1
|
Weiss WP, Hansen SL. Invited review: Limitations to current mineral requirement systems for cattle and potential improvements. J Dairy Sci 2024; 107:10099-10114. [PMID: 39218073 DOI: 10.3168/jds.2024-25150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
The mineral requirements or recommendations generated by various NASEM committees are used by many ration formulation programs. The current NASEM dairy requirement system uses the factorial approach (requirements for maintenance, lactation, gestation, and growth) for most minerals, but when data or equations were not available to estimate factorial requirements the committee used available data to estimate adequate intake values. The current beef NASEM uses the factorial method for Ca and P and recommendations for the other minerals. The factorial method works well for Ca and P because adequate data are available to estimate absorption coefficients (AC) and maintenance requirements. In addition, feeding Ca and P above requirements has few if any positive effects. For many other minerals the factorial method is problematic. Estimating both the maintenance requirement and AC can be extremely difficult and inaccuracies in those values have a major impact on accuracy of total dietary requirements. Some minerals have positive effects on health, production, and reproduction when fed above factorially determined requirements. For those minerals, response models rather than or in addition to requirement models are more appropriate. The AC is in the denominator of the factorial equation and converts absorbed requirements into dietary requirements. The AC for trace minerals is small, often <0.1, and small changes in a low AC can have substantial effects on dietary requirements. Although accurate AC are essential for the factorial method to work, woefully few data are available on the true absorption of trace minerals. Because of antagonism to absorption (e.g., negative effect of S on absorption of Cu, Mn, Se, and Zn) equations will be needed to estimate AC under different dietary conditions, but current data are inaccurate to generate equations. The systems currently used will almost always prevent clinical mineral deficiencies, but because of uncertainties, most nutritionists formulate diets to exceed and often far exceed established recommendations. This leads to increased costs, potential antagonism, and increased manure excretion of environmentally important minerals. More accurate systems for estimating mineral requirements will optimize animal performance and health while keeping costs in check and reducing environmental damage.
Collapse
Affiliation(s)
- W P Weiss
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691.
| | - S L Hansen
- Department of Animal Science, Iowa State University, Ames, IA 50011
| |
Collapse
|
2
|
Westhoff TA, Borchardt S, Mann S. Invited review: Nutritional and management factors that influence colostrum production and composition in dairy cows. J Dairy Sci 2024; 107:4109-4128. [PMID: 38246551 DOI: 10.3168/jds.2023-24349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Colostrum is a rich source of nutritional and non-nutritional components and is recognized as essential to transfer passive immunity to newborn calves. Because of the individual and seasonal variability in colostrum yield and composition, maintaining an adequate supply of high-quality colostrum year-round remains a challenge for commercial dairy producers. In this narrative review, we described the individual, seasonal, and herd-level variability of colostrum production and summarized the association between individual animal factors such as parity, sex of the calf, calf birth weight, as well as indicators of the cow's metabolic status and the yield and composition of colostrum. Further, we reviewed the current knowledge on the influence of prepartum nutrition and management strategies on colostrum production. Research on the metabolizable energy and protein supplied in the prepartum diet as well as on the inclusion and source of vitamins, minerals, and feed additives suggests prepartum nutrition influences the yield, quality, and composition of colostrum. Furthermore, the prepartum environment and dry period length remain influential factors in the production of colostrum. However, additional research is needed to understand the mechanisms by which prepartum nutrition and management affect colostrum production. Finally, time from calving to colostrum harvest and oxytocin administration as well as the current knowledge on the effect of heat treatment and colostrum storage strategies on colostral components were discussed. To conclude, we identify critical gaps in knowledge for future focus of investigation in colostrum research.
Collapse
Affiliation(s)
- T A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - S Borchardt
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universitaet Berlin, 14163 Berlin, Germany
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
3
|
Duplessis M, Wright TC, Bejaei M. A survey of Canadian dairy nutritionists to assess current trace element formulation practices. J Dairy Sci 2023; 106:4030-4041. [PMID: 37105881 DOI: 10.3168/jds.2022-22943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 04/29/2023]
Abstract
The purpose of this study was to identify current practices and perceptions around trace element feeding for dairy cows through a Canadian dairy nutritionist survey. An online survey with 23 questions was used to collect data from Canadian dairy nutritionists with the help of professional associations and social media. The survey was active from November 2021 to April 2022. The first 7 questions collected descriptive information on respondents, and the subsequent 16 questions focused on trace element feeding. A total of 92 participants from all over Canada filled out the survey, and about 26% of Canadian herds and cows were represented by these respondents. The participants had diverse views on the importance of diet formulations for trace elements to optimize cow health and productivity, with perceptions varying from very important to not important. In comparison, macronutrients and selenium were consistently rated as very important by between 58% and 74% of respondents. Software reference values were used by 54%, 72%, and 73% of participants to estimate trace element concentrations of forages, cereals, and protein sources, respectively, highlighting the importance of regularly updating the feed library of the software. More than 60% of nutritionists participating in this study had intentionally formulated diets above trace element software recommendations, considered mineral interactions occurring in the rumen, and used a trace element source known for its better bioavailability (e.g., organic, chelate) when they formulated diets. Herds with more than 80 cows were more likely to be given trace element supplements known for their greater bioavailability. The most used supplement with enhanced bioavailability was selenium. In addition, different trace element feeding strategies pertaining to different stages of lactation and breeds were reported. This finding can be explained by the absence of clear recommendations on trace element feeding by breed. The participants who adjusted trace element feeding according to the stages of lactation considered the transition period as the most challenging period, and they identified the need for a source of trace element known for its greater bioavailability for this period. Further research should aim to identify environmental risk of trace element overfeeding using the One Health approach. Moreover, strategies to avoid trace element overfeeding should be evaluated.
Collapse
Affiliation(s)
- Mélissa Duplessis
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Québec, J1M 0C8, Canada.
| | - Tom C Wright
- Ontario Ministry of Agriculture, Food and Rural Affairs, Guelph, Ontario, N1G 4Y2, Canada
| | - Masoumeh Bejaei
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 BC-97, Summerland, British Columbia, V0H 1Z0, Canada
| |
Collapse
|
4
|
Ogilvie L, Van Winters B, Mion B, King K, Spricigo JFW, Karrow NA, Steele MA, Ribeiro ES. Effects of replacing inorganic salts of trace minerals with organic trace minerals in the diet of prepartum cows on quality of colostrum and immunity of newborn calves. J Dairy Sci 2023; 106:3493-3508. [PMID: 37028969 DOI: 10.3168/jds.2022-21913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 12/09/2022] [Indexed: 04/08/2023]
Abstract
Our objectives were to evaluate the impact of supplementary trace mineral (TM) form-inorganic salts (STM; Co, Cu, Mn, Zn sulfates, and Na selenite) or organic (OTM; Co, Cu, Mn, Zn proteinates, and selenized yeast)-in the prepartum diet on quantity and quality of colostrum, passive immunity, antioxidant biomarkers, cytokine responses to lipopolysaccharide (LPS), health, and growth of newborn calves. Pregnant heifers (n = 100) and cows (n = 173) were enrolled at 45 d before calving, blocked by parity and body condition score, and allocated randomly to STM (50 heifers; 86 cows) or OTM (50 heifers; 87 cows) supplementation. Cows in both treatments were fed the same diet, except for the source of supplementary TM. Within 2 h of calving, dams and calves were separated, colostrum was harvested, the yield was measured, and a sample was saved for posterior analyses of colostrum quality. A subgroup of calves (n = 68) had a blood sample collected before colostrum feeding. After colostrum feeding, all samples and data collection were limited to 163 calves (STM = 82; OTM = 81) fed 3 L of good quality (Brix% >22) maternal colostrum via nipple bottle minutes after harvesting. Concentration of IgG in colostrum and serum was determined 24 h after colostrum feeding using radial immunodiffusion. Concentration of TM in colostrum and serum were performed by inductively coupled plasma mass spectrometry. Activity of glutathione peroxidase, ferric reducing ability of plasma, and concentration of superoxide dismutase were evaluated in plasma by colorimetric assays. Ex vivo whole blood stimulation with LPS was performed on d 7 of life to evaluate cytokine responses in a subgroup of 66 calves. Health events were recorded from birth to weaning, and body weight was recorded at birth (all calves) and on d 30 and 60 (heifers only). Continuous variables were analyzed by ANOVA and binary responses were analyzed by logistic regression. Complete replacement of STM by OTM in prepartum diet resulted in greater concentration of Se (461 vs. 543 ± 7 μg/g; ± SEM) but did not alter the concentration or total mass of other TM and IgG in colostrum. Female calves of the OTM group had greater concentration of Se in serum at birth (0.23 vs. 0.37 ± 0.05 μg/mL), were lighter in weight at birth (40.9 vs. 38.8 ± 0.6 kg) and weaning (93.2 vs. 89.7 ± 1.6 kg) than those of the STM group. Maternal treatments did not affect passive immunity or antioxidant biomarkers. On d 7, basal concentrations (log10 of concentration in pg/mL) of IFNγ (0.70 vs. 0.95 ± 0.083) and LPS-stimulated concentrations of CC chemokine ligand 2 (CCL2; 2.45 vs. 2.54 ± 0.026), CC chemokine ligand 3 (CCL3; 2.63 vs. 2.76 ± 0.038), IL-1α (2.32 vs. 2.49 ± 0.054), and IL-1β (3.62 vs. 3.86 ± 0.067) were greater in OTM than in STM. Supplementation with OTM in pregnant heifers, but not in pregnant cows, reduced the incidence of preweaning health problems in their calves (36.4 vs. 11.5%). Complete replacement of STM by OTM in the prepartum diet did not cause major changes in colostrum quality, passive immunity, and antioxidant capacity, but increased cytokine and chemokine responses to LPS on d 7 of life and benefited preweaning health of calves born to primiparous cows.
Collapse
Affiliation(s)
- L Ogilvie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - J F W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - N A Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1Z 2W1.
| |
Collapse
|
5
|
Ogilvie L, Spricigo J, Mion B, Van Winters B, Karrow N, McBride B, LeBlanc S, Steele M, Ribeiro E. Neutrophil function and antibody production during the transition period: Effect of form of supplementary trace minerals and associations with postpartum clinical disease and blood metabolites. J Dairy Sci 2022; 105:9944-9960. [DOI: 10.3168/jds.2022-21909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
|
6
|
Hussein HA, Müller AE, Staufenbiel R. Comparative evaluation of mineral profiles in different blood specimens of dairy cows at different production phases. Front Vet Sci 2022; 9:905249. [PMID: 36330155 PMCID: PMC9622953 DOI: 10.3389/fvets.2022.905249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Background Evaluation of mineral profiles including essential and toxic elements in dairy cows provides fundamental information for bovine practitioners during regular herd supervision and monitoring. The present research was designed to investigate the variations of mineral profiles in different blood specimens of dairy cows at different lactation stages. Methods This study was divided into two parts: the first included 32 cows, which were classified into four groups according to their lactation stages, and the second involved 10 cows at mid-lactation. The concentrations of copper (Cu), zinc (Zn), selenium (Se), manganese (Mn), barium (Ba), strontium (Sr), calcium (Ca), magnesium (Mg), total phosphorous (P), sulfur (S), cobalt (Co), silicon (Si), lithium (Li), nickel (Ni), thallium (Tl), boron (B), aluminum (Al), uranium (U), and arsenic (As) were measured in serum, ethylene diamine tetraacetic acid (EDTA) plasma, heparin plasma, and EDTA whole blood samples. Results The concentrations of Cu, Zn, Fe, Mn, Ba, and Sr showed significant variations among the dairy cows of different lactation stages (p < 0.05). Strong regressions were determined between the mineral concentrations in individual and pooled samples (R2 = 0.991, p = 0.000). In comparison to other blood sample types, the concentration of Cu, Ba, and Sr was higher in EDTA plasma (p < 0.000). In addition, the values of Zn, Se, Fe, and Mn were significantly increased in heparin and EDTA whole blood samples. Concentrations of Ca and Mg, and P were higher in EDTA plasma, and EDTA whole blood samples, respectively. Furthermore, the mean values of Si, Li, Ni, and Tl showed significant increases in EDTA plasma, while S values were higher in EDTA whole blood samples (p < 0.000). Concentrations of Al and U exhibited significant increases in serum samples (p < 0.000). Conclusion Concentrations of Cu, Zn, Fe, Mn, Ba, and Sr undergo physiological variations among dairy cows at different lactation stages. Therefore, caution should be taken during assessment of these minerals. The concentrations of essential and toxic elements, as well as Ca, P, Mg, and S, varied among the different blood sample specimens, indicating their interpretations should be based on this regard. During dairy herd supervision, the use of pool sample, instead of individual ones, for determination of mineral status may be promising to minimize the costs of individual sample measurements. In general, EDTA plasma may be more suitable for measurements of Ca, Mg, P, and S. It seems that EDTA plasma and heparinized plasma are suited for the estimation of Se and Fe, respectively.
Collapse
Affiliation(s)
- Hussein Awad Hussein
- Internal Veterinary Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- *Correspondence: Hussein Awad Hussein
| | | | | |
Collapse
|
7
|
Evangelista C, Bernabucci U, Basiricò L. Effect of Antioxidant Supplementation on Milk Yield and Quality in Italian Mediterranean Lactating Buffaloes. Animals (Basel) 2022; 12:1903. [PMID: 35892556 PMCID: PMC9330241 DOI: 10.3390/ani12151903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Buffaloes are raised mainly to obtain milk that is nutritionally very rich. The technological characteristics of buffalo milk are optimal for processing into cheese, and it is mainly used to produce mozzarella cheese. Under stressful conditions, buffaloes, like other animals, produce milk qualitatively poorly. The stressors that can affect the quality of production are, in addition to other factors, deficiencies in nutrients such as vitamins, antioxidants, and minerals. In this study, we evaluated the effect of antioxidant supplementation on the quality of buffalo milk. Sixty-six buffaloes were enrolled and subdivided into two balanced groups of 33 each. The ZnSe group received 0.2 kg/head/day of Bufalo Plus® containing antioxidants and barley meal, CaCO3 and MgCO3 mix; the control group was supplemented with 0.2 kg/head/day of barley meal, CaCO3 and MgCO3 mix. The two groups were fed ad libitum with a total mixed ration (TMR). The amount of diet distributed was recorded daily, and the residue in the trough manger was recorded three times per week. TMR samples were taken every two weeks for each group. Daily milk yield was recorded twice a week. Milk samples were collected every four weeks and analysed for chemical and technological properties. Furthermore, milk total antioxidant capacity was determined. The results obtained showed that the antioxidant supplement had no effect on feed intake, feeding behaviour, and feed efficiency. The treatment positively influenced milk production while it did not affect the chemical characteristics of the milk. In addition, the supplement of antioxidants improved the milk clotting properties (MCP). The supplement did not affect the antioxidant activity of the milk.
Collapse
Affiliation(s)
| | - Umberto Bernabucci
- Department of Agricultural and Forests Sciences (DAFNE), University of Tuscia, 01100 Viterbo, Italy; (C.E.); (L.B.)
| | | |
Collapse
|
8
|
Mion B, Van Winters B, King K, Spricigo JFW, Ogilvie L, Guan L, DeVries TJ, McBride BW, LeBlanc SJ, Steele MA, Ribeiro ES. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre- and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. J Dairy Sci 2022; 105:6693-6709. [PMID: 35787325 DOI: 10.3168/jds.2022-21908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022]
Abstract
Our objectives were to evaluate the effects of complete replacement of supplementary inorganic salts of trace minerals (STM) by organic trace minerals (OTM) in both pre- and postpartum diets on feeding behavior, ruminal fermentation, rumination activity, energy metabolism, and lactation performance in dairy cows. Pregnant cows and heifers (n = 273) were blocked by parity and body condition score and randomly assigned to either STM or OTM diets at 45 ± 3 d before their expected calving date. Both groups received the same diet, except for the source of trace minerals (TM). The STM group was supplemented with Co, Cu, Mn, and Zn sulfates and Na selenite, whereas the OTM group was supplemented with Co, Cu, Mn, and Zn proteinates and selenized yeast. Treatments continued until 156 days in milk and pre- and postpartum diets were formulated to meet 100% of recommended levels of each TM in both treatments, taking into consideration both basal and supplemental levels. Automatic feed bins were used to assign treatments to individual cows and to measure feed intake and feeding behavior. Rumination activity was monitored by sensors attached to a collar from wk -3 to 3 relative to calving. Blood metabolites were evaluated on d -21, -10, -3, 0, 3, 7, 10, 14, 23, and 65 relative to calving. Ruminal fluid samples were collected using an ororuminal sampling device on d -21, 23, and 65 relative to calving, for measurement of ruminal pH and concentration of volatile fatty acids. Cows were milked twice a day and milk components were measured monthly. Cows supplemented with OTM tended to have longer daily feeding time (188 vs. 197 min/d), and greater dry matter intake (DMI; 12.9 vs. 13.3 kg), and had a more positive energy balance (3.6 vs. 4.2 Mcal/d) and shorter rumination time per kg of dry matter (DM; 40.1 vs. 37.5 min/kg of DM) than cows supplemented with STM during the prepartum period. In the postpartum period, OTM increased DMI in multiparous cows (24.1 vs. 24.7 kg/d) but not in primiparous cows (19.1 vs. 18.7 kg/d). The difference in DMI of multiparous cows was more evident in the first 5 wk of lactation, when it averaged 1 kg/d. Milk yield was not affected by treatment in multiparous cows (44.1 vs. 44.2 kg/d); however, primiparous cows supplemented with OTM had lesser yields than primiparous cows supplemented with STM (31.9 vs. 29.8 kg/d). Cows supplemented with OTM had a greater percentage of protein in milk (3.11 vs. 3.17%), reduced concentration of nonesterified fatty acids in serum (0.45 vs. 0.40 mmol/L), and rumination activity (30.1 vs. 27.8 min/kg of DM) than cows supplemented with STM. At the end of the transition period, cows supplemented with OTM had reduced molar proportion of acetate, reduced pH, and tended to have a greater concentration of total volatile fatty acids in ruminal fluid. In conclusion, complete replacement of STM by OTM caused modest changes in rumen fermentation, feeding behavior, energy metabolism, and performance of dairy cows, improving postpartum DMI in multiparous cows and reducing circulating levels of nonesterified fatty acids. The pre-absorptive effects of TM source and the parity specific responses on performance warrant further research.
Collapse
Affiliation(s)
- B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - J F W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - L Ogilvie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2R3
| | - T J DeVries
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - B W McBride
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
9
|
Arshad MA, Ebeid HM, Hassan FU. Revisiting the Effects of Different Dietary Sources of Selenium on the Health and Performance of Dairy Animals: a Review. Biol Trace Elem Res 2021; 199:3319-3337. [PMID: 33188458 DOI: 10.1007/s12011-020-02480-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023]
Abstract
Selenium (Se) is one of the most important essential trace elements in livestock production. It is a structural component in at least 25 selenoproteins such as the iodothyronine deiodinases and thioredoxin reductases as selenocysteine at critical positions in the active sites of these enzymes. It is also involved in the synthesis of the thyroid hormone and influences overall body metabolism. Selenium being a component of the glutathione peroxidase enzyme also plays a key role in the antioxidant defense system of animals. Dietary requirements of Se in dairy animals depend on physiological status, endogenous Se content, Se source, and route of administration. Most of the dietary Se is absorbed through the duodenum in ruminants and also some portion through the rumen wall. Inorganic Se salts such as Na-selenate and Na-selenite have shown lower bioavailability than organic and nano-Se. Selenium deficiency has been associated with reproductive disorders such as retained placenta, abortion, early embryonic death, and infertility, together with muscular diseases (like white muscle disease and skeletal and cardiac muscle necrosis). The deficiency of Se can also affect the udder health particularly favoring clinical and subclinical mastitis, along with an increase of milk somatic cell counts in dairy animals. However, excessive Se supplementation (5 to 8 mg/kg DM) can lead to acute toxicity including chronic and acute selenosis. Se is the most vital trace element for the optimum performance of dairy animals. This review focuses to provide insights into the comparative efficacy of different forms of dietary Se (inorganic, organic, and nano-Se) on the health and production of dairy animals and milk Se content.
Collapse
Affiliation(s)
- Muhammad Adeel Arshad
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hossam Mahrous Ebeid
- Dairy Science Department, National Research Centre, 33 Bohouth St. Dokki, Giza, 12311, Egypt
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China.
| |
Collapse
|
10
|
Ren ZH, Bai LP, Shen LH, Luo ZZ, Zhou ZH, Zuo ZC, Ma XP, Deng JL, Wang Y, Xu SY, Luo YH, Cao SZ, Yu SM. Comparative iTRAQ Proteomics Reveals Multiple Effects of Selenium Yeast on Dairy Cows in Parturition. Biol Trace Elem Res 2020; 197:464-474. [PMID: 31858401 DOI: 10.1007/s12011-019-01999-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/03/2019] [Indexed: 01/13/2023]
Abstract
The effects of prepartum dietary supplementation with selenium yeast on low abundant plasma proteins in postpartum dairy cows are not known. In this study, 24 healthy parturient dairy cows were divided into two groups (group C, a control group, and group T, a selenium treatment group). Low abundance proteins were extracted from plasma samples of calving cows, and 542 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis. Dietary supplementation with selenium yeast caused differential abundance of 48 proteins with a fold change of more than 1.2 or less than 0.83 (p < 0.05); 14 proteins were upregulated and 34 were downregulated. The top five gene ontology (GO) enrichment terms for the differentially expressed proteins were protein homotetramerization (or tetramerization), defense response to bacteria or fungus, acute-phase reactions, nucleotide catabolic process, and positive regulation of lipid metabolic process. All proteins involved in acute-phase reactions were downregulated, indicating that selenium ameliorates systemic inflammation. The vast majority of proteins involved in the defense response to microorganisms were downregulated, thereby affecting innate immunity. The decreased abundance of apolipoprotein A-I and apolipoprotein C-II, critical proteins for positive regulation of lipid metabolism, indicated that selenium may optimize lipid metabolism. The iTRAQ results showed that prenatal supplementation with yeast selenium can relieve systemic inflammation after parturition. Moreover, selenium may reduce the effects of metabolic diseases, which can improve glyconeogenesis and prevent ketosis and fatty liver.
Collapse
Affiliation(s)
- Zhi-Hua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Li-Peng Bai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Liu-Hong Shen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Zheng-Zhong Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Zi-Han Zhou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Zhi-Cai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Xiao-Ping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Jun-Liang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Sheng-Yu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Yu-Heng Luo
- Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs; Animal Nutrition Institute, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Sui-Zhong Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China
| | - Shu-Min Yu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
11
|
Zhuang C, Liu G, Barkema HW, Zhou M, Xu S, Ur Rahman S, Liu Y, Kastelic JP, Gao J, Han B. Selenomethionine Suppressed TLR4/NF-κB Pathway by Activating Selenoprotein S to Alleviate ESBL Escherichia coli-Induced Inflammation in Bovine Mammary Epithelial Cells and Macrophages. Front Microbiol 2020; 11:1461. [PMID: 32733409 PMCID: PMC7360804 DOI: 10.3389/fmicb.2020.01461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/04/2020] [Indexed: 01/17/2023] Open
Abstract
Inflammation is the hallmark of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli-induced bovine mastitis. Organic selenium can activate pivotal proteins in immune responses and regulate the immune system. The present study aimed to investigate whether selenomethionine (SeMet) attenuates ESBL E. coli-induced inflammation in bovine mammary epithelial cells (bMECs) and macrophages. Cells were treated with 0, 5/10, 10/20, 20/40, or 40/60 μM SeMet for 12 h and/or inoculated with ESBL-E. coli [multiplicity of infection (MOI) = 5] for 4/6 h, respectively. We assessed inflammatory responses, including selenoprotein S (SeS), Toll-like receptor 4 (TLR4), Ikappa-B (IκB), phospho-NF-κB p65 (Ser536), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and lactate dehydrogenase (LDH) activities. Treatment with 40/60 μM SeMet promoted cell viability and inhibited LDH activities in both bMECs and macrophages. Inoculation with ESBL-E. coli reduced cell viability, which was attenuated by SeMet treatment in bMECs and macrophages. SeMet increased ESBL E. coli-induced downregulation of SeS and decreased LDH activities, TLR4, IκB, phospho-NF-κB p65 (Ser536), IL-1β, and TNF-α protein expressions in bMECs and macrophages. In addition, knockdown of SeS promoted protein expression of TLR4-mediated nuclear factor-kappa (NF-κB) pathway and BAY 11-708 inhibited TNF-α and IL-1β protein levels in bMECs and macrophages after ESBL-E. coli treatment. Moreover, ESBL-E. coli inoculation increased monocyte chemoattractant protein 1 (MCP-1), C-C motif ligand 3 (CCL-3), and CCL-5 mRNA expressions in bMECs. In conclusion, ESBL-E. coli induced expression of MCP-1, CCL-3, and CCL-5 in bMECs and then recruited and activated macrophages, whereas SeMet attenuated ESBL E. coli-induced inflammation through activated SeS-mediated TLR4/NF-κB signaling pathway in bMECs and macrophages.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Siyu Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sadeeq Ur Rahman
- Section of Microbiology, Department of Pathobiology, College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Muszyńska B, Szacawa E, Bederska-Łojewska D, Dudek K, Pomierny B, Włodarczyk A, Kała K, Lazur J, Suchocki P, Budziszewska B, Bednarek D, Pieszka M. Preliminary study on Se-enriched Lentinula edodes mycelium as a proposal of new feed additive in selenium deficiency. PLoS One 2020; 15:e0233456. [PMID: 32437465 PMCID: PMC7241721 DOI: 10.1371/journal.pone.0233456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
The presence of selenium in European soil is low and this causes its deficiency in livestock and, in consequence, in humans. This study aimed to obtain Lentinula (L.) edodes mycelium with the maximum content of selenium. This species was used for experiment based on its documented medicinal properties. Calves were fed with selenium-enriched L. edodes mycelium, and serum selenium concentration, average daily weight gains and selected immune parameters were estimated. The selenium-enriched mushroom was found to be safe based on cytotoxicity tests (MTT and LDH tests) and for this reason it was used for further experiments. The mean quantity of selenium in the serum of calves fed with selenium-enriched L. edodes mycelium was significantly higher than that of control calves. Additionally, the calves fed with selenium-enriched L. edodes mycelium had higher body weight gains than those of control calves. White blood cell counts and subpopulations of lymphocytes in the experimental and control calves were within the reference range. The administration of L. edodes enriched with selenium had a beneficial effect on state of health of the calves.
Collapse
Affiliation(s)
- Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Szacawa
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Dorota Bederska-Łojewska
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| | - Katarzyna Dudek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Włodarczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jan Lazur
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Suchocki
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Warsaw Medical University, Warszawa, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz Bednarek
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Marek Pieszka
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Balice, Poland
| |
Collapse
|
13
|
Barbé F, Chevaux E, Castex M, Elcoso G, Bach A. Comparison of selenium bioavailability in milk and serum in dairy cows fed different sources of organic selenium. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Selenium (Se) bioavailability is an important parameter to consider when supplementing trace minerals to optimise animal health and performance.
Aims
To assess the biological transfer of Se in milk and serum of three sources of organic Se in dairy cattle: two different pure selenomethionines (SM1, SM2) and Se-yeast (SY) containing selenomethionine, selenocysteine and other forms of organic Se.
Methods
Forty-five lactating Holstein dairy cows were randomly distributed in nine groups (three sources of organic Se supplemented at three doses: 0.1, 0.2 and 0.3 ppm organic Se in addition to 0.3 ppm of inorganic Se) and the Se concentrations in milk and serum were analysed at different times over 34 days of supplementation. Dry matter intake, milk yield, as well as milk fat and protein contents were recorded daily for each cow. Selenium bioavailability in milk was assessed as the ratio between amount of Se secreted in milk and amount of Se consumed.
Key results
The lowest Se dose (0.1 ppm), independent of source, did not allow detection a different pattern of transfer into milk and serum, suggesting that at this level, the Se supplied was mainly used to cover the animal needs. Supplementing SY at 0.2 and 0.3 ppm resulted in the most consistent secretion of Se into milk, whereas SM2 was most effective at increasing serum Se concentrations.
Conclusions
At the supplementing doses of 0.2 and 0.3 ppm, SY elicits an increased transfer of Se into milk concentrations compared with SM1 and SM2, whereas SM2 induces the greatest increase in Se serum concentrations.
Implications
SY is more effective than SM1 and SM2 at increasing Se transfer into milk. Supplementation of SM2 induces a pattern of Se transfer into milk and serum that differs from the other Se sources suggesting a different metabolism of this particular Se source.
Collapse
|
14
|
NONGKHLAW SS, SUGANTHI RU, GHOSH J, MALIK PK, AWACHAT VB, KRISHNAMOORTHY P, PAL DT. Antioxidant capacity, lipid oxidation status and expression of specific selenoprotein mRNA in Longissimus dorsi muscle of lambs (Ovies aries) supplemented with supranutritional selenium. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i9.93779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selenium is known to play a key role in maintenance of redox status of tissues, immunity, reproduction, thyroid and muscle functions. The present investigation was carried out to understand the effect of supranutritional dietary Se supplementation on antioxidant capacity, lipid oxidation and expression of specific selenoprotein mRNA in Longissimus dorsi muscles of growing lambs. Twenty male lambs of 5–6 months of age were fed basal diet supplemented with 0.5, 1.5 or 4.5 ppm Se-yeast (organic Se) or without Se (control) for 90 days. The antioxidant capacity, lipid oxidation of meat during different days of storage and the mRNA expression of GPX1, GPX2, GPX3, TXNRD1, TXNRD3, DIO1, DIO2, DIO3, SEPP1, SEP15 and SEPW1 were studied in Longissimus dorsi muscles of sheep. The results indicated improvement in antioxidant status by supplementation of 1.5 and 4.5 ppm Se, and reduction in meat lipid oxidation status on day 0 without any further reduction after 3 and 7 days of storage in all the Se supplemented lambs. A selective change in expression of GPX2, GPX3, TXNRD1, DIO2, DIO3, SEPP1, SEP15 and SEPW1 mRNA was observed by supranutritional Se while GPX1, TXNRD3, DIO1 and expressions remained unaffected by supplementation. In conclusion, supranutritional Se supplementation in lambs increased antioxidant status, reduced lipid oxidation status with limited effect on oxidative stability of meat during storage and regulated Longissimus dorsi muscle selenoprotein mRNA expression differentially depending on the Se feeding levels. Our results thus provided new insights into the regulation of selenoprotein gene expression by supranutritional levels of dietary Se.
Collapse
|
15
|
Keshri A, Bashir Z, Kumari V, Prasad K, Joysowal M, Singh M, Singh D, Tarun A, Shukla S. Role of micronutrients during peri-parturient period of dairy animals – a review. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1613793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anchal Keshri
- Animal Nutrition Division, National Dairy Research Institute, Karnal, India
| | - Zahid Bashir
- Animal Nutrition Division, National Dairy Research Institute, Karnal, India
| | - Vandana Kumari
- Animal Nutrition Division, National Dairy Research Institute, Karnal, India
| | - Kotresh Prasad
- Livestock Production Management Section, National Dairy Research Institute, Karnal, India
| | - Mamata Joysowal
- Animal Nutrition Division, National Dairy Research Institute, Karnal, India
| | - Man Singh
- Livestock Production Management Section, National Dairy Research Institute, Karnal, India
| | - Digvijay Singh
- Animal Nutrition Division, National Dairy Research Institute, Karnal, India
| | - Anupama Tarun
- Animal Nutrition Division, National Dairy Research Institute, Karnal, India
| | - Smriti Shukla
- Animal Physiology, National Dairy Research Institute, Karnal, India
| |
Collapse
|
16
|
Surai PF, Kochish II, Fisinin VI, Juniper DT. Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals (Basel) 2019; 9:E462. [PMID: 31331084 PMCID: PMC6680431 DOI: 10.3390/ani9070462] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
In commercial animals production, productive stress can negatively impact health status and subsequent productive and reproductive performance. A great body of evidence has demonstrated that as a consequence of productive stress, an overproduction of free radicals, disturbance of redox balance/signaling, and oxidative stress were observed. There is a range of antioxidants that can be supplied with animal feed to help build and maintain the antioxidant defense system of the body responsible for prevention of the damaging effects of free radicals and the toxic products of their metabolism. Among feed-derived antioxidants, selenium (Se) was shown to have a special place as an essential part of 25 selenoproteins identified in animals. There is a comprehensive body of research in monogastric species that clearly shows that Se bioavailability within the diet is very much dependent on the form of the element used. Organic Se, in the form of selenomethionine (SeMet), has been reported to be a much more effective Se source when compared with mineral forms such as sodium selenite or selenate. It has been proposed that one of the main advantages of organic Se in pig and poultry nutrition is the non-specific incorporation of SeMet into general body proteins, thus forming an endogenous Se reserve that can be utilized during periods of stress for additional synthesis of selenoproteins. Responses in ruminant species to supplementary Se tend to be much more variable than those reported in monogastric species, and much of this variability may be a consequence of the different fates of Se forms in the rumen following ingestion. It is likely that the reducing conditions found in the rumen are responsible for the markedly lower assimilation of inorganic forms of Se, thus predisposing selenite-fed animals to potential Se inadequacy that may in turn compromise animal health and production. A growing body of evidence demonstrates that organic Se has a number of benefits, particularly in dairy and beef animals; these include improved Se and antioxidant status and better Se transfer via the placenta, colostrum, and milk to the newborn. However, there is a paucity in the data concerning molecular mechanisms of SeMet assimilation, metabolism and selenoprotein synthesis regulation in ruminant animals, and as such, further investigation is required.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia.
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Godollo, Hungary.
| | - Ivan I Kochish
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, 141311 Sergiev Posad, Russia
| | - Darren T Juniper
- Animal, Dairy, Food Chain Sciences, School of Agriculture, Policy and Development, University of Reading, Earley Gate, Reading RG6 6AR, UK
| |
Collapse
|
17
|
Gong J, Xiao M. Effect of Organic Selenium Supplementation on Selenium Status, Oxidative Stress, and Antioxidant Status in Selenium-Adequate Dairy Cows During the Periparturient Period. Biol Trace Elem Res 2018; 186:430-440. [PMID: 29594692 DOI: 10.1007/s12011-018-1323-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
The periparturient period represents a stressful time for dairy cows as they transition from late gestation to early lactation. Oxidation stress occurs during this period owing to the increased metabolic activity. Antioxidants supplementation slightly above the suggested requirements may be beneficial in relieving this kind of stress. The objective of this study was to determine whether supplementing selenium (Se) yeast to diets with adequate Se concentrations affects Se status, oxidative stress, and antioxidant status in dairy cows during the periparturient period. Twenty multiparous Holstein cows were randomly divided into two groups with ten replicates in each group. During the last 4 weeks before calving, cows were fed Se-yeast at 0 (control) or 0.3 mg Se/kg dry matter (Se-yeast supplementation), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. The concentrations of Se, reactive oxygen species (ROS), hydrogen peroxide (H2O2), hydroxyl radical, malonaldehyde (MDA), α-tocopherol and glutathione (GSH), the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT), and the total antioxidant capacity (T-AOC) in plasma or erythrocyte of dairy cows were measured at 21 and 7 days prepartum, and at 7 and 21 days postpartum. Cows fed Se-yeast supplement during the last 4 weeks of gestation had higher plasma Se and lower MDA concentrations at 7 days prepartum, and at 7 and 21 days postpartum, and had higher whole blood Se and lower plasma ROS and H2O2 concentrations at 7 and 21 days postpartum compared with control cows. Se-yeast supplementation increased plasma and erythrocyte GSH-Px activities and erythrocyte GSH concentration at 7 days postpartum as compared to Se-adequate control cows. Compared with control cows, the enhanced SOD and CAT activities, increased α-tocopherol and GSH concentrations, and improved T-AOC in plasma at 7 and 21 days postpartum in Se-yeast-supplemented cows were also observed in this study. The results indicate that feeding Se-adequate cows a Se-yeast supplement during late gestation increases plasma Se status, improves antioxidant function, and relieves effectively oxidative stress occurred in early lactation.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Min Xiao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| |
Collapse
|
18
|
|
19
|
Zhang L, Liu XR, Liu JZ, An XP, Zhou ZQ, Cao BY, Song YX. Supplemented Organic and Inorganic Selenium Affects Milk Performance and Selenium Concentration in Milk and Tissues in the Guanzhong Dairy Goat. Biol Trace Elem Res 2018; 183:254-260. [PMID: 28815405 DOI: 10.1007/s12011-017-1112-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
Trace amounts of selenium (Se) are essential for several organisms, and deficiencies therein have adverse effects on growth, development, and reproduction; this is particularly significant in animals raised for milk and livestock production. To study the effect of Se on Guanzhong dairy goats, their diets were supplemented with different sources (inorganic or organic) and Se concentrations (0.2 or 0.4 mg Se/kg). A non-Se-fortified basal diet served as a negative control, and a sixth treatment group received both inorganic and organic Se sources (0.2 mg Se/kg diet each). Dietary Se supplementation increased milk production, with organic Se being more effective than inorganic Se. Selenium supplementation also increased Se concentration and glutathione peroxidase activity in whole blood, with organic Se more effective than inorganic Se at the same Se concentration. With increasing Se in diets, the Se content in milk increased markedly, reaching a plateau value at day 30 in all groups, and organic Se (0.4 mg/kg diet) had the best effect. In addition, dietary Se sources and concentrations markedly affected Se concentrations in different tissues and organs. Thus, organic Se supplementation of a basal diet at 0.4 mg/kg is practically applicable for Se-enriched milk and meat production in Guanzhong dairy goats.
Collapse
Affiliation(s)
- L Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - X R Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - J Z Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - X P An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Z Q Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - B Y Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Y X Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
20
|
Dietz A, Weiss W, Faulkner M, Hogan J. Short communication: Effects of supplementing diets of Holsteins with copper, zinc, and manganese on blood neutrophil function. J Dairy Sci 2017; 100:2201-2206. [DOI: 10.3168/jds.2016-11787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/21/2016] [Indexed: 11/19/2022]
|
21
|
Griffiths JC, Matulka RA, Power R. Acute and Subchronic Toxicity Studies on Sel-Plex®, a Standardized, Registered High-selenium Yeast. Int J Toxicol 2016; 25:465-76. [PMID: 17132605 DOI: 10.1080/10915810600959626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selenium has been recognized as an essential nutrient for human health; however, its bioavailability is primarily dependent upon the type of selenium, elemental versus organic. In geographic areas low in selenium, there is the potential for animals (including humans) to become selenium deficient and this potential deficiency can be remedied by consumption of exogenous selenium, including selenium-enriched yeast ( Saccharomyces cerevisiae) that contains high levels of organic selenium (e.g., selenized yeast). The present studies were conducted to investigate potential oral toxicity of a unique selenized yeast preparation (Sel-Plex®) when administered to (1) adult female CHS Swiss mice ICo:OFI (IOPS Caw); (2) adult female CHS Sprague-Dawley rats; and (3) adult male and female Sprague-Dawley CD rats. For the 28- and 90-day toxicity studies, (1) adult male and female Sprague-Dawley CRL:CD® (SD) IGS BR strain rats and (2) adult male and female 6- to 7-month-old Beagle dogs were used. The LD50 for mice was ® ≥2000 mg Sel-Plex® /kg (≥4.06 mg Se/kg) and for rats, was greater ® than ≥2000 mg Sel-Plex® /kg (≥4.06 mg Se/kg). In the two 28-day studies, for rats, the no observed adverse effects level (NOAEL) was 50 mg Sel-Plex®/kg/day (0.1 mg Se/kg/day), and for the dogs, the NOAEL was 22.5 mg Sel-Plex®/kg/day (0.045 mg Se/kg/day). For the two 90-day studies, for rats the NOAEL for Sel-Plex® was 114 mg/kg/day (0.23 mg Se/kg/day), and for dogs, the NOAEL was 30 mg Sel-Plex®/kg/day (0.06 mg Se/kg/day): the latter being the NOAEL in the most sensitive species.
Collapse
|
22
|
Rozbicka-Wieczorek A, Czauderna M, Więsyk E, Radzik-Rant A. Selenium species in diet containing carnosic acid, fish and rapeseed oils affect fatty acid profiles in lamb muscles. JOURNAL OF ANIMAL AND FEED SCIENCES 2016. [DOI: 10.22358/jafs/65555/2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Rozbicka-Wieczorek AJ, Krajewska-Bienias KA, Czauderna M. Dietary carnosic acid, selenized yeast, selenate and fish oil affected the concentration of fatty acids, tocopherols, cholesterol and aldehydes in the brains of lambs. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-215-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Abstract. The function of the brain is to exert centralized control over the other internal organs and tissues of the body. Thus, the objective of our studies was to evaluate changes in the concentration of fatty acids (FAs), cholesterol (CHOL), cholest-4-en-3-one (CHOL-4-3), tocopherols, malondialdehyde (MDA) and fatty aldehydes in the brains of lambs fed supplemented diets. Thirty male Corriedale lambs with a body weight of 30.5 ± 2.6 kg were allotted to five groups of six lambs and housed individually. After the preliminary period, for 35 days the animals were fed a diet containing 3 % rapeseed oil (RO) (the RO diet), a diet enriched with 2 % RO and 1 % fish oil (FO) (the FO diet) or the diets with combined addition of 2 % RO, 1 % FO, 0.1 % carnosic acid (CA) (the CA diet) and 0.35 ppm Se as the selenized yeast (SeY) (the CASeY diet) or selenate (SeVI) (the CASeVI diet). The CASeVI diet most efficiently increased the accumulation of FAs (including unsaturated FAs), CHOL-4-3 and fatty aldehydes in the lamb brain. This diet most effectively decreased the concentration of CHOL and MDA in the brain. The CASeY diet showed a different impact on the level of FAs, CHOL, CHOL-4-3, tocopherols, MDA and fatty aldehydes in the brain as compared with the CASeVI diet. The CA diet reduced the concentration of CHOL-4-3, the sums of fatty aldehydes, FAs, atherogenic- and thrombogenic-saturated FAs in the brain compared with the CASeVI diet; the CA diet most effectively increased the value of polyunsaturated FA (PUFA) peroxidation index in the brain. The RO diet most efficiently increased the concentration of CHOL and values of the ratios of saturated FAs to PUFAs and long-chain n-6PUFAs to long-chain n-3PUFAs in the brain.The current studies provide new useful information for nutritionists carrying out further investigations aimed at improving farm-animal health, growth performance, reproductive system and the nutritional quality of feed for ruminants.
Collapse
|
24
|
Mehdi Y, Dufrasne I. Selenium in Cattle: A Review. Molecules 2016; 21:545. [PMID: 27120589 PMCID: PMC6274551 DOI: 10.3390/molecules21040545] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/08/2016] [Accepted: 04/19/2016] [Indexed: 02/03/2023] Open
Abstract
This review article examines the role of selenium (Se) and the effects of Se supplementation especially in the bovine species. Selenium is an important trace element in cattle. Some of its roles include the participation in the antioxidant defense the cattle farms. The nutritional requirements of Se in cattle are estimated at 100 μg/kg DM (dry matter) for beef cattle and at 300 μg/kg DM for dairy cows. The rations high in fermentable carbohydrates, nitrates, sulfates, calcium or hydrogen cyanide negatively influence the organism's use of the selenium contained in the diet. The Se supplementation may reduce the incidence of metritis and ovarian cysts during the postpartum period. The increase in fertility when adding Se is attributed to the reduction of the embryonic death during the first month of gestation. A use of organic Se in feed would provide a better transfer of Se in calves relative to mineral Se supplementation. The addition of Se yeasts in the foodstuffs of cows significantly increases the Se content and the percentage of polyunsaturated fatty acids (PUFA) in milk compared to the addition of sodium selenite. The enzyme 5-iodothyronine deiodinase is a seleno-dependent selenoprotein. It is one of the last proteins to be affected in the event of Se deficiency. This delay in response could explain the fact that several studies did not show the effect of Se supplementation on growth and weight gain of calves. Enrichment of Se in the diet did not significantly affect the slaughter weight and carcass yield of bulls. The impact and results of Se supplementation in cattle depend on physiological stage, Se status of animals, type and content of Se and types of Se administration. Further studies in Se supplementation should investigate the speciation of Se in food and yeasts, as well as understanding their metabolism and absorption. This constitute a path to exploit in order to explain certain different effects of Se.
Collapse
Affiliation(s)
- Youcef Mehdi
- Department of Animal Production, Nutrition Unit, Faculty of Veterinary Medicine, University of Liège, 20 Boulevard de Colonster (B43), Sart Tilman 4000, Liège, Belgium.
| | - Isabelle Dufrasne
- Department of Animal Production, Nutrition Unit, Faculty of Veterinary Medicine, University of Liège, 20 Boulevard de Colonster (B43), Sart Tilman 4000, Liège, Belgium.
| |
Collapse
|
25
|
Séboussi R, Tremblay GF, Ouellet V, Chouinard PY, Chorfi Y, Bélanger G, Charbonneau É. Selenium-fertilized forage as a way to supplement lactating dairy cows. J Dairy Sci 2016; 99:5358-5369. [PMID: 27085399 DOI: 10.3168/jds.2015-10758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022]
Abstract
Fertilization with Se improves forage organic Se concentration, but comparisons with other forms of Se supplementation in feeding lactating dairy cows are scarce. Our objective was to compare the effect of Se-enriched forages to dietary sources of inorganic and organic Se. Digestibility, retention, and balance were assessed by measuring Se concentrations in feces, urine, milk, and blood. The resulting effect on antioxidant status and lactation performance of dairy cows was also determined. High-Se silages [1.72 mg of Se/kg of dry matter (DM)] were produced following a spring application of 2.5 kg/ha of Selcote Ultra, whereas low-Se silages (0.05 mg of Se/kg of DM) were produced in the Se-unfertilized portion of the same fields. After a 77±17 d period of Se depletion, 33 late-lactation primiparous Holstein cows were blocked and randomly assigned for 43 d to 1 of 4 experimental total mixed rations fed for ad libitum intake in an unbalanced randomized block design. Treatments consisted of 4 diets: control with low-Se silages, without Se supplement (0.12±0.04 mg of Se/kg of DM); ISe with low-Se silages and inorganic Se (0.80±0.14 mg of Se/kg of DM); YSe with low-Se silages and organic Se from yeast (0.70±0.11 mg of Se/kg of DM); and FSe with high-Se silages, without Se supplement (0.79±0.14 mg of Se/kg of DM). Organic Se, either as YSe or FSe, was more available and more effective to increase blood and milk Se concentrations than ISe. Moreover, FSe was more available than YSe, as cows fed FSe excreted 16 and 22% less Se (as percentage of intake) in feces and urine, respectively, had higher Se apparent absorption (17%), retention (37%), and balance (45%), and had greater concentration of Se in serum (16%) and milk (11%) than cows fed YSe. Antioxidant status (whole blood and plasma glutathione peroxidase, and milk thioredoxin reductase and malondialdehyde) was not affected by treatments. Dry matter intake, yield of actual, energy-corrected, and fat-corrected milk, as well as milk fat and lactose concentrations, were not affected by the dietary treatments. Cows fed ISe had lower milk protein concentration (3.44%) than cows fed YSe (3.58%) or FSe (3.51%). Cows fed Se-supplemented diets had a lower milk somatic cell count than cows fed the control diet. Results from the current study showed that the production of Se-enriched forages is an effective method to supplement dairy cows in Se as it was more available than YSe, and did not alter antioxidant status and performances of lactating dairy cows.
Collapse
Affiliation(s)
- R Séboussi
- Département des Sciences Animales, Université Laval, Québec, Canada G1V 0A6
| | - G F Tremblay
- Agriculture and Agri-Food Canada, Québec Research and Development Centre, Québec, Canada GIV 2J3
| | - V Ouellet
- Département des Sciences Animales, Université Laval, Québec, Canada G1V 0A6
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, Canada G1V 0A6
| | - Y Chorfi
- Université de Montréal, Département de Biomédecine Vétérinaire, Québec, Canada J2S 2M2
| | - G Bélanger
- Agriculture and Agri-Food Canada, Québec Research and Development Centre, Québec, Canada GIV 2J3
| | - É Charbonneau
- Département des Sciences Animales, Université Laval, Québec, Canada G1V 0A6.
| |
Collapse
|
26
|
Gong J, Ni L, Wang D, Shi B, Yan S. Effect of dietary organic selenium on milk selenium concentration and antioxidant and immune status in midlactation dairy cows. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Hall JA, Bobe G, Vorachek WR, Kasper K, Traber MG, Mosher WD, Pirelli GJ, Gamroth M. Effect of supranutritional organic selenium supplementation on postpartum blood micronutrients, antioxidants, metabolites, and inflammation biomarkers in selenium-replete dairy cows. Biol Trace Elem Res 2014; 161:272-87. [PMID: 25142062 DOI: 10.1007/s12011-014-0107-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Dairy cows have increased nutritional requirements for antioxidants postpartum. Supranutritional organic Se supplementation may be beneficial because selenoproteins are involved in regulating oxidative stress and inflammation. Our objective was to determine whether feeding Se-yeast above requirements to Se-replete dairy cows during late gestation affects blood micronutrients, antioxidants, metabolites, and inflammation biomarkers postpartum. During the last 8-weeks before calving, dairy cows at a commercial farm were fed either 0 (control) or 105 mg Se-yeast once weekly (supranutritional Se-yeast), in addition to Na selenite at 0.3 mg Se/kg dry matter in their rations. Concentrations of whole-blood (WB) Se and serum Se, erythrocyte glutathione (GSH), and serum albumin, cholesterol, α-tocopherol, haptoglobin, serum amyloid A (SAA), calcium, magnesium, phosphorus, non-esterified fatty acids, and β-hydroxybutyrate were measured directly after calving, at 48 h, and 14 days of lactation in 10 cows of each group. Supranutritional Se-yeast supplementation affected indicators of antioxidant status and inflammation. Cows fed a supranutritional Se-yeast supplement during the last 8-weeks of gestation had higher Se concentrations in WB (overall 52 % higher) and serum (overall 36 % higher) at all-time points, had higher SAA concentrations at 48 h (98 % higher), had higher erythrocyte GSH (38 % higher) and serum albumin concentrations (6.6 % higher) at 14 days, and had lower serum cholesterol concentrations and higher α-tocopherol/cholesterol ratios at calving and at 48 h compared with control cows. In conclusion, feeding Se-replete cows during late gestation a supranutritional Se-yeast supplement improves antioxidant status and immune responses after calving without negatively impacting other micronutrients and energy status.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331-4802, USA,
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Salles MSV, Zanetti MA, Junior LCR, Salles FA, Azzolini AECS, Soares EM, Faccioli LH, Valim YML. Performance and immune response of suckling calves fed organic selenium. Anim Feed Sci Technol 2014. [DOI: 10.1016/j.anifeedsci.2013.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Abstract
Trace minerals have critical roles in the key interrelated systems of immune function, oxidative metabolism, and energy metabolism in ruminants. To date, the primary trace elements of interest in diets for dairy cattle have included Zn, Cu, Mn, and Se although data also support potentially important roles of Cr, Co, and Fe in diets. Trace minerals such as Zn, Cu, Mn, and Se are essential with classically defined roles as components of key antioxidant enzymes and proteins. Available evidence indicates that these trace minerals can modulate aspects of oxidative metabolism and immune function in dairy cattle, particularly during the transition period and early lactation. Chromium has been shown to influence both immune function and energy metabolism of cattle; dairy cows fed Cr during the transition period and early lactation have evidence of improved immune function, increased milk production, and decreased cytological endometritis. Factors that complicate trace mineral nutrition at the farm level include the existence of a large number of antagonisms affecting bioavailability of individual trace minerals and uncertainty in terms of requirements under all physiological and management conditions; therefore, determining the optimum level and source of trace minerals under each specific situation continues to be a challenge. Typical factorial approaches to determine requirements for dairy cattle do not account for nuances in biological function observed with supplementation with various forms and amounts of trace minerals. Trace mineral nutrition modulates production, health, and reproduction in cattle although both formal meta-analysis and informal survey of the literature reveal substantial heterogeneity of response in these outcome variables. The industry has largely moved away from oxide-based programs toward sulfate-based programs; however, some evidence favors shifting supplementation strategies further toward more bioavailable forms of inorganic and organic trace minerals. Furthermore, opportunities for specific modulation of aspects of health, milk production, and reproduction through supplementation strategies for diets of transition dairy cows are attractive because of the known dynamics of energy metabolism, immune function, and oxidative metabolism during this timeframe.
Collapse
Affiliation(s)
- T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | | |
Collapse
|
30
|
Hall JA, Bobe G, Vorachek WR, Gorman ME, Mosher WD, Pirelli GJ. Effects of feeding selenium-enriched alfalfa hay on immunity and health of weaned beef calves. Biol Trace Elem Res 2013; 156:96-110. [PMID: 24142411 DOI: 10.1007/s12011-013-9843-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
Previously, we reported that feeding selenium (Se)-enriched forage improves antibody titers in mature beef cows, and whole-blood Se concentrations and growth rates in weaned beef calves. Our current objective was to test whether beef calves fed Se-enriched alfalfa hay during the transition period between weaning and movement to a feedlot also have improved immune responses and slaughter weights. Recently weaned beef calves (n = 60) were fed an alfalfa-hay-based diet for 7 weeks, which was harvested from fields fertilized with sodium selenate at 0, 22.5, 45.0, or 89.9 g Se/ha. All calves were immunized with J-5 Escherichia coli bacterin. Serum was collected for antibody titers 2 weeks after the third immunization. Whole-blood neutrophils collected at 6 or 7 weeks were evaluated for total antioxidant potential, bacterial killing activity, and expression of genes associated with selenoproteins and innate immunity. Calves fed the highest versus the lowest level of Se-enriched alfalfa hay had higher antibody titers (P = 0.02), thioredoxin reductase-2 mRNA levels (P = 0.07), and a greater neutrophil total antioxidant potential (P = 0.10), whereas mRNA levels of interleukin-8 receptor (P = 0.02), L-selectin (P = 0.07), and thioredoxin reductase-1 (P = 0.07) were lower. In the feedlot, calves previously fed the highest-Se forage had lower mortality (P = 0.04) and greater slaughter weights (P = 0.02). Our results suggest that, in areas with low-forage Se concentrations, feeding beef calves Se-enriched alfalfa hay during the weaning transition period improves vaccination responses and subsequent growth and survival in the feedlot.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331-4802, USA,
| | | | | | | | | | | |
Collapse
|
31
|
Selenium-dependent regulation of oxidative stress and immunity in periparturient dairy cattle. Vet Med Int 2013; 2013:154045. [PMID: 23401850 PMCID: PMC3557619 DOI: 10.1155/2013/154045] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/24/2012] [Indexed: 11/25/2022] Open
Abstract
Uncontrolled or impaired immune and inflammatory responses in periparturient dairy cows are associated with increased incidence and severity of infectious diseases. The progressive development of oxidative stress during the transition from late gestation to peak lactation is thought to be a significant underlying factor leading to dysfunctional immune cell responses. Certain trace minerals, such as selenium (Se), can ameliorate oxidative stress and reduce the severity of several economically important diseases in dairy cattle including mastitis and metritis. Many of the health benefits of Se can be attributed to the antioxidant functions of selenoproteins. Changes in selenoprotein activity as a consequence of Se nutritional status can directly alter a number of critical cellular functions involved in the inflammatory response. A better understanding of how Se can optimize immune cell responses may facilitate the design of nutritional regimes that will reduce health disorders during the periparturient period.
Collapse
|
32
|
Salman S, Dinse D, Khol-Parisini A, Schafft H, Lahrssen-Wiederholt M, Schreiner M, Scharek-Tedin L, Zentek J. Colostrum and milk selenium, antioxidative capacity and immune status of dairy cows fed sodium selenite or selenium yeast. Arch Anim Nutr 2013; 67:48-61. [PMID: 23298256 DOI: 10.1080/1745039x.2012.755327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dietary selenium (Se) can be supplemented from organic or inorganic sources and this may affect Se metabolism and functional outcome such as antioxidative status and immune functions in dairy cows. A feeding trial was performed with 16 Holstein-Friesian dairy cows fed with a total mixed ration (0.18 mg Se/kg dry matter (DM)) either without Se supplement (Control, n = 5), or with Se from sodium selenite (Group SeS, n = 5) or Se yeast (Group SeY, n = 6). In Groups SeS and SeY, the Se supplementation amounted to an additional intake of 4 mg Se and 6 mg Se/d during gestation and lactation, respectively. The effect of both Se sources was characterised by milk Se and antioxidant levels, and the phenotyping and functional assessment of phagocytic activity of milk immune cells. Se yeast has been found to increase (p ≤ 0.001) the milk Se and antioxidant levels markedly compared to the control group. The experimental treatment did not affect the immune parameters of the cows. Lymphocyte subpopulations and phagocytosis activity of neutrophilic granulocytes were affected neither by the Se intake nor by the two different dietary supplements. It can be concluded that sodium selenite and Se yeast differ considerably in their effects on antioxidant status in dairy cows. However, the basal dietary Se concentration of 0.18 mg/kg DM seemed to be high enough for the measured immune variables.
Collapse
Affiliation(s)
- Saeed Salman
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xun W, Shi L, Yue W, Zhang C, Ren Y, Liu Q. Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Biol Trace Elem Res 2012; 150:130-6. [PMID: 22692882 DOI: 10.1007/s12011-012-9452-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/11/2012] [Indexed: 11/25/2022]
Abstract
The aim of this study was to evaluate the effect of nano-selenium (NS) and yeast-selenium (YS) supplementation on feed digestibility, rumen fermentation, and urinary purine derivatives in sheep. Six male ruminally cannulated sheep, average 43.32 ± 4.8 kg of BW, were used in a replicated 3 × 3 Latin square experiment. The treatments were control (without NS and YS), NS with 4 g nano-Se (provide 4 mg Se), and YS with 4 g Se-yeast (provide 4 mg Se) per kilogram of diet dry matter (DM), respectively. Experimental periods were 25 days with 15 days of adaptation and 10 days of sampling. Ruminal pH, ammonia N concentration, molar proportion of propionate, and ratio of acetate to propionate were decreased (P < 0.01), and total ruminal VFA concentration was increased with NS and YS supplementation (P < 0.01). In situ ruminal neutral detergent fiber (aNDF) degradation of Leymus chinensis (P < 0.01) and crude protein (CP) of soybean meal (P < 0.01) were significantly improved by Se supplementation. Digestibilities of DM, organic matter, crude protein, ether extract, aNDF, and ADF in the total tract and urinary excretion of purine derivatives were also affected by feeding Se supplementation diets (P < 0.01). Ruminal fermentation was improved by feeding NS, and feed conversion efficiency was also increased compared with YS (P < 0.01). We concluded that nano-Se can be used as a preferentially available selenium source in ruminant nutrition.
Collapse
Affiliation(s)
- Wenjuan Xun
- College of Animal Sciences and Veterinary Medicines, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
The effect of selenium sources and supplementation on neutrophil functions in dairy cows. Animal 2012; 3:1037-43. [PMID: 22444822 DOI: 10.1017/s1751731109004303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenium (Se), an essential micronutrient, is believed to enhance neutrophil functions. This study aimed to compare the effects of supplemented organic (Sel-Plex®) and inorganic (sodium selenite) Se on neutrophil functions in high-producing dairy cows, during the periparturient period. Twenty-five Holstein cows were randomly allocated to five dietary treatments as follows: control diet (basal diet without Se supplementation), IN 0.3 (basal diet supplemented with inorganic Se at 0.3 mg/kg dry matter (DM)), IN 0.5 (inorganic Se at 0.5 mg/kg DM), OR 0.3 (organic Se at 0.3 mg/kg DM) and OR 0.5 (organic Se at 0.5 mg/kg DM). Some evaluated parameters included neutrophil functions and plasma Se concentrations in cows and plasma Se concentrations in calves. Neutrophil phagocytosis did not significantly differ among the five groups. However, organic Se supplementation significantly increased (P < 0.01) the respiratory burst of neutrophils when compared to cows fed IN 0.3 and the control diet. In comparison to inorganic Se, neutrophil apoptosis was decreased (P < 0.01) when cows were fed organic Se or the control diets. These effects of organic Se on respiratory burst activities and apoptosis of neutrophils were in a dose-dependent manner. Calf plasma Se concentrations were higher (P < 0.05) when cows were fed OR 0.5 and IN 0.5.
Collapse
|
35
|
Souza FN, Blagitz MG, Latorre AO, Mori CS, Sucupira MCA, Libera AMD. Efeito da suplementação in vitro de selênio sobre neutrόfilos do leite e sanguíneos em vacas leiteras. PESQUISA VETERINÁRIA BRASILEIRA 2012. [DOI: 10.1590/s0100-736x2012000200014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O presente estudo avaliou o efeito da suplementação in vitro de selênio sobre a produção intracelular de perόxido de hidrogênio (H2O2) por leucόcitos polimorfonucleares do leite e do sangue em bovinos. Assim, 10 e 20 amostras de sangue e leite, respectivamente, foram incubadas com 0 mg (controle) ou 10μM de selenito de sόdio. A determinação da produção intracelular de peróxido de hidrogênio se deu por citometria de fluxo através da utilização do 2´,7´ diclorodihidrofluoresceína diacetato como sonda. A mensuração do conteúdo de selênio foi avaliada pela atividade da glutationa peroxidase eritrocitária. Os leucócitos polimorfonucleares tanto sanguíneos quanto do leite apresentaram significativo aumento na produção intracelular de H2O2 com a suplementação in vitro de selênio. Desta forma, o presente estudo apontou para aumento da produção intracelular de H2O2, indicando aumento da capacidade microbicida dos leucócitos polimorfonucleares sanguíneos e lácteos mesmo em animais com níveis adequados de selênio.
Collapse
|
36
|
Ceballos-Marquez A, Barkema HW, Stryhn H, Dohoo IR, Keefe GP, Wichtel JJ. Milk selenium concentration and its association with udder health in Atlantic Canadian dairy herds. J Dairy Sci 2010; 93:4700-9. [PMID: 20855004 DOI: 10.3168/jds.2010-3313] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022]
Abstract
Soils and plants in Atlantic Canadian provinces are known to contain low concentrations of selenium (Se). Earlier studies have indicated that dairy producers in Atlantic Canada are providing insufficient supplementary Se in the ration to meet the Se requirements of dairy cattle, as measured by herd-level milk Se concentration. The objective of this study was to evaluate the association between milk Se concentration and somatic cell count (SCC) and the risk of new intramammary infection (IMI) in the dry period, in Atlantic Canadian dairy cows. Eighteen dairy farms participating in the Canadian Bovine Mastitis Research Network cohort study were selected as a convenience sample. On each farm 15 cows to be dried off were selected. Quarter milk samples were collected at 4 and 2 wk before drying-off, within 24 h after calving, and at 7 d after calving to evaluate IMI status. Composite milk samples were analyzed for SCC and Se concentration. Mean milk Se concentration was marginal in 14% of the cows that were on pasture during the grazing season. Milk Se concentration was not associated with the overall odds of new IMI in the dry period; however, the odds of having a new Streptococcus spp. and other gram-positive pathogen IMI in the dry period increased with increasing milk Se concentration. Somatic cell count increased with milk Se concentration, even after adjusting for IMI status. The dairy population in our study had higher ranges for milk Se concentration, whereas ranges for prevalence of IMI, and SCC were lower, compared with those in studies where a negative relationship between Se status and udder health was first noted. Therefore, under the current management conditions, milk Se concentration did not appear to be a principal determinant of udder health.
Collapse
Affiliation(s)
- A Ceballos-Marquez
- Centre for Veterinary Epidemiological Research, Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI C1A 4P3, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Viero V, Fischer V, Machado S, Zanela M, Ribeiro M, Barbosa R, Stumpf Jr. W, Cobuci J. Efeito da suplementação com diferentes níveis de selênio orgânico e inorgânico na produção e na composição do leite e no sangue de vacas em lactação. ARQ BRAS MED VET ZOO 2010. [DOI: 10.1590/s0102-09352010000200019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Avaliaram-se o efeito da suplementação de selênio, na dieta ofertada aos animais, sobre a concentração do mineral no sangue e no leite e as alterações nas características físico-químicas, contagem de células somáticas (CCS) e produção de leite. O experimento durou 63 dias, dos quais os primeiros 21 foram pré-experimental. Foram utilizadas 32 vacas em lactação da raça Jersey, as quais apresentavam, ao início, peso corporal de 402,5+58,4kg, escore de condição corporal de 3,19+0,31, produção de leite de 10,4+2,1kg e número de dias em lactação de 141,4+69,3. Os tratamentos foram: sem suplementação (grupo-controle); com suplementação de selênio inorgânico 0,3 (dieta-padrão + 0,3mg selenito de sódio/kg de concentrado - SI0,3); com suplementação com selênio orgânico 0,3 (dieta-padrão + 0,3mg seleniometionina/kg de concentrado - SO0,3) e com suplementação de selênio orgânico 0,6 (dieta-padrão + 0,6mg seleniometionina/kg de concentrado - SO0,6). As quantidades totais de selênio das dietas foram, respectivamente, 2,38; 4,18; 4,18 e 5,98mg/dia para os tratamentos controle, SI0,3, SO0,3 e SO0,6. O delineamento experimental foi o completamente ao acaso. O número de dias em lactação e os valores obtidos no início do experimento foram usados como covariáveis. Foram realizadas avaliações da produção de leite, do peso, da condição corporal, da composição do leite e do sangue nos dias 0, 14, 28 e 42 do período experimental. Entre os tratamentos, não foram detectadas alterações quanto à produção de leite, peso, condição corporal, características físico-químicas e microbiológicas do leite, e perfil bioquímico do sangue, exceto em relação à concentração de selênio no sangue entre o tratamento-controle e os tratamentos suplementados. Não houve diferenças quanto aos teores de selênio no sangue entre as fontes de selênio e as doses. Os teores de selênio no sangue evoluíram distintamente durante o experimento conforme a dose e a fonte. A suplementação com selênio não alterou os demais componentes do leite e do sangue.
Collapse
|
38
|
Wang C, Liu Q, Yang W, Dong Q, Yang X, He D, Zhang P, Dong K, Huang Y. Effects of selenium yeast on rumen fermentation, lactation performance and feed digestibilities in lactating dairy cows. Livest Sci 2009. [DOI: 10.1016/j.livsci.2009.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Weiss W, St-Pierre N. A method to quantify changes in supply of metabolizable methionine to dairy cows using concentrations of selenium in milk. J Dairy Sci 2009; 92:2835-42. [DOI: 10.3168/jds.2008-1882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Cerri R, Rutigliano H, Lima F, Araújo D, Santos J. Effect of source of supplemental selenium on uterine health and embryo quality in high-producing dairy cows. Theriogenology 2009; 71:1127-37. [DOI: 10.1016/j.theriogenology.2008.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 11/10/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
|
41
|
Abstract
Mastitis is not only a major cause of economic losses to the dairy industry but also a major problem in ensuring the quality and safety of the milk, associated with high somatic cell counts and residues of antibiotics used for treatment. One innovative approach to protection against mastitis is to stimulate the animal's natural defense mechanisms. Technological advances in immunological research have increased our ability to exploit the immunity of the bovine mammary gland during periods of high susceptibility to disease. The trace element selenium affects the innate and the adaptive immune responses of the mammary gland through cellular and humoral activities. Substantial research has been carried out on the effect of selenium (Se) on the immune function of the mammary gland and subsequent improvement in bovine udder health and mastitis control. Levels higher than current recommendations and Se-yeast can potentially be used to enhance our capacity to modulate the physiological mechanisms of the bovine mammary gland to respond to infection. This article provides an overview of the most recent research in this field.
Collapse
|
42
|
Ceballos A, Sánchez J, Stryhn H, Montgomery J, Barkema H, Wichtel J. Meta-analysis of the effect of oral selenium supplementation on milk selenium concentration in cattle. J Dairy Sci 2009; 92:324-42. [DOI: 10.3168/jds.2008-1545] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Rutigliano HM, Lima FS, Cerri RLA, Greco LF, Vilela JM, Magalhães V, Silvestre FT, Thatcher WW, Santos JEP. Effects of method of presynchronization and source of selenium on uterine health and reproduction in dairy cows. J Dairy Sci 2008; 91:3323-36. [PMID: 18765591 DOI: 10.3168/jds.2008-1005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The objectives of this study were to evaluate the effects of method of presynchronization and source of supplemental Se on uterine health and reproductive performance of lactating dairy cows. Holstein cows (n = 512) were assigned randomly to 2 methods of presynchronization, Presynch (2 PGF(2a) given 14 d apart) or CIDR-PS (controlled internal drug releasing inserted for 7 d with an injection of PGF(2a) at removal) and 2 sources of Se, sodium selenite (SS) or selenized yeast (SY) supplemented at 0.3 mg/kg from 25 d before calving to 80 d in milk (DIM) arranged in a 2 x 2 factorial. Cows were inseminated following the Ovsynch protocol (d 0 GnRH, d 7 PGF(2a), d 9 GnRH, timed artificial insemination (AI) 12 h after the final GnRH) starting at 12 and 3 d after Presynch and CIDR-PS, respectively. Cows were diagnosed for pregnancy at 28, 42, and 56 d after AI. Source of Se did not influence uterine health and resumption of cyclicity, but fewer CIDR-PS than Presynch cows were cyclic at the beginning of the Ovsynch, although differences in the proportion cyclic may have been caused by the timing when corpus luteum evaluations were performed in the different pre-synchronization treatments. Ovulatory responses were not influenced by source of Se. However, the CIDR-PS increased ovulation to the first GnRH, double ovulation to the final GnRH, and size of ovulatory follicle at PGF(2a) and final GnRH of the Ovsynch, but did not influence ovulation at the final GnRH of the Ovsynch. Concentrations of estradiol during the Ovsynch increased with follicle diameter and were greater for cows receiving CIDR-PS than Presynch, but they were not influenced by source of Se. Pregnancy per AI on d 28 (32.7%), 42 (28.5%), and 56 (25.9%) after AI, and pregnancy loss (20.5%) from 28 to 56 d were not influenced by source of Se or method of presynchronization. Although cows receiving CIDR-PS had an increased incidence of ovulation to the first GnRH (73.2 vs. 57.8%) and double ovulation to the final GnRH of the Ovsynch (18.7 vs. 9.0%), both of which enhanced pregnancy, the CIDR-PS protocol did not improve pregnancy per AI or reduce pregnancy loss compared with presynchronization with PGF(2a) alone.
Collapse
Affiliation(s)
- H M Rutigliano
- School of Veterinary Medicine, University of California, Davis 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kruze J, Ceballos A, Stryhn H, Mella A, Matamoros R, Contreras PA, Leyan V, Wittwer F. Somatic cell count in milk of selenium-supplemented dairy cows after an intramammary challenge with Staphylococcus aureus. ACTA ACUST UNITED AC 2007; 54:478-83. [PMID: 17931220 DOI: 10.1111/j.1439-0442.2007.00999.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the effect of selenium (Se) supplementation on milk somatic cell count (SCC) in dairy cows. Twelve multiparous Holstein-Friesian cows were fed a diet containing a suboptimal Se concentration (<0.05 ppm, dry basis) starting 2 months before calving. Supplemented cows (n=6) received a single s.c. injection of barium selenate (1 ml/50 kg BW) 45 days prior to calving, whereas control group was kept unsupplemented. Twenty weeks after calving, two mammary quarters (right side) of each cow were challenged with 205,000 cfu/ml of Staphylococcus aureus (strain Newbould 305). Blood was collected bi-weekly until day 150 of lactation for the analysis of blood glutathione peroxidase (GPx1; EC 1.11.1.9) activity. To re-isolate the challenging pathogen and to evaluate SCC, aseptic milk samples were collected daily starting on the day of challenge, and finishing 7 days after inoculation. Unsupplemented cows had a lower activity of GPx1 through the experiment (P<0.001). Natural log SCC (lnSCC) was higher in unsupplemented than Se-supplemented cows (P=0.04), showing evidence of significance after 5 days. Selenium supplementation of dairy cows fed a diet containing a suboptimal Se concentration, resulted in higher blood activity of GPx1, and lower mean lnSCC after an intramammary challenge with Staph. aureus.
Collapse
Affiliation(s)
- J Kruze
- Department of Health Management, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Czauderna M, Kowalczyk J, Korniluk K. Effect of dietary conjugated linoleic acid and selenized yeast on the concentration of fatty acids and minerals in rats. Arch Anim Nutr 2007; 61:135-50. [PMID: 17451112 DOI: 10.1080/17450390701204004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The main objective of this study was to evaluate the influence of diets enriched in individual conjugated linoleic acid (CLA) isomers, their mixture, and/or selenized yeast (Se-yeast) on the concentration of CLA isomers, long-chain polyunsaturated fatty acids (PUFA) and Se in the heart, muscles and liver of rats. The investigation was performed on 73 female Wistar rats (8 weeks of age, 200 g initial BW). After one week sub-maintenance feeding, rats received diets supplemented with 1% individual CLA isomers or 1 or 2% of a CLA isomers mixture, without or with 1.2 mg Se/kg (as Se-yeast) for 29 days. Feeding diets with 2% CLA isomer mixture reduced feed intake and body weight gain of rats, while addition of trans10,cis12 CLA and Se-yeast resulted in the highest body weight gain. CLA supplementation generally elevated the concentration of CLA isomers in heart and muscles significantly, although cis9,trans11 CLA accumulated preferentially. Regardless of the presence of Se-yeast, the dietary enrichment with CLA isomers caused a reduction in the capacity of A9-desaturase. Addition of Se-yeast to diets with individual CLA isomers or a 1% mixture of CLA isomers elevated the accumulation of CLA isomers in the heart and muscles, whereas all treatments with supplemented CLA and Se-yeast increased the accumulation of Se in rats compared with animals fed the diet containing Se only. Furthermore, CLA isomer supplementation decreased the concentration of PUFA and total fatty acids in the heart and muscles compared with control rats. Moreover, addition of CLA isomers interfered in the conversion of linoleic and linolenic acids to higher metabolites due to competition of CLA isomers for the same enzymes (delta6-, delta5-, delta4-desaturases and elongase).
Collapse
Affiliation(s)
- Marian Czauderna
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland.
| | | | | |
Collapse
|
46
|
Sordillo LM, O'Boyle N, Gandy JC, Corl CM, Hamilton E. Shifts in Thioredoxin Reductase Activity and Oxidant Status in Mononuclear Cells Obtained from Transition Dairy Cattle. J Dairy Sci 2007; 90:1186-92. [PMID: 17297093 DOI: 10.3168/jds.s0022-0302(07)71605-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Measures of oxidative status were examined in 14 dairy cows during the transition period. Blood samples were obtained approximately 21 d before expected calving, at calving, and again at 21 d in milk (DIM). Plasma samples were used to determine lipid hydroperoxide concentrations. Total white blood cells were used to determine the oxidative status of glutathione. Peripheral blood mononuclear cell (PBMC) lysates were used to determine the total antioxidant potential and enzymatic activities of glutathione peroxidase (GPX) and thioredoxin reductase (TrxR1). Both plasma lipid hydroperoxide concentrations and GPX activity in PBMC increased at calving and during the first 21 DIM when compared with prepartum samples. Conversely, the total antioxidant potential and TrxR activity declined in PBMC during the first 21 DIM, even though both GPX activity and the glutathione-to-GSSG ratio remained elevated during this time period. Results from this study support previous findings that report increased GPX activity when reactive oxygen metabolites, including lipid hydroperoxides, increase in transition dairy cows. The significant decrease in TrxR activity with a concomitant decrease in total antioxidant potential in PBMC during this same stage of lactation, however, would suggest that this selenoprotein is not able to rebound during periods of oxidative stress to the same extent as GPX1. This study shows for the first time that TrxR may be an important antioxidant defense mechanism in PBMC that is compromised during the periparturient period.
Collapse
Affiliation(s)
- L M Sordillo
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA.
| | | | | | | | | |
Collapse
|
47
|
Bourne N, Wathes DC, McGowan M, Laven R. A comparison of the effects of parenteral and oral administration of supplementary vitamin E on plasma vitamin E concentrations in dairy cows at different stages of lactation. Livest Sci 2007. [DOI: 10.1016/j.livsci.2006.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Cappelli FP, Trevisi E, Mbuta B, Gubbiotti A. Change of selenium in plasma of dairy cows receiving two levels of sodium-selenite during the transition period. ITALIAN JOURNAL OF ANIMAL SCIENCE 2007. [DOI: 10.4081/ijas.2007.1s.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - E. Trevisi
- Istituto Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Bakudila Mbuta
- Istituto Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A. Gubbiotti
- Istituto Zootecnica, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|