1
|
Deng S, Feng S, Xin Y, He Y, Wang Y, Tian M, Gong Y. Establishment of a rat model of severe spontaneous intracerebral hemorrhage. JOURNAL OF INTENSIVE MEDICINE 2024; 4:108-117. [PMID: 38263974 PMCID: PMC10800770 DOI: 10.1016/j.jointm.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/24/2023] [Accepted: 08/16/2023] [Indexed: 01/25/2024]
Abstract
Background Severe intracerebral hemorrhage (ICH) is the most devastating subtype of stroke resulting in high mortality and disability. At present, the development of targeted treatments to minimize the high morbidity and mortality is limited partly due to the lack of a severe ICH animal model. In this study, we aimed to establish an accurate severe ICH model in rats and examine the pathological and physiological changes associated with ICH. Methods A rat model of severe ICH model was established by intrastriatal injection of autologous blood using different blood volumes (ICH 100 µL group, ICH 130 µL group, ICH 160 µL group, ICH 170 µL group, and ICH 180 µL group). The mortality was assessed during the 28-day post-ICH period. Short- and long-term neurological deficits were evaluated using the Longa method, foot fault, falling latency, and Morris water maze tests. Brain water content, hematoma volume, hemoglobin content, and magnetic resonance imaging were assessed to determine the extent of brain injury. Immunofluorescence staining was conducted to examine microglial activation and neuronal apoptosis. Hematoxylin and eosin (H&E) staining, lung water content, and western blotting were used to assess lung injury following ICH. Results The mortality of ICH rats increased significantly with an increase in autologous blood injection. The 28-day mortality in the 100 µL, 130 µL, 160 µL, 170 µL, and 180 µL ICH groups were 5%, 20%, 40%, 75%, and 100%, respectively. A significantly higher 28-day mortality was observed in the ICH 160 µL group compared to the ICH 100 µL group. The ICH 160 µL group exhibited significantly increased neurological deficits, brain edema, hematoma volume, and hemoglobin content compared to the sham group. Compared with the sham operation group, the activation of microglia and neuronal death in ICH 160 µL rats increased. The use of H&E staining and western blotting demonstrated that disruption of the intra-alveolar structure, alveolar edema, and infiltration of inflammatory cells and cytokines into the lung tissue were more severe in the ICH 160 µL group than the sham group. Conclusions A severe ICH model in rats was successfully established using an injection of autologous blood at a volume of 160 µL. This model may provide a valuable tool to examine the pathological mechanisms and potential therapeutic interventions of severe ICH.
Collapse
Affiliation(s)
- Shuixiang Deng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengjie Feng
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu He
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Powers WJ, An H, Diringer MN. Cerebral Blood Flow and Metabolism. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Cui Z, Liu S, Hou L, Sun Y, Chen H, Mao H, Zhao Y, Qiao L. Effect of Tongfu Xingshen capsule on the endogenous neural stem cells of experimental rats with intracerebral hemorrhage. Mol Med Rep 2021; 24:624. [PMID: 34212980 PMCID: PMC8281109 DOI: 10.3892/mmr.2021.12263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022] Open
Abstract
Intracerebral hemorrhage (ICH) can stimulate neural regeneration, promoting tissue repair and recovery of nerve function. Tongfu Xingshen capsule (TXC) is a Chinese medicinal formula used to treat ICH and has been shown to protect brain tissue and improve nerve function in clinical studies. However, the effect of TXC on endogenous neural stem cells (NSCs) remains elusive. To explore the mechanisms underlying TXC action, a rat model of ICH was established. The effects of TXC on the proliferation and differentiation of NSCs were assessed in the subventricular zone (SVZ). TXC significantly improved nerve function defects, decreased brain water content and restored blood‑brain barrier integrity. Additionally, BrdU labeling showed that both high and low doses of TXC significantly increased the proportion of actively cycling NSCs positive for Nestin and glial fibrillary acidic protein, but did not affect the proliferation rates of NeuN‑positive neurons. Finally, TXC also upregulated the mRNA levels of brain‑derived neurotrophic factor and its receptor, TrκB, in affected brain tissues. Taken together, TXC accelerated neural repair and functional recovery after brain injury by potentially enhancing the proliferation and differentiation of endogenous NSCs into astroglial cells in the SVZ area.
Collapse
Affiliation(s)
- Zhizhong Cui
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Shanshan Liu
- Department of Hematology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510630, P.R. China
| | - Lingbo Hou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yifan Sun
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Haoxuan Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Hui Mao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Yuanqi Zhao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Lijun Qiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
4
|
Cai Y, Zhuang YK, Wu XY, Dong XQ, Du Q, Yu WH, Wang KY, Hu W, Zheng YK. Serum Hypoxia-Inducible Factor 1alpha Levels Correlate with Outcomes After Intracerebral Hemorrhage. Ther Clin Risk Manag 2021; 17:717-726. [PMID: 34285494 PMCID: PMC8286156 DOI: 10.2147/tcrm.s313433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/25/2021] [Indexed: 12/02/2022] Open
Abstract
Background Serum hypoxia-inducible factor 1alpha (HIF-1α) is a key regulator in hypoxic and ischemic brain injury. We determined the relationship between serum HIF-1α levels and long-term prognosis plus severity of intracerebral hemorrhage (ICH). Methods A total of 97 ICH cases and 97 healthy controls were enrolled. Glasgow Coma Scale (GCS) score and hematoma volume were used to assess hemorrhagic severity. Glasgow Outcome Scale (GOS) score of 1–3 at post-stroke 90 days was defined as a poor outcome. Results Serum HIF-1α levels of ICH patients were significantly higher than those of healthy controls (median, 218.8 vs 105.4 pg/mL; P<0.001) and were substantially correlated with GCS score (r=−0.485, P<0.001), hematoma volume (r=0.357, P<0.001) and GOS score (r=−0.436, P<0.001). Serum HIF-1α levels >239.4 pg/mL discriminated patients at risk of 90-day poor outcome with sensitivity of 65.9% and specificity of 79.3% (area under the receiver operating characteristic curve, 0.725; 95% confidence interval, 0.625–0.811; P<0.001). Moreover, serum HIF-1α levels >239.4 pg/mL were independently associated with a poor 90-day outcome (odds ratio, 5.133; 95% confidence interval, 1.117–23.593; P=0.036). Conclusion Serum HIF-1α, in close correlation with hemorrhagic severity and poor 90-day outcome, may serve as a potential prognostic biomarker for ICH.
Collapse
Affiliation(s)
- Yong Cai
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, People's Republic of China
| | - Yao-Kun Zhuang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, People's Republic of China
| | - Xiao-Yu Wu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, People's Republic of China
| | - Xiao-Qiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Wen-Hua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Ke-Yi Wang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Wei Hu
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| | - Yong-Ke Zheng
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, People's Republic of China
| |
Collapse
|
5
|
Wilkinson CM, Kung TF, Jickling GC, Colbourne F. A translational perspective on intracranial pressure responses following intracerebral hemorrhage in animal models. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
6
|
彭 羽, 林 赟, 侯 晓, 廖 晓, 刘 进. [Effect of mild hypothermia on behaviors of rats with intracerebral hemorrhage and the possible mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1359-1364. [PMID: 32990235 PMCID: PMC7544574 DOI: 10.12122/j.issn.1673-4254.2020.09.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To explore the effect of mild hypothermia on inflammatory response and angiogenesis in brain tissues of rats with intracerebral hemorrhage (ICH) and its possible mechanism for improving behavioral deficits of the rats After ICH. METHODS A total of 120 healthy male SD rats were randomly divided into sham operation group, ICH group and mild hypothermia group. Rat models of ICH were established in the latter two groups by stereotactic injection of autogenous blood in the brain, and the rats in the sham operation group received injection of normal saline in the same manner. At 15 min after modeling, the rats in hypothermia group were subjected to mild hypothermia (30-32 ℃) for 8 h followed by rewarming (37-38 ℃); the body temperature was maintained at 37-38 ℃ in the other two groups. At 2, 4, 7, 14 and 21 days after the treatment, Longa scoring, balance beam scoring and Berderson scoring were used to evaluate the behavioral deficits of the rats. Immunohistochemical staining was used to detect the protein expressions of tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in the brain tissue of the rats, and the mRNA expressions of α subunit of hypoxia-inducible factor 1 (HIF1-α) and vascular endothelial growth factor (VEGF) were detected using RT- PCR. RESULTS At 2, 4, 7, 14 and 21 days after the treatment, the behavioral scores of the rats were significantly higher in ICH group and mild induced hypothermia group than in the sham operation group (P < 0.05 or 0.01). The protein expressions of TNF-α and NF-κB and mRNA expressions of HIF1-α and VEGF were significantly higher in ICH group and mild hypothermia group than in the sham operation group (P < 0.01). The behavioral scores were significantly lower in mild hypothermia group than in ICH group (P < 0.05), and the protein expressions of TNF-α and NF-κB were lower and the mRNA expressions of HIF1- α and VEGF were higher in mild hypothermia group than in ICH group (P < 0.05 or 0.01). CONCLUSIONS Mild hypothermia can improve behavioral deficits in rats with ICH possibly by antagonizing brain inflammation and promoting angiogenesis.
Collapse
Affiliation(s)
- 羽 彭
- 四川省医学科学院//四川省人民医院学术期刊部,四川 成都 610072Department of Academic Journals, Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - 赟 林
- 四川省医学科学院//四川省人民医院学术期刊部,四川 成都 610072Department of Academic Journals, Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - 晓林 侯
- 四川省医学科学院//四川省人民医院心内科,四川 成都 610072Department of Cardiology, Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - 晓灵 廖
- 四川省医学科学院//四川省人民医院神经外科,四川 成都 610072Department of Neurosurgery, Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - 进平 刘
- 四川省医学科学院//四川省人民医院神经外科,四川 成都 610072Department of Neurosurgery, Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu 610072, China
| |
Collapse
|
7
|
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 2020; 143:1297-1314. [PMID: 31919518 DOI: 10.1093/brain/awz393] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 01/24/2023] Open
Abstract
Abstract
The prognosis of intracerebral haemorrhage continues to be devastating despite much research into this condition. A prominent feature of intracerebral haemorrhage is neuroinflammation, particularly the excessive representation of pro-inflammatory CNS-intrinsic microglia and monocyte-derived macrophages that infiltrate from the circulation. The pro-inflammatory microglia/macrophages produce injury-enhancing factors, including inflammatory cytokines, matrix metalloproteinases and reactive oxygen species. Conversely, the regulatory microglia/macrophages with potential reparative and anti-inflammatory roles are outcompeted in the early stages after intracerebral haemorrhage, and their beneficial roles appear to be overwhelmed by pro-inflammatory microglia/macrophages. In this review, we describe the activation of microglia/macrophages following intracerebral haemorrhage in animal models and clinical subjects, and consider their multiple mechanisms of cellular injury after haemorrhage. We review strategies and medications aimed at suppressing the pro-inflammatory activities of microglia/macrophages, and those directed at elevating the regulatory properties of these myeloid cells after intracerebral haemorrhage. We consider the translational potential of these medications from preclinical models to clinical use after intracerebral haemorrhage injury, and suggest that several approaches still lack the experimental support necessary for use in humans. Nonetheless, the preclinical data support the use of deactivator or inhibitor of pro-inflammatory microglia/macrophages, whilst enhancing the regulatory phenotype, as part of the therapeutic approach to improve the prognosis of intracerebral haemorrhage.
Collapse
Affiliation(s)
- Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
8
|
Wang W, Mu S, Xue L, Liang S, Li Z, Wang S. Wide-area measurement-based supervision of the cerebral venous hemodynamic in a novel rat model. J Neurosci Methods 2019; 328:108448. [DOI: 10.1016/j.jneumeth.2019.108448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/27/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022]
|
9
|
Liu Y, Lu G, Su XW, Ding T, Wang WL, Li YM, Poon WS, Ao LJ. Characterization of Axon Damage, Neurological Deficits, and Histopathology in Two Experimental Models of Intracerebral Hemorrhage. Front Neurosci 2018; 12:928. [PMID: 30618557 PMCID: PMC6297275 DOI: 10.3389/fnins.2018.00928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal forms of stroke. From the limited previous studies and our preliminary data, white matter is considered a key predictor of the outcome and potential target of recovery. The traditional ICH model induced by injection of autologous blood or bacterial collagenase into striatum (ST) demonstrated a spontaneous functional recovery within one or 2 months. We hypothesis that an internal capsule (IC) lesion might lead to long-term axonal damage and long lasting functional deficits. Thus in this study, a modified internal capsule ICH model was conducted in rats, and the axonal damage, neurological deficits, histopathology as well as electrophysiology were characterized. The finding demonstrated that compared to ST group, the modified IC lesioned model exhibited a relatively smaller lesion volume with consistent axonal loss/degeneration and long-lasting neurological dysfunction at 2 months after ICH. Functionally, the impairment of the mNSS, ratio of contralateral forelimb usage, four limb stand index, contralateral duty cycle and ipsilateral SSEPs amplitude remained significant at 56 days. Structurally, the significant loss of PKCγ in ipsilateral cortical spinal tracts of IC group and the consistent axonal degeneration with several axonal retraction bulbs and enlarged tubular space was observed at 56 days after ICH. This study suggested that a modified IC lesioned model was proved to have long lasting neurological deficits. A comprehensive understanding of the dynamic progression after experimental ICH should aid further successful clinic translation in animal ICH studies, and provide new insights into the role of whiter matter injury in the mechanism and therapeutic targets of ICH.
Collapse
Affiliation(s)
- Yao Liu
- School of Rehabilitation, Kunming Medical University, Kunming, China.,Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gang Lu
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xian Wei Su
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tao Ding
- Rehabilitation Department, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen Li Wang
- Rehabilitation Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Mei Li
- Rehabilitation Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wai Sang Poon
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Li Juan Ao
- School of Rehabilitation, Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Chen CC, Chen X, Li TC, Lin HL, Chu YT, Lee HC, Cheng YK, Chen DC, Tsai SC, Cho DY, Hsieh CL. PG2 for patients with acute spontaneous intracerebral hemorrhage: a double-blind, randomized, placebo-controlled study. Sci Rep 2017; 7:45628. [PMID: 28361971 PMCID: PMC5374535 DOI: 10.1038/srep45628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/01/2017] [Indexed: 12/14/2022] Open
Abstract
PG2 is an infusible polysaccharide extracted from Astragalus membranaceus, which is a Chinese herb traditionally used for stroke treatment. We investigated the effect of PG2 on patients with spontaneous acute intracerebral hemorrhage (ICH). A total of 61 patients with acute spontaneous ICH were randomized to either the treatment group (TG, 30 patients), which received 3 doses of PG2 (500 mg, IV) per week for 2 weeks, or the control group (CG, 31 patients), which received PG2 placebo. At 84 days after PG2 administration, the percentage of patients with a good Glasgow outcome scale (GOS 4–5) score in the TG was similar to that in the CG (69.0% vs. 48.4%; p = 0.2). The percentage of good mRS scores (0–2) in the TG was similar to that in the CG (62.1% vs. 45.2%; p = 0.3). In addition, no significant differences were seen when comparing differences in the C-reactive protein, erythrocyte sedimentation rate, interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α, and S100B levels between baseline and days 4, 7, and 14 after PG2 administration (all p > 0.05). The results are preliminary, necessitating a more thorough assessment.
Collapse
Affiliation(s)
- Chun-Chung Chen
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan.,Stroke Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - XianXiu Chen
- Stroke Center, China Medical University Hospital, Taichung 40447, Taiwan.,Department of Public Health, China Medical University, Taichung 40402, Taiwan
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, China Medical University, Taichung 40402, Taiwan
| | - Hung-Lin Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yen-Tze Chu
- Department of Neurosurgery, Tainan Municipal An-Nan Hospital, Tainan 70965, Taiwan
| | - Han-Chung Lee
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yu-Kai Cheng
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Shiu-Chiu Tsai
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 40447, Taiwan.,Stroke Center, China Medical University Hospital, Taichung 40447, Taiwan.,Graduate Institute of Immunology, China Medical University, Taichung 40402, Taiwan
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Research Center for Chinese Medicine and Acupuncture, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
11
|
Cerebral Blood Flow and Metabolism. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
13
|
Lei B, Sheng H, Wang H, Lascola CD, Warner DS, Laskowitz DT, James ML. Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp 2014. [PMID: 25046028 DOI: 10.3791/51439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a common form of cerebrovascular disease and is associated with significant morbidity and mortality. Lack of effective treatment and failure of large clinical trials aimed at hemostasis and clot removal demonstrate the need for further mechanism-driven investigation of ICH. This research may be performed through the framework provided by preclinical models. Two murine models in popular use include intrastriatal (basal ganglia) injection of either autologous whole blood or clostridial collagenase. Since, each model represents distinctly different pathophysiological features related to ICH, use of a particular model may be selected based on what aspect of the disease is to be studied. For example, autologous blood injection most accurately represents the brain's response to the presence of intraparenchymal blood, and may most closely replicate lobar hemorrhage. Clostridial collagenase injection most accurately represents the small vessel rupture and hematoma evolution characteristic of deep hemorrhages. Thus, each model results in different hematoma formation, neuroinflammatory response, cerebral edema development, and neurobehavioral outcomes. Robustness of a purported therapeutic intervention can be best assessed using both models. In this protocol, induction of ICH using both models, immediate post-operative demonstration of injury, and early post-operative care techniques are demonstrated. Both models result in reproducible injuries, hematoma volumes, and neurobehavioral deficits. Because of the heterogeneity of human ICH, multiple preclinical models are needed to thoroughly explore pathophysiologic mechanisms and test potential therapeutic strategies.
Collapse
Affiliation(s)
- Beilei Lei
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University
| | | | | | - David S Warner
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University; Department of Neurobiology, Duke University
| | - Daniel T Laskowitz
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University; Department of Neurology, Duke University; Department of Neurobiology, Duke University
| | - Michael L James
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University; Department of Neurology, Duke University;
| |
Collapse
|
14
|
Kwon WK, Park DH, Park KJ, Kang SH, Lee JH, Cho TH, Chung YG. Prognostic factors of clinical outcome after neuronavigation-assisted hematoma drainage in patients with spontaneous intracerebral hemorrhage. Clin Neurol Neurosurg 2014; 123:83-9. [PMID: 25012018 DOI: 10.1016/j.clineuro.2014.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/21/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The prognostic factors that contribute to outcome after navigation-assisted drainage in patients with spontaneous intracerebral hemorrhage (ICH) have not been defined. We compared the characteristics and clinical outcomes of patients with spontaneous ICHs who underwent neuronavigation-assisted hematoma drainage. METHODS Forty-seven patients were enrolled from January 2004 to August 2013. The patients were divided into two groups according to Glasgow Outcome Scale (GOS) scores: the good- (GOS 4-5) and poor-outcome (GOS 1-3) groups. A variety of factors, characteristics, and clinical outcomes were analyzed. RESULTS Among the 47 patients, 16 and 31 showed good and poor outcomes, respectively. The mortality rate was 4.3%. Patients' ages, horizontal and vertical diameters and volume of the hematoma on the initial brain computed tomography scan, and the initial Glasgow Coma Scale (GCS) scores were significantly different between the two groups (P<0.05). Ages less than 60 years, smaller horizontal and vertical diameters of the hematoma, less initial hematoma volume, higher initial GCS scores, and the absence of intraventricular hemorrhages were significantly associated with good outcome (P<0.05). Among these factors, initial hematoma volume was a borderline prognostic factor (odds ratio [OR], 0.951; 95% confidence interval [CI], 0.904-1.001; P=0.054), whereas initial GCS score was a significant prognostic factor (OR, 2.737; 95% CI, 1.371-5.465; P=0.004), in the multivariate analysis. CONCLUSION Initial GCS score and hematoma volume were important prognostic factors of clinical outcome in patients with spontaneous ICHs who underwent navigation-assisted drainage. Such factors should be carefully considered before patients are treated with navigation-assisted hematoma drainage.
Collapse
Affiliation(s)
- Woo-Keun Kwon
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Dong-Hyuk Park
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea; Center of Innovative Cell Therapy and Research, Anam Hospital, Korea University College of Medicine, Seoul, South Korea.
| | - Kyung-Jae Park
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| | - Jeong-Hyun Lee
- Center of Innovative Cell Therapy and Research, Anam Hospital, Korea University College of Medicine, Seoul, South Korea; Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, South Korea
| | - Tai-Hyoung Cho
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea; Center of Innovative Cell Therapy and Research, Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Yong-Gu Chung
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 2014; 115:45-63. [PMID: 24139872 PMCID: PMC3961535 DOI: 10.1016/j.pneurobio.2013.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal stroke subtype for which specific therapies and treatments remain elusive. To address this, many recent experimental and translational studies of ICH have been conducted, and these have led to several ongoing clinical trials. This review focuses on the progress of translational studies of ICH including those of the underlying causes and natural history of ICH, animal models of the condition, and effects of ICH on the immune and cardiac systems, among others. Current and potential clinical trials also are discussed for both ICH alone and with intraventricular extension.
Collapse
Affiliation(s)
- Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States.
| | - Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Abstract
It is being increasingly suggested that the microcirculation, which is known to be in a large part responsible for maintaining an adequate and constant microenvironment for function of the central nervous system, functions as part of a neurovascular unit. The neurovascular unit includes neurons, astrocytes and elements of capillaries. The cerebral circulation exhibits unique functional characteristics and critical elements for the pathogenesis of cerebrovascular disease. For example, the blood-brain barrier formed by epithelial-like high resistance tight junctions within the endothelium is a key feature of microvessels of the central nervous system. Alterations in the microcirculation after ischemia/reperfusion include disruption of the blood-brain barrier, edema and swelling of perivascular astrocyte foot processes, decrease in arteriole endothelium-dependent relaxation and reduced inwardly-rectifying potassium channel function, altered expression of proteases and matrix metalloproteinases, increased inflammatory mediators and inflammation. Experiments studying the microcirculation in ischemia are few compared with those examining neuroprotection, although the two overlap because protection of the microcirculation might achieve some degree of neuroprotection and both processes may be mediated by at least some mechanisms in common.
Collapse
Affiliation(s)
- Masataka Takahashi
- Section of Neurosurgery, Department of Surgery, University of Chicago Medical Center and Pritzker School of Medicine, Chicago, IL 60637, USA
| | | |
Collapse
|
17
|
Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke 2013; 44:627-34. [PMID: 23391763 PMCID: PMC4124642 DOI: 10.1161/strokeaha.111.000411] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Perihematomal edema (PHE) can worsen outcomes after intracerebral hemorrhage (ICH). Reports suggest that blood degradation products lead to PHE. We hypothesized that hematoma evacuation will reduce PHE volume and that treatment with recombinant tissue-type plasminogen activator (rt-PA) will not exacerbate it. METHODS Minimally invasive surgery and rt-PA in ICH evacuation (MISTIE) phase II tested safety and efficacy of hematoma evacuation after ICH. We conducted a semiautomated, computerized volumetric analysis on computed tomography to assess impact of hematoma removal on PHE and effects of rt-PA on PHE. Volumetric analyses were performed on baseline stability and end of treatment scans. RESULTS Seventy-nine surgical and 39 medical patients from minimally invasive surgery and rt-PA in ICH evacuation phase II (MISTIE II) were analyzed. Mean hematoma volume at end of treatment was 19.6±14.5 cm(3) for the surgical cohort and 40.7±13.9 cm(3) for the medical cohort (P<0.001). Edema volume at end of treatment was lower for the surgical cohort: 27.7±13.3 cm(3) than medical cohort: 41.7±14.6 cm(3) (P<0.001). Graded effect of clot removal on PHE was observed when patients with >65%, 20% to 65%, and <20% ICH removed were analyzed (P<0.001). Positive correlation between PHE reduction and percent of ICH removed was identified (ρ=0.658; P<0.001). In the surgical cohort, 69 patients underwent surgical aspiration and rt-PA, whereas 10 underwent surgical aspiration only. Both cohorts achieved similar clot reduction: surgical aspiration and rt-PA, 18.9±14.5 cm(3); and surgical aspiration only, 24.5±14.0 cm(3) (P=0.26). Edema at end of treatment in surgical aspiration and rt-PA was 28.1±13.8 cm(3) and 24.4±8.6 cm(3) in surgical aspiration only (P=0.41). CONCLUSIONS Hematoma evacuation is associated with significant reduction in PHE. Furthermore, PHE does not seem to be exacerbated by rt-PA, making such neurotoxic effects unlikely when the drug is delivered to intracranial clot.
Collapse
Affiliation(s)
- W. Andrew Mould
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - J. Ricardo Carhuapoma
- Departments of Neurology, Neurosurgery and Anesthesiology/Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - John Muschelli
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Karen Lane
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Timothy C Morgan
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Nichol A McBee
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Amanda J Bistran-Hall
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Natalie L Ullman
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Paul Vespa
- Departments of Neurology and Neurosurgery, UCLA School of Medicine, Los Angeles, CA
| | - Neil A Martin
- Departments of Neurology and Neurosurgery, UCLA School of Medicine, Los Angeles, CA
| | - Issam Awad
- Department of Neurosurgery, University of Chicago Medicine and Biological Sciences, Chicago, IL
| | - Mario Zuccarello
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
| | - Daniel F. Hanley
- Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD
| |
Collapse
|
18
|
Babu R, Bagley JH, Di C, Friedman AH, Adamson C. Thrombin and hemin as central factors in the mechanisms of intracerebral hemorrhage-induced secondary brain injury and as potential targets for intervention. Neurosurg Focus 2012; 32:E8. [PMID: 22463118 DOI: 10.3171/2012.1.focus11366] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stoke that may cause significant morbidity and mortality. Brain injury due to ICH initially occurs within the first few hours as a result of mass effect due to hematoma formation. However, there is increasing interest in the mechanisms of secondary brain injury as many patients continue to deteriorate clinically despite no signs of rehemorrhage or hematoma expansion. This continued insult after primary hemorrhage is believed to be mediated by the cytotoxic, excitotoxic, oxidative, and inflammatory effects of intraparenchymal blood. The main factors responsible for this injury are thrombin and erythrocyte contents such as hemoglobin. Therapies including thrombin inhibitors, N-methyl-D-aspartate antagonists, chelators to bind free iron, and antiinflammatory drugs are currently under investigation for reducing this secondary brain injury. This review will discuss the molecular mechanisms of brain injury as a result of intraparenchymal blood, potential targets for therapeutic intervention, and treatment strategies currently in development.
Collapse
Affiliation(s)
- Ranjith Babu
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
19
|
Leonardo CC, Robbins S, Doré S. Translating basic science research to clinical application: models and strategies for intracerebral hemorrhage. Front Neurol 2012; 3:85. [PMID: 22661966 PMCID: PMC3361857 DOI: 10.3389/fneur.2012.00085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/07/2012] [Indexed: 01/01/2023] Open
Abstract
Preclinical stroke models provide insights into mechanisms of cellular injury and potential therapeutic targets. Renewed efforts to standardize preclinical practices and adopt more rigorous approaches reflect the assumption that a better class of compounds will translate into clinical efficacy. While the need for novel therapeutics is clear, it is also critical that diagnostics be improved to allow for more rapid treatment upon hospital admission. Advances in imaging techniques have aided in the diagnosis of stroke, yet current limitations and expenses demonstrate the need for new and complementary approaches. Intracerebral hemorrhage (ICH) exhibits the highest mortality rate, displays unique pathology and requires specialized treatment strategies relative to other forms of stroke. The aggressive nature and severe consequences of ICH underscore the need for novel therapeutic approaches as well as accurate and expeditious diagnostic tools. The use of experimental models will continue to aid in addressing these important issues as the field attempts to translate basic science findings into the clinical setting. Several preclinical models of ICH have been developed and are widely used to recapitulate human pathology. Because each model has limitations, the burden lies with the investigator to clearly define the question being asked and select the model system that is most relevant to that question. It may also be necessary to optimize and refine pre-existing paradigms, or generate new paradigms, as the future success of translational research is dependent upon the ability to mimic human sequelae and assess clinically relevant outcome measures as means to evaluate therapeutic efficacy.
Collapse
Affiliation(s)
- Christopher C Leonardo
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida Gainesville, FL, USA
| | | | | |
Collapse
|
20
|
Bodmer D, Vaughan KA, Zacharia BE, Hickman ZL, Connolly ES. The Molecular Mechanisms that Promote Edema After Intracerebral Hemorrhage. Transl Stroke Res 2012; 3:52-61. [PMID: 24323861 DOI: 10.1007/s12975-012-0162-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 01/01/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating type of stroke with no effective therapies. Clinical advances in ICH treatment are limited by an incomplete understanding of the molecular mechanisms responsible for secondary injury and poor outcome. Increasing evidence suggests that cerebral edema is a major contributor to secondary injury and poor outcome in ICH. ICH activates specific signaling pathways that promote edema and damage neuronal tissue. By increasing our understanding of these pathways, we may be able to target them pharmaceutically to reduce edema in ICH patients. In this review, we focus on three major signaling pathways that promote edema after ICH: (1) the coagulation cascade and thrombin, (2) the inflammatory response and matrix metalloproteinases, and (3) the complement cascade and hemoglobin toxicity. We will describe the experimental evidence that confirms these pathways promote edema in ICH, discuss potential targets for new therapies, and comment on important directions for future research.
Collapse
Affiliation(s)
- Daniel Bodmer
- Department of Neurological Surgery, The Neurological Institute, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The likelihood of translating therapeutic interventions for stroke rests on the quality of preclinical science. Given the limited success of putative treatments for ischemic stroke and the reasons put forth to explain it, we sought to determine whether such problems hamper progress for intracerebral hemorrhage (ICH). Approximately 10% to 20% of strokes result from an ICH, which results in considerable disability and high mortality. Several animal models reproduce ICH and its underlying pathophysiology, and these models have been widely used to evaluate treatments. As yet, however, none has successfully translated. In this review, we focus on rodent models of ICH, highlighting differences among them (e.g., pathophysiology), issues with experimental design and analysis, and choice of end points. A Pub Med search for experimental ICH (years: 2007 to 31 July 2011) found 121 papers. Of these, 84% tested neuroprotectants, 11% tested stem cell therapies, and 5% tested rehabilitation therapies. We reviewed these to examine study quality (e.g., use of blinding procedures) and choice of end points (e.g., behavioral testing). Not surprisingly, the problems that have plagued the ischemia field are also prevalent in ICH literature. Based on these data, several recommendations are put forth to facilitate progress in identifying effective treatments for ICH.
Collapse
|
22
|
Chonpathompikunlert P, Fan CH, Ozaki Y, Yoshitomi T, Yeh CK, Nagasaki Y. Redox nanoparticle treatment protects against neurological deficit in focused ultrasound-induced intracerebral hemorrhage. Nanomedicine (Lond) 2012; 7:1029-43. [PMID: 22394184 DOI: 10.2217/nnm.12.2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Intracerebral hemorrhage is reported to induce the generation of reactive oxygen species and oxidative DNA damage in the brain. AIMS We aimed to examine whether our designed redox polymer nanoparticle could reduce intracerebral hemorrhage induced by 1-MHz focused ultrasound sonication coupled with microbubble treatment. MATERIALS & METHODS Contrast-enhanced ultrasound imaging, frozen section, brain edema, neurologic deficit, the number of morphologically normal neurons, DNA oxidization and superoxide anion generation were used to investigate the neuroprotective effect of redox polymer nanoparticles. RESULTS We confirmed that the 1-MHz focused ultrasound coupled with microbubble produced intracerebral hemorrhage and showed that the redox polymer nanoparticle ameliorates intracerebral hemorrhage-induced brain edema, neurological deficit and oxidative damage. CONCLUSION These results suggest that redox polymer nanoparticle is a potential therapeutic agent for intracerebral hemorrhage induced by focused ultrasound.
Collapse
Affiliation(s)
- Pennapa Chonpathompikunlert
- Department of Materials Sciences, Graduate School of Pure & Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab 2011; 31:2135-51. [PMID: 21863040 PMCID: PMC3210340 DOI: 10.1038/jcbfm.2011.124] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) has the highest mortality of all stroke subtypes, yet treatments are mainly limited to supportive management, and surgery remains controversial. Despite significant advances in our understanding of ICH pathophysiology, we still lack preclinical models that accurately replicate the underlying mechanisms of injury. Current experimental ICH models (including autologous blood and collagenase injection) simulate different aspects of ICH-mediated injury but lack some features of the clinical condition. Newly developed models, notably hypertension- and oral anticoagulant therapy-associated ICH models, offer added benefits but further study is needed to fully validate them. Here, we describe and discuss current approaches to experimental ICH, with suggestions for changes in how this condition is studied in the laboratory. Although advances in imaging over the past few decades have allowed greater insight into clinical ICH, there remains an important role for experimental models in furthering our understanding of the basic pathophysiologic processes underlying ICH, provided limitations of animal models are borne in mind. Owing to differences in existing models and the failed translation of benefits in experimental ICH to clinical practice, putative neuroprotectants should be trialed in multiple models using both histological and functional outcomes until a more accurate model of ICH is developed.
Collapse
Affiliation(s)
- Matthew A Kirkman
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Stuart M Allan
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Adrian R Parry-Jones
- The University of Manchester, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
24
|
Wu CH, Yang RL, Huang SY, Li HZ, Wang KY, Yang DH, Yan XH, Xue XH, Wu SY, Wang JM, Lin JS, Liao LM, Chen LD. Analysis of thrombin-antithrombin complex contents in plasma and hematoma fluid of hypertensive intracerebral hemorrhage patients after clot removal. Eur J Neurol 2011; 18:1060-6. [PMID: 21244583 DOI: 10.1111/j.1468-1331.2010.03336.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND PURPOSE Animal experiments indicate that the cerebral thrombin is associated with secondary brain damage after intracerebral hemorrhage (ICH). This study was aimed to investigate the concentrations of thrombin-antithrombin complex (TAT) in hematoma fluid and plasma of the patients with ICH after surgery and analyze the correlation between TAT complex levels and severity of ICH. METHODS Sixty patients with ICH were enrolled. Craniotomy for removal of intracranial blood clot was performed within 24h after ICH. Hematoma fluid and plasma were collected on postoperative days 1, 2, and 4. The plasma obtained from healthy subjects and cerebrospinal fluid from patients without cerebrovascular diseases served as controls, respectively. Enzyme-linked immunosorbent assay was used to determine the concentrations of TAT complex in the patients and controls. RESULTS TAT complex concentrations in both postoperative plasma and hematoma fluid of patients with ICH were significantly higher than those of the controls (P<0.01). In patients with ICH, hematoma fluid had a higher TAT complex level than plasma (P<0.01). The preoperative hemorrhage volume and postoperative TAT complex levels in plasma and hematoma fluid correlated positively with National Institutes of Health stroke scale and negatively with Glasgow coma score (P<0.01). CONCLUSION This study indicates that TAT complex levels of plasma and hematoma fluid correlate positively with the severity of ICH. Determination of the plasma TAT complex concentration is helpful for the evaluation of the severity of post-ICH brain injury.
Collapse
Affiliation(s)
- C-H Wu
- Department of Neurology, The Second Affiliated Clinical College of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Isoflurane Preconditioning Affords Functional Neuroprotection in a Murine Model of Intracerebral Hemorrhage. INTRACEREBRAL HEMORRHAGE RESEARCH 2011; 111:141-4. [DOI: 10.1007/978-3-7091-0693-8_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Manaenko A, Chen H, Zhang JH, Tang J. Comparison of different preclinical models of intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:9-14. [PMID: 21725724 DOI: 10.1007/978-3-7091-0693-8_2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most devastating type of stroke. It is characterized by spontaneous bleeding in brain parenchyma and is associated with a high rate of morbidity and mortality. Presently, there is neither an effective therapy to increase survival after intracerebral hemorrhage nor a treatment to improve the quality of life for survivors. A reproducible animal model of spontaneous ICH mimicking the development of acute and delayed brain injury after ICH is an invaluable tool for improving our understanding of the underlying mechanisms of ICH-induced brain injury and evaluating potential therapeutic interventions. A number of models have been developed. While different species have been studied, rodents have become the most popular and widely utilized animals used in ICH research. The most often used methods for experimental induction of ICH are injection of bacterial collagenase and direct injection of blood into the brain parenchyma. The "balloon" method has also been used to mimic ICH for study. In this summary, we intend to provide a comparative overview of the technical methods, aspects, and pathologic findings of these types of ICH models. We will also focus on the similarities and differences among these rodent models, achievements in technical aspects of the ICH model, and discuss important aspects in selecting relevant models for study.
Collapse
Affiliation(s)
- Anatol Manaenko
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Risley Hall, Room 219, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Di X, Sui A, Hakim R, Wang M, Warnke JP. Endoscopic minimally invasive neurosurgery: emerging techniques and expanding role through an extensive review of the literature and our own experience - part I: intraendoscopic neurosurgery. Pediatr Neurosurg 2011; 47:315-26. [PMID: 22456186 DOI: 10.1159/000336017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 12/15/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Minimally invasive neurosurgery is a growing field, more so in recent decades. The modernization of tools, especially the endoscope, has allowed for critical improvements and crucial advancements in minimally invasive neurosurgery. The current classification scheme for endoscopic procedures needs to be updated to reflect these advancements. METHODS Although the field of neuroendoscopy is continually evolving, the terminologies utilized to describe endoscopic procedures reflect and favor its use as mostly an assisting device complementing the microscope. Even though the classification was adequate for its time, it has become inexact and therefore confusing. We therefore propose a new classification scheme that encompasses the growing independence of endoscopic minimally invasive neurosurgery (EMIN) as well as the changing landscape within EMIN procedures. RESULTS We have classified our EMIN procedures, since 2002, as either 'intraendoscopic' (IEN) or 'extraendoscopic' (XEN) in relation to the endoscope's axis. Exemplary cases of IEN and a review of the literature are presented as well. CONCLUSION Our proposed classification scheme for solely endoscopic procedures is presented. The role of the endoscope as an independent tool is clarified.
Collapse
Affiliation(s)
- Xiao Di
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
29
|
Ma Q, Khatibi NH, Chen H, Tang J, Zhang JH. History of preclinical models of intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:3-8. [PMID: 21725723 DOI: 10.1007/978-3-7091-0693-8_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to understand a disease process, effective modeling is required that can assist scientists in understanding the pathophysiological processes that take place. Intracerebral hemorrhage (ICH), a devastating disease representing 15% of all stroke cases, is just one example of how scientists have developed models that can effectively mimic human clinical scenarios. Currently there are three models of hematoma injections that are being used to induce an ICH in subjects. They include the microballoon model introduced in 1987 by Dr. David Mendelow, the bacterial collagenase injection model introduced in 1990 by Dr. Gary Rosenberg, and the autologous blood injection model introduced by Dr. Guo-Yuan Yang in 1994. These models have been applied on various animal models beginning in 1963 with canines, followed by rats and rabbits in 1982, pigs in 1996, and mice just recently in 2003. In this review, we will explore in detail the various injection models and animal subjects that have been used to study the ICH process while comparing and analyzing the benefits and disadvantages of each.
Collapse
Affiliation(s)
- Qingyi Ma
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, Risley Hall, Room 219, Loma Linda, CA 92354, USA
| | | | | | | | | |
Collapse
|
30
|
Masuda T, Maki M, Hara K, Yasuhara T, Matsukawa N, Yu S, Bae EC, Tajiri N, Chheda SH, Solomita MA, Weinbren N, Kaneko Y, Kirov SA, Hess DC, Hida H, Borlongan CV. Peri-hemorrhagic degeneration accompanies stereotaxic collagenase-mediated cortical hemorrhage in mouse. Brain Res 2010; 1355:228-39. [DOI: 10.1016/j.brainres.2010.07.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 12/01/2022]
|
31
|
Abstract
Investigation of the interplay between the cerebral circulation and brain cellular function is fundamental to understanding both the pathophysiology and treatment of stroke. Currently, PET is the only technique that provides accurate, quantitative in vivo regional measurements of both cerebral circulation and cellular metabolism in human subjects. We review normal human cerebral blood flow and metabolism and human PET studies of ischemic stroke, carotid artery disease, vascular dementia, intracerebral hemorrhage and aneurysmal subarachnoid hemorrhage and discuss how these studies have added to our understanding of the pathophysiology of human cerebrovascular disease.
Collapse
Affiliation(s)
- William J. Powers
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Allyson R. Zazulia
- Departments of Neurology and Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
32
|
Sakai H, Okamoto M, Ikeda E, Horinouchi H, Kobayashi K, Tsuchida E. Histopathological changes of rat brain after direct injection of Hb-vesicles (artificial oxygen carriers) and neurological impact in an intracerebral hemorrhage model. J Biomed Mater Res A 2009; 90:1107-19. [DOI: 10.1002/jbm.a.32164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Yu Z, Chen LF, Li XF, Zhang DP, Chen YM, Wu WF, Hu CL. A double-injection model of intracerebral hemorrhage in rabbits. J Clin Neurosci 2009; 16:545-8. [DOI: 10.1016/j.jocn.2008.04.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 04/27/2008] [Indexed: 10/21/2022]
|
34
|
James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 2008; 9:139-52. [PMID: 18058257 DOI: 10.1007/s12028-007-9030-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating and relatively common disease affecting as many as 50,000 people annually in the United States alone. ICH remains associated with poor outcome, and approximately 40-50% of afflicted patients will die within 30 days. In reports from the NIH and AHA, the importance of developing clinically relevant models of ICH that will extend our understanding of the pathophysiology of the disease and target new therapeutic approaches was emphasized. Traditionally, preclinical ICH research has most commonly utilized two paradigms: clostridial collagenase-induced hemorrhage and autologous blood injection. In this article, the use of various species is examined in the context of the different model types for ICH, and a mechanistic approach is considered in evaluating the numerous breakthroughs in our current fund of knowledge. Each of the model types has its inherent strengths and weaknesses and has the potential to further our understanding of the pathophysiology and treatment of ICH. In particular, transgenic rodent models may be helpful in addressing genetic influences on recovery from ICH.
Collapse
Affiliation(s)
- Michael Lucas James
- Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC 27710, USA.
| | | | | |
Collapse
|
35
|
Liu HL, Wai YY, Chen WS, Chen JC, Hsu PH, Wu XY, Huang WC, Yen TC, Wang JJ. Hemorrhage detection during focused-ultrasound induced blood-brain-barrier opening by using susceptibility-weighted magnetic resonance imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:598-606. [PMID: 18313204 DOI: 10.1016/j.ultrasmedbio.2008.01.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 12/06/2007] [Accepted: 01/15/2008] [Indexed: 05/11/2023]
Abstract
High-intensity focused ultrasound has been discovered to be able to locally and reversibly increase the permeability of the blood-brain barrier (BBB), which can be detected using magnetic resonance imaging (MRI). However, side effects such as microhemorrhage, erythrocyte extravasations or even extensive hemorrhage may also occur. Although current contrast-enhanced T1-weighted MRI can be used to detect the changes in BBB permeability, its efficacy in detecting tissue hemorrhage after focused-ultrasound sonication remains limited. The purpose of this study is to investigate the feasibility of magnetic resonance susceptibility-weighted imaging (MR-SWI) for identifying possible tissue hemorrhage associated with disruption of the BBB induced by focused ultrasound in a rat model. The brains of 42 Sprague-Dawley rats were subjected to 107 sonications, either unilaterally or bilaterally. Localized BBB opening was achieved by delivering burst-mode focused ultrasound energy into brain tissue in the presence of microbubbles. Rats were studied by T2-weighted and contrast-enhanced T1-weighted MRI techniques, as well as by SWI. Tissue changes were analyzed histologically and the extent of apoptosis was investigated with the terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling method. The results demonstrated that SWI is more sensitive than standard T2-weighted and contrast-enhanced T1-weighted MRI techniques in detecting hemorrhages after brain sonication. Longitudinal study showed that SWI is sensitive to the recovery process of the damage and, therefore, could provide important and complementary information to the conventional MR images. Potential applications such as drug delivery in the brain might be benefited.
Collapse
Affiliation(s)
- Hao-Li Liu
- Department of Electrical Engineering, Chang-Gung University, Linkou, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kuluz J, Huang T, Watson B, Vannucci S. Stroke in the immature brain: review of pathophysiology and animal models of pediatric stroke. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pediatric stroke research presents many challenges. Relatively low incidence, need for age stratification, diverse etiologies, delays in diagnosis, lack of an established age-based stroke severity scale and outcome measures are only some of the issues that have prevented the implementation of clinical trials in infants and children with stroke. Experimental animal models of pediatric stroke, therefore, are critical to understanding the pathophysiology and management of ischemic brain damage in the immature brain, and provide the necessary platform for future clinical trials. In this review we discuss the pertinent clinical aspects of pediatric stroke, the pathophysiology of stroke in the developing brain and the animal models established to study basic mechanisms as well as translational issues in pediatric stroke.
Collapse
Affiliation(s)
- John Kuluz
- Associate Professor of Pediatrics, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960, Miami, FL 33101, USA
| | - Tingting Huang
- Post-Doctoral Research Associate, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960 Miami, FL 33101, USA
| | - Brant Watson
- Professor of Neurology, University of Miami, Department of Neurology (D4–5), Miller School of Medicine, PO Box 016960, Miami, FL 33136, USA
| | - Susan Vannucci
- Research Professor of Neuroscience in Pediatrics/Newborn Medicine, Weill Cornell Medical College, 525 East 68th Street, N-506, NY 10065, USA
| |
Collapse
|
37
|
Thompson KM, Gerlach SY, Jorn HKS, Larson JM, Brott TG, Files JA. Advances in the care of patients with intracerebral hemorrhage. Mayo Clin Proc 2007; 82:987-90. [PMID: 17673068 DOI: 10.4065/82.8.987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intracerebral hemorrhage (ICH), which comprises 15 percent to 30 percent of all strokes, has an estimated incidence of 37,000 cases per year. One third of patients are actively bleeding when they present to the emergency department, and hematoma growth during the first hours after ICH onset is thought to be a prime determinant of clinical deterioration. Inflammation, as opposed to ischemia, also negatively affects patient condition. Recombinant activated factor VII is emerging as a potential first-line therapy, especially in warfarin-associated hemorrhage. Corticosteroid therapy is not supported by contemporary studies or by current management guidelines. Aggressive blood pressure reduction is under investigation. Surgical intervention has shown no statistically significant benefit over medical management for patients with ICH in general, although subgroup analysis in a large randomized trial suggested potential benefits from surgery for patients with lobar ICH. Not long ago, ICH was considered virtually untreatable. Diligent efforts in both bench and clinical research are generating hope for patients who experience this catastrophic event.
Collapse
Affiliation(s)
- Kristine M Thompson
- Department of Emergency Medicine, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Shah QA, Ezzeddine MA, Qureshi AI. Acute hypertension in intracerebral hemorrhage: pathophysiology and treatment. J Neurol Sci 2007; 261:74-9. [PMID: 17550786 DOI: 10.1016/j.jns.2007.04.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-traumatic or spontaneous intracerebral hemorrhage (ICH) is defined as intra-parenchymal bleeding with or without extension into the ventricles and rarely into the subarachoid space. Primary ICH in most cases is associated with chronic hypertension. Acute hypertension is associated with hematoma expansion, and poor neurological outcome. The treatment of hypertension in acute ICH is a topic of controversy. Experiments have shown an area of ischemia around the hematoma, with the reduction of regional cerebral blood flow (CBF) secondary to compression of microvasculature. Not all scientific results agree with the above findings. Recent studies have shown that CBF decreases in the perihematoma region but with concomitant reduction of cerebral metabolism, which would argue against an area of ischemia in the perihematoma region. Based on the above result, there have been several clinical trials looking at clinical outcome and decrease in hematoma expansion rates with reduction of blood pressure acutely after ICH. The parameters for the blood pressure control are still under investigation. The American Heart Association has put forward guidelines for blood pressure control which have been adopted in the centers around the country. We have described the protocol we use at our center for the blood pressure control in patients with acute ICH.
Collapse
Affiliation(s)
- Qaisar A Shah
- Zeenat Qureshi Stroke Research Center, Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
39
|
Abstract
Intracerebral hemorrhage (ICH) is a devastating clinical event without effective therapies. Increasing evidence suggests that inflammatory mechanisms are involved in the progression of ICH-induced brain injury. Inflammation is mediated by cellular components, such as leukocytes and microglia, and molecular components, including prostaglandins, chemokines, cytokines, extracellular proteases, and reactive oxygen species. Better understanding of the role of the ICH-induced inflammatory response and its potential for modulation might have profound implications for patient treatment. In this review, a summary of the available literature on the inflammatory responses after ICH is presented along with discussion of some of the emerging opportunities for potential therapeutic strategies. In the near future, additional strategies that target inflammation could offer exciting new promise in the therapeutic approach to ICH.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
40
|
de Oliveira JG, Beck J, Ulrich C, Rathert J, Raabe A, Seifert V. Comparison between clipping and coiling on the incidence of cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurosurg Rev 2006; 30:22-30; discussion 30-1. [PMID: 17061137 DOI: 10.1007/s10143-006-0045-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/13/2006] [Accepted: 08/22/2006] [Indexed: 11/29/2022]
Abstract
Cerebral vasospasm is one of the most important complications of aneurysmal subarachnoid hemorrhage. The effect of aneurysm occlusion technique on incidence of vasospasm is not exactly known. The objective was to analyze surgical clipping versus endovascular coiling on the incidence of cerebral vasospasm and its consequences. Using the MEDLINE PubMed (1966-present) database, all English-language manuscripts comparing patients treated by surgical clipping with patients treated by endovascular coiling, regarding vasospasm incidence after aneurysmal subarachnoid hemorrhage, were analyzed. Data extracted from eligible studies included the following outcome measures: incidence of total vasospasm, symptomatic vasospasm, ischemic infarct vasospasm-induced and delayed ischemic neurological deficit (DIND). A pooled estimate of the effect size was computed and the test of heterogeneity between studies was carried out using The Cochrane Collaboration's Review Manager software, RevMan 4.2. Nine manuscripts that fulfilled the eligibility criteria were included and analyzed. The studies differed substantially with respect to design and methodological quality. The overall results showed no significant difference between clipping and coiling regarding to outcome measures. According to the available data, there is no significant difference between the types of technique used for aneurysm occlusion (clipping or coiling) on the risk of cerebral vasospasm development and its consequences.
Collapse
Affiliation(s)
- Jean G de Oliveira
- Department of Neurosurgery, Neurocenter, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
BACKGROUND AND PURPOSE Recent measurements in intracerebral hemorrhage (ICH) patients suggest a primary reduction in brain metabolism is responsible for reduced cerebral blood flow and low oxygen extraction surrounding the hematoma. We sought to determine whether reduced mitochondrial respiratory function could account for reduced metabolic demand in ICH patients. METHODS Brain-tissue samples from 6 patients with acute spontaneous ICH and 6 control patients undergoing brain resection for management of seizure were evaluated. Only tissue removed from the brain adjacent to the hematoma was studied. Specimens were collected in the operating room; mitochondrial studies were begun within 1-hour. Mitochondrial oxygen consumption was measured after the addition of pyruvate, malate, and ADP, followed by oligomycin and carbonylcyanide. RESULTS The ICH patients ranged in age from 40 to 54 years; 2 were female and half black. Hemorrhages were located in the temporal lobe (3), cerebellum (2) and parietal lobe (1). The average State 3 (active) O2 consumption for mitochondria from ICH patients was approximately 40% lower than that of control patients ( CONTROLS 129+/-39 versus ICH: 76+/-28 nmol O2/min per mg protein). With increasing time from hemorrhage to testing there was a progressive decline in State 3 respiration. Reduced State 3 respiration was evident even at 6 hours, whereas at 72 hours, there was essentially no O2 consumption. CONCLUSIONS These data support the hypothesis that mitochondrial dysfunction and not ischemia is responsible for reduced oxygen metabolism in ICH. They point to a new direction for investigation and development of therapeutic interventions for ICH patients.
Collapse
|
42
|
Ma B, Zhang J. Nimodipine treatment to assess a modified mouse model of intracerebral hemorrhage. Brain Res 2006; 1078:182-8. [PMID: 16492378 DOI: 10.1016/j.brainres.2006.01.045] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 11/22/2005] [Accepted: 01/03/2006] [Indexed: 11/15/2022]
Abstract
One of the main limitations of intracerebral hemorrhage (ICH) research is lack of reproducible animal models. ICH appears to be associated with a volume of edema and ischemic injury surrounding the hematoma that may be reduced by nimodipine due to its vasodilating and cytoprotective effects. The present study was designed to produce a modified ICH model in mice based on the double-injection method initially developed by Dr. Belayev and accordingly performed in 3 groups: to evaluate this model itself and to assess the pharmacological effects of nimodipine in this model, respectively. In 80 ICR mice (32 +/- 3 g), ICH was induced by 30 microL whole blood injection into the caudate nucleus. ICH animals were then randomly received either nimodipine (5 mg/kg) or vehicle intraperitoneal injection just before and every 24 h after ICH (total of four times). The changes for cortical blood flow (CBF) were studied by the technique of Laser Doppler Perfusion Measure (LDPM). Animals were rated on a behavioral test and sacrificed at 72 h after ICH. The brains were removed, and hematoma volume and brain edema were subsequently determined. Due to the vasodilating effect of nimodipine, ICH animals treated with nimodipine had marked improved CBF accompanied by the improvement of forelimb placing performance compared with vehicle-treated ICH animals, though there was no marked difference in the hematoma volume and brain water content. In conclusion, the 30 microL whole blood injection closely mimicked natural ischemic events that occurred in human massive ICH and confirmed the anti-ischemia effect of nimodipine. This study suggested that nimodipine could be markedly effective to reduce edema and hematoma volume when administered in combination with other neuroprotective agents because ICH can induce brain injury by multiple mechanisms.
Collapse
Affiliation(s)
- Bo Ma
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | | |
Collapse
|
43
|
Qu Y, Chen J, Benvenisti-Zarom L, Ma X, Regan RF. Effect of targeted deletion of the heme oxygenase-2 gene on hemoglobin toxicity in the striatum. J Cereb Blood Flow Metab 2005; 25:1466-75. [PMID: 15902196 DOI: 10.1038/sj.jcbfm.9600143] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The heme oxygenase (HO) enzymes catalyze the rate-limiting step in the breakdown of heme to iron, carbon monoxide, and biliverdin. A prior cell culture study demonstrated that deletion of HO-2, the isoform constitutively expressed in neurons, attenuated hemoglobin (Hb) neurotoxicity. The present study tested the hypothesis that HO-2 gene deletion is cytoprotective in a model of Hb toxicity in vivo. Stereotactic injection of 6 microL stroma-free Hb (SFHb) into the striatum significantly increased protein oxidation in wild-type mice at 24 to 72 h, as detected by an assay for carbonyl groups. At 72 h, carbonylation was increased 2.5-fold compared with that in the contralateral striatum. In HO-2 knockout mice, protein oxidation was not increased at 24 h, and was increased by only 1.7-fold at 72 h. Similarly, striatal lipid peroxidation, as detected by the malondialdehyde assay, was significantly greater in the SFHb-injected striata of wild-type mice than in knockout mice. Striatal cell viability, determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, was 45.0%+/-6.3% of that in contralateral striata in wild-type mice at 72 h; it was increased to 85%+/-8% in knockouts. Heme oxygenase-2 gene deletion did not alter weight loss or mortality after SFHb injection. Baseline striatal HO-1 expression was similar in knockout and wild-type mice; induction after SFHb injection occurred more rapidly in the latter. These results suggest that HO-2 gene deletion protects striatal cells from the oxidative toxicity of Hb in vivo. Pharmacologic or genetic strategies that target HO-2 may be beneficial after central nervous system hemorrhage, and warrant further investigation.
Collapse
Affiliation(s)
- Yan Qu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
44
|
Cherubini A, Ruggiero C, Polidori MC, Mecocci P. Potential markers of oxidative stress in stroke. Free Radic Biol Med 2005; 39:841-52. [PMID: 16140205 DOI: 10.1016/j.freeradbiomed.2005.06.025] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/14/2005] [Accepted: 06/30/2005] [Indexed: 12/26/2022]
Abstract
Free radical production is increased in ischemic and hemorrhagic stroke, leading to oxidative stress that contributes to brain damage. The measurement of oxidative stress in stroke would be extremely important for a better understanding of its pathophysiology and for identifying subgroups of patients that might receive targeted therapeutic intervention. Since direct measurement of free radicals and oxidized molecules in the brain is difficult in humans, several biological substances have been investigated as potential peripheral markers. Among lipid peroxidation products, malondialdehyde, despite its relevant methodological limitations, is correlated with the size of ischemic stroke and clinical outcome, while F2-isoprostanes appear to be promising, but they have not been adequately evaluated. 8-Hydroxy-2-deoxyguanosine has been extensively investigated as markers of oxidative DNA damage but no study has been done in stroke patients. Also enzymatic and nonenzymatic antioxidants have been proposed as indirect markers. Among them ascorbic acid, alpha-tocopherol, uric acid, and superoxide dismutase are related to brain damage and clinical outcome. After a critical evaluation of the literature, we conclude that, while an ideal biomarker is not yet available, the balance between antioxidants and by-products of oxidative stress in the organism might be the best approach for the evaluation of oxidative stress in stroke patients.
Collapse
Affiliation(s)
- Antonio Cherubini
- Institute of Gerontology and Geriatrics, University of Perugia Medical School, Policlinico Monteluce-Pad. E, Via Brunamonti 51, 06122 Perugia, Italy.
| | | | | | | |
Collapse
|
45
|
Tang J, Liu J, Zhou C, Ostanin D, Grisham MB, Neil Granger D, Zhang JH. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J Neurochem 2005; 94:1342-50. [PMID: 16011743 DOI: 10.1111/j.1471-4159.2005.03292.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major risk factors for intracerebral hemorrhage (ICH) are hypertension and aging. A fundamental mechanism for hypertension- and aging-induced vascular injury is oxidative stress. We hypothesize that oxidative stress has a crucial role in ICH. To test our hypothesis, we used bacterial collagenase to produce ICH in wild-type C57BL/6 and gp91phox knockout (gp91phox KO) mice (deficient in gp91phox subunit of the superoxide-producing enzyme NADPH oxidase). All animals were studied at 20-35 weeks of age, resembling an older patient population. We found that collagenase produced less bleeding in gp91phox KO mice than wild-type mice. Total oxidative product was lower in gp91phox KO mice than in wild-type mice, both under basal conditions and after ICH. Consistent with the ICH volume, brain edema formation, neurological deficit and a high mortality rate was noted in wild-type but not in gp91phox KO mice. This ICH-induced brain injury in wild-type mice is associated with enhanced expression of the gp91phox subunit of NADPH oxidase. In conclusion, the oxidative stress resulting from activation of NADPH oxidase contributes to ICH induced by collagenase and promotes brain injury.
Collapse
Affiliation(s)
- Jiping Tang
- Department of Molecular and Cellular Physiology, Lousiana State University Health Science Center, Shrevenport, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 2005; 36:e23-41. [PMID: 15692109 DOI: 10.1161/01.str.0000155685.77775.4c] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal stroke types. In December 2003, a National Institute of Neurological Disorders and Stroke (NINDS) workshop was convened to develop a consensus for ICH research priorities. The focus was clinical research aimed at acute ICH in patients. METHODS Workshop participants were divided into 6 groups: (1) current state of ICH research; (2) basic science; and (3) imaging, (4) medical, (5) surgical, and (6) clinical methodology. Each group formulated research priorities before the workshop. At the workshop, these were discussed and refined. RESULTS Recent progress in management of hemorrhage growth, intraventricular hemorrhage, and limitations in the benefit of open craniotomy were noted. The workshop identified the importance of developing animal models to reflect human ICH, as well as the phenomena of rebleeding. More human ICH pathology is needed. Real-time, high-field magnets and 3-dimensional imaging, as well as high-resolution tissue probes, are ICH imaging priorities. Trials of acute blood pressure-lowering in ICH and coagulopathy reversal are medical priorities. The exact role of edema in human ICH pathology and its treatment requires intensive study. Trials of minimally invasive surgical techniques including mechanical and chemical surgical adjuncts are critically important. The methodologic challenges include establishing research networks and a multi-specialty approach. Waiver of consent issues and standardizing care in trials are important issues. Encouragement of young investigators from varied backgrounds to enter the ICH research field is critical. CONCLUSIONS Increasing ICH research is crucial. A collaborative approach is likely to yield therapies for this devastating form of brain injury.
Collapse
|
47
|
Tang J, Liu J, Zhou C, Alexander JS, Nanda A, Granger DN, Zhang JH. Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 2004; 24:1133-45. [PMID: 15529013 DOI: 10.1097/01.wcb.0000135593.05952.de] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) participates in the disregulation of blood-brain barrier during hemorrhagic transformation, and exacerbates brain injury after cerebral ischemia. However, the consequences of long-term inhibition or deficiency of MMP-9 activity (which might affect normal collagen or matrix homeostasis) remains to be determined. The authors investigated how MMP-9 gene deficiency enhances hemorrhage and increases mortality and neurologic deficits in a collagenase-induced intracerebral hemorrhage (ICH) model in MMP-9-knockout mice. MMP-9-knockout and corresponding wild-type mice at 20 to 35 weeks were used to model an aged population (because advanced age is a significant risk factor in human ICH). Collagenase VII-S (0.5 microL, 0.075 U) was injected into the right basal ganglia in mice and mortality, neurologic deficits, brain edema, and hemorrhage size measured. In addition, MMP-9 activity, brain collagen content, blood coagulation, cerebral arterial structure, and expressions of several MMPs were examined. Increased hemorrhage and brain edema that correlated with higher mortality and neurologic deficits were found in MMP-9-knockout mice. No apparent structural changes were observed in cerebral arteries, even though brain collagen content was reduced in MMP-9-knockout mice. MMP-9-knockout mice did exhibit an enhanced expression of MMP-2 and MMP-3 in response to ICH. The results indicate that a deficiency of MMP-9 gene in mutant mice increases collagenase-induced hemorrhage and the resulting brain injury. The intriguing relationship between MMP-9 deficiency and collagenase-induced ICH may reflect the reduction in collagen content and an enhanced expression of MMP-2 and MMP-3.
Collapse
Affiliation(s)
- Jiping Tang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport 33932, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Lema PP, Girard C, Vachon P. Evaluation of dexamethasone for the treatment of intracerebral hemorrhage using a collagenase-induced intracerebral hematoma model in rats. J Vet Pharmacol Ther 2004; 27:321-8. [PMID: 15500570 DOI: 10.1111/j.1365-2885.2004.00597.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dexamethasone was evaluated for the treatment of intracerebral hemorrhage using a rat model of cerebral hematoma induced by intracerebral injection of collagenase. The treatment group consisted of hematoma rats receiving dexamethasone 1 mg/kg intraperitoneal (i.p.) at 1 and 24 h following surgery. Controls included hematoma rats receiving saline i.p. and sham-operated animals receiving saline i.p. Each animal was evaluated neurologically prior to, as well as 24 and 48 h following surgery. After the last neurological evaluation, animals were deeply anesthetized and the brain was removed following perfusion for microscopic examination and glial fibrillary acidic protein immunohistochemistry. Behavioral scores were significantly improved in the treated group (P < 0.0001). The hematoma volume was significantly smaller (P < 0.02). Neutrophils and astrocytes were less numerous in the hematoma of dexamethasone-treated animals (P < 0.001), however the number of necrotic neurons in the penumbra was not changed by the treatment. The number of necrotic neurons in the cerebral cortex was less in treated than in nontreated animals (P < 0.01). Controls had many vascular changes including necrotic endothelium and fibrin deposits compared with treated animals. In conclusion, dexamethasone administered shortly after an intracerebral hematoma appears beneficial for the treatment of this condition.
Collapse
Affiliation(s)
- P P Lema
- Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, C.P. 5000, St-Hyacinthe, QC, Canada J2S 7C6
| | | | | |
Collapse
|
49
|
Abstract
Even with rapid development of other neuroimaging modalities such as MR imaging and CT, PET is the only technique that provides accurate, quantitative measurements of regional hemodynamics and metabolism in human subjects. Through the use of these combined measurements, we have greatly expanded our knowledge of the pathophysiology of cerebrovascular disease of different types. It has been possible to document the compensatory responses of the brain to reductions in perfusion pressure and to directly relate these responses to prognosis. PET measurements of OEF identify a subgroup of patients who have carotid occlusion and who are at increased risk for recurrent stroke who cannot be identified by any other clinical or arteriographic means. These measurements of OEF are being used to identify high-risk patients for inclusion in a clinical trial to assess the efficacy of surgical revascularization in reducing the subsequence of ipsilateral ischemic stroke. In acute ischemic stroke, attempts have been made to define the "ischemic penumbra" and to predict tissue viability and clinical outcome, although the reliability of PET markers of ischemia in distinguishing viable from irreversibly damaged tissue needs to be confirmed with independent data sets. Much work has been devoted to the investigation of the metabolic effects of infarcts and hemorrhages on remote areas of the brain; the clinical importance of such findings appears to be minimal. Early studies of recovery from stroke suggested functional reorganization of the brain, but further investigations with more rigorous experimental design need to be performed. Given the case of performing such studies with functional MR imaging, it is likely that this technology will supplant PET for this specific indication. The importance of ischemia as a secondary mechanism of brain injury has been addressed in ICH and SAH. PET demonstrated that hematomas exert a primary depression of metabolism rather than inducing ischemia in the surrounding tissue. It also documented the integrity of autoregulation and provided clinically useful information regarding the safety of blood pressure reduction after ICH. Studies in SAH have differentiated the primary effects of the hemorrhage on cerebral hemodynamics and metabolism from those of vasospasm. PET studies are time-consuming, expensive, and require extensive facilities and technical support. In the field of cerebrovascular disease, PET has served as a specialized research tool at a few centers to help elucidate the pathophysiology of stroke. Up until now, however, PET scans in individual patients have not been demonstrated to be necessary for making patient care decisions. Whether the role of PET expands to impact the management of individual patients will depend on the results of investigations like the Carotid Occlusion Surgery Study that directly assess the ability of PET to influence patient outcome.
Collapse
Affiliation(s)
- William J Powers
- Department of Neurology, Neurological Surgery, and Radiology, East Building Imaging Center, Room 2218F, Campus Box 8225, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
50
|
Zazulia AR, Markham J, Powers WJ. Cerebral Blood Flow and Metabolism in Human Cerebrovascular Disease. Stroke 2004. [DOI: 10.1016/b0-44-306600-0/50047-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|