatory mechanisms of nutrient metabolism in lactation. J Anim Sci 2016; 93:5575-85. [PMID: 26641166 DOI: 10.2527/jas.2015-9010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major role of the dairy cow is to convert low-quality plant materials into high-quality protein and other nutrients for humans. We must select and manage cows with the goal of having animals of the greatest efficiency matched to their environment. We have increased efficiency tremendously over the years, yet the variation in productive and reproductive efficiency among animals is still large. In part, this is because of a lack of full integration of genetic, nutritional, and reproductive biology into management decisions. However, integration across these disciplines is increasing as the biological research findings show specific control points at which genetics, nutrition, and reproduction interact. An ordered systems biology approach that focuses on why and how cells regulate energy and N use and on how and why organs interact through endocrine and neurocrine mechanisms will speed improvements in efficiency. More sophisticated dairy managers will demand better information to improve the efficiency of their animals. Using genetic improvement and animal management to improve milk productive and reproductive efficiency requires a deeper understanding of metabolic processes throughout the life cycle. Using existing metabolic models, we can design experiments specifically to integrate data from global transcriptional profiling into models that describe nutrient use in farm animals. A systems modeling approach can help focus our research to make faster and larger advances in efficiency and determine how this knowledge can be applied on the farms.
Collapse
|
33
|
Kenéz Á, Tienken R, Locher L, Meyer U, Rizk A, Rehage J, Dänicke S, Huber K. Changes in lipid metabolism and β-adrenergic response of adipose tissues of periparturient dairy cows affected by an energy-dense diet and nicotinic acid supplementation. J Anim Sci 2016; 93:4012-22. [PMID: 26440181 DOI: 10.2527/jas.2014-8833] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dairy cattle will mobilize large amounts of body fat during early lactation as an effect of decreased lipogenesis and increased lipolysis. Regulation of lipid metabolism involves fatty acid synthesis from acetate and β-adrenergic-stimulated phosphorylation of hormone-sensitive lipase (HSL) and perilipin in adipocytes. Although basic mechanisms of mobilizing fat storage in transition cows are understood, we lack a sufficiently detailed understanding to declare the exact regulatory network of these in a broad range of dairy cattle. The objective of the present study was to quantify 1) protein abundance of fatty acid synthase (FAS), 2) extent of phosphorylation of HSL and perilipin in vivo, and 3) β-adrenergic stimulated lipolytic response of adipose tissues in vitro at different stages of the periparturient period. We fed 20 German Holstein cows an energy-dense or an energetically adequate diet prepartum and 0 or 24 g/d nicotinic acid (NA) supplementation. Biopsy samples of subcutaneous and retroperitoneal adipose tissue were obtained at d 42 prepartum (d -42) and at d 1, 21, and 100 postpartum (d +1, d +21, d +100, respectively). To assess β-adrenergic response, tissue samples were incubated with 1 μ isoproterenol for 90 min at 37°C. The NEFA and glycerol release, as well as HSL and perilipin phosphorylation, was measured as indicators of in vitro stimulated lipolysis. In addition, protein expression of FAS and extent of HSL and perilipin phosphorylation were measured in fresh, nonincubated samples. There was no effect of dietary energy density or NA on the observed variables. The extent of HSL and perilipin phosphorylation under isoproterenol stimulation was strongly correlated with the release of NEFA and glycerol, consistent with the functional link between β-adrenergic-stimulated protein phosphorylation and lipolysis. In the nonincubated samples, FAS protein expression was decreased at d +1 and d +21, whereas HSL and perilipin phosphorylation increased from d -42 to d +1 and remained at an increased level throughout the first 100 d of lactation. In vitro lipolytic response was significant in prepartum samples at times when in vivo lipolysis was only minimally activated by phosphorylation. These data extend our understanding of the complex nature of control of lipolysis and lipogenesis in dairy cows and could be useful to the ongoing development of systems biology models of metabolism to help improve our quantitative knowledge of the cow.
Collapse
|
34
|
McNamara JP, Huber K, Kenéz A. A dynamic, mechanistic model of metabolism in adipose tissue of lactating dairy cattle. J Dairy Sci 2016; 99:5649-5661. [PMID: 27179864 DOI: 10.3168/jds.2015-9585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/17/2016] [Indexed: 01/08/2023]
Abstract
Research in dairy cattle biology has resulted in a large body of knowledge on nutrition and metabolism in support of milk production and efficiency. This quantitative knowledge has been compiled in several model systems to balance and evaluate rations and predict requirements. There are also systems models for metabolism and reproduction in the cow that can be used to support research programs. Adipose tissue plays a significant role in the success and efficiency of lactation, and recent research has resulted in several data sets on genomic differences and changes in gene transcription of adipose tissue in dairy cattle. To fully use this knowledge, we need to build and expand mechanistic, dynamic models that integrate control of metabolism and production. Therefore, we constructed a second-generation dynamic, mechanistic model of adipose tissue metabolism of dairy cattle. The model describes the biochemical interconversions of glucose, acetate, β-hydroxybutyrate (BHB), glycerol, C16 fatty acids, and triacylglycerols. Data gathered from our own research and published references were used to set equation forms and parameter values. Acetate, glucose, BHB, and fatty acids are taken up from blood. The fatty acids are activated to the acyl coenzyme A moieties. Enzymatically catalyzed reactions are explicitly described with parameters including maximal velocity and substrate sensitivity. The control of enzyme activity is partially carried out by insulin and norepinephrine, portraying control in the cow. Model behavior was adequate, with sensitive responses to changing substrates and hormones. Increased nutrient uptake and increased insulin stimulate triacylglycerol synthesis, whereas a reduction in nutrient availability or increase in norepinephrine increases triacylglycerol hydrolysis and free fatty acid release to blood. This model can form a basis for more sophisticated integration of existing knowledge and future studies on metabolic efficiency of dairy cattle.
Collapse
Affiliation(s)
- J P McNamara
- Department of Animal Sciences, Washington State University, Pullman 99164-6310.
| | - K Huber
- Department of Animal Sciences, Washington State University, Pullman 99164-6310; University of Veterinary Medicine, 30559 Hannover, Germany
| | - A Kenéz
- Department of Animal Sciences, Washington State University, Pullman 99164-6310; University of Veterinary Medicine, 30559 Hannover, Germany
| |
Collapse
|
35
|
|
36
|
Weber M, Locher L, Huber K, Rehage J, Tienken R, Meyer U, Dänicke S, Webb L, Sauerwein H, Mielenz M. Longitudinal changes in adipose tissue of dairy cows from late pregnancy to lactation. Part 2: The SIRT-PPARGC1A axis and its relationship with the adiponectin system. J Dairy Sci 2016; 99:1560-1570. [DOI: 10.3168/jds.2015-10132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/23/2015] [Indexed: 01/10/2023]
|
37
|
Weber M, Locher L, Huber K, Kenéz Á, Rehage J, Tienken R, Meyer U, Dänicke S, Sauerwein H, Mielenz M. Longitudinal changes in adipose tissue of dairy cows from late pregnancy to lactation. Part 1: The adipokines apelin and resistin and their relationship to receptors linked with lipolysis. J Dairy Sci 2016; 99:1549-1559. [DOI: 10.3168/jds.2015-10131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/16/2015] [Indexed: 12/13/2022]
|
38
|
Contreras G, Kabara E, Brester J, Neuder L, Kiupel M. Macrophage infiltration in the omental and subcutaneous adipose tissues of dairy cows with displaced abomasum. J Dairy Sci 2015; 98:6176-87. [DOI: 10.3168/jds.2015-9370] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023]
|
39
|
Selim S, Kokkonen T, Taponen J, Vanhatalo A, Elo K. Effect of prepartal ad libitum feeding of grass silage on transcriptional adaptations of the liver and subcutaneous adipose tissue in dairy cows during the periparturient period. J Dairy Sci 2015; 98:5515-28. [DOI: 10.3168/jds.2014-8986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
|
40
|
Zachut M. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status. J Proteome Res 2015; 14:2863-71. [PMID: 26062109 DOI: 10.1021/acs.jproteome.5b00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| |
Collapse
|
41
|
Singh R, Randhawa SNS, Randhawa CS. Body condition score and its correlation with ultrasonographic back fat thickness in transition crossbred cows. Vet World 2015; 8:290-4. [PMID: 27047087 PMCID: PMC4774833 DOI: 10.14202/vetworld.2015.290-294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/18/2015] [Accepted: 01/22/2015] [Indexed: 11/16/2022] Open
Abstract
Aim: The aim was to study the effect of the transition to body condition score (BCS) and ultrasonographic back fat thickness (USG BFT) in crossbred cows. Materials and Methods: A total of 101 multiparous crossbred cows in advanced pregnancy from organized dairy farm were taken up for study. The cows were grouped according to transition stage, i.e. far off dry (FOD), close up dry (CUD) and fresh (F). BCS was estimated by using the five point visual BCS technique with 0.5 increments. The USG BFT was measured by real-time ultrasound using a portable Sonosite instrument. Results: In cows with BCS 2-2.5, the BFT of F period was significantly lower than FOD period. In cows with BCS 3-3.5, the mean BFT at F period was significantly reduced as compared to FOD and CUD period. The overall correlation coefficient between BCS and BFT for different transition stages was 84%, 79% and 75% for FOD, CUD and F period, respectively. Conclusion: The USG BFT gives an accurate measure of fat reserves in cows. The cows with BCS of ≥3.5 entering the transition period are more prone to lose body condition and hence require better and robust management during the transition period.
Collapse
Affiliation(s)
- Randhir Singh
- Department of Veterinary Medicine, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S N S Randhawa
- Department of Veterinary Medicine, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - C S Randhawa
- Department of Veterinary Medicine, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana Punjab, India
| |
Collapse
|
42
|
Hills JL, Wales WJ, Dunshea FR, Garcia SC, Roche JR. Invited review: An evaluation of the likely effects of individualized feeding of concentrate supplements to pasture-based dairy cows. J Dairy Sci 2015; 98:1363-401. [PMID: 25582585 DOI: 10.3168/jds.2014-8475] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/13/2014] [Indexed: 12/21/2022]
Abstract
In pasture-based dairy systems, supplementary feeds are used to increase dry matter intake and milk production. Historically, supplementation involved the provision of the same amount of feed (usually a grain-based concentrate feed) to each cow in the herd during milking (i.e., flat-rate feeding). The increasing availability of computerized feeding and milk monitoring technology in milking parlors, however, has led to increased interest in the potential benefits of feeding individual cows (i.e., individualized or differential feeding) different amounts and types of supplements according to one or more parameters (e.g., breeding value for milk yield, current milk yield, days in milk, body condition score, reproduction status, parity). In this review, we consider the likely benefits of individualized supplementary feeding strategies for pasture-based dairy cows fed supplements in the bail during milking. A unique feature of our review compared with earlier publications is the focus on individualized feeding strategies under practical grazing management. Previous reviews focused primarily on research undertaken in situations where cows were offered ad libitum forage, whereas we consider the likely benefits of individualized supplementary feeding strategies under rotational grazing management, wherein pasture is often restricted to all or part of a herd. The review provides compelling evidence that between-cow differences in response to concentrate supplements support the concept of individualized supplementary feeding.
Collapse
Affiliation(s)
- J L Hills
- Tasmanian Institute of Agriculture, Dairy Center, The University of Tasmania, Burnie, Tasmania 7320, Australia
| | - W J Wales
- Agriculture Research Division, Department of Environment and Primary Industries, Ellinbank, Victoria 3821, Australia
| | - F R Dunshea
- Melbourne School of Land and Environment, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - S C Garcia
- MC Franklin Laboratory, Faculty of Veterinary Science, University of Sydney, Camden, New South Wales 2570, Australia
| | - J R Roche
- DairyNZ, Private Bag 3221, Hamilton 3240, New Zealand.
| |
Collapse
|
43
|
Elis S, Desmarchais A, Maillard V, Uzbekova S, Monget P, Dupont J. Cell proliferation and progesterone synthesis depend on lipid metabolism in bovine granulosa cells. Theriogenology 2014; 83:840-53. [PMID: 25583222 DOI: 10.1016/j.theriogenology.2014.11.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/31/2022]
Abstract
In dairy cows, lipids are essential to support energy supplies for all biological functions, especially during early lactation. Lipid metabolism is crucial for sustaining proper reproductive function. Alteration of lipid metabolism impacts follicular development and affects oocyte developmental competence. Indeed, nonesterified fatty acids are able to decrease granulosa cell (GC) proliferation and affect estradiol synthesis, thus potentially affecting follicular growth and viability. The objective of this study was to assess the impact of lipid metabolism on bovine GCs, through the use of the lipid metabolism inhibitors etomoxir, an inhibitor of fatty acid (FA) oxidation through inhibition of carnitine palmitoyl transferase 1 (CPT1), and C75, an inhibitor of FA synthesis through inhibition of fatty acid synthase. We showed that etomoxir and C75 significantly inhibited DNA synthesis in vitro; C75 also significantly decreased progesterone synthesis. Both inhibitors significantly reduced AMPK (5' adenosine monophosphate-activated protein kinase) and acetyl-CoA carboxylase phosphorylation. Etomoxir also affected the AKT (protein kinase B) signaling pathway. Combined, these data suggest that both FA oxidation and synthesis are important for the bovine GCs to express a proliferative and steroidogenic phenotype and, thus, for sustaining follicular growth. Despite these findings, it is important to note that the changes caused by the inhibitors of FA metabolism on GCs in vitro are globally mild, suggesting that lipid metabolism is not as critical in GCs as was observed in the oocyte-cumulus complex. Further studies are needed to investigate the detailed mechanisms by which lipid metabolism interacts with GC functions.
Collapse
Affiliation(s)
- Sebastien Elis
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | - Alice Desmarchais
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Virginie Maillard
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Svetlana Uzbekova
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Philippe Monget
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France; Université François Rabelais de Tours, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France; IFCE, UMR Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
44
|
Nogalski Z, Wroński M, Sobczuk-Szul M, Mochol M, Pogorzelska P. The Effect of Body Energy Reserve Mobilization on the Fatty Acid Profile of Milk in High-yielding Cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1712-20. [PMID: 25049536 PMCID: PMC4094152 DOI: 10.5713/ajas.2012.12279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 08/21/2012] [Accepted: 08/07/2012] [Indexed: 11/29/2022]
Abstract
We investigated the effect of the amount of body condition loss in the dry period and early lactation in 42 high-yielding Holstein-Friesian cows on milk yield and the share of fatty acids in milk fat. Energy reserves were estimated based on the body condition scoring (BCS) and backfat thickness (BFT). Milk yield and milk composition were determined over 305-d lactation. From d 6 to 60 of lactation, the concentrations of 43 fatty acids in milk fat were determined by gas chromatography. Cows were categorized based on body condition loss from the beginning of the dry period to the lowest point of the BCS curve in early lactation into three groups: low condition loss group (L) ≤0.5 points (n = 14); moderate condition loss group (M) 0.75 to 1.0 points (n = 16) and high condition loss group (H) >1.0 points (n = 12). Cows whose body energy reserves were mobilized at 0.8 BCS and 11 mm BFT, produced 12,987 kg ECM over 305-d lactation, i.e. 1,429 kg ECM more than cows whose BCS and BFT decreased by 0.3 and 5 mm, respectively. In group H, milk yield reached 12,818 kg ECM at body fat reserve mobilization of 1.3 BCS and 17 mm BFT. High mobilization of body fat reserves led to a significant (approx. 5%) increase in the concentrations of monounsaturated fatty acids-MUFA (mostly C18:1 cis-9, followed by C18:1 trans-11), a significant decrease in the levels of fatty acids adversely affecting human health, and a drop in the content of linoleic acid, arachidonic acid and docosahexaenoic acid in milk fat. In successive weeks of lactation, an improved energy balance contributed to a decrease in the concentrations of unsaturated fatty acids (UFA) and an increase in the conjugated linoleic acid (CLA) content of milk fat.
Collapse
Affiliation(s)
- Zenon Nogalski
- University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Marek Wroński
- University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Monika Sobczuk-Szul
- University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Magdalena Mochol
- University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Paulina Pogorzelska
- University of Warmia and Mazury in Olsztyn, Department of Cattle Breeding and Milk Quality Evaluation, Oczapowskiego 5, 10-719 Olsztyn, Poland
| |
Collapse
|
45
|
Kenéz Á, Locher L, Rehage J, Dänicke S, Huber K. Agonists of the G protein-coupled receptor 109A-mediated pathway promote antilipolysis by reducing serine residue 563 phosphorylation of hormone-sensitive lipase in bovine adipose tissue explants. J Dairy Sci 2014; 97:3626-34. [DOI: 10.3168/jds.2013-7662] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022]
|
46
|
Grala T, Phyn C, Kay J, Rius A, Lucy M, Littlejohn M, Snell R, Roche J. Gene expression in liver and adipose tissue is altered during and after temporary changes to postpartum milking frequency. J Dairy Sci 2014; 97:2701-17. [DOI: 10.3168/jds.2013-7024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|
47
|
Reverchon M, Ramé C, Cognié J, Briant E, Elis S, Guillaume D, Dupont J. Resistin in dairy cows: plasma concentrations during early lactation, expression and potential role in adipose tissue. PLoS One 2014; 9:e93198. [PMID: 24675707 PMCID: PMC3968062 DOI: 10.1371/journal.pone.0093198] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/03/2014] [Indexed: 11/19/2022] Open
Abstract
Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP) and at five months of gestation (5 MG). We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA) levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6) in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase) and HSL (hormone-sensitive lipase) in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro.
Collapse
Affiliation(s)
- Maxime Reverchon
- INRA, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut Français du Cheval, Nouzilly, France
| | - Christelle Ramé
- INRA, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut Français du Cheval, Nouzilly, France
| | - Juliette Cognié
- INRA, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut Français du Cheval, Nouzilly, France
| | - Eric Briant
- INRA, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut Français du Cheval, Nouzilly, France
| | - Sébastien Elis
- INRA, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut Français du Cheval, Nouzilly, France
| | - Daniel Guillaume
- INRA, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut Français du Cheval, Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- Institut Français du Cheval, Nouzilly, France
- * E-mail:
| |
Collapse
|
48
|
Selim S, Salin S, Taponen J, Vanhatalo A, Kokkonen T, Elo KT. Prepartal dietary energy alters transcriptional adaptations of the liver and subcutaneous adipose tissue of dairy cows during the transition period. Physiol Genomics 2014; 46:328-37. [PMID: 24569674 DOI: 10.1152/physiolgenomics.00115.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Overfeeding during the dry period may predispose cows to increased insulin resistance (IR) with enhanced postpartum lipolysis. We studied gene expression in the liver and subcutaneous adipose tissue (SAT) of 16 Finnish Ayrshire dairy cows fed either a controlled energy diet [Con, 99 MJ/day metabolizable energy (ME)] during the last 6 wk of the dry period or high-energy diet (High, 141 MJ/day ME) for the first 3 wk and then gradually decreasing energy allowance during 3 wk to 99 MJ/day ME before the expected parturition. Tissue biopsies were collected at -10, 1, and 9 days, and blood samples at -10, 1, and 7 days relative to parturition. Overfed cows had greater dry matter, crude protein, and ME intakes and ME balance before parturition. Daily milk yield, live weight, and body condition score were not different between treatments. The High cows tended to have greater plasma insulin and lower glucagon/insulin ratio compared with Con cows. No differences in circulating glucose, glucagon, nonesterified fatty acids and β-hydroxybutyrate concentrations, and hepatic triglyceride contents were observed between treatments. Overfeeding compared with Con resulted in lower CPT1A and PCK1 and a tendency for lower G6PC and PC expression in the liver. The High group tended to have lower RETN expression in SAT than Con. No other effects of overfeeding on the expression of genes related to IR in SAT were observed. In conclusion, overfeeding energy prepartum may have compromised hepatic gluconeogenic capacity and slightly affected IR in SAT based on gene expression.
Collapse
Affiliation(s)
- S Selim
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland; and
| | | | | | | | | | | |
Collapse
|
49
|
Seron-Ferre M, Reynolds H, Mendez NA, Mondaca M, Valenzuela F, Ebensperger R, Valenzuela GJ, Herrera EA, Llanos AJ, Torres-Farfan C. Impact of Maternal Melatonin Suppression on Amount and Functionality of Brown Adipose Tissue (BAT) in the Newborn Sheep. Front Endocrinol (Lausanne) 2014; 5:232. [PMID: 25610428 PMCID: PMC4285176 DOI: 10.3389/fendo.2014.00232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/15/2014] [Indexed: 11/23/2022] Open
Abstract
In human and sheep newborns, brown adipose tissue (BAT) accrued during fetal development is used for newborn thermogenesis. Here, we explored the role of maternal melatonin during gestation on the amount and functionality of BAT in the neonate. We studied BAT from six lambs gestated by ewes exposed to constant light from 63% gestation until delivery to suppress melatonin (LL), six lambs gestated by ewes exposed to LL but receiving daily oral melatonin (12 mg at 1700 h, LL + Mel) and another six control lambs gestated by ewes maintained in 12 h light:12 h dark (LD). Lambs were instrumented at 2 days of age. At 4-6 days of age, they were exposed to 24°C (thermal neutrality conditions) for 1 h, 4°C for 1 h, and 24°C for 1 h. Afterward, lambs were euthanized and BAT was dissected for mRNA measurement, histology, and ex vivo experiments. LL newborns had lower central BAT and skin temperature under thermal neutrality and at 4°C, and higher plasma norepinephrine concentration than LD newborns. In response to 4°C, they had a pronounced decrease in skin temperature and did not increase plasma glycerol. BAT weight in LL newborns was about half of that of LD newborns. Ex vivo, BAT from LL newborns showed increased basal lipolysis and did not respond to NE. In addition, expression of adipogenic/thermogenic genes (UCP1, ADBR3, PPARγ, PPARα, PGC1α, C/EBPβ, and perilipin) and of the clock genes Bmal1, Clock, and Per2 was increased. Remarkably, the effects observed in LL newborns were absent in LL + Mel newborns. Thus, our results support that maternal melatonin during gestation is important in determining amount and normal functionality of BAT in the neonate.
Collapse
Affiliation(s)
- Maria Seron-Ferre
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Henry Reynolds
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Natalia Andrea Mendez
- Facultad de Medicina, Laboratorio de Cronobiología del Desarrollo, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Mondaca
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Francisco Valenzuela
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Renato Ebensperger
- Facultad de Medicina, Laboratorio de Cronobiología, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | | | - Emilio A. Herrera
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Anibal J. Llanos
- Programa de Fisiopatología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Claudia Torres-Farfan
- Facultad de Medicina, Laboratorio de Cronobiología del Desarrollo, Universidad Austral de Chile, Valdivia, Chile
- *Correspondence: Claudia Torres-Farfan, Edificio Ciencias Biomédicas, Facultad de Medicina, Universidad Austral de Chile, Isla Teja S/N, P.O. Box 567, Valdivia, Chile e-mail:
| |
Collapse
|
50
|
Grala T, Roche J, Phyn C, Rius A, Boyle R, Snell R, Kay J. Expression of key lipid metabolism genes in adipose tissue is not altered by once-daily milking during a feed restriction of grazing dairy cows. J Dairy Sci 2013; 96:7753-64. [DOI: 10.3168/jds.2013-6849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 08/21/2013] [Indexed: 01/24/2023]
|