1
|
De Sainz I, Redondo-Solano M, Solano G, Ramírez L. Optimization of process conditions and kinetic microbial growth for milk fermentation using domestic kefir grains from Costa Rica. Ital J Food Saf 2025. [PMID: 40356561 DOI: 10.4081/ijfs.2025.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 02/11/2025] [Indexed: 05/15/2025] Open
Abstract
Kefir, a fermented milk product, differs from yogurt due to its unique microbial composition, offering a broad spectrum of health benefits. Given its global popularity and high cost, there is a significant trend towards domestic kefir production. This study explores the optimization of kefir fermentation using Costa Rican domestic kefir grains, assessing the effects of temperature, agitation, and initial starter culture concentration. A central composite rotatable design and response surface statistical approach were employed to evaluate these parameters. Microbial growth data were fitted into a quadratic model, revealing significant interactions, particularly with temperature affecting both lactic acid bacteria (LAB) and yeast populations. Optimized fermentation conditions were established at 25°C, 0 rpm, and 5 g/L initial biomass, under which final microbial populations reached 9.45±0.13 log(cfu)/mL for yeast and 9.23±0.06 log(cfu)/mL for LAB. The specific growth velocity for kefir biomass was 0.029 1/h and the total acid production rate was 0.060 g/(L h). Notably, the acetic acid production was significantly less than lactic acid, indicating a dominance of LAB over acetic acid bacteria, which is crucial for the desired flavor and health benefits of kefir. Additionally, microbial enumeration on glucose-yeast extract calcium carbonate agar and Rogosa agar showed distinct colony formations, highlighting the complex microbial interactions within kefir. This comprehensive dataset suggests that the performance of non-commercial starter cultures can be significantly improved under controlled conditions, providing a basis for developing guidelines for domestic kefir production. This study not only optimizes kefir production but also ensures that home-prepared kefir can meet quality standards, potentially enhancing its nutritional and therapeutic benefits.
Collapse
Affiliation(s)
- Isabela De Sainz
- Department of Industrial Engineering, Engineering Research Institute, University of Costa Rica, San Jose.
| | - Mauricio Redondo-Solano
- Research Center of Tropical Diseases and Laboratory for Research and Training in Food Microbiology, Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San Jose.
| | - Godofredo Solano
- Nuclear Magnetic Resonance Unit, Natural Product Investigation Center, University of Costa Rica, San Jose.
| | - Lautaro Ramírez
- Department of Chemical Engineering, University of Costa Rica, San Jose.
| |
Collapse
|
2
|
Abou Ayana IAA, Al-Otibi FO, Elgarhy MR, Omar MM, EL-Abbassy MZ, Khalifa SA, Helmy YA, Saber WIA. Chemical, Physical, Microbial, and Sensory Properties of Innovative Sesame Milk Kefir, Focusing on the Ultrastructure of Kefir Grains. ACS OMEGA 2025; 10:7752-7769. [PMID: 40060880 PMCID: PMC11886653 DOI: 10.1021/acsomega.4c08044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
The demand for innovative plant-based probiotic beverages is growing rapidly. This study aimed to develop and evaluate a novel kefir beverage using two types of sesame milk: permeate-based sesame milk (PSM) and water-based sesame milk (WSM). Chemical, physical, microbial, and sensory properties of kefir were assessed. The total solids content (protein, fat, carbohydrates, and ash) in fresh kefir was 12.68, 13.31, and 16.38% for cow milk kefir (CMK), WSM kefir (WSMK), and PSM kefir (PSMK), respectively, and increased slightly after 14 days of storage, reaching 13.18, 13.53, and 16.56%. The fresh PSMK exhibited notable mineral content, containing (mg/100 g) 258.23 Ca, 137.14 P, 70.24 K, and smaller amounts of Na, Mg, Cu, Fe, Zn, and Mn, along with 5.18 μg/100 g of Se. In terms of volatile compounds, PSMK had the highest acetaldehyde concentration (7.48 mg/L), followed by CMK (4.91 mg/L) and WSMK (4.44 mg/L). Ethanol levels were the highest in fresh WSMK (0.129%). The viscosity and color attributes of PSMK were closely aligned with those of CMK, with the viscosity increasing over time to 1.53, 1.40, and 1.57 cP for PSMK, WSMK, and CMK, respectively. All kefir types supported viable probiotic populations, with PSMK demonstrating superior Lactobacillus and Lactococcus growth compared to WSMK. Sensory evaluations revealed high consumer acceptability for PSMK, comparable to CMK, with a purchase recommendation rate exceeding 76% for both PSMK and WSMK. Scanning electron microscopy revealed that the microstructure of PSMK grains was well-balanced and similar to that of CMK grains. This study highlights PSM as a promising dairy alternative for producing high-quality probiotic kefir, offering consumers an appealing, nutritious option within the growing plant-based beverage market.
Collapse
Affiliation(s)
- Ibrahim A. A. Abou Ayana
- Dairy
Research Department, Food Technology Research Institute (FTRI), Agricultural Research Center, Giza 12619, Egypt
| | - Fatimah O. Al-Otibi
- Botany
and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed R. Elgarhy
- Dairy
Research Department, Food Technology Research Institute (FTRI), Agricultural Research Center, Giza 12619, Egypt
| | - Mohamed M. Omar
- Food
Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed. Z. EL-Abbassy
- Food
Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah A. Khalifa
- Food
Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yosra A. Helmy
- Department
of Veterinary Science, Martin-Gatton College of Agriculture, Food,
and Environment, University of Kentucky, Lexington, Kentucky 40546, United States
| | - WesamEldin I. A. Saber
- Microbial
Activity Unit, Microbiology Department, Soils, Water and Environment
Research Institute, Agricultural Research
Center, Giza 12619, Egypt
| |
Collapse
|
3
|
Kamilari E, O'Connor PM, de Farias FM, Johnson CN, Buttimer C, Deliephan A, Hill D, Fursenko O, Wiese J, Stanton C, Hill C, Ross RP. Bacillus safensis APC 4099 has broad-spectrum antimicrobial activity against both bacteria and fungi and produces several antimicrobial peptides, including the novel circular bacteriocin safencin E. Appl Environ Microbiol 2025; 91:e0194224. [PMID: 39745440 PMCID: PMC7617318 DOI: 10.1128/aem.01942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025] Open
Abstract
Bacillus safensis APC 4099, isolated from bees' gut, has been identified as a promising candidate for food biopreservation. Antimicrobial activity screening revealed a broad-spectrum inhibition potential, ranging from gram-positive pathogenic bacteria to fungi responsible for food spoilage. Genomic analysis identified biosynthetic gene clusters coding for several antimicrobial peptides and secondary metabolites. Specifically, a novel, anionic, 6 kDa circular bacteriocin, named safencin E, was detected, showing 52.5% similarity to butyrivibriocin AR10. Additionally, gene clusters coding for the biosynthesis of bacteriocins such as pumilarin and plantazolicin and biosynthetic pathways for secondary metabolites, including pumilacidin A, bacilysin, and bacillibactin, were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis detected molecular masses correlating to safencin E, plantazolicin, pumilarin, and pumilacidin A from the cell-free supernatant, cell extracts, or both. Overall, the broad-spectrum antimicrobial activity of B. safensis APC 4099 indicates that this strain is a promising candidate for the biological control of food ecosystems and thus has the potential to enhance food safety. IMPORTANCE The present article highlights the importance of the strain Bacillus safensis APC 4099 as a potential biocontrol agent. The strain possesses biosynthetic gene clusters coding for various antimicrobial peptides and secondary metabolites, including a novel circular bacteriocin, safencin E, and the bacteriocins pumilarin and plantazolicin. This diversity in the production of antimicrobial peptides renders the producer with broad-spectrum antimicrobial activity, ranging from gram-positive pathogenic and spoilage bacteria to spoilage molds. Considering that 1.3 billion tons of food appropriate for human consumption is lost or wasted annually, identifying strains or novel antimicrobial peptides capable of biopreservation is highly relevant. This strain and its bioactive compounds offer a solution to this global problem as biocontrol agents for food ecosystems against spoilage and pathogenic microbes.
Collapse
Affiliation(s)
- E. Kamilari
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - P. M. O'Connor
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - F. Miceli de Farias
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - C. N. Johnson
- Department of Biochemistry & Microbiology, Center for Health Sciences, Oklahoma State University, Tulsa, Oklahoma, USA
| | - C. Buttimer
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - A. Deliephan
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - D. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - O. Fursenko
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - J. Wiese
- Kraft Heinz Corporate Headquarters, Chicago, Illinois, USA
| | - C. Stanton
- APC Microbiome Ireland, Cork, Ireland
- Teagasc, Moorepark Food Research Centre, Fermoy, Co., Cork, Ireland
| | - C. Hill
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. P. Ross
- School of Microbiology, University College Cork, Cork, County Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
4
|
Comak Gocer EM, Ergin Zeren F, Ozen Küçükcetin İ, Kucukcetin A. Rheological, microbiological, and in vitro digestive properties of Kefir produced with different Kefir grains and commercial starter cultures. FOOD SCI TECHNOL INT 2024:10820132241304130. [PMID: 39665175 DOI: 10.1177/10820132241304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This research investigates the production of kefir using Turkish and Kazakh kefir grains and commercial starter cultures, followed by storage at 4 °C for 30 days. The study monitors the rheological properties and microbiological characteristics of kefir on the 1st, 15th, and 30th days of storage, as well as during dynamic in vitro gastrointestinal digestion. Kefir samples were passed through a dynamic in vitro gastrointestinal model simulating the digestive processes of the mouth, stomach, and small intestine which was designed in laboratory conditions. Kefir from Turkish kefir grain exhibited the lowest average titratable acidity, apparent viscosity, and flow behavior index, while kefir from Kazakh kefir grain had the highest average pH. Over the storage period, pH and flow behavior index decreased, while titratable acidity, viscosity, and consistency coefficient increased. The kefir samples showed non-Newtonian pseudoplastic flow characteristics. The acetic acid bacteria and Leuconostoc counts of kefir samples produced with commercial starter cultures were higher than those produced with kefir grains, while yeast counts were higher in kefir samples produced with kefir grains. During storage and in vitro gastrointestinal digestion, the number of microorganisms in kefir samples decreased. Turkish kefir grain resulted in the lowest reduction (%) of microorganism counts during in vitro gastrointestinal digestion. These findings shed light on the rheological, microbiological, and in vitro digestive properties of kefir during storage, which may contribute to improving the quality and health benefits of kefir products. The present study revealed that the kefir produced with kefir grains had a lower decrease in the viability of microorganisms compared to the kefir produced with starter culture after passage through the gastrointestinal model, so kefir produced with kefir grains may be more preferred due to its possible health benefits.
Collapse
Affiliation(s)
- Emine Mine Comak Gocer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Akdeniz University, Antalya, Turkey
| | - Firuze Ergin Zeren
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - İkbal Ozen Küçükcetin
- Department of Medical Biochemistry, Faculty of Medical, Akdeniz University, Antalya, Turkey
| | - Ahmet Kucukcetin
- Department of Food Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Aktaş H, Meral Aktaş H, Ürkek B, Şengül M, Çetin B. Evaluation of Spreadable Kefir Produced from Different Milks in Terms of Some Quality Criteria. Probiotics Antimicrob Proteins 2024; 16:1734-1743. [PMID: 37523112 DOI: 10.1007/s12602-023-10129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
Kefir, which has many beneficial effects on health, is one of the most consumed fermented milk products worldwide. It is important to increase consumption of the fermented product for public health. In this study, it was aimed to increase the beneficial effects of kefir on public health. Therefore, kefirs produced from different types of milk (cow, buffalo, sheep, and goat) were concentrated, and obtained spreadable kefir samples were investigated in terms of their microbiological characteristic (lactic bacilli, lactic cocci, yeasts and moulds, total bacteria, and coliform bacteria), benzoic acid content, physicochemical properties (fat, total solid, ash content, acidity, pH, syneresis, viscosity, colour, and rheological properties), and sensory characteristic. It was determined that APC, lactic bacilli, lactic cocci, and yeast counts of the concentrated kefir samples changed between 6.90 and 8.64, 6.89 and 8.61, 7.42 and 8.72, and 2.17 and 5.39 log CFU/g, respectively, during storage. Mould and coliform bacteria were not detected in the samples. The concentrated kefir samples contained benzoic acid in the range of 18.30-119.58 mg/L. Results from this study showed that type of milk caused differences on APC, lactic bacilli, lactic cocci and yeast count, total solids, ash, fat, acidity, pH, syneresis, colour, viscosity and rheological parameters, and benzoic acid content. In addition, milk type affected sensory properties of the kefirs. Concentrated kefirs produced from cow and buffalo milk were the most liked by panellists. Finally, it was determined that concentrated kefir was favoured as a new product by most of the panellists.
Collapse
Affiliation(s)
- Haktan Aktaş
- Faculty of Agriculture, Department of Food Engineering, Ataturk University, Erzurum, 25240, Turkey
| | - Hacer Meral Aktaş
- Faculty of Agriculture, Department of Food Engineering, Ataturk University, Erzurum, 25240, Turkey
| | - Bayram Ürkek
- Siran Mustafa Beyaz Vocational School, Gumushane University, Siran, Gumushane, 25700, Turkey.
| | - Mustafa Şengül
- Faculty of Agriculture, Department of Food Engineering, Ataturk University, Erzurum, 25240, Turkey
| | - Bülent Çetin
- Faculty of Agriculture, Department of Food Engineering, Ataturk University, Erzurum, 25240, Turkey
| |
Collapse
|
6
|
Ardalani O, Phaneuf PV, Mohite OS, Nielsen LK, Palsson BO. Pangenome reconstruction of Lactobacillaceae metabolism predicts species-specific metabolic traits. mSystems 2024; 9:e0015624. [PMID: 38920366 PMCID: PMC11265412 DOI: 10.1128/msystems.00156-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Strains across the Lactobacillaceae family form the basis for a trillion-dollar industry. Our understanding of the genomic basis for their key traits is fragmented, however, including the metabolism that is foundational to their industrial uses. Pangenome analysis of publicly available Lactobacillaceae genomes allowed us to generate genome-scale metabolic network reconstructions for 26 species of industrial importance. Their manual curation led to more than 75,000 gene-protein-reaction associations that were deployed to generate 2,446 genome-scale metabolic models. Cross-referencing genomes and known metabolic traits allowed for manual metabolic network curation and validation of the metabolic models. As a result, we provide the first pangenomic basis for metabolism in the Lactobacillaceae family and a collection of predictive computational metabolic models that enable a variety of practical uses.IMPORTANCELactobacillaceae, a bacterial family foundational to a trillion-dollar industry, is increasingly relevant to biosustainability initiatives. Our study, leveraging approximately 2,400 genome sequences, provides a pangenomic analysis of Lactobacillaceae metabolism, creating over 2,400 curated and validated genome-scale models (GEMs). These GEMs successfully predict (i) unique, species-specific metabolic reactions; (ii) niche-enriched reactions that increase organism fitness; (iii) essential media components, offering insights into the global amino acid essentiality of Lactobacillaceae; and (iv) fermentation capabilities across the family, shedding light on the metabolic basis of Lactobacillaceae-based commercial products. This quantitative understanding of Lactobacillaceae metabolic properties and their genomic basis will have profound implications for the food industry and biosustainability, offering new insights and tools for strain selection and manipulation.
Collapse
Affiliation(s)
- O. Ardalani
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - P. V. Phaneuf
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - O. S. Mohite
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - L. K. Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - B. O. Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
McCann C, Gilpin V, Scott C, Pourshahidi LK, Gill CIR, Davis J. Moving towards in pouch diagnostics for ostomy patients: exploiting the versatility of laser induced graphene sensors. JOURNAL OF MATERIALS SCIENCE 2023; 58:14207-14219. [PMID: 37745186 PMCID: PMC10511578 DOI: 10.1007/s10853-023-08881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
The development of a 3D printed sensor for direct incorporation within stoma pouches is described. Laser induced graphene scribed on either side of polyimide film served as the basis of a 2 electrode configuration that could be integrated within a disposable pouch sensor for the periodic monitoring of ileostomy fluid pH. The graphene sensors were characterised using electron microscopy, Raman spectroscopy, DekTak profilometry with the electrochemical properties investigated using both cyclic and square wave voltammetry. Adsorbed riboflavin was employed as a biocompatible redox probe for the voltammetric measurement of pH. The variation in peak position with pH was found to be linear over pH 3-8 with a sub Nernstian response (43 mV/pH). The adsorbed probe was found to be reversible and exhibited minimal leaching through repeated scanning. The performance of the system was assessed in a heterogeneous bacterial fermentation mixture simulating ileostomy fluid with the pH recorded before and after 96 h incubation. The peak profile in the bacterial medium provided an unambiguous signal free from interference with the calculated pH before and after incubation (pH 5.3 to 3.66) in good agreement with that obtained with commercial pH probes. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10853-023-08881-x.
Collapse
Affiliation(s)
- Conor McCann
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | - Victoria Gilpin
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | - Cameron Scott
- School of Engineering, Ulster University, Belfast, Northern Ireland
| | | | - Chris. I. R. Gill
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - James Davis
- School of Engineering, Ulster University, Belfast, Northern Ireland
| |
Collapse
|
8
|
Mehaya FM, El-Shazly AI, El-Dein AN, Farid MA. Evaluation of nutritional and physicochemical characteristics of soy yogurt by Lactobacillus plantarum KU985432 and Saccharomyces boulardii CNCMI-745. Sci Rep 2023; 13:13026. [PMID: 37563274 PMCID: PMC10415370 DOI: 10.1038/s41598-023-40207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/07/2023] [Indexed: 08/12/2023] Open
Abstract
Nutritional yeast-produced soy yogurt has grown in demand, because of its unique nutritional and health benefits. It has low cholesterol, no lactose, and high levels of protein, probiotic yeast, vitamins, and minerals. In this work, Soymilk (12.5%) was prepared and fermented to produce soy yogurt. Growth curves, probiotic characteristics of Saccharomyces boulardii CNCMI-745 and Lactobacillus plantarum KU985432 were determined. The nutritional value of both yogurts was evaluated, including viable cell count, protein, vitamin B-complex, sugars, phenolic acids, and fatty acids, mineral content, stability, and storage. Analysis of the physicochemical composition of the yogurts included assessment of titratable acidity, antioxidant potential, viscosity, and moisture content. The probiotic viable count of the produced yogurts met the standards for commercial yogurts. S. boulardii CNCMI-745 displayed safety characteristics and high tolerance to heat, acid, and alkaline stress. The produced B vitamins increased in both yogurts. The total saturated fatty acids in Saccharomyces-yogurt decreased, while the unsaturated fatty acids increased. Saccharomyces-yogurt showed high antioxidant activity, phenolic acids, and crude protein content. Both yogurts demonstrated the same tendency for stability during 16 day-storage. In conclusion, using nutritional yeast in the production of soy yogurt increased its nutritional content more than probiotic lactic acid bacteria.
Collapse
Affiliation(s)
- Fathy M Mehaya
- Food Technology Department, National Research Centre, Cairo, Egypt
| | - Asmaa I El-Shazly
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt.
| | - Asmaa Negm El-Dein
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| | - Mohamed A Farid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
9
|
Abadl MMT, Mohsin AZ, Sulaiman R, Abas F, Muhialdin BJ, Meor Hussin AS. Biological activities and physiochemical properties of low-fat and high-fat coconut-based kefir. Int J Gastron Food Sci 2022. [DOI: 10.1016/j.ijgfs.2022.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized in some countries, people are still traditionally preparing kefir at the household level. Kefir is known to have many nutritious values, where its consistent microbiota has been identified as the main valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related disease and has been one of the main concerns in the world’s growing population. Kefir has been shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims to explain the microbial composition of commercial and home-made kefir and its possible effects on T2DM. Some studies on animal models and human clinical trials have been reviewed to validate the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress, and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its possible treatment.
Collapse
|
11
|
Selection of Yeast and Lactic Acid Bacteria Strains, Isolated from Spontaneous Raw Milk Fermentation, for the Production of a Potential Probiotic Fermented Milk. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Probiotic milk is a class of fermented milk that possesses health-promoting effects, not only due to the lactic acid bacteria (LAB) presence but potentially also to yeast activity. Hence, the aim of this work was to isolate and select yeasts from spontaneous milk fermentations to be used as inoculum, together with LAB, for manufacturing a potentially probiotic acidic low-alcohol fermented milk. Six yeast species were detected from the spontaneous milk fermentation. A screening of 13 yeast strains and 14 previously isolated LAB strains, based on the resistance to bile salts and to acidic conditions, was carried out. The best performing strains were successively tested for in vitro gastrointestinal tolerance. A strain of Kluyveromyces marxianus and a strain of Lactococcus lactis were selected for the manufacturing of two different fermented milk. The values of the main technological and microbiological parameters (pH, organic acids, ethanol, and microbial concentrations) of the experimental milk were in the range of those reported for this category of products. The evaluation of microorganism survival in fermented milk samples subjected to simulated gastrointestinal conditions highlighted a high resistance of both strains. In conclusion, the selected microbial starter culture enabled the setting up of potential probiotic fermented milk.
Collapse
|
12
|
Zapaśnik A, Sokołowska B, Bryła M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022; 11:foods11091283. [PMID: 35564005 PMCID: PMC9099756 DOI: 10.3390/foods11091283] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Fermentation of various food stuffs by lactic acid bacteria is one of the oldest forms of food biopreservation. Bacterial antagonism has been recognized for over a century, but in recent years, this phenomenon has received more scientific attention, particularly in the use of various strains of lactic acid bacteria (LAB). Certain strains of LAB demonstrated antimicrobial activity against foodborne pathogens, including bacteria, yeast and filamentous fungi. Furthermore, in recent years, many authors proved that lactic acid bacteria have the ability to neutralize mycotoxin produced by the last group. Antimicrobial activity of lactic acid bacteria is mainly based on the production of metabolites such as lactic acid, organic acids, hydroperoxide and bacteriocins. In addition, some research suggests other mechanisms of antimicrobial activity of LAB against pathogens as well as their toxic metabolites. These properties are very important because of the future possibility to exchange chemical and physical methods of preservation with a biological method based on the lactic acid bacteria and their metabolites. Biopreservation is defined as the extension of shelf life and the increase in food safety by use of controlled microorganisms or their metabolites. This biological method may determine the alternative for the usage of chemical preservatives. In this study, the possibilities of the use of lactic acid bacteria against foodborne pathogens is provided. Our aim is to yield knowledge about lactic acid fermentation and the activity of lactic acid bacteria against pathogenic microorganisms. In addition, we would like to introduce actual information about health aspects associated with the consumption of fermented products, including probiotics.
Collapse
Affiliation(s)
- Agnieszka Zapaśnik
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
- Correspondence:
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland;
| |
Collapse
|
13
|
Yilmaz B, Sharma H, Melekoglu E, Ozogul F. Recent developments in dairy kefir-derived lactic acid bacteria and their health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Turek K, Wszołek M. Effect of walnut oil on the fatty acid content of probiotic kefir produced either with kefir grains or kefir starter cultures. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the feasibly of using traditional milk kefir grains for the production of water kefir-like beverages and assess the changes in the physicochemical characteristics and the microbial populations of the fermented beverages. To this end, experiments of milk fermentation were primarily conducted at different temperatures and upon selection of the optimal, a gradual substitution of the substrate was performed by replacing milk from a sucrose-based solution. After the successful fermentation of the sucrose substrate, fruit juices were used as fermentation substrates. Sensory evaluation of the sugar-based beverages was also performed in order to access their acceptability for consumption. According to the results, the transition from milk to water kefir is indeed feasible, leading to the production of beverages with relatively higher ethanol concentrations (up to 2.14 ± 0.12% w/v) than milk kefir and much lower lactic acid concentrations (up to 0.16 ± 0.01% w/v). During the fermentation of the sugary substrates, yeasts seemed to be dominant over lactic acid bacteria, in contrast to what was observed in the case of milk kefir, where LAB dominated. The sensory evaluation revealed that all sugar-based beverages were acceptable for consumption, with the fruit-based ones obtaining, though, a better score in all attributes.
Collapse
|
16
|
Gökırmaklı Ç, Guzel-Seydim ZB. Water Kefir Grains vs. Milk Kefir Grains: Physical, Microbial and Chemical Comparison. J Appl Microbiol 2022; 132:4349-4358. [PMID: 35301787 DOI: 10.1111/jam.15532] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Even though kefir has been known for centuries, there is confusion between the two types of kefir grains, e.g., milk kefir grain and water kefir grain. This study aimed to unravel the differences and similarities between water kefir grain and milk kefir grain. METHODS AND RESULTS Microbiological analyses, identification of grains microbiota and enumeration of microbiological content of the grains as well as Scanning Electron Microscope (SEM) imaging, dry matter, protein, ash, and mineral content, and color analyses were carried out for the two types of grains. As a result, significant differences were found in microbiological content, chemical properties, and colors (p<0.05). Additionally, SEM images revealed the different intrinsic structures for the microbiota and the structure of the two types of grains. CONCLUSIONS MK grain has more nutritional content compared to WK grain. Despite not as widely known and used as MK grain, WK grain is a good source for minerals and health-friendly microorganisms like lactic acid bacteria (LAB) and yeasts. WK grain is possibly suitable for vegans and allergic individuals to fulfill nutritional requirements. Moreover, in this study, the variety of WK grain microbial consortia was wider than that of MK grains, and this significantly affected the resultant WK products. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that comprehensively compares two different kefir grains in microbial, chemical, and physical properties.
Collapse
Affiliation(s)
- Çağlar Gökırmaklı
- Department of Ffood Engineering, Süleyman Demirel University, Isparta 32260, Turkey
| | | |
Collapse
|
17
|
|
18
|
Comparative Analysis of Fermentation Conditions on the Increase of Biomass and Morphology of Milk Kefir Grains. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Kefir grains represent a symbiotic association group of yeasts, lactic acid bacteria and acetic acid bacteria within an exopolysaccharide and protein matrix known as kefiran. The mechanism of growth of a biomass of kefir after successive fermentations and optimal conditions is not well understood yet. Biomass growth kinetics were determined to evaluate the effects of temperatures (10 °C to 40 °C) and different substrates, such as monosaccharides (fructose, galactose, glucose), disaccharides (lactose, saccharose) and polysaccharides (Agave angustifolia fructans) at 2%, in reconstituted nonfat milk powder at 10% (w/v) and inoculated with 2% of milk kefir grain (105 CFU/g), after determining the pH kinetics. The best conditions of temperature and substrates were 20 °C and fructans and galactose. An increase in cells, grain sizes and a change in the morphology of the granules with the best substrates were observed using environmental scanning electron microscopy, confocal laser scanning microscopy and Image Digital Analysis (IDA). Kefir grains with agave fructans as their carbon source showed the higher fractal dimension (2.380), related to a greater co-aggregation ability of LAB and yeasts, and increase the formation of exopolysaccharides and the size of the kefir grains, which opens new application possibilities for the use of branched fructans as a substrate for the fermentation of milk kefir grains for the enhancement of cellular biomasses and exopolysaccharide production, as well as IDA as a characterization tool.
Collapse
|
19
|
Yousefvand A, Huang X, Zarei M, Saris PEJ. Lacticaseibacillus rhamnosus GG Survival and Quality Parameters in Kefir Produced from Kefir Grains and Natural Kefir Starter Culture. Foods 2022; 11:foods11040523. [PMID: 35205998 PMCID: PMC8871425 DOI: 10.3390/foods11040523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to determine the effect of starter cultures (kefir grains and natural kefir starter culture without grains) on Lacticaseibacillus rhamnosus GG (LGG) survival and on the quality characteristics of kefir. To this end, the viability of probiotic L. rhamnosus GG strain and the rheological properties and quality parameters of kefir beverages were tested during storage over 21 days at 4 °C. The final LGG counts were 7.71 and 7.55 log cfu/mL in natural kefir starter culture and kefir grain, respectively. When prepared with probiotic bacteria, the syneresis values of kefir prepared using natural kefir starter culture was significantly lower (p < 0.05) than that of kefir made using grains. However, the viscosity indices, hysteresis loop, and dynamic moduli were similar between kefir made with natural kefir starter culture and other kefir formulations (p > 0.05). Moreover, all samples showed shear-thinning behavior. The flavor scores for kefir prepared using natural kefir starter culture were significantly higher than for the other samples (p < 0.05), but overall acceptability was similar at the 10-day assessment across both starters (with and without grain) after the addition of probiotic bacteria (p > 0.05). Overall, the results indicate that natural kefir starter culture could be a potential probiotic carrier.
Collapse
Affiliation(s)
- Amin Yousefvand
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, P.O. Box 6135783-151, Ahvaz 61, Iran;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, FI-00014 Helsinki, Finland;
- Correspondence: ; Tel.: +358-468492855
| | - Xin Huang
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Agnes Sjöberginkatu 2, P.O. Box 66, FI-00014 Helsinki, Finland;
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, P.O. Box 6135783-151, Ahvaz 61, Iran;
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, FI-00014 Helsinki, Finland;
| |
Collapse
|
20
|
Gul O, Atalar I, Mortas M, Saricaoglu FT, Besir A, Gul LB, Yazici F. Potential Use of High Pressure Homogenized Hazelnut Beverage for a Functional Yoghurt-Like Product. AN ACAD BRAS CIENC 2022; 94:e20191172. [PMID: 35107513 DOI: 10.1590/0001-3765202220191172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/03/2019] [Indexed: 11/22/2022] Open
Abstract
Hazelnut beverage is a plant-based beverage produced from hazelnut cake as a by-product obtained after cold press extraction. It has high nutritional value and a significant percentage of consumers show interest in it due to its health benefits. In this study, hazelnut beverage manufactured from by-products of hazelnut oil industry was incorporated into functional yoghurt production. Five formulations (ratio of 1/0, 3/1, 2/1, 1/1, 0/1, v/v, cow milk/hazelnut beverage) of yoghurt-like products were prepared to indicate the storage period of the samples and the analysis performed. For yoghurt production, hazelnut beverage and cows' milk were standardized to 14.5 g 100 g-1 with skimmed milk powder. The use of hazelnut beverage in yoghurt production negatively affected L. bulgaricus counts. Water holding capacity and viscosity values were improved by using hazelnut beverage. Increasing hazelnut beverage concentration led to an increase in the total phenolic compounds and antioxidant activity, malic acid levels and also unsaturated fatty acids, especially oleic and linoleic acid. Using the ratio of 3/1 was found the best in view of appearance, flavor and overall acceptability. Based on the structural, rheological and sensorial properties, this study could guide the dairy industry to use hazelnut beverage obtained from hazelnut cake.
Collapse
Affiliation(s)
- Osman Gul
- 1Department of Food Engineering, Faculty of Engineering and Architecture, Kastamonu University, Orgeneral Atilla Ateş Paşa Street, Kuzeykent Campus, Postal 37150, Kastamonu Center/Kastamonu, Turkey
| | - Ilyas Atalar
- Department of Food Engineering, Faculty of Agriculture, Eskişehir Osmangazi University, Ziraat Street, Ali Numan Kıraç Campus, Postal 26160, Odunpazarı Village/Eskişehir, Turkey
| | - Mustafa Mortas
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Kurupelit Campus, Postal 55139, Atakum Village/Samsun, Turkey
| | - Furkan Turker Saricaoglu
- Department of Food Engineering, Faculty of Natural Sciences, Architecture and Engineering Bursa Technical University, Mimar Sinan Street, Mimar Sinan Campus, Postal 16310, Yıldırım Village/Bursa, Turkey
| | - Aysegul Besir
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Kurupelit Campus, Postal 55139, Atakum Village/Samsun, Turkey
| | - Latife Betul Gul
- Department of Food Engineering, Faculty of Engineering, Giresun University, Prof. Ahmet Taner Kışlalı Street, Güre Campus, Postal 28200, Giresun Center/Giresun, Turkey
| | - Fehmi Yazici
- Department of Food Engineering, Faculty of Engineering, Ondokuz Mayis University, Kurupelit Campus, Postal 55139, Atakum Village/Samsun, Turkey
| |
Collapse
|
21
|
BURAN İ, AKAL HC, OZTURKOĞLU-BUDAK S, YETISEMIYEN A. Effect of milk kind on the physicochemical and sensorial properties of synbiotic kefirs containing Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-11 accompanied with inulin. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
WULANSARI PD, Nurliyani, ENDAH SRN, NOFRIYALDI A, HARMAYANI E. Microbiological, chemical, fatty acid and antioxidant characteristics of goat milk kefir enriched with Moringa oleifera leaf powder during storage. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.71621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Buffalo Milk as a Source of Probiotic Functional Products. Microorganisms 2021; 9:microorganisms9112303. [PMID: 34835429 PMCID: PMC8620832 DOI: 10.3390/microorganisms9112303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
In the past two decades, consumption of food has been accruing due to its health claims which include gastrointestinal health, improved immunity, and well-being. Currently, the dairy industry is the sector where probiotics are most widely used, especially in fermented milk, cheese, yoghurt, butter, and dairy beverages. Although, it is still necessary to face many challenges regarding their stability and functionality in food. Considering the increasing demand for healthy products, it is necessary to develop strategies that aim to increase the consumption of functional foods in order to meet probiotic usefulness criteria and the consumer market. This review aimed to promote the utilization of buffalo milk considering its probiotic effects as a functional food and natural remedy to various ailments, emphasizing the potential of innovation and the importance of milk-based products as health promoters. The intake of probiotics plays an important role in modulating the health of the host, as a result of a balanced intestinal microbiota, reducing the risk of development of various diseases such as cancer, colitis, lactose intolerance, heart diseases, and obesity, among other disorders. However, further studies should be carried out to deepen the knowledge on the relationship between raw buffalo milk, its dairy products microbiota and consumer’s health beneficial effects, as well as to implement a strategy to increase the variety and availability of its products as a functional food in the market.
Collapse
|
24
|
Pihurov M, Păcularu-Burada B, Cotârleţ M, Vasile MA, Bahrim GE. Novel Insights for Metabiotics Production by Using Artisanal Probiotic Cultures. Microorganisms 2021; 9:2184. [PMID: 34835310 PMCID: PMC8624174 DOI: 10.3390/microorganisms9112184] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 01/15/2023] Open
Abstract
Wild probiotic consortia of microorganisms (bacteria and yeasts) associated in the artisanal cultures' microbiota (milk kefir grains, water kefir grains and kombucha) are considered valuable promoters for metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) production. The beneficial effects of the fermented products obtained with the artisanal cultures on human well-being are described by centuries and the interest for them is continuously increasing. The wild origin and microbial diversity of these above-mentioned consortia give them extraordinary protection capacity against microbiological contaminants in unusual physico-chemical conditions and unique fermentative behaviour. This review summarizes the state of the art for the wild artisanal cultures (milk and water kefir grains, respectively, kombucha-SCOBY), their symbiotic functionality, and the ability to ferment unconventional substrates in order to obtain valuable bioactive compounds with in vitro and in vivo beneficial functional properties. Due to the necessity of the bioactives production and their use as metabiotics in the modern consumer's life, artisanal cultures are the perfect sources able to biosynthesize complex functional metabolites (bioactive peptides, antimicrobials, polysaccharides, enzymes, vitamins, cell wall components). Depending on the purposes of the biotechnological fermentation processes, artisanal cultures can be used as starters on different substrates. Current studies show that the microbial synergy between bacteria-yeast and/or bacteria-offers new perspectives to develop functional products (food, feeds, and ingredients) with a great impact on life quality.
Collapse
Affiliation(s)
| | | | | | | | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Domneasca Street No. 111, 800201 Galati, Romania; (M.P.); (B.P.-B.); (M.C.); (M.A.V.)
| |
Collapse
|
25
|
Sözeri Atik D, Gürbüz B, Bölük E, Palabıyık İ. Development of vegan kefir fortified with Spirulina platensis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Buran İ, Akal C, Ozturkoglu-Budak S, Yetisemiyen A. Rheological, sensorial and volatile profiles of synbiotic kefirs produced from cow and goat milk containing varied probiotics in combination with fructooligosaccharide. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kefir as a Functional Beverage Gaining Momentum towards Its Health Promoting Attributes. BEVERAGES 2021. [DOI: 10.3390/beverages7030048] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The consumption of fermented foods posing health-promoting attributes is a rising global trend. In this manner, fermented dairy products represent a significant subcategory of functional foods with established positive health benefits. Likewise, kefir—a fermented milk product manufactured from kefir grains—has been reported by many studies to be a probiotic drink with great potential in health promotion. Existing research data link regular kefir consumption with a wide range of health-promoting attributes, and more recent findings support the link between kefir’s probiotic strains and its bio-functional metabolites in the enhancement of the immune system, providing significant antiviral effects. Although it has been consumed for thousands of years, kefir has recently gained popularity in relation to novel biotechnological applications, with different fermentation substrates being tested as non-dairy functional beverages. The present review focuses on the microbiological composition of kefir and highlights novel applications associated with its fermentation capacity. Future prospects relating to kefir’s capacity for disease prevention are also addressed and discussed.
Collapse
|
28
|
Turek K, Wszołek M. Comparative study of walnut and Camelina sativa oil as a functional components for the unsaturated fatty acids and conjugated linoleic acid enrichment of kefir. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Alves E, Ntungwe EN, Gregório J, Rodrigues LM, Pereira-Leite C, Caleja C, Pereira E, Barros L, Aguilar-Vilas MV, Rosado C, Rijo P. Characterization of Kefir Produced in Household Conditions: Physicochemical and Nutritional Profile, and Storage Stability. Foods 2021; 10:1057. [PMID: 34064868 PMCID: PMC8150857 DOI: 10.3390/foods10051057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
Kefir, a traditional fermented food, has numerous health benefits due to its unique chemical composition, which is reflected in its excellent nutritional value. Physicochemical and microbial composition of kefir obtained from fermented milk are influenced by the type of the milk, grain to milk ratio, time and temperature of fermentation, and storage conditions. It is crucial that kefir characteristics are maintained during storage since continuous metabolic activities of residual kefir microbiota may occur. This study aimed to examine the nutritional profile of kefir produced in traditional in use conditions by fermentation of ultra-high temperature pasteurized (UHT) semi-skimmed cow milk using argentinean kefir grains and compare the stability and nutritional compliance of freshly made and refrigerated kefir. Results indicate that kefir produced under home use conditions maintains the expected characteristics with respect to the physicochemical parameters and composition, both after fermentation and after refrigerated storage. This work further contributes to the characterization of this food product that is so widely consumed around the world by focusing on kefir that was produced in a typical household setting.
Collapse
Affiliation(s)
- Emília Alves
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain;
| | - Epole N. Ntungwe
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain;
| | - João Gregório
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
| | - Luis M. Rodrigues
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
| | - Catarina Pereira-Leite
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (E.P.); (L.B.)
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (E.P.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (E.P.); (L.B.)
| | - M. Victorina Aguilar-Vilas
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain;
| | - Catarina Rosado
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
| | - Patrícia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
30
|
Matos RS, Pinheiro BS, Souza IS, Paes de Castro RR, Ramos GQ, Pinto EP, Silva RS, da Fonseca Filho HD. 3D micromorphology evaluation of kefir microbial films loaded with extract of Amazon rainforest fruit Cupuaçu. Micron 2020; 142:102996. [PMID: 33360436 DOI: 10.1016/j.micron.2020.102996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
We performed qualitative and quantitative analysis of surfaces of kefir biofilms loaded with Amazon rainforest fruit extract. Scanning electron microscopy and atomic force microscopy were used to evaluate the micromorphology of the biofilms. The films surface displayed a lower density of microorganisms (∼ 0.061 microorganisms/μm2) for the lowest concentration of fruit extract, however, a greater density (∼0.220 microorganisms/μm2) was observed for the higher concentration. Height stereometric parameters revealed that the biofilms with the highest concentration presented the highest roughness. However, almost all the stereometric parameters related to texture showed no significant difference. Furthermore, the Hurst coefficients of the average power spectrum density were similar for all biofilms. Fractal parameters confirmed that higher concentrations of fruit extract induced a superior topographic irregularity. However, fractal lacunarity does not show any significant difference confirming the similarity of the microtextures. Moreover, fractal succolarity and surface entropy exhibited values that suggested ideal percolation and strong topographic uniformity, respectively, indicating that these films can uniformly adhere to other surfaces. Our results confirm that the stereometric and fractal parameters can be relevant for the surface characterization of microbial films, which can be of great importance to the biomedical field.
Collapse
Affiliation(s)
- Robert S Matos
- Federal University of Sergipe-UFS, Postgraduate Program in Materials Science and Engineering, São Cristóvão, Sergipe, Brazil; Federal University of Amapá-UNIFAP, Amazonian Materials Group, Physics Department, Macapá, Amapá, Brazil
| | - Bianca S Pinheiro
- Federal University of Sergipe-UFS, Postgraduate Program in Materials Science and Engineering, São Cristóvão, Sergipe, Brazil
| | - Izabella S Souza
- Federal University of Amapá-UNIFAP, Amazonian Materials Group, Physics Department, Macapá, Amapá, Brazil
| | - Ruy R Paes de Castro
- Federal University of Amazonas-UFAM, Laboratory of Synthesis of Nanomaterials and Nanoscopy, Physics Department, Manaus, Amazonas, Brazil
| | - Glenda Q Ramos
- Postgraduate Program in Tropical Medicine, Fundação de Medicina Tropical, State University of Amazonas, 69040-000, Manaus, AM, Brazil
| | - Erveton P Pinto
- Federal University of Amapá-UNIFAP, Amazonian Materials Group, Physics Department, Macapá, Amapá, Brazil
| | - Romualdo S Silva
- Federal University of Sergipe-UFS, Postgraduate Program in Physics, São Cristóvão, Sergipe, Brazil
| | - Henrique D da Fonseca Filho
- Federal University of Amazonas-UFAM, Laboratory of Synthesis of Nanomaterials and Nanoscopy, Physics Department, Manaus, Amazonas, Brazil.
| |
Collapse
|
31
|
Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buffalo-milk-based dairy products provide various health benefits to humans since buffalo milk serves as a rich source of protein, fat, lactose, calcium, iron, phosphorus, vitamin A and natural antioxidants. Dairy products such as Meekiri, Dadih, Dadi and Lassie, which are derived from Artisanal fermentation of buffalo milk, have been consumed for many years. Probiotic potentials of indigenous microflora in fermented buffalo milk have been well documented. Incorporation of certain probiotics into the buffalo-milk-based dairy products conferred vital health benefits to the consumers, although is not a common practice. However, several challenges are associated with incorporating probiotics into buffalo-milk-based dairy products. The viability of probiotic bacteria can be reduced due to processing and environmental stress during storage. Further, incompatibility of probiotics with traditional starter cultures and high acidity of fermented dairy products may lead to poor viability of probiotics. The weak acidifying performance of probiotics may affect the organoleptic quality of fermented dairy products. Besides these challenges, several innovative technologies such as the use of microencapsulated probiotics, ultrasonication, the inclusion of prebiotics, use of appropriate packaging and optimal storage conditions have been reported, promising stability and viability of probiotics in buffalo-milk-based fermented dairy products.
Collapse
|
32
|
Wang H, Wang C, Guo M. Autogenic successions of bacteria and fungi in kefir grains from different origins when sub-cultured in goat milk. Food Res Int 2020; 138:109784. [PMID: 33288170 DOI: 10.1016/j.foodres.2020.109784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023]
Abstract
Kefir grains are a unique symbiotic association of different microbiota, including a variety of bacterial and fungal species. The microbiota in kefir grains is strongly influenced by the geographical origin and sub-culturing environment. After sub-culturing in goat milk for 2 to 4 months, amplicon sequencing (16S rRNA and ITS1 region) was applied for the identification of bacterial and fungal autogenic succession of three kefir grains collected from China (CN, Asia), Germany (DE, Europe) and United States of America (USA, America). Taxonomic analysis displayed three main bacterial and fungal species in kefir grains from different origins during sub-culturing process (Lactobacillus helveticus, Lactobacillus kefiranofaciens and Lactobacillus kefiri for bacteria, Kazachstania unispora, Kluyveromyces marxianus and Saccharomyces cerevisiae for fungi). Based on the results of beta diversity analysis, microbiota in kefir grains from CN and DE would be stable when sub-cultured in goat milk for more than three months. Differently, a highly microbial stability has been found for the sample from USA during the whole sub-culturing process. These results helped to understand the composition and stability of microbiota in kefir grains when sub-cultured in goat milk.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cuina Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingruo Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
33
|
Matos RS, Ramos GQ, da Fonseca Filho HD, Ţălu Ş. Advanced micromorphology study of microbial films grown on Kefir loaded with Açaí extract. Micron 2020; 137:102912. [PMID: 32585567 DOI: 10.1016/j.micron.2020.102912] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
In this work, an advanced analysis of the 3D surface microtexture of the microbial films grown on Kefir loaded with Açaí extract was performed. Atomic force microscopy was used to characterize the 3D surface microtexture data in correlation with the stereometric analyses to allow a better understanding of the surface micromorphology consistent with ISO 25178-2: 2012. Two new parameters, fractal succolarity and fractal lacunarity, have been inserted for a quantitative approach to microtexture. The results revealed that the morphology was affected by the increase of the Açaí concentration in biofilms, as well as the fractal succolarity and lacunarity. Adhesive bacteria of the genus Lactobacillus were observed for the lowest concentrations of Açaí. Moreover, it was found that the surface of the biofilms has shown saturation when the concentration has changed from 4 to 6 % of Açaí. These results are of great interest in the characterization of surfaces with promising application like skin dressing.
Collapse
Affiliation(s)
- Robert S Matos
- Federal University of Amapá, Amazonian Materials Group, Physics Department, Amapá, Brazil; Federal University of Sergipe, Materials Engineering Department, Sergipe, Brazil
| | - Glenda Q Ramos
- Postgraduate Program in Tropical Medicine, State University of Amazonas, Manaus, Amazonas, Brazil
| | - Henrique D da Fonseca Filho
- Federal University of Amazonas, Laboratory of Nanomaterials Synthesis and Nanoscopy, Physics Department, Amazonas, Brazil.
| | - Ştefan Ţălu
- Technical University of Cluj-Napoca, The Directorate of Research, Development and Innovation Management (DMCDI), Cluj County, Romania
| |
Collapse
|
34
|
Bacterial Populations in International Artisanal Kefirs. Microorganisms 2020; 8:microorganisms8091318. [PMID: 32872546 PMCID: PMC7565184 DOI: 10.3390/microorganisms8091318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Artisanal kefir is a traditional fermented dairy product made using kefir grains. Kefir has documented natural antimicrobial activity and health benefits. A typical kefir microbial community includes lactic acid bacteria (LAB), acetic acid bacteria, and yeast among other species in a symbiotic matrix. In the presented work, the 16S rRNA gene sequencing was used to reveal bacterial populations and elucidate the diversity and abundance of LAB species in international artisanal kefirs from Fusion Tea, Britain, the Caucuses region, Ireland, Lithuania, and South Korea. Bacterial species found in high abundance in most artisanal kefirs included Lactobacillus kefiranofaciens, Lentilactobacillus kefiri,Lactobacillus ultunensis, Lactobacillus apis, Lactobacillus gigeriorum, Gluconobacter morbifer, Acetobacter orleanensis, Acetobacter pasteurianus, Acidocella aluminiidurans, and Lactobacillus helveticus. Some of these bacterial species are LAB that have been reported for their bacteriocin production capabilities and/or health promoting properties.
Collapse
|
35
|
The Combined Effect of Pressure and Temperature on Kefir Production-A Case Study of Food Fermentation in Unconventional Conditions. Foods 2020; 9:foods9081133. [PMID: 32824663 PMCID: PMC7466173 DOI: 10.3390/foods9081133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 11/16/2022] Open
Abstract
Food fermentation under pressure has been studied in recent years as a way to produce foods with novel properties. The purpose of this work was to study kefir production under pressure (7–50 MPa) at different temperatures (17–32 °C), as a case study of unconventional food fermentation. The fermentation time to produce kefir was similar at all temperatures (17, 25, and 32 °C) up to 15 MPa, compared to atmospheric pressure. At 50 MPa, the fermentation rate was slower, but the difference was reduced as temperature increased. During fermentation, lactic and acetic acid concentration increased while citric acid decreased. The positive activation volumes (Va) obtained indicate that pressure decreased the fermentation rate, while the temperature rise led to the attenuation of the pressure effect (lower Va). On the other hand, higher activation energies (Ea) were observed with pressure increase, indicating that fermentation became more sensitive to temperature. The condition that resulted in a faster fermentation, higher titratable acidity, and higher concentration of lactic acid was 15 MPa/32 °C. As the authors are aware, this is the second work in the literature to study the combined effect of pressure and temperature on a fermentative process.
Collapse
|
36
|
Woods DF, Kozak IM, O'Gara F. Microbiome and Functional Analysis of a Traditional Food Process: Isolation of a Novel Species ( Vibrio hibernica) With Industrial Potential. Front Microbiol 2020; 11:647. [PMID: 32373093 PMCID: PMC7179675 DOI: 10.3389/fmicb.2020.00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 03/20/2020] [Indexed: 11/29/2022] Open
Abstract
Traditional food preservation processes are vital for the food industry. They not only preserve a high-quality protein and nutrient source but can also provide important value-added organoleptic properties. The Wiltshire process is a traditional food curing method applied to meat, and special recognition is given to the maintenance of a live rich microflora within the curing brine. We have previously analyzed a curing brine from this traditional meat process and characterized a unique microbial core signature. The characteristic microbial community is actively maintained and includes the genera, Marinilactibacillus, Carnobacterium, Leuconostoc, and Vibrio. The bacteria present are vital for Wiltshire curing compliance. However, the exact function of this microflora is largely unknown. A microbiome profiling of three curing brines was conducted and investigated for functional traits by the robust bioinformatic tool, Tax4Fun. The key objective was to uncover putative metabolic functions associated with the live brine and to identify changes over time. The functional bioinformatic analysis revealed metabolic enrichments over time, with many of the pathways identified as being involved in organoleptic development. The core bacteria present in the brine are Lactic Acid Bacteria (LAB), with the exception of the Vibrio genus. LAB are known for their positive contribution to food processing, however, little work has been conducted on the use of Vibrio species for beneficial processes. The Vibrio genome was sequenced by Illumina MiSeq technologies and annotated in RAST. A phylogenetic reconstruction was completed using both the 16S rRNA gene and housekeeping genes, gapA, ftsZ, mreB, topA, gyrB, pyrH, recA, and rpoA. The isolated Vibrio species was defined as a unique novel species, named Vibrio hibernica strain B1.19. Metabolic profiling revealed that the bacterium has a unique substrate scope in comparison to other closely related Vibrio species tested. The possible function and industrial potential of the strain was investigated using carbohydrate metabolizing profiling under food processing relevant conditions. Vibrio hibernica is capable of metabolizing a unique carbohydrate profile at low temperatures. This characteristic provides new application options for use in the industrial food sector, as well as highlighting the key role of this bacterium in the Wiltshire curing process.
Collapse
Affiliation(s)
- David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona M Kozak
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Human Microbiome Programme, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia.,Telethon Kids Institute, Perth Children's Hospital, Perth, WA, Australia
| |
Collapse
|
37
|
TOMAR O, AKARCA G, ÇAĞLAR A, BEYKAYA M, GÖK V. The effects of kefir grain and starter culture on kefir produced from cow and buffalo milk during storage periods. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.39418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
A Big World in Small Grain: A Review of Natural Milk Kefir Starters. Microorganisms 2020; 8:microorganisms8020192. [PMID: 32019167 PMCID: PMC7074874 DOI: 10.3390/microorganisms8020192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022] Open
Abstract
Milk kefir is a traditional fermented milk product whose consumption is becoming increasingly popular. The natural starter for kefir production is kefir grain, which consists of various bacterial and yeast species. At the industrial scale, however, kefir grains are rarely used due to their slow growth, complex application, bad reproducibility and high costs. Instead, mixtures of defined lactic acid bacteria and sometimes yeasts are applied, which alter sensory and functional properties compared to natural grain-based milk kefir. In order to be able to mimic natural starter cultures for authentic kefir production, it is a prerequisite to gain deep knowledge about the nature of kefir grains, its microbial composition, morphologic structure, composition of strains on grains and the impact of environmental parameters on kefir grain characteristics. In addition, it is very important to deeply investigate the numerous multi-dimensional interactions among different species, which play important roles on the formation and the functionality of grains.
Collapse
|
39
|
Farag MA, Jomaa SA, Abd El-Wahed A, R. El-Seedi H. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 2020; 12:E346. [PMID: 32013044 PMCID: PMC7071183 DOI: 10.3390/nu12020346] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
Kefir is a dairy product that can be prepared from different milk types, such as goat, buffalo, sheep, camel, or cow via microbial fermentation (inoculating milk with kefir grains). As such, kefir contains various bacteria and yeasts which influence its chemical and sensory characteristics. A mixture of two kinds of milk promotes kefir sensory and rheological properties aside from improving its nutritional value. Additives such as inulin can also enrich kefir's health qualities and organoleptic characters. Several metabolic products are generated during kefir production and account for its distinct flavour and aroma: Lactic acid, ethanol, carbon dioxide, and aroma compounds such as acetoin and acetaldehyde. During the storage process, microbiological, physicochemical, and sensory characteristics of kefir can further undergo changes, some of which improve its shelf life. Kefir exhibits many health benefits owing to its antimicrobial, anticancer, gastrointestinal tract effects, gut microbiota modulation and anti-diabetic effects. The current review presents the state of the art relating to the role of probiotics, prebiotics, additives, and different manufacturing practices in the context of kefir's physicochemical, sensory, and chemical properties. A review of kefir's many nutritional and health benefits, underlying chemistry and limitations for usage is presented.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo 11562, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Suzan A. Jomaa
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Aida Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
40
|
de Sainz I, Redondo-Solano M, Solano G, Ramírez L. Short communication: Effect of different kefir grains on the attributes of kefir produced with milk from Costa Rica. J Dairy Sci 2019; 103:215-219. [PMID: 31733842 DOI: 10.3168/jds.2018-15970] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/10/2019] [Indexed: 11/19/2022]
Abstract
Kefir is an artisanal product that is gaining scientific attention due to its increase in consumption attributed to its potential health benefits. The effect on the quality attributes of kefir grains of different origin (household and commercial) and preserved with different methods (drying and freezing) was evaluated to standardize a domestic and semi-industrial process. Chemical (protein, lactose. lactic acid, ethanol, and acetic acid) as well as microbial properties (total plate count and total yeast count) were monitored during the experiment. Results show a statistical difference between the kefir grains in terms of acetic acid and ethanol percentages, which leads to the conclusion that there is a difference in the microbial populations that produce these products. Lactic acid, protein, and lactose parameters are statistically the same as well as the growth in biomass and the total population of yeast. Our results suggest that both types of kefir grains maintain a similar performance and that their metabolic capabilities are stable throughout time (taking into account that the household grains have been productive for years), meaning that domestic or semi-industrial processes could be easily standardized.
Collapse
Affiliation(s)
- Isabela de Sainz
- Department of Chemical Engineering, University of Costa Rica, San Jose, Costa Rica 11501; Institute of Engineering Investigation, University of Costa Rica, San Jose, Costa Rica 11501.
| | - Mauricio Redondo-Solano
- Tropical Disease Investigation Center and Section of Food Microbiology, Department of Microbiology and Immunology, Faculty of Microbiology, University of Costa Rica, San Jose, Costa Rica 11501
| | - Godofredo Solano
- Nuclear Magnetic Resonance Unit, Natural Product Investigation Center, University of Costa Rica, San Jose, Costa Rica 11501
| | - Lautaro Ramírez
- Department of Chemical Engineering, University of Costa Rica, San Jose, Costa Rica 11501
| |
Collapse
|
41
|
Mitra S, Ghosh BC. Quality characteristics of kefir as a carrier for probiotic
Lactobacillus rhamnosus GG. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12664] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sonanki Mitra
- Dairy Technology ICAR – National Dairy Research Institute Adugodi Bengaluru 560030 Karnataka India
| | - Bikash C. Ghosh
- Dairy Technology Section ICAR – National Dairy Research Institute Adugodi Bengaluru 560030 Karnataka India
| |
Collapse
|
42
|
Üstün‐Aytekin Ö, Şeker A, Arısoy S. The effect ofin vitrogastrointestinal simulation on bioactivities of kefir. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Özlem Üstün‐Aytekin
- Nutrition and Dietetics Department, Health Sciences Faculty Health Sciences University 34668 Istanbul Turkey
| | - Anıl Şeker
- Department of Food Engineering, Engineering Faculty Pamukkale University Denizli 20020Turkey
| | - Sevda Arısoy
- Nutrition and Dietetics Department, Health Sciences Faculty Health Sciences University 34668 Istanbul Turkey
| |
Collapse
|
43
|
Delgado-Fernández P, Corzo N, Lizasoain S, Olano A, Moreno FJ. Fermentative properties of starter culture during manufacture of kefir with new prebiotics derived from lactulose. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
|
45
|
García C, Rendueles M, Díaz M. Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria: A review. Food Res Int 2019; 119:207-220. [DOI: 10.1016/j.foodres.2019.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/27/2022]
|
46
|
Ozcan T, Sahin S, Akpinar-Bayizit A, Yilmaz-Ersan L. Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tulay Ozcan
- Department of Food Engineering; Faculty of Agriculture; Uludag University; Bursa Turkey
| | - Saliha Sahin
- Department of Chemistry; Faculty of Science and Arts; Bursa Uludag University; Bursa Turkey
| | - Arzu Akpinar-Bayizit
- Department of Food Engineering; Faculty of Agriculture; Uludag University; Bursa Turkey
| | - Lutfiye Yilmaz-Ersan
- Department of Food Engineering; Faculty of Agriculture; Uludag University; Bursa Turkey
| |
Collapse
|
47
|
Teijeiro M, Pérez PF, De Antoni GL, Golowczyc MA. Suitability of kefir powder production using spray drying. Food Res Int 2018; 112:169-174. [PMID: 30131124 DOI: 10.1016/j.foodres.2018.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/30/2018] [Accepted: 06/09/2018] [Indexed: 11/24/2022]
Abstract
Spray drying was applied for the production of kefir powder. The survival of microorganisms after drying, storage and simulated gastrointestinal (GI) conditions was investigated. Kefir was obtained by fermentation of milk and whey permeate, and was dehydrated directly (traditional kefir) or using different carriers (skim milk, whey permeate and maltodextrin). Low survival (5.5 log and <2 log CFU/g for lactic acid bacteria and yeast respectively) of microorganisms was achieved when kefir was dehydrated without thermoprotectants (carriers). In contrast, survival of the microorganisms was significantly improved in the presence of different carriers. When skim milk (SM) was used as the carrier medium, lactic acid bacteria (LAB) survival was above 9 log CFU/g. In contrast, viability of yeast was dramatically reduced after spray drying in these conditions. When whey permeate was used as the carrier medium, LAB survival was 8 log CFU/g and yeast survival was above 4 log CFU/g. LAB in the kefir powder survived better the simulated GI conditions when spray drying was conducted in SM. LAB in kefir powder sample dehydrated in SM and SM plus maltodextrin remained stable for at least 60 days at 4 °C. Our results demonstrated that spray drying of kefir is a suitable approach to obtain a concentrated kefir-derived product.
Collapse
Affiliation(s)
- Manuel Teijeiro
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET-UNLP, 47 y 116, La Plata, Argentina
| | - Pablo F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET-UNLP, 47 y 116, La Plata, Argentina; Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina
| | - Graciela L De Antoni
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET-UNLP, 47 y 116, La Plata, Argentina; Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, La Plata, Argentina
| | - Marina A Golowczyc
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), CCT La Plata - CONICET-UNLP, 47 y 116, La Plata, Argentina.
| |
Collapse
|
48
|
Casimero C, McConville A, Fearon JJ, Lawrence CL, Taylor CM, Smith RB, Davis J. Sensor systems for bacterial reactors: A new flavin-phenol composite film for the in situ voltammetric measurement of pH. Anal Chim Acta 2018; 1027:1-8. [PMID: 29866258 DOI: 10.1016/j.aca.2018.04.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 11/15/2022]
Abstract
Monitoring pH within microbial reactors has become an important requirement across a host of applications ranging from the production of functional foods (probiotics) to biofuel cell systems. An inexpensive and scalable composite sensor capable of monitoring the pH within the demanding environments posed by microbial reactors has been developed. A custom designed flavin derivative bearing an electropolymerisable phenol monomer was used to create a redox film sensitive to pH but free from the interferences that can impede conventional pH systems. The film was integrated within a composite carbon-fibre-polymer laminate and was shown to exhibit Nernstian behaviour (55 mV/pH) with minimal drift and robust enough to operate within batch reactors.
Collapse
Affiliation(s)
- Charnete Casimero
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - Aaron McConville
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - John-Joe Fearon
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK
| | - Clare L Lawrence
- Centre for Materials Science, Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Charlotte M Taylor
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Robert B Smith
- Centre for Materials Science, Physical Sciences and Computing, University of Central Lancashire, Preston, PR1 2HE, UK
| | - James Davis
- School of Engineering, Ulster University, Jordanstown, Northern Ireland, BT37 0QB, UK.
| |
Collapse
|
49
|
Gul O, Atalar I, Mortas M, Dervisoglu M. Rheological, textural, colour and sensorial properties of kefir produced with buffalo milk using kefir grains and starter culture: A comparison with cows’ milk kefir. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12503] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Osman Gul
- Program of Food Technology; Yeşilyurt Demir-Celik Vocational School; Ondokuz Mayis University; Samsun 55300 Turkey
| | - Ilyas Atalar
- Department of Food Engineering; Faculty of Engineering; Ondokuz Mayis University; Samsun 55300 Turkey
| | - Mustafa Mortas
- Department of Food Engineering; Faculty of Engineering; Ondokuz Mayis University; Samsun 55300 Turkey
| | - Muhammet Dervisoglu
- Department of Food Engineering; Faculty of Engineering; Ondokuz Mayis University; Samsun 55300 Turkey
| |
Collapse
|
50
|
Vardjan T, Mohar Lorbeg P, Čanžek Majhenič A. Stability of prevailing lactobacilli and yeasts in kefir grains and kefir beverages during ten weeks of propagation. INT J DAIRY TECHNOL 2017. [DOI: 10.1111/1471-0307.12463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Petra Mohar Lorbeg
- Department of Animal Science; Institute of Dairy Science and Probiotics; Biotechnical Faculty; University of Ljubljana; Groblje 3 1230 Domžale Slovenia
| | - Andreja Čanžek Majhenič
- Department of Animal Science; Institute of Dairy Science and Probiotics; Biotechnical Faculty; University of Ljubljana; Groblje 3 1230 Domžale Slovenia
| |
Collapse
|