1
|
Nakamura K, Yamamoto R, Higashibeppu N, Yoshida M, Tatsumi H, Shimizu Y, Izumino H, Oshima T, Hatakeyama J, Ouchi A, Tsutsumi R, Tsuboi N, Yamamoto N, Nozaki A, Asami S, Takatani Y, Yamada K, Matsuishi Y, Takauji S, Tampo A, Terasaka Y, Sato T, Okamoto S, Sakuramoto H, Miyagi T, Aki K, Ota H, Watanabe T, Nakanishi N, Ohbe H, Narita C, Takeshita J, Sagawa M, Tsunemitsu T, Matsushima S, Kobashi D, Yanagita Y, Watanabe S, Murata H, Taguchi A, Hiramoto T, Ichimaru S, Takeuchi M, Kotani J. The Japanese Critical Care Nutrition Guideline 2024. J Intensive Care 2025; 13:18. [PMID: 40119480 PMCID: PMC11927338 DOI: 10.1186/s40560-025-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/23/2025] [Indexed: 03/24/2025] Open
Abstract
Nutrition therapy is important in the management of critically ill patients and is continuously evolving as new evidence emerges. The Japanese Critical Care Nutrition Guideline 2024 (JCCNG 2024) is specific to Japan and is the latest set of clinical practice guidelines for nutrition therapy in critical care that was revised from JCCNG 2016 by the Japanese Society of Intensive Care Medicine. An English version of these guidelines was created based on the contents of the original Japanese version. These guidelines were developed to help health care providers understand and provide nutrition therapy that will improve the outcomes of children and adults admitted to intensive care units or requiring intensive care, regardless of the disease. The intended users of these guidelines are all healthcare professionals involved in intensive care, including those who are not familiar with nutrition therapy. JCCNG 2024 consists of 37 clinical questions and 24 recommendations, covering immunomodulation therapy, nutrition therapy for special conditions, and nutrition therapy for children. These guidelines were developed in accordance with the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) system by experts from various healthcare professionals related to nutrition therapy and/or critical care. All GRADE-based recommendations, good practice statements (GPS), future research questions, and answers to background questions were finalized by consensus using the modified Delphi method. Strong recommendations for adults include early enteral nutrition (EN) within 48 h and the provision of pre/synbiotics. Weak recommendations for adults include the use of a nutrition protocol, EN rather than parenteral nutrition, the provision of higher protein doses, post-pyloric EN, continuous EN, omega-3 fatty acid-enriched EN, the provision of probiotics, and indirect calorimetry use. Weak recommendations for children include early EN within 48 h, bolus EN, and energy/protein-dense EN formulas. A nutritional assessment is recommended by GPS for both adults and children. JCCNG 2024 will be disseminated through educational activities mainly by the JCCNG Committee at various scientific meetings and seminars. Since studies on nutritional treatment for critically ill patients are being reported worldwide, these guidelines will be revised in 4 to 6 years. We hope that these guidelines will be used in clinical practice for critically ill patients and in future research.
Collapse
Affiliation(s)
- Kensuke Nakamura
- Department of Critical Care Medicine, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Higashibeppu
- Department of Anesthesia and Critical Care, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Minoru Yoshida
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshiyuki Shimizu
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Hiroo Izumino
- Acute and Critical Care Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Taku Oshima
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba City, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Akira Ouchi
- Department of Adult Health Nursing, College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Rie Tsutsumi
- Department of Anesthesiology and Critical Care, Hiroshima University Hospital, Hiroshima, Japan
| | - Norihiko Tsuboi
- Department of Critical Care Medicine and Anesthesia, National Center for Child Health and Development, Tokyo, Japan
| | - Natsuhiro Yamamoto
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Ayumu Nozaki
- Department of Pharmacy, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Sadaharu Asami
- Department of Cardiology, Musashino Tokushukai Hospital, Tokyo, Japan
| | - Yudai Takatani
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College Hospital, Saitama, Japan
| | - Yujiro Matsuishi
- Adult and Elderly Nursing, Faculty of Nursing, Tokyo University of Information Science, Chiba, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Terasaka
- Department of Emergency Medicine, Kyoto Katsura Hospital, Kyoto, Japan
| | - Takeaki Sato
- Tohoku University Hospital Emergency Center, Miyagi, Japan
| | - Saiko Okamoto
- Department of Nursing, Hitachi General Hospital, Hitachi, Japan
| | - Hideaki Sakuramoto
- Department of Acute Care Nursing, Japanese Red Cross Kyushu International College of Nursing, Munakata, Japan
| | - Tomoka Miyagi
- Anesthesiology and Critical Care Medicine, Master's Degree Program, Graduate School of Medicine, Yokohama City University, Kanagawa, Japan
| | - Keisei Aki
- Department of Pharmacy, Kokura Memorial Hospital, Fukuoka, Japan
| | - Hidehito Ota
- Department of Pediatrics, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Watanabe
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nobuto Nakanishi
- Division of Disaster and Emergency Medicine, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Ohbe
- Department of Emergency and Critical Care Medicine, Tohoku University Hospital, Sendai, Japan
| | - Chihiro Narita
- Department of Emergency Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Masano Sagawa
- Department of Surgery, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Takefumi Tsunemitsu
- Department of Preventive Services, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Matsushima
- Department of Physical Therapy, Faculty of Health Science, Kyorin University, Tokyo, Japan
| | - Daisuke Kobashi
- Department of Critical Care and Emergency Medicine, Japanese Red Cross Maebashi Hospital, Gunma, Japan
| | - Yorihide Yanagita
- Department of Health Sciences, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichi Watanabe
- Department of Physical Therapy, Faculty of Rehabilitation, Gifu University of Health Science, Gifu, Japan
| | - Hiroyasu Murata
- Department of Rehabilitation Medicine, Kyorin University Hospital, Tokyo, Japan
| | - Akihisa Taguchi
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takuya Hiramoto
- Department of Internal Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satomi Ichimaru
- Food and Nutrition Service Department, Fujita Health University Hospital, Aichi, Japan
| | - Muneyuki Takeuchi
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Joji Kotani
- Division of Disaster and Emergency Medicine, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Qin Y, Liu M, Guo F, Chen D, Yang P, Chen X, Xu F. The Efficacy of Parenteral Nutrition and Enteral Nutrition Supports in Traumatic Brain Injury: A Systemic Review and Network Meta-Analysis. Emerg Med Int 2023; 2023:8867614. [PMID: 37125379 PMCID: PMC10139805 DOI: 10.1155/2023/8867614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 05/02/2023] Open
Abstract
Background Enteral nutrition (EN) is often used in patients with traumatic brain injury (TBI), but some studies have shown that EN has its disadvantages. However, it is not clear which nutritional support is appropriate to reduce mortality, improve prognosis, and improve nutritional status in patients with TBI. We performed this Bayesian network meta-analysis to evaluate the improvement of nutritional indicators and the clinical outcomes of patients with TBI. Methods We systematically searched PubMed, Embase, Cochrane Library, and Web of Science from inception until December 2021. All randomized controlled trials (RCTs) which compared the effects of different nutritional supports on clinical outcomes and nutritional indicators in patients with TBI were included. The co-primary outcomes included mortality and the value of serum albumin. The secondary outcomes were nitrogen balance, the length of study (LOS) in the ICU, and feeding-related complications. The network meta-analysis was performed to adjust for indirect comparison and mixed treatment analysis. Results 7 studies enroll a total of 456 patients who received different nutritional supports including parenteral nutrition (PN), enteral nutrition (EN), and PN + EN. No effects on in-hospital mortality (Median RR = 1.06, 95% Crl = 0.12 to 1.77) and the value of 0-1 days of serum albumin were found between the included regimens. However, the value of 11-13 days of serum albumin of EN was better than that of PN (WMD = -4.95, 95% CI = -7.18 to -2.72, P < 0.0001, I 2 = 0%), and 16-20 days of serum albumin of EN + PN was better than that of EN (WMD = -7.42, 95% CI = -14.51 to -0.34, P=0.04, I 2 = 90%). No effects on the 5-7 day nitrogen balance were found between the included regimens. In addition, the complications including pneumonia and sepsis have no statistical difference between EN and PN. EN was superior to PN in terms of LOS in the ICU and the incidence rate of stress ulcers. Although the difference in indirect comparisons between the included regimens was not statistically significant, the results showed that PN seemed to rank behind other regimens, and the difference between them was extremely small. Conclusion Available evidence suggests that EN + PN appears to be the most effective strategy for patients with TBI in improving clinical outcomes and nutritional support compared with other nutritional supports. Further trials are required.
Collapse
Affiliation(s)
- Yan Qin
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Maoxia Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fengbao Guo
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Du Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xionghui Chen
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feng Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
3
|
Bershad EM, Suarez JI. Aneurysmal Subarachnoid Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Comerlato PH, Stefani J, Viana LV. Mortality and overall and specific infection complication rates in patients who receive parenteral nutrition: systematic review and meta-analysis with trial sequential analysis. Am J Clin Nutr 2021; 114:1535-1545. [PMID: 34258612 DOI: 10.1093/ajcn/nqab218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Parenteral nutrition (PN) is an available option for nutritional therapy and is often required in the hospital setting to overcome malnutrition. OBJECTIVES The aim of this study was to assess whether PN is associated with an increased risk of mortality or infectious complications in all groups of hospitalized patients compared with those receiving other nutritional support strategies. METHODS For this systematic review and meta-analysis MEDLINE, Embase, Cochrane Central, Scopus, clinicaltrials.gov, and Web of Science were searched for randomized controlled trials (RCTs) and observational studies with parallel groups that explored the effect of PN on mortality and infectious complications, published until March 2021. Two independent reviewers extracted the data and assessed the risk of bias. Fixed-effects meta-analysis was performed to compare the groups from RCTs. Trial sequential analysis (TSA) was used to identify whether the results were sufficient to reach definitive conclusions. RESULTS Of the 83 included studies that compared patients receiving PN with those receiving other strategies, 67 RCTs were included in the meta-analysis. PN was not associated with a higher risk of mortality (RR: 1.01; 95% CI: 0.95, 1.07). On the other hand, PN was associated with a higher risk of infectious events (RR: 1.23; 95% CI: 1.12, 1.36). PN was specifically associated with abdominal infection and catheter infection. The TSA showed that there were sufficient data to make numerical conclusions about mortality, any infectious event, and abdominal infectious complications. CONCLUSIONS This study suggests that although PN is not associated with greater mortality in hospitalized patients, it is associated with infectious complications. Through TSA, definite conclusions about survival and infection rates could be made.This review was registered at www.crd.york.ac.uk/prospero/ as CRD42018075599.
Collapse
Affiliation(s)
- Pedro H Comerlato
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joel Stefani
- Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Luciana V Viana
- Graduate Program in Medical Sciences: Endocrinology, Faculty of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
5
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada TA, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano KI, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). J Intensive Care 2021; 9:53. [PMID: 34433491 PMCID: PMC8384927 DOI: 10.1186/s40560-021-00555-7] [Show More Authors] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members.As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
Affiliation(s)
- Moritoki Egi
- Department of Surgery Related, Division of Anesthesiology, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-2, Chuo-ku, Kobe, Hyogo, Japan.
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Medical School, Yamadaoka 2-15, Suita, Osaka, Japan.
| | - Tomoaki Yatabe
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazuaki Atagi
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shigeaki Inoue
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Kuroda
- Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Joji Kotani
- Department of Surgery Related, Division of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryosuke Tsuruta
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Taka-Aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Yamagata University Hospital, Yamagata, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Naoto Hosokawa
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical College, Osaka, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Aoki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mai Inada
- Member of Japanese Association for Acute Medicine, Tokyo, Japan
| | - Yutaka Umemura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Yusuke Kawai
- Department of Nursing, Fujita Health University Hospital, Toyoake, Japan
| | - Yutaka Kondo
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Hiroki Saito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | - Shunsuke Taito
- Division of Rehabilitation, Department of Clinical Support and Practice, Hiroshima University Hospital, Hiroshima, Japan
| | - Chikashi Takeda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takero Terayama
- Department of Psychiatry, School of Medicine, National Defense Medical College, Tokorozawa, Japan
| | | | - Hideki Hashimoto
- Department of Emergency and Critical Care Medicine/Infectious Disease, Hitachi General Hospital, Hitachi, Japan
| | - Kei Hayashida
- The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Toru Hifumi
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Tomoko Fujii
- Intensive Care Unit, Jikei University Hospital, Tokyo, Japan
| | - Shinya Miura
- The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Hideto Yasuda
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Toshikazu Abe
- Department of Emergency and Critical Care Medicine, Tsukuba Memorial Hospital, Tsukuba, Japan
| | - Kohkichi Andoh
- Division of Anesthesiology, Division of Intensive Care, Division of Emergency and Critical Care, Sendai City Hospital, Sendai, Japan
| | - Yuki Iida
- Department of Physical Therapy, School of Health Sciences, Toyohashi Sozo University, Toyohashi, Japan
| | - Tadashi Ishihara
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Kentaro Ide
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenta Ito
- Department of General Pediatrics, Aichi Children's Health and Medical Center, Obu, Japan
| | - Yusuke Ito
- Department of Infectious Disease, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yu Inata
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Utsunomiya
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Unoki
- Department of Acute and Critical Care Nursing, School of Nursing, Sapporo City University, Sapporo, Japan
| | - Koji Endo
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Akira Ouchi
- College of Nursing, Ibaraki Christian University, Hitachi, Japan
| | - Masayuki Ozaki
- Department of Emergency and Critical Care Medicine, Komaki City Hospital, Komaki, Japan
| | - Satoshi Ono
- Gastroenterological Center, Shinkuki General Hospital, Kuki, Japan
| | | | | | - Yusuke Kawamura
- Department of Rehabilitation, Showa General Hospital, Tokyo, Japan
| | - Daisuke Kudo
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenji Kubo
- Department of Emergency Medicine and Department of Infectious Diseases, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kiyoyasu Kurahashi
- Department of Anesthesiology and Intensive Care Medicine, International University of Health and Welfare School of Medicine, Narita, Japan
| | | | - Akira Shimoyama
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Takeshi Suzuki
- Department of Anesthesiology, Tokai University School of Medicine, Isehara, Japan
| | - Shusuke Sekine
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Motohiro Sekino
- Division of Intensive Care, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Takahashi
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Sei Takahashi
- Center for Innovative Research for Communities and Clinical Excellence (CiRC2LE), Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Takahashi
- Department of Cardiology, Steel Memorial Muroran Hospital, Muroran, Japan
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashi Kosugi Hospital, Kawasaki, Japan
| | - Goro Tajima
- Nagasaki University Hospital Acute and Critical Care Center, Nagasaki, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masanori Tani
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Asuka Tsuchiya
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Yusuke Tsutsumi
- Department of Emergency and Critical Care Medicine, National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Takaki Naito
- Department of Emergency and Critical Care Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Masaharu Nagae
- Department of Intensive Care Medicine, Kobe University Hospital, Kobe, Japan
| | | | - Kensuke Nakamura
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Tetsuro Nishimura
- Department of Traumatology and Critical Care Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shin Nunomiya
- Department of Anesthesiology and Intensive Care Medicine, Division of Intensive Care, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Yasuhiro Norisue
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Hasegawa
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| | - Junji Hatakeyama
- Department of Emergency and Critical Care Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Naoki Hara
- Department of Pharmacy, Yokohama Rosai Hospital, Yokohama, Japan
| | - Naoki Higashibeppu
- Department of Anesthesiology and Nutrition Support Team, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Nana Furushima
- Department of Anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Hirotaka Furusono
- Department of Rehabilitation, University of Tsukuba Hospital/Exult Co., Ltd., Tsukuba, Japan
| | - Yujiro Matsuishi
- Doctoral program in Clinical Sciences. Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tasuku Matsuyama
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yusuke Minematsu
- Department of Clinical Engineering, Osaka University Hospital, Suita, Japan
| | - Ryoichi Miyashita
- Department of Intensive Care Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Miyatake
- Department of Clinical Engineering, Kakogawa Central City Hospital, Kakogawa, Japan
| | - Megumi Moriyasu
- Division of Respiratory Care and Rapid Response System, Intensive Care Center, Kitasato University Hospital, Sagamihara, Japan
| | - Toru Yamada
- Department of Nursing, Toho University Omori Medical Center, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Primary Care and Emergency Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Yoshida
- Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuhei Yoshida
- Nursing Department, Osaka General Medical Center, Osaka, Japan
| | - Jumpei Yoshimura
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | | | - Hiroshi Yonekura
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Takeshi Wada
- Department of Anesthesiology and Critical Care Medicine, Division of Acute and Critical Care Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Eizo Watanabe
- Department of Emergency and Critical Care Medicine, Eastern Chiba Medical Center, Togane, Japan
| | - Makoto Aoki
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideki Asai
- Department of Emergency and Critical Care Medicine, Nara Medical University, Kashihara, Japan
| | - Takakuni Abe
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Naoya Iguchi
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masami Ishikawa
- Department of Anesthesiology, Emergency and Critical Care Medicine, Kure Kyosai Hospital, Kure, Japan
| | - Go Ishimaru
- Department of General Internal Medicine, Soka Municipal Hospital, Soka, Japan
| | - Shutaro Isokawa
- Department of Emergency and Critical Care Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Ryuta Itakura
- Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hisashi Imahase
- Department of Biomedical Ethics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Imura
- Department of Infectious Diseases, Rakuwakai Otowa Hospital, Kyoto, Japan
- Department of Health Informatics, School of Public Health, Kyoto University, Kyoto, Japan
| | | | - Kenji Uehara
- Department of Anesthesiology, National Hospital Organization Iwakuni Clinical Center, Iwakuni, Japan
| | - Noritaka Ushio
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Takeshi Umegaki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
| | - Yuko Egawa
- Advanced Emergency and Critical Care Center, Saitama Red Cross Hospital, Saitama, Japan
| | - Yuki Enomoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kohei Ota
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshifumi Ohchi
- Department of Anesthesiology and Intensive Care, Oita University Hospital, Yufu, Japan
| | - Takanori Ohno
- Department of Emergency and Critical Medicine, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Hiroyuki Ohbe
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | | | - Nobunaga Okada
- Department of Emergency Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Okada
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromu Okano
- Department of Anesthesiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Jun Okamoto
- Department of ER, Hashimoto Municipal Hospital, Hashimoto, Japan
| | - Hiroshi Okuda
- Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takayuki Ogura
- Tochigi prefectural Emergency and Critical Care Center, Imperial Gift Foundation Saiseikai, Utsunomiya Hospital, Utsunomiya, Japan
| | - Yu Onodera
- Department of Anesthesiology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuhta Oyama
- Department of Internal Medicine, Dialysis Center, Kichijoji Asahi Hospital, Tokyo, Japan
| | - Motoshi Kainuma
- Anesthesiology, Emergency Medicine, and Intensive Care Division, Inazawa Municipal Hospital, Inazawa, Japan
| | - Eisuke Kako
- Department of Anesthesiology and Intensive Care Medicine, Nagoya-City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Kashiura
- Department of Emergency and Critical Care Medicine, Jichi Medical University Saitama Medical Center, Saitama, Japan
| | - Hiromi Kato
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akihiro Kanaya
- Department of Anesthesiology, Sendai Medical Center, Sendai, Japan
| | - Tadashi Kaneko
- Emergency and Critical Care Center, Mie University Hospital, Tsu, Japan
| | - Keita Kanehata
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Ken-Ichi Kano
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Hiroyuki Kawano
- Department of Gastroenterological Surgery, Onga Hospital, Fukuoka, Japan
| | - Kazuya Kikutani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hitoshi Kikuchi
- Department of Emergency and Critical Care Medicine, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Kimura
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Hiroyuki Koami
- Center for Translational Injury Research, University of Texas Health Science Center at Houston, Houston, USA
| | - Daisuke Kobashi
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, Tokyo, Japan
| | - Masahito Sakai
- Department of General Medicine Shintakeo Hospital, Takeo, Japan
| | - Ayaka Sakamoto
- Department of Emergency and Critical Care Medicine, University of Tsukuba Hospital, Tsukuba, Japan
| | - Tetsuya Sato
- Tohoku University Hospital Emergency Center, Sendai, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Center for Advanced Joint Function and Reconstructive Spine Surgery, Graduate school of Medicine, Chiba University, Chiba, Japan
| | - Manabu Shimoto
- Department of Primary care and Emergency medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinya Shimoyama
- Department of Pediatric Cardiology and Intensive Care, Gunma Children's Medical Center, Shibukawa, Japan
| | - Tomohisa Shoko
- Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoh Sugawara
- Department of Anesthesiology, Yokohama City University, Yokohama, Japan
| | - Atsunori Sugita
- Department of Acute Medicine, Division of Emergency and Critical Care Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Intensive Care, Okayama University Hospital, Okayama, Japan
| | - Yuji Suzuki
- Department of Anesthesiology and Intensive Care Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomohiro Suhara
- Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Sonota
- Department of Intensive Care Medicine, Miyagi Children's Hospital, Sendai, Japan
| | - Shuhei Takauji
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kohei Takashima
- Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Sho Takahashi
- Department of Cardiology, Fukuyama City Hospital, Fukuyama, Japan
| | - Yoko Takahashi
- Department of General Internal Medicine, Koga General Hospital, Koga, Japan
| | - Jun Takeshita
- Department of Anesthesiology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuuki Tanaka
- Fukuoka Prefectural Psychiatric Center, Dazaifu Hospital, Dazaifu, Japan
| | - Akihito Tampo
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Taichiro Tsunoyama
- Department of Emergency Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Kenichi Tetsuhara
- Emergency and Critical Care Center, Kyushu University Hospital, Fukuoka, Japan
| | - Kentaro Tokunaga
- Department of Intensive Care Medicine, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Tomioka
- Department of Anesthesiology and Intensive Care Unit, Todachuo General Hospital, Toda, Japan
| | - Kentaro Tomita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Tominaga
- Department of Emergency and Critical Care Medicine, Nippon Medical School Hospital, Tokyo, Japan
| | - Mitsunobu Toyosaki
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yukitoshi Toyoda
- Department of Emergency and Critical Care Medicine, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Nagata
- Intensive Care Unit, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Tadashi Nagato
- Department of Respiratory Medicine, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Yoshimi Nakamura
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuki Nakamori
- Department of Clinical Anesthesiology, Mie University Hospital, Tsu, Japan
| | - Isao Nahara
- Department of Anesthesiology and Critical Care Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Hiromu Naraba
- Department of Emergency and Critical Care Medicine, Hitachi General Hospital, Hitachi, Japan
| | - Chihiro Narita
- Department of Emergency Medicine and Intensive Care Medicine, Shizuoka General Hospital, Shizuoka, Japan
| | - Norihiro Nishioka
- Department of Preventive Services, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoya Nishimura
- Advanced Medical Emergency Department and Critical Care Center, Japan Red Cross Maebashi Hospital, Maebashi, Japan
| | - Kei Nishiyama
- Division of Emergency and Critical Care Medicine Niigata University Graduate School of Medical and Dental Science, Niigata, Japan
| | - Tomohisa Nomura
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Taiki Haga
- Department of Pediatric Critical Care Medicine, Osaka City General Hospital, Osaka, Japan
| | - Yoshihiro Hagiwara
- Department of Emergency and Critical Care Medicine, Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Katsuhiko Hashimoto
- Research Associate of Minimally Invasive Surgical and Medical Oncology, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Hatachi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toshiaki Hamasaki
- Department of Emergency Medicine, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takuya Hayashi
- Division of Critical Care Medicine, Saitama Children's Medical Center, Saitama, Japan
| | - Minoru Hayashi
- Department of Emergency Medicine, Fukui Prefectural Hospital, Fukui, Japan
| | - Atsuki Hayamizu
- Department of Emergency Medicine, Saitama Saiseikai Kurihashi Hospital, Kuki, Japan
| | - Go Haraguchi
- Division of Intensive Care Unit, Sakakibara Heart Institute, Tokyo, Japan
| | - Yohei Hirano
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Ryo Fujii
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Center, Imperial Foundation Saiseikai Utsunomiya Hospital, Utsunomiya, Japan
| | - Motoki Fujita
- Acute and General Medicine, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary's Hospital, Our Lady of the Snow Social Medical Corporation, Kurume, Japan
| | - Hiraku Funakoshi
- Department of Emergency and Critical Care Medicine, Tokyo Bay Urayasu Ichikawa Medical Center, Urayasu, Japan
| | - Masahito Horiguchi
- Department of Emergency and Critical Care Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Jun Maki
- Department of Critical Care Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Naohisa Masunaga
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Matsumura
- Department of Intensive Care, Chiba Emergency Medical Center, Chiba, Japan
| | - Takuya Mayumi
- Department of Internal Medicine, Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Keisuke Minami
- Ishikawa Prefectual Central Hospital Emergency and Critical Care Center, Kanazawa, Japan
| | - Yuya Miyazaki
- Department of Emergency and General Internal Medicine, Saiseikai Kawaguchi General Hospital, Kawaguchi, Japan
| | - Kazuyuki Miyamoto
- Department of Emergency and Disaster Medicine, Showa University, Tokyo, Japan
| | - Teppei Murata
- Department of Cardiology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Machi Yanai
- Department of Emergency Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Takao Yano
- Department of Critical Care and Emergency Medicine, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Kohei Yamada
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Yamada
- Department of Emergency Medicine, University of Fukui Hospital, Fukui, Japan
| | - Tomonori Yamamoto
- Department of Intensive Care Unit, Nara Prefectural General Medical Center, Nara, Japan
| | - Shodai Yoshihiro
- Pharmaceutical Department, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Critical Care Medicine, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
6
|
Egi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, et alEgi M, Ogura H, Yatabe T, Atagi K, Inoue S, Iba T, Kakihana Y, Kawasaki T, Kushimoto S, Kuroda Y, Kotani J, Shime N, Taniguchi T, Tsuruta R, Doi K, Doi M, Nakada T, Nakane M, Fujishima S, Hosokawa N, Masuda Y, Matsushima A, Matsuda N, Yamakawa K, Hara Y, Sakuraya M, Ohshimo S, Aoki Y, Inada M, Umemura Y, Kawai Y, Kondo Y, Saito H, Taito S, Takeda C, Terayama T, Tohira H, Hashimoto H, Hayashida K, Hifumi T, Hirose T, Fukuda T, Fujii T, Miura S, Yasuda H, Abe T, Andoh K, Iida Y, Ishihara T, Ide K, Ito K, Ito Y, Inata Y, Utsunomiya A, Unoki T, Endo K, Ouchi A, Ozaki M, Ono S, Katsura M, Kawaguchi A, Kawamura Y, Kudo D, Kubo K, Kurahashi K, Sakuramoto H, Shimoyama A, Suzuki T, Sekine S, Sekino M, Takahashi N, Takahashi S, Takahashi H, Tagami T, Tajima G, Tatsumi H, Tani M, Tsuchiya A, Tsutsumi Y, Naito T, Nagae M, Nagasawa I, Nakamura K, Nishimura T, Nunomiya S, Norisue Y, Hashimoto S, Hasegawa D, Hatakeyama J, Hara N, Higashibeppu N, Furushima N, Furusono H, Matsuishi Y, Matsuyama T, Minematsu Y, Miyashita R, Miyatake Y, Moriyasu M, Yamada T, Yamada H, Yamamoto R, Yoshida T, Yoshida Y, Yoshimura J, Yotsumoto R, Yonekura H, Wada T, Watanabe E, Aoki M, Asai H, Abe T, Igarashi Y, Iguchi N, Ishikawa M, Ishimaru G, Isokawa S, Itakura R, Imahase H, Imura H, Irinoda T, Uehara K, Ushio N, Umegaki T, Egawa Y, Enomoto Y, Ota K, Ohchi Y, Ohno T, Ohbe H, Oka K, Okada N, Okada Y, Okano H, Okamoto J, Okuda H, Ogura T, Onodera Y, Oyama Y, Kainuma M, Kako E, Kashiura M, Kato H, Kanaya A, Kaneko T, Kanehata K, Kano K, Kawano H, Kikutani K, Kikuchi H, Kido T, Kimura S, Koami H, Kobashi D, Saiki I, Sakai M, Sakamoto A, Sato T, Shiga Y, Shimoto M, Shimoyama S, Shoko T, Sugawara Y, Sugita A, Suzuki S, Suzuki Y, Suhara T, Sonota K, Takauji S, Takashima K, Takahashi S, Takahashi Y, Takeshita J, Tanaka Y, Tampo A, Tsunoyama T, Tetsuhara K, Tokunaga K, Tomioka Y, Tomita K, Tominaga N, Toyosaki M, Toyoda Y, Naito H, Nagata I, Nagato T, Nakamura Y, Nakamori Y, Nahara I, Naraba H, Narita C, Nishioka N, Nishimura T, Nishiyama K, Nomura T, Haga T, Hagiwara Y, Hashimoto K, Hatachi T, Hamasaki T, Hayashi T, Hayashi M, Hayamizu A, Haraguchi G, Hirano Y, Fujii R, Fujita M, Fujimura N, Funakoshi H, Horiguchi M, Maki J, Masunaga N, Matsumura Y, Mayumi T, Minami K, Miyazaki Y, Miyamoto K, Murata T, Yanai M, Yano T, Yamada K, Yamada N, Yamamoto T, Yoshihiro S, Tanaka H, Nishida O. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020). Acute Med Surg 2021; 8:e659. [PMID: 34484801 PMCID: PMC8390911 DOI: 10.1002/ams2.659] [Show More Authors] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2020 (J-SSCG 2020), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created as revised from J-SSCG 2016 jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in September 2020 and published in February 2021. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. The purpose of this guideline is to assist medical staff in making appropriate decisions to improve the prognosis of patients undergoing treatment for sepsis and septic shock. We aimed to provide high-quality guidelines that are easy to use and understand for specialists, general clinicians, and multidisciplinary medical professionals. J-SSCG 2016 took up new subjects that were not present in SSCG 2016 (e.g., ICU-acquired weakness [ICU-AW], post-intensive care syndrome [PICS], and body temperature management). The J-SSCG 2020 covered a total of 22 areas with four additional new areas (patient- and family-centered care, sepsis treatment system, neuro-intensive treatment, and stress ulcers). A total of 118 important clinical issues (clinical questions, CQs) were extracted regardless of the presence or absence of evidence. These CQs also include those that have been given particular focus within Japan. This is a large-scale guideline covering multiple fields; thus, in addition to the 25 committee members, we had the participation and support of a total of 226 members who are professionals (physicians, nurses, physiotherapists, clinical engineers, and pharmacists) and medical workers with a history of sepsis or critical illness. The GRADE method was adopted for making recommendations, and the modified Delphi method was used to determine recommendations by voting from all committee members. As a result, 79 GRADE-based recommendations, 5 Good Practice Statements (GPS), 18 expert consensuses, 27 answers to background questions (BQs), and summaries of definitions and diagnosis of sepsis were created as responses to 118 CQs. We also incorporated visual information for each CQ according to the time course of treatment, and we will also distribute this as an app. The J-SSCG 2020 is expected to be widely used as a useful bedside guideline in the field of sepsis treatment both in Japan and overseas involving multiple disciplines.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Energy dysfunction is increasingly recognized as a key factor in the pathogenesis of acute brain injury (ABI). This one characterized by a high metabolic rate and nitrogen loss is often associated with an undernutrition support. We review the metabolism evolution and nutritional status in brain injured patient and summarize evidence on nutritional support in this condition. RECENT FINDINGS The role of nutrition support for improving prognosis in brain injured patient has been underlined recently. A fast nutrition institution whatever the route is essential to prevent an imbalance in caloric support. Moreover, hypermetabolic state must be prevented with a sufficient nitrogen support. Glycemic control is particularly relevant in this group of patient, with the discovery of new fuel that could potentially improve cerebral metabolism and replace glucose. Few data support also the use of immunonutrition input in this group of patients. SUMMARY Nutritional support is a key parameter in brain injured patient and must be initiated quickly to counteract hypermetabolic state by caring to improve caloric and nitrogen input. Recent clinical data support the use of immunonutrition, glutamine and zinc in this particular setting.
Collapse
|
8
|
Cheng X, Ru W, Du K, Jiang X, Hu Y, Zhang W, Xu Y, Shen Y. Association between enteral nutrition support and neurological outcome in patients with acute intracranial haemorrhage: A retrospective cohort study. Sci Rep 2019; 9:16507. [PMID: 31712731 PMCID: PMC6848122 DOI: 10.1038/s41598-019-53100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022] Open
Abstract
Association between the amount of enteral nutrition (EN) caloric intake and Glasgow coma scale scores at discharge (GCSdis) in intracranial haemorrhage (ICH) was retrospectively investigated in 230 patients in a single center from 2015 and 2017. GCSdis was used as a dichotomous outcome (≤8 or >8: 56/230 vs. 174/230) and its association with the amount of EN caloric intake within 48 hours was analysed in four logistic models. Model 1 used EN as a continuous variable and showed association with favourable GCSdis (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.01-1.08). Models 2 and 3 categorized EN into two (≤25 and >25 kcal/kg/48 hrs) and three caloric intake levels (≤10, 10~25, and >25 kcal/kg/48 hrs) respectively, and compared them with the lowest level; highest EN level associated with favourable GCSdis in both model 2 (OR, 2.77; 95%CI, 1.25-6.13) and 3 (OR, 4.68; 95%CI, 1.61-13.61). Model 4 transformed EN into four quartiles (Q1-Q4). Compared to Q1, OR increased stepwise from Q2 (OR 1.80, 95%CI 0.59-5.44) to Q4 (OR 4.71, 95%CI 1.49-14.80). Propensity score matching analysis of 69 matched pairs demonstrated consistent findings. In the early stage of ICH, increased EN was associated with favourable GCSdis.
Collapse
Affiliation(s)
- Xuping Cheng
- Department of Intensive Care, Dongyang People's Hospital, Dongyang, Zhejiang, 322100, P.R. China
| | - Weizhe Ru
- Department of Oncology, Cixi People's Hospital, Cixi, Zhejiang, 315300, P.R. China
| | - Kailei Du
- Department of Intensive Care, Dongyang People's Hospital, Dongyang, Zhejiang, 322100, P.R. China
| | - Xuandong Jiang
- Department of Intensive Care, Dongyang People's Hospital, Dongyang, Zhejiang, 322100, P.R. China
| | - Yongxia Hu
- Department of Intensive Care, Dongyang People's Hospital, Dongyang, Zhejiang, 322100, P.R. China
| | - Weimin Zhang
- Department of Intensive Care, Dongyang People's Hospital, Dongyang, Zhejiang, 322100, P.R. China
| | - Yingting Xu
- Department of Intensive Care, Dongyang People's Hospital, Dongyang, Zhejiang, 322100, P.R. China
| | - Yanfei Shen
- Department of Intensive Care Unit, Zhejiang Hospital, Hangzhou, Zhejiang, P.R. China.
| |
Collapse
|
9
|
Cadena AJ, Habib S, Rincon F, Dobak S. The Benefits of Parenteral Nutrition (PN) Versus Enteral Nutrition (EN) Among Adult Critically Ill Patients: What is the Evidence? A Literature Review. J Intensive Care Med 2019; 35:615-626. [PMID: 31030601 DOI: 10.1177/0885066619843782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Malnutrition is frequently seen among patients in the intensive care unit. Evidence shows that optimal nutritional support can lead to better clinical outcomes. Recent clinical trials debate over the efficacy of enteral nutrition (EN) over parenteral nutrition (PN). Multiple trials have studied the impact of EN versus PN in terms of health-care cost and clinical outcomes (including functional status, cost, infectious complications, mortality risk, length of hospital and intensive care unit stay, and mechanical ventilation duration). The aim of this review is to address the question: In critically ill adult patients requiring nutrition support, does EN compared to PN favorably impact clinical outcomes and health-care costs?
Collapse
Affiliation(s)
- Angel Joel Cadena
- Division of Neurocritical Care, Departments of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Sara Habib
- Division of Neurocritical Care, Departments of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Fred Rincon
- Division of Neurocritical Care, Departments of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Stephanie Dobak
- Department of Nutrition and Dietetics, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
10
|
Preeti S, Kadam A, Kadam S, Vaidya U, Kumar P, Bhagat I, Pandit A, Chouthai NS. Anthropometric measures as biomarkers of neurodevelopmental outcomes of newborns with moderate to severe hypoxic ischemic encephalopathy. J Neonatal Perinatal Med 2019; 12:127-134. [PMID: 30741696 DOI: 10.3233/npm-17151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Perinatal asphyxia is a prominent cause of neonatal mortality in the developing world. Growth in head circumference is associated with improved neurodevelopment. Previous studies found a positive correlation between additional dietary supplementation and growth in head circumference among newborns with perinatal brain injury. This study aims to evaluate the association between anthropometric parameters and developmental outcomes in newborns with hypoxic ischemic encephalopathy (HIE). METHODS Newborns at ≥36 weeks gestation with moderate to severe HIE were included in the study and growth parameters were monitored. Newborns with life-threatening anomalies were excluded. None of the study participants received therapeutic hypothermia (TH). Developmental Assessment Scale for Indian Infants (DASII) was used to evaluate neurodevelopmental outcomes at 1 year of age. RESULTS Of 76 study participants, 46 were followed for 12 months, 28 died, and 2 were lost to follow-up. HIE stage III, Apgar score <5 at 5 minutes of age, pH ≤ 7.1 on first blood gas and base deficit > - 16 was associated with death or disability at 1 year of age. All anthropometric parameters were significantly lower in presence of death or disability. pH ≤ 7.1 at birth (odds ratio: 11.835, 95% CI 2.273-61.629, p = 0.003) and weight gain at one year (odds ratio 1.001, 95% CI 1.000-1.002, p = 0.03) were significantly associated with death and disability. CONCLUSION pH > 7.1 at birth, and weight gain were associated with better neurodevelopmental outcomes at 1 year of age. Thus, in addition to TH, nutritional interventions may potentially improve outcomes among newborns with HIE.
Collapse
Affiliation(s)
- S Preeti
- Department of Pediatrics, KEM Hospital, Pune, India
| | - A Kadam
- Department of Pediatrics, KEM Hospital, Pune, India
| | - S Kadam
- Department of Pediatrics, KEM Hospital, Pune, India
| | - U Vaidya
- Department of Pediatrics, KEM Hospital, Pune, India
| | - P Kumar
- Division of Neonatal-Perinatal Medicine, Wayne State University, Children's Hospital of Michigan and Hutzel Women's Hospital, Detroit, MI, USA
| | - I Bhagat
- Division of Neonatal-Perinatal Medicine, Wayne State University, Children's Hospital of Michigan and Hutzel Women's Hospital, Detroit, MI, USA
| | - A Pandit
- Department of Pediatrics, KEM Hospital, Pune, India
| | - N S Chouthai
- Division of Neonatal-Perinatal Medicine, Wayne State University, Children's Hospital of Michigan and Hutzel Women's Hospital, Detroit, MI, USA
| |
Collapse
|
11
|
Zhang G, Zhang K, Cui W, Hong Y, Zhang Z. The effect of enteral versus parenteral nutrition for critically ill patients: A systematic review and meta-analysis. J Clin Anesth 2018; 51:62-92. [PMID: 30098572 DOI: 10.1016/j.jclinane.2018.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
STUDY OBJECTIVE To analyze the effect of enteral nutrition compared with parenteral nutrition in critically ill patients. DESIGN Systematic review and meta-analysis of randomized controlled trials. SETTING Intensive care unit. PATIENTS 23 trials containing 6478 patients met our inclusion criteria. INTERVENTION A systematical literature search was conducted to identify eligible trials in electronic databases including PubMed, Embase, Scopus, EBSCO and Cochrane Library. The primary outcome was mortality, the secondary outcomes were gastrointestinal complications, bloodstream infections, organ failures, length of stay in ICU and hospital. We performed a predefined subgroup analyses to explore the treatment effect by mean age, publication date and disease types. MAIN RESULTS The result showed no significant effect on overall mortality rate (OR 0.98, 95%CI 0.81 to 1.18, P = 0.83, I2 = 19%) and organ failure rate (OR 0.87, 95%CI 0.75 to 1.01, P = 0.06, I2 = 16%). The use of EN had more beneficial effects with fewer bloodstream infections when compared to PN (OR 0.59, 95%CI 0.43 to 0.82, P = 0.001, I2 = 27%) and this was more noteworthy in the subgroup analysis for critical surgical patients (OR 0.36, 95%CI 0.22 to 0.59, P < 0.0001, I2 = 0%). EN was associated with reduction in hospital LOS (MD -0.90, 95%CI -1.63 to -0.17, P = 0.21, I2 = 0%) but had an increase incidence of gastrointestinal complications (OR 2.00, 95%CI 1.76 to 2.27, P < 0.00001, I2 = 0%). CONCLUSION For critically ill patients, the two routes of nutrition support had no different effect on mortality rate. The use of EN could decrease the incidence of bloodstream infections and reduce hospital LOS but was associated with increased risk of gastrointestinal complications.
Collapse
Affiliation(s)
- Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yucai Hong
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
12
|
Lewis SR, Schofield‐Robinson OJ, Alderson P, Smith AF. Enteral versus parenteral nutrition and enteral versus a combination of enteral and parenteral nutrition for adults in the intensive care unit. Cochrane Database Syst Rev 2018; 6:CD012276. [PMID: 29883514 PMCID: PMC6353207 DOI: 10.1002/14651858.cd012276.pub2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Critically ill people are at increased risk of malnutrition. Acute and chronic illness, trauma and inflammation induce stress-related catabolism, and drug-induced adverse effects may reduce appetite or increase nausea and vomiting. In addition, patient management in the intensive care unit (ICU) may also interrupt feeding routines. Methods to deliver nutritional requirements include provision of enteral nutrition (EN), or parenteral nutrition (PN), or a combination of both (EN and PN). However, each method is problematic. This review aimed to determine the route of delivery that optimizes uptake of nutrition. OBJECTIVES To compare the effects of enteral versus parenteral methods of nutrition, and the effects of enteral versus a combination of enteral and parenteral methods of nutrition, among critically ill adults, in terms of mortality, number of ICU-free days up to day 28, and adverse events. SEARCH METHODS We searched CENTRAL, MEDLINE, and Embase on 3 October 2017. We searched clinical trials registries and grey literature, and handsearched reference lists of included studies and related reviews. SELECTION CRITERIA We included randomized controlled studies (RCTs) and quasi-randomized studies comparing EN given to adults in the ICU versus PN or versus EN and PN. We included participants that were trauma, emergency, and postsurgical patients in the ICU. DATA COLLECTION AND ANALYSIS Two review authors independently assessed studies for inclusion, extracted data, and assessed risk of bias. We assessed the certainty of evidence with GRADE. MAIN RESULTS We included 25 studies with 8816 participants; 23 studies were RCTs and two were quasi-randomized studies. All included participants were critically ill in the ICU with a wide range of diagnoses; mechanical ventilation status between study participants varied. We identified 11 studies awaiting classification for which we were unable to assess eligibility, and two ongoing studies.Seventeen studies compared EN versus PN, six compared EN versus EN and PN, two were multi-arm studies comparing EN versus PN versus EN and PN. Most studies reported randomization and allocation concealment inadequately. Most studies reported no methods to blind personnel or outcome assessors to nutrition groups; one study used adequate methods to reduce risk of performance bias.Enteral nutrition versus parenteral nutritionWe found that one feeding route rather than the other (EN or PN) may make little or no difference to mortality in hospital (risk ratio (RR) 1.19, 95% confidence interval (CI) 0.80 to 1.77; 361 participants; 6 studies; low-certainty evidence), or mortality within 30 days (RR 1.02, 95% CI 0.92 to 1.13; 3148 participants; 11 studies; low-certainty evidence). It is uncertain whether one feeding route rather than the other reduces mortality within 90 days because the certainty of the evidence is very low (RR 1.06, 95% CI 0.95 to 1.17; 2461 participants; 3 studies). One study reported mortality at one to four months and we did not combine this in the analysis; we reported this data as mortality within 180 days and it is uncertain whether EN or PN affects the number of deaths within 180 days because the certainty of the evidence is very low (RR 0.33, 95% CI 0.04 to 2.97; 46 participants).No studies reported number of ICU-free days up to day 28, and one study reported number of ventilator-free days up to day 28 and it is uncertain whether one feeding route rather than the other reduces the number of ventilator-free days up to day 28 because the certainty of the evidence is very low (mean difference, inverse variance, 0.00, 95% CI -0.97 to 0.97; 2388 participants).We combined data for adverse events reported by more than one study. It is uncertain whether EN or PN affects aspiration because the certainty of the evidence is very low (RR 1.53, 95% CI 0.46 to 5.03; 2437 participants; 2 studies), and we found that one feeding route rather than the other may make little or no difference to pneumonia (RR 1.10, 95% CI 0.82 to 1.48; 415 participants; 7 studies; low-certainty evidence). We found that EN may reduce sepsis (RR 0.59, 95% CI 0.37 to 0.95; 361 participants; 7 studies; low-certainty evidence), and it is uncertain whether PN reduces vomiting because the certainty of the evidence is very low (RR 3.42, 95% CI 1.15 to 10.16; 2525 participants; 3 studies).Enteral nutrition versus enteral nutrition and parenteral nutritionWe found that one feeding regimen rather than another (EN or combined EN or PN) may make little or no difference to mortality in hospital (RR 0.99, 95% CI 0.84 to 1.16; 5111 participants; 5 studies; low-certainty evidence), and at 90 days (RR 1.00, 95% CI 0.86 to 1.18; 4760 participants; 2 studies; low-certainty evidence). It is uncertain whether combined EN and PN leads to fewer deaths at 30 days because the certainty of the evidence is very low (RR 1.64, 95% CI 1.06 to 2.54; 409 participants; 3 studies). It is uncertain whether one feeding regimen rather than another reduces mortality within 180 days because the certainty of the evidence is very low (RR 1.00, 95% CI 0.65 to 1.55; 120 participants; 1 study).No studies reported number of ICU-free days or ventilator-free days up to day 28. It is uncertain whether either feeding method reduces pneumonia because the certainty of the evidence is very low (RR 1.40, 95% CI 0.91 to 2.15; 205 participants; 2 studies). No studies reported aspiration, sepsis, or vomiting. AUTHORS' CONCLUSIONS We found insufficient evidence to determine whether EN is better or worse than PN, or than combined EN and PN for mortality in hospital, at 90 days and at 180 days, and on the number of ventilator-free days and adverse events. We found fewer deaths at 30 days when studies gave combined EN and PN, and reduced sepsis for EN rather than PN. We found no studies that reported number of ICU-free days up to day 28. Certainty of the evidence for all outcomes is either low or very low. The 11 studies awaiting classification may alter the conclusions of the review once assessed.
Collapse
Affiliation(s)
- Sharon R Lewis
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Oliver J Schofield‐Robinson
- Royal Lancaster InfirmaryLancaster Patient Safety Research UnitPointer Court 1, Ashton RoadLancasterUKLA1 4RP
| | - Phil Alderson
- National Institute for Health and Care ExcellenceLevel 1A, City Tower,Piccadilly PlazaManchesterUKM1 4BD
| | - Andrew F Smith
- Royal Lancaster InfirmaryDepartment of AnaesthesiaAshton RoadLancasterLancashireUKLA1 4RP
| | | |
Collapse
|
13
|
Nishida O, Ogura H, Egi M, Fujishima S, Hayashi Y, Iba T, Imaizumi H, Inoue S, Kakihana Y, Kotani J, Kushimoto S, Masuda Y, Matsuda N, Matsushima A, Nakada TA, Nakagawa S, Nunomiya S, Sadahiro T, Shime N, Yatabe T, Hara Y, Hayashida K, Kondo Y, Sumi Y, Yasuda H, Aoyama K, Azuhata T, Doi K, Doi M, Fujimura N, Fuke R, Fukuda T, Goto K, Hasegawa R, Hashimoto S, Hatakeyama J, Hayakawa M, Hifumi T, Higashibeppu N, Hirai K, Hirose T, Ide K, Kaizuka Y, Kan’o T, Kawasaki T, Kuroda H, Matsuda A, Matsumoto S, Nagae M, Onodera M, Ohnuma T, Oshima K, Saito N, Sakamoto S, Sakuraya M, Sasano M, Sato N, Sawamura A, Shimizu K, Shirai K, Takei T, Takeuchi M, Takimoto K, Taniguchi T, Tatsumi H, Tsuruta R, Yama N, Yamakawa K, Yamashita C, Yamashita K, Yoshida T, Tanaka H, Oda S. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). J Intensive Care 2018; 6:7. [PMID: 29435330 PMCID: PMC5797365 DOI: 10.1186/s40560-017-0270-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 and published in the Journal of JSICM, [2017; Volume 24 (supplement 2)] 10.3918/jsicm.24S0001 and Journal of Japanese Association for Acute Medicine [2017; Volume 28, (supplement 1)] http://onlinelibrary.wiley.com/doi/10.1002/jja2.2017.28.issue-S1/issuetoc.This abridged English edition of the J-SSCG 2016 was produced with permission from the Japanese Association of Acute Medicine and the Japanese Society for Intensive Care Medicine. METHODS Members of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ) and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (> 66.6%) majority vote of each of the 19 committee members. RESULTS A total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation, and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty-seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for five CQs. CONCLUSIONS Based on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals.
Collapse
Affiliation(s)
- Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Moritoki Egi
- Department of anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiro Hayashi
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Imaizumi
- Department of Anesthesiology and Critical Care Medicine, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kotani
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoyuki Matsuda
- Department of Emergency & Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taka-aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Nakagawa
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shin Nunomiya
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Tomohito Sadahiro
- Department of Emergency and Critical Care Medicine, Tokyo Women’s Medical University Yachiyo Medical Center, Tokyo, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Tomoaki Yatabe
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Kei Hayashida
- Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Kondo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Yuka Sumi
- Healthcare New Frontier Promotion Headquarters Office, Kanagawa Prefectural Government, Yokohama, Japan
| | - Hideto Yasuda
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Kazuyoshi Aoyama
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Anesthesia, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Takeo Azuhata
- Division of Emergency and Critical Care Medicine, Departmen of Acute Medicine, Nihon university school of Medicine, Tokyo, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary’s Hospital, Westminster, UK
| | - Ryota Fuke
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Tatsuma Fukuda
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Koji Goto
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryuichi Hasegawa
- Department of Emergency and Intensive Care Medicine, Mito Clinical Education and Training Center, Tsukuba University Hospital, Mito Kyodo General Hospital, Mito, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Tsukuba, Japan
| | - Junji Hatakeyama
- Department of Intensive Care Medicine, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Mineji Hayakawa
- Emergency and Critical Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Toru Hifumi
- Emergency Medical Center, Kagawa University Hospital, Miki, Japan
| | - Naoki Higashibeppu
- Department of Anesthesia and Critical Care, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Katsuki Hirai
- Department of Pediatrics, Kumamoto Red cross Hospital, Kumamoto, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Kentaro Ide
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuo Kaizuka
- Department of Emergency & ICU, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| | - Tomomichi Kan’o
- Department of Emergency & Critical Care Medicine Kitasato University, Tokyo, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Hiromitsu Kuroda
- Department of Anesthesia, Obihiro Kosei Hospital, Obihiro, Japan
| | - Akihisa Matsuda
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Shotaro Matsumoto
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Masaharu Nagae
- Department of anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Mutsuo Onodera
- Department of Emergency and Critical Care Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Tetsu Ohnuma
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, USA
| | - Kiyohiro Oshima
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobuyuki Saito
- Shock and Trauma Center, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - So Sakamoto
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Mikio Sasano
- Department of Intensive Care Medicine, Nakagami Hospital, Uruma, Japan
| | - Norio Sato
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Atsushi Sawamura
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kunihiro Shirai
- Department of Emergency and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tetsuhiro Takei
- Department of Emergency and Critical Care Medicine, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Kohei Takimoto
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Japan
| | - Naoya Yama
- Department of Diagnostic Radiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuma Yamakawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Chizuru Yamashita
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Kazuto Yamashita
- Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yoshida
- Intensive Care Unit, Osaka University Hospital, Osaka, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
14
|
Nishida O, Ogura H, Egi M, Fujishima S, Hayashi Y, Iba T, Imaizumi H, Inoue S, Kakihana Y, Kotani J, Kushimoto S, Masuda Y, Matsuda N, Matsushima A, Nakada T, Nakagawa S, Nunomiya S, Sadahiro T, Shime N, Yatabe T, Hara Y, Hayashida K, Kondo Y, Sumi Y, Yasuda H, Aoyama K, Azuhata T, Doi K, Doi M, Fujimura N, Fuke R, Fukuda T, Goto K, Hasegawa R, Hashimoto S, Hatakeyama J, Hayakawa M, Hifumi T, Higashibeppu N, Hirai K, Hirose T, Ide K, Kaizuka Y, Kan'o T, Kawasaki T, Kuroda H, Matsuda A, Matsumoto S, Nagae M, Onodera M, Ohnuma T, Oshima K, Saito N, Sakamoto S, Sakuraya M, Sasano M, Sato N, Sawamura A, Shimizu K, Shirai K, Takei T, Takeuchi M, Takimoto K, Taniguchi T, Tatsumi H, Tsuruta R, Yama N, Yamakawa K, Yamashita C, Yamashita K, Yoshida T, Tanaka H, Oda S. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). Acute Med Surg 2018; 5:3-89. [PMID: 29445505 PMCID: PMC5797842 DOI: 10.1002/ams2.322] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/11/2022] Open
Abstract
Background and Purpose The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 in Japanese. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. Methods Members of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ), and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (>66.6%) majority vote of each of the 19 committee members. Results A total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for 5 CQs. Conclusions Based on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals.
Collapse
|
15
|
Maxwell J, Gwardschaladse C, Lombardo G, Petrone P, Policastro A, Karev D, Prabhakaran K, Betancourt A, Marini CP. The impact of measurement of respiratory quotient by indirect calorimetry on the achievement of nitrogen balance in patients with severe traumatic brain injury. Eur J Trauma Emerg Surg 2017; 43:775-782. [PMID: 27658944 DOI: 10.1007/s00068-016-0724-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/10/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND This study evaluated the impact of IC on the optimization of nutritional support and the achievement of +NB in patients with TBI. MATERIALS AND METHODS 27 patients (GCS ≤ 8), treated with a 5-day multimodality monitoring and goal-directed therapy protocol, received enteral nutrition on day 1 followed by IC on days 3 and 5 and assessment of NB on day 7. In the first cohort (n = 11), no adjustment in kcal was made. In the second cohort (n = 16), nutrition was targeted to an RQ of 0.83 by day 3. The first cohort was analyzed with respect to NB status; the second cohort was compared to patients with (-) and +NB of the first cohort. Data (mean ± SD) were analyzed with unpaired t test, and Chi square and Fisher exact tests. RESULTS 4/11(36 %) patients in the first cohort had +NB. The predicted mortality by TRISS, substrate utilization, and RQ was significantly lower compared to the second cohort. The mortality predicted by the CrasH model did not differ between the two cohorts. A RQ of 0.74 was associated with the preferential use of fat and protein and -NB, whereas a RQ of 0.84 favored utilization of carbohydrates and +NB. All patients whose kcal intake was adjusted based on the RQ on day 3 reached a +NB by day 7. CONCLUSION An increase in kcal ≥25 % in patients with a RQ < 0.83 on day 3 improves substrate utilization, decreases protein utilization and optimizes the achievement of +NB by day 7.
Collapse
Affiliation(s)
- J Maxwell
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - C Gwardschaladse
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - G Lombardo
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - P Petrone
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - A Policastro
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - D Karev
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - K Prabhakaran
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - A Betancourt
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA
| | - C P Marini
- Division of Trauma Surgery, Surgical Critical Care and Acute Care Surgery, Department of Surgery New York Medical College, Joel A. Halpern Trauma Center, Westchester Medical Center University Hospital, 100 Woods Rd Taylor Pavilion E 138, Valhalla, New York, 10595, USA.
| |
Collapse
|
16
|
Abstract
With the development of specialized nutrition support, an interdisciplinary approach was essential to translating this medical breakthrough from the laboratory to the bedside. As this new innovation was adopted, interdisciplinary nutrition support teams were created to optimize the effectiveness and safety of this therapy. The impact of standardization and the use of an interdisciplinary team to provide specialized nutrition support have been shown to improve outcomes and safety and to have a positive financial impact on healthcare institutions. Yet many hospitals do not have nutrition support teams, and the numbers that do may have decreased. To be effective, nutrition support teams need to practice at an evidence-based level and measure their performance. Nutrition support teams include many of the components of the healthcare delivery system that are advocated for the future, and nutrition support teams should be encouraged as the preferred system of providing specialized nutrition support.
Collapse
Affiliation(s)
- Philip J Schneider
- Latiolais Leadership Program, The Ohio State University, 500 West 12 Avenue, College of Pharmacy, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Guidelines for the Use of Parenteral and Enteral Nutrition in Adult and Pediatric Patients. JPEN J Parenter Enteral Nutr 2016. [DOI: 10.1177/014860719301700401] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Abstract
Elevated intracranial pressure (ICP) is a primary cause of morbidity and mortality for many neurologic disorders. The relationship between ICP and brain volume is influenced by autoregulatory processes that can become dysfunctional. As a result, neurologic damage can occur by systemic and intracranial insults such as ischemia and excitatory amino acids. Therefore, survival is dependent on optimizing ICP and cerebral perfusion pressure. Treatment of intracranial hypertension requires intensive monitoring and aggressive therapy. Intracranial pressure monitoring techniques such as intraventricular catheters are useful for determining ICP elevations before changes in vital signs and neurologic status. Therapeutic modalities, generally aimed at reducing cerebral blood volume, brain tissue, and cerebrospinal fluid (CSF) volume, include nonpharmacologic (CSF removal, controlled hyperventilation, and elevating the patient’s head) and pharmacologic management. Mannitol and sedation are first-line agents used to lower ICP. Barbiturate coma may be beneficial in patients with elevated ICP refractory to conventional treatment. The use of prophylactic antiseizure therapy and optimal nutrition prevents significant complication. Currently, investigations are directed at discovering useful neuroprotective agents that prevent secondary neurologic injury.
Collapse
Affiliation(s)
- Beth A. Vanderheyden
- Department of Pharmacy Services, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201,
| | - Brian D. Buck
- Department of Pharmacy Services, University of Maryland Medical Center, 22 S. Greene Street, Baltimore, MD 21201,
| |
Collapse
|
19
|
Magnuson B, Hatton J, Williams S, Loan T. Tolerance and Efficacy of Enteral Nutrition for Neurosurgical Patients in Pentobarbital Coma. Nutr Clin Pract 2016. [DOI: 10.1177/088453369901400308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
20
|
Abstract
Critical illness is accompanied by multiple physiologic alterations that affect the pharmacokinetics of antimicrobials. Although the pharmacokinetics of a number of antimicrobials have been studied in critically ill individuals, an understanding of the physiological alterations in critical illness and general pharmacokinetic principles of antimicrobials is imperative for appropriate selection, dosing, and prediction of toxicity.
Collapse
Affiliation(s)
- Aaron M. Cook
- Neurosurgery/Critical Care, University of Kentucky Chandler Medical Center, Lexington,
| |
Collapse
|
21
|
|
22
|
Konvolinka CW, Morell VO. Nutrition in Head Trauma. Nutr Clin Pract 2016. [DOI: 10.1177/088453369100600611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
23
|
|
24
|
Joffe A, Anton N, Lequier L, Vandermeer B, Tjosvold L, Larsen B, Hartling L. Nutritional support for critically ill children. Cochrane Database Syst Rev 2016; 2016:CD005144. [PMID: 27230550 PMCID: PMC6517095 DOI: 10.1002/14651858.cd005144.pub3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Nutritional support in the critically ill child has not been well investigated and is a controversial topic within paediatric intensive care. There are no clear guidelines as to the best form or timing of nutrition in critically ill infants and children. This is an update of a review that was originally published in 2009. . OBJECTIVES The objective of this review was to assess the impact of enteral and parenteral nutrition given in the first week of illness on clinically important outcomes in critically ill children. There were two primary hypotheses:1. the mortality rate of critically ill children fed enterally or parenterally is different to that of children who are given no nutrition;2. the mortality rate of critically ill children fed enterally is different to that of children fed parenterally.We planned to conduct subgroup analyses, pending available data, to examine whether the treatment effect was altered by:a. age (infants less than one year versus children greater than or equal to one year old);b. type of patient (medical, where purpose of admission to intensive care unit (ICU) is for medical illness (without surgical intervention immediately prior to admission), versus surgical, where purpose of admission to ICU is for postoperative care or care after trauma).We also proposed the following secondary hypotheses (a priori), pending other clinical trials becoming available, to examine nutrition more distinctly:3. the mortality rate is different in children who are given enteral nutrition alone versus enteral and parenteral combined;4. the mortality rate is different in children who are given both enteral feeds and parenteral nutrition versus no nutrition. SEARCH METHODS In this updated review we searched: the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 2); Ovid MEDLINE (1966 to February 2016); Ovid EMBASE (1988 to February 2016); OVID Evidence-Based Medicine Reviews; ISI Web of Science - Science Citation Index Expanded (1965 to February 2016); WebSPIRS Biological Abstracts (1969 to February 2016); and WebSPIRS CAB Abstracts (1972 to February 2016). We also searched trial registries, reviewed reference lists of all potentially relevant studies, handsearched relevant conference proceedings, and contacted experts in the area and manufacturers of enteral and parenteral nutrition products. We did not limit the search by language or publication status. SELECTION CRITERIA We included studies if they were randomized controlled trials; involved paediatric patients, aged one day to 18 years of age, who were cared for in a paediatric intensive care unit setting (PICU) and had received nutrition within the first seven days of admission; and reported data for at least one of the pre-specified outcomes (30-day or PICU mortality; length of stay in PICU or hospital; number of ventilator days; and morbid complications, such as nosocomial infections). We excluded studies if they only reported nutritional outcomes, quality of life assessments, or economic implications. Furthermore, we did not address other areas of paediatric nutrition, such as immunonutrition and different routes of delivering enteral nutrition, in this review. DATA COLLECTION AND ANALYSIS Two authors independently screened the searches, applied the inclusion criteria, and performed 'Risk of bias' assessments. We resolved discrepancies through discussion and consensus. One author extracted data and a second checked data for accuracy and completeness. We graded the evidence based on the following domains: study limitations, consistency of effect, imprecision, indirectness, and publication bias. MAIN RESULTS We identified only one trial as relevant. Seventy-seven children in intensive care with burns involving more than 25% of the total body surface area were randomized to either enteral nutrition within 24 hours or after at least 48 hours. No statistically significant differences were observed for mortality, sepsis, ventilator days, length of stay, unexpected adverse events, resting energy expenditure, nitrogen balance, or albumin levels. We assessed the trial as having unclear risk of bias. We consider the quality of the evidence to be very low due to there being only one small trial. In the most recent search update we identified a protocol for a relevant randomized controlled trial examining the impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients; no results have been published. AUTHORS' CONCLUSIONS There was only one randomized trial relevant to the review question. Research is urgently needed to identify best practices regarding the timing and forms of nutrition for critically ill infants and children.
Collapse
Affiliation(s)
- Ari Joffe
- University of Alberta and Stollery Children's HospitalDepartment of Pediatrics, Division of Pediatric Intensive CareOffice 3A3.078440‐ 112 StEdmontonABCanadaT6G 2B7
| | - Natalie Anton
- University of Alberta and Stollery Children's HospitalDepartment of Pediatrics, Division of Pediatric Intensive CareOffice 3A3.078440‐ 112 StEdmontonABCanadaT6G 2B7
| | - Laurance Lequier
- University of Alberta and Stollery Children's HospitalDepartment of Pediatrics, Division of Pediatric Intensive CareOffice 3A3.078440‐ 112 StEdmontonABCanadaT6G 2B7
| | - Ben Vandermeer
- University of AlbertaDepartment of Pediatrics and the Alberta Research Centre for Health Evidence11405 ‐ 87 AvenueEdmontonABCanadaT6G 1C9
| | - Lisa Tjosvold
- University of AlbertaAlberta Research Centre for Child Health EvidenceAberhart Centre One, Room 942011402 University Ave.EdmontonABCanadaT6G 2J3
| | - Bodil Larsen
- Stollery Children's HospitalNutrition ServiceEdmontonABCanadaT6G 2B7
| | - Lisa Hartling
- University of AlbertaDepartment of Pediatrics and the Alberta Research Centre for Health Evidence11405 ‐ 87 AvenueEdmontonABCanadaT6G 1C9
| | | |
Collapse
|
25
|
Elke G, van Zanten ARH, Lemieux M, McCall M, Jeejeebhoy KN, Kott M, Jiang X, Day AG, Heyland DK. Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care 2016; 20:117. [PMID: 27129307 PMCID: PMC4851818 DOI: 10.1186/s13054-016-1298-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/14/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Enteral nutrition (EN) is recommended as the preferred route for early nutrition therapy in critically ill adults over parenteral nutrition (PN). A recent large randomized controlled trial (RCT) showed no outcome differences between the two routes. The objective of this systematic review was to evaluate the effect of the route of nutrition (EN versus PN) on clinical outcomes of critically ill patients. METHODS An electronic search from 1980 to 2016 was performed identifying relevant RCTs. Individual trial data were abstracted and methodological quality of included trials scored independently by two reviewers. The primary outcome was overall mortality and secondary outcomes included infectious complications, length of stay (LOS) and mechanical ventilation. Subgroup analyses were performed to examine the treatment effect by dissimilar caloric intakes, year of publication and trial methodology. We performed a test of asymmetry to assess for the presence of publication bias. RESULTS A total of 18 RCTs studying 3347 patients met inclusion criteria. Median methodological score was 7 (range, 2-12). No effect on overall mortality was found (1.04, 95 % CI 0.82, 1.33, P = 0.75, heterogeneity I(2) = 11 %). EN compared to PN was associated with a significant reduction in infectious complications (RR 0.64, 95 % CI 0.48, 0.87, P = 0.004, I(2) = 47 %). This was more pronounced in the subgroup of RCTs where the PN group received significantly more calories (RR 0.55, 95 % CI 0.37, 0.82, P = 0.003, I(2) = 0 %), while no effect was seen in trials where EN and PN groups had a similar caloric intake (RR 0.94, 95 % CI 0.80, 1.10, P = 0.44, I(2) = 0 %; test for subgroup differences, P = 0.003). Year of publication and methodological quality did not influence these findings; however, a publication bias may be present as the test of asymmetry was significant (P = 0.003). EN was associated with significant reduction in ICU LOS (weighted mean difference [WMD] -0.80, 95 % CI -1.23, -0.37, P = 0.0003, I(2) = 0 %) while no significant differences in hospital LOS and mechanical ventilation were observed. CONCLUSIONS In critically ill patients, the use of EN as compared to PN has no effect on overall mortality but decreases infectious complications and ICU LOS. This may be explained by the benefit of reduced macronutrient intake rather than the enteral route itself.
Collapse
Affiliation(s)
- Gunnar Elke
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 Haus 12, 24105, Kiel, Germany
| | - Arthur R H van Zanten
- Department of Intensive Care, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, RP, Ede, The Netherlands
| | - Margot Lemieux
- Department of Critical Care Medicine, Queen's University and Clinical Evaluation Research Unit, Kingston General Hospital, Angada 4, K7L 2V7, Kingston, ON, Canada
| | - Michele McCall
- Medical/Surgical ICU, Specialized Complex Care, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada
| | - Khursheed N Jeejeebhoy
- Department of Nutritional Sciences, St Michael's Hospital, 30 Bond Street, Toronto, ON, Canada
| | - Matthias Kott
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 Haus 12, 24105, Kiel, Germany
| | - Xuran Jiang
- Department of Critical Care Medicine, Queen's University and Clinical Evaluation Research Unit, Kingston General Hospital, Angada 4, K7L 2V7, Kingston, ON, Canada
| | - Andrew G Day
- Department of Critical Care Medicine, Queen's University and Clinical Evaluation Research Unit, Kingston General Hospital, Angada 4, K7L 2V7, Kingston, ON, Canada
| | - Daren K Heyland
- Department of Critical Care Medicine, Queen's University and Clinical Evaluation Research Unit, Kingston General Hospital, Angada 4, K7L 2V7, Kingston, ON, Canada.
| |
Collapse
|
26
|
Chapple LAS, Deane AM, Heyland DK, Lange K, Kranz AJ, Williams LT, Chapman MJ. Energy and protein deficits throughout hospitalization in patients admitted with a traumatic brain injury. Clin Nutr 2016; 35:1315-1322. [PMID: 26949198 DOI: 10.1016/j.clnu.2016.02.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/01/2016] [Accepted: 02/10/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Patients with traumatic brain injury (TBI) experience considerable energy and protein deficits in the intensive care unit (ICU) and these are associated with adverse outcomes. However, nutrition delivery after ICU discharge during ward-based care, particularly from oral diet, has not been measured. This study aimed to quantify energy and protein delivery and deficits over the entire hospitalization for critically ill TBI patients. METHODS Consecutively admitted adult patients with a moderate-severe TBI (Glasgow Coma Scale 3-12) over 12 months were eligible. Observational data on energy and protein delivered from all routes were collected until hospital discharge or day 90 and compared to dietician prescriptions. Oral intake was quantified using weighed food records on three pre-specified days each week. Data are mean (SD) unless indicated. Cumulative deficit is the mean absolute difference between intake and estimated requirements. RESULTS Thirty-seven patients [45.3 (15.8) years; 87% male; median APACHE II 18 (IQR: 14-22)] were studied for 1512 days. Median duration of ICU and ward-based stay was 13.4 (IQR: 6.4-17.9) and 19.9 (9.6-32.0) days, respectively. Over the entire hospitalization patients had a cumulative deficit of 18,242 (16,642) kcal and 1315 (1028) g protein. Energy and protein intakes were less in ICU than the ward (1798 (800) vs 1980 (915) kcal/day, p = 0.015; 79 (47) vs 89 (41) g/day protein, p = 0.001). Energy deficits were almost two-fold greater in patients exclusively receiving nutrition orally than tube-fed (806 (616) vs 445 (567) kcal/day, p = 0.016) while protein deficits were similar (40 (5) vs 37 (6) g/day, p = 0.616). Primary reasons for interruptions to enteral and oral nutrition were fasting for surgery/procedures and patient-related reasons, respectively. CONCLUSIONS Patients admitted to ICU with a TBI have energy and protein deficits that persist after ICU discharge, leading to considerable shortfalls over the entire hospitalization. Patients ingesting nutrition orally are at particular risk of energy deficit.
Collapse
Affiliation(s)
- Lee-Anne S Chapple
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia; National Health and Medical Research Council of Australia Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, South Australia, Australia.
| | - Adam M Deane
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia; National Health and Medical Research Council of Australia Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, South Australia, Australia; Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, Australia.
| | - Daren K Heyland
- Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Ontario, Canada.
| | - Kylie Lange
- Discipline of Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - Amelia J Kranz
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - Lauren T Williams
- Menzies Health Institute of Queensland, Griffith University, Queensland, Australia.
| | - Marianne J Chapman
- Discipline of Acute Care Medicine, University of Adelaide, North Terrace, Adelaide, South Australia, Australia; National Health and Medical Research Council of Australia Centre for Clinical Research Excellence in Nutritional Physiology and Outcomes, Level 6, Eleanor Harrald Building, North Terrace, Adelaide, South Australia, Australia; Intensive Care Unit, Level 4, Emergency Services Building, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, Australia.
| |
Collapse
|
27
|
Gumarova L, Bodrova R. Assessment of need in nutritional support in patients with the consequences of central nervous system injuries. Zh Nevrol Psikhiatr Im S S Korsakova 2016. [DOI: 10.17116/jnevro20161163183-87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Japanese Guidelines for Nutrition Support Therapy in the Adult and Pediatric Critically Ill Patients. ACTA ACUST UNITED AC 2016. [DOI: 10.3918/jsicm.23.185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Horn SD, Kinikini M, Moore LW, Hammond FM, Brandstater ME, Smout RJ, Barrett RS. Enteral Nutrition for Patients With Traumatic Brain Injury in the Rehabilitation Setting: Associations With Patient Preinjury and Injury Characteristics and Outcomes. Arch Phys Med Rehabil 2015; 96:S245-55. [PMID: 26212401 PMCID: PMC4545614 DOI: 10.1016/j.apmr.2014.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/21/2014] [Accepted: 06/26/2014] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To determine the association of enteral nutrition (EN) with patient preinjury and injury characteristics and outcomes for patients receiving inpatient rehabilitation after traumatic brain injury (TBI). DESIGN Prospective observational study. SETTING Nine rehabilitation centers. PARTICIPANTS Patients (N=1701) admitted for first full inpatient rehabilitation after TBI. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES FIM at rehabilitation discharge, length of stay, weight loss, and various infections. RESULTS There were many significant differences in preinjury and injury characteristics between patients who received EN and patients who did not. After matching patients with a propensity score of >40% for the likely use of EN, patients receiving EN with either a standard or a high-protein formula (>20% of calories coming from protein) for >25% of their rehabilitation stay had higher FIM motor and cognitive scores at rehabilitation discharge and less weight loss than did patients with similar characteristics not receiving EN. CONCLUSIONS For patients receiving inpatient rehabilitation after TBI and matched on a propensity score of >40% for the likely use of EN, clinicians should strongly consider, when possible, EN for ≥25% of the rehabilitation stay and especially with a formula that contains at least 20% protein rather than a standard formula.
Collapse
Affiliation(s)
- Susan D Horn
- Institute for Clinical Outcomes Research, International Severity Information Systems, Inc, Salt Lake City, UT.
| | - Merin Kinikini
- Neuro Specialty Rehabilitation Unit, Intermountain Medical Center, Salt Lake City, UT
| | | | - Flora M Hammond
- Carolinas Rehabilitation, Charlotte, NC; Indiana University, Indianapolis, IN
| | | | - Randall J Smout
- Institute for Clinical Outcomes Research, International Severity Information Systems, Inc, Salt Lake City, UT
| | - Ryan S Barrett
- Institute for Clinical Outcomes Research, International Severity Information Systems, Inc, Salt Lake City, UT
| |
Collapse
|
30
|
Lu J, Gary KW, Copolillo A, Ward J, Niemeier JP, Lapane KL. Randomized controlled trials in adult traumatic brain injury: a review of compliance to CONSORT statement. Arch Phys Med Rehabil 2014; 96:702-14. [PMID: 25497515 DOI: 10.1016/j.apmr.2014.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/03/2014] [Accepted: 10/31/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To describe the extent to which adherence to Consolidated Standards of Reporting Trials (CONSORT) statement in randomized controlled trials (RCTs) in adult traumatic brain injury (TBI) has improved over time. DATA SOURCES MEDLINE, PsycINFO, and CINAHL databases were searched from inception to September 2013. STUDY SELECTION Primary report of RCTs in adult TBI. The quality of reporting on CONSORT checklist items was examined and compared over time. Study selection was conducted by 2 researchers independently. Any disagreements were solved by discussion. DATA EXTRACTION Two reviewers independently conducted data extraction based on a set of structured data extraction forms. Data regarding the publication years, size, locations, participation centers, intervention types, intervention groups, and CONSORT checklist items were extracted from the including trials. DATA SYNTHESIS Of 105 trials reviewed, 38.1%, 5.7%, and 32.4% investigated drugs, surgical procedures, and rehabilitations as the intervention of interest, respectively. Among reports published between the 2 periods 2002 and 2010 (n=51) and 2011 and September 2013 (n=16), the median sample sizes were 99 and 118; 39.2% and 37.5% of all reports detailed implementation of the randomization process; 60.8% and 43.8% provided information on the method of allocation concealment; 56.9% and 31.3% stated how blinding was achieved; 15.7% and 43.8% reported information regarding trial registration; and only 2.0% and 6.3% stated where the full trial protocol could be accessed, all respectively. CONCLUSIONS Reporting of several important methodological aspects of RCTs conducted in adult TBI populations improved over the years; however, the quality of reporting remains below an acceptable level. The small sample sizes suggest that many RCTs are likely underpowered. Further improvement is recommended in designing and reporting RCTs.
Collapse
Affiliation(s)
- Juan Lu
- Department of Family Medicine and Population Health, Division of Epidemiology, Virginia Commonwealth University, Richmond, VA.
| | - Kelli W Gary
- Department of Occupational Therapy, Virginia Commonwealth University, Richmond, VA
| | - Al Copolillo
- Department of Occupational Therapy, Virginia Commonwealth University, Richmond, VA
| | - John Ward
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA
| | - Janet P Niemeier
- Department of Physical Medicine and Rehabilitation, Carolinas Rehabilitation, Charlotte, NC
| | - Kate L Lapane
- Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
31
|
Nutritional Intake, Body Mass Index, and Activity in Postacute Traumatic Brain Injury: A Preliminary Study. Rehabil Nurs 2014; 39:140-6. [DOI: 10.1002/rnj.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 01/19/2023]
|
32
|
Dhall SS, Hadley MN, Aarabi B, Gelb DE, Hurlbert RJ, Rozzelle CJ, Ryken TC, Theodore N, Walters BC. Nutritional support after spinal cord injury. Neurosurgery 2013; 72 Suppl 2:255-9. [PMID: 23417196 DOI: 10.1227/neu.0b013e31827728d9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sanjay S Dhall
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang X, Dong Y, Han X, Qi XQ, Huang CG, Hou LJ. Nutritional support for patients sustaining traumatic brain injury: a systematic review and meta-analysis of prospective studies. PLoS One 2013; 8:e58838. [PMID: 23527035 PMCID: PMC3602547 DOI: 10.1371/journal.pone.0058838] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/07/2013] [Indexed: 01/13/2023] Open
Abstract
Background In traumatic brain injury (TBI), the appropriate timing and route of feeding, and the efficacy of immune-enhancing formulae have not been well established. We performed this meta-analysis aiming to compare the effects of different nutritional support modalities on clinical outcomes of TBI patients. Methods We systematically searched Pubmed, Embase, and the Cochrane Library until October, 2012. All randomized controlled trials (RCTs) and non-randomized prospective studies (NPSs) that compared the effects of different routes, timings, or formulae of feeding on outcomes in TBI patients were selected. The primary outcomes included mortality and poor outcome. The secondary outcomes included the length of hospital stay, the length of ventilation days, and the rate of infectious or feeding-related complications. Findings 13 RCTs and 3 NPSs were included. The pooled data demonstrated that, compared with delayed feeding, early feeding was associated with a significant reduction in the rate of mortality (relative risk [RR] = 0.35; 95% CI, 0.24–0.50), poor outcome (RR = 0.70; 95% CI, 0.54–0.91), and infectious complications (RR = 0.77; 95% CI, 0.59–0.99). Compared with enteral nutrition, parenteral nutrition showed a slight trend of reduction in the rate of mortality (RR = 0.61; 95% CI, 0.34–1.09), poor outcome (RR = 0.73; 95% CI, 0.51–1.04), and infectious complications (RR = 0.89; 95% CI, 0.66–1.22), whereas without statistical significances. The immune-enhancing formula was associated with a significant reduction in infection rate compared with the standard formula (RR = 0.54; 95% CI, 0.35–0.82). Small-bowel feeding was found to be with a decreasing rate of pneumonia compared with nasogastric feeding (RR = 0.41; 95% CI, 0.22–0.76). Conclusion After TBI, early initiation of nutrition is recommended. It appears that parenteral nutrition is superior to enteral nutrition in improving outcomes. Our results lend support to the use of small-bowel feeding and immune-enhancing formulae in reducing infectious complications.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yan Dong
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Neuroscience Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xi Han
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang-Qian Qi
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng-Guang Huang
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (LJH); (CGH)
| | - Li-Jun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (LJH); (CGH)
| |
Collapse
|
34
|
A reappraisal of nitrogen requirements for patients with critical illness and trauma. J Trauma Acute Care Surg 2012; 73:549-57. [PMID: 23007014 DOI: 10.1097/ta.0b013e318256de1b] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies regarding protein requirements for patients with critical illness are inconclusive owing to small sample size and population heterogeneity. The primary objectives of this study were to determine the amount of protein required to achieve nitrogen equilibrium or a positive nitrogen balance (NB, -4 g/d or better) and ascertain whether patients with traumatic brain injury (TBI) exhibit greater protein catabolism than those without TBI. METHODS Adult patients admitted to the trauma center, given specialized nutrition support, and had an NB determination within 5 days to 14 days after injury were evaluated. Patients with obesity, incomplete urine collection, kidney disease, corticosteroid or pentobarbital therapy, or an oral diet were excluded. RESULTS A total of 300 NB determinations from 249 patients were evaluated. Increasing the protein dosage generally resulted in improved NB; however, the data were highly variable. Of the patients who received a protein intake of 2 g/kg per day or greater, 54% achieved nitrogen equilibrium or positive NB (-4 g/d or better) in contrast to 38% and 29% of patients who received 1.5 g/kg per day to 1.99 g/kg per day and 1 g/kg per day to 1.49 g/kg per day, respectively (p < 0.001). There was no significant difference in NB between patients with and without TBI at similar protein intakes. CONCLUSION A higher protein intake was generally associated with an improved NB; yet, many patients remained having a negative NB. A protein dosage of 2 g/kg per day or greater was more successful in achieving nitrogen equilibrium than were lower-dosage intakes. Patients with TBI do not exhibit significantly greater protein catabolism than do patients without TBI. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
35
|
Pinto TF, Rocha R, Paula CA, de Jesus RP. Tolerance to enteral nutrition therapy in traumatic brain injury patients. Brain Inj 2012; 26:1113-1117. [PMID: 22571511 DOI: 10.3109/02699052.2012.666369] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To evaluate the tolerance to enteral nutrition (EN) and the effects of pro-kinetic drugs in critical traumatic brain injury (TBI) patients. METHODS Transversal observational study. A total of 32 out of 45 TBI patients of both genders receiving EN were evaluated in a trauma referral hospital intensive care unit (ICU). Data from each patient were collected for a period of 10 consecutive days after initiation of enteral feeding: gastric residue, presence of vomiting, abdominal distension, Glasgow coma scale and the use of pro-kinetic agents. RESULTS In 20 of the 32 patients high levels of gastric residue were found. Of these 20 patients, half could not tolerate the diet within the first 72 hours following infusion. However, no association was found between disease severity and occurrence of gastrointestinal complications (p > 0.05). Feeding intolerance was observed in 75.0% (n = 24) of patients, even with the systematic use of metaclopramide from the outset of nutritional therapy. All patients with feeding intolerance who used erythromycin by nasogastric tube showed improvement. CONCLUSIONS The high level of gastric residue was the most common feeding intolerance and the delivery of erythromycin by nasogastric tube seems to control gastrointestinal disorders in TBI patients.
Collapse
Affiliation(s)
- Tatiana Fuchs Pinto
- Department of Sciences of Nutrition, School of Nutrition, Federal University of Bahia, Brazil
| | | | | | | |
Collapse
|
36
|
Dhandapani S, Dhandapani M, Agarwal M, Chutani AM, Subbiah V, Sharma BS, Mahapatra AK. The prognostic significance of the timing of total enteral feeding in traumatic brain injury. Surg Neurol Int 2012; 3:31. [PMID: 22530166 PMCID: PMC3326944 DOI: 10.4103/2152-7806.93858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 02/02/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND To study the effect of timing of total enteral feeding on various nutritional parameters and neurological outcome in patients with severe traumatic brain injury (TBI). METHODS One hundred and fourteen patients, in the age group of 20-60 years, admitted within 24 h of TBI with Glasgow Coma Scale (GCS) 4-8 were enrolled for the study. Nineteen patients who had expired before the attainment of total enteral feeding were excluded from the analysis. Total enteral feeding was attained before 3 days, 4-7 days, and after 7 days in 12, 52, and 31 patients, respectively, depending on gastric tolerance. They were prospectively assessed for various markers of nutrition and outcome was assessed at 3 and 6 months. RESULTS Prospective assessment of 67 hospitalized patients at 3 weeks revealed significant differences in anthropometric measurements, total protein, albumin levels, clinical features of malnutrition, and mortality among the three groups. 80% of those fed before 3 days had favorable outcome at 3 months compared to 43% among those fed later. The odds ratio (OR) was 5.29 (95% CI 1.03-27.03) and P value was 0.04. The difference between those fed before 3 days and 4-7 days was not significant at 6 months even though patients fed before 7 days had still significantly higher favorable outcome compared to those fed after 7 days (OR 7.69, P = 0.002). Multivariate analysis for unfavorable outcome showed significance of P = 0.03 for feeding after 3 days and P = 0.01 for feeding after 7 days. CONCLUSIONS In severe TBI, unfavorable outcome was significantly associated with attainment of total enteral feeding after 3 days and more so after 7 days following injury.
Collapse
Affiliation(s)
| | - Manju Dhandapani
- Department of Neuronursing, All India Institute of Medical Sciences, New Delhi, India
| | - Meena Agarwal
- Department of Neuronursing, All India Institute of Medical Sciences, New Delhi, India
| | - Alka M. Chutani
- Department of Dietetics, All India Institute of Medical Sciences, New Delhi, India
| | - Vivekanandhan Subbiah
- Department of Neuro-biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Bhawani S. Sharma
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok K. Mahapatra
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
37
|
Cahill NE, Murch L, Jeejeebhoy K, McClave SA, Day AG, Wang M, Heyland DK. When early enteral feeding is not possible in critically ill patients: results of a multicenter observational study. JPEN J Parenter Enteral Nutr 2011; 35:160-8. [PMID: 21378245 DOI: 10.1177/0148607110381405] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Early enteral nutrition (EN) is the preferred strategy for feeding the critically ill; however, it is not always possible to initiate EN within the recommended 24 to 48 hours. When these situations arise, controversy exists whether to start feeding early via the parenteral route or to delay feeding until EN can be provided. METHODS A multicenter, international, observational study examined nutrition practices in intensive care units (ICUs). Eligible patients were critically ill patients with a medical diagnosis who remained in the ICU for >72 hours and received EN >48 hours after admission. Data were collected on site, including patient characteristics, daily nutrition practices, and outcomes at 60 days. Nutrition and clinical outcomes were compared between 3 groups of patients: (1) early parenteral nutrition (PN) (<48 hours after admission) and late EN (>48 hours after admission), (2) late PN and late EN, and (3) late EN and no PN. RESULTS Of the 703 patients who met our inclusion criteria, 541 (77.0%) medical patients received late EN and no PN. In patients receiving late EN and PN, 83 (11.8%) received early PN and 79 (11.2%) received late PN. Adequacy of calories and protein from total nutrition was highest in the early PN group (74.1% ± 21.2% and 71.5% ± 24.9%, respectively) and lowest in the late EN group (42.9% ± 21.2% and 38.7% ± 21.6%) (P < .001). The proportion of patients dead or remaining in hospital was significantly higher for early PN compared with late EN and PN (unadjusted hazard ratio for early PN = 0.55; 95% confidence interval, 0.37-0.83, P = .015). However, this difference did not remain significant (P = .65) after adjustment for baseline characteristics. CONCLUSIONS The results suggest that initiating PN early, when it is not possible to feed enterally early, may improve provision of calories and protein but is not associated with better clinical outcomes compared with late EN or PN.
Collapse
Affiliation(s)
- Naomi E Cahill
- Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
38
|
Chiang YH, Chao DP, Chu SF, Lin HW, Huang SY, Yeh YS, Lui TN, Binns CW, Chiu WT. Early enteral nutrition and clinical outcomes of severe traumatic brain injury patients in acute stage: a multi-center cohort study. J Neurotrauma 2011; 29:75-80. [PMID: 21534720 DOI: 10.1089/neu.2011.1801] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Guidelines for patients with severe traumatic brain injury (sTBI) published in 2007 recommend providing early nutrition after trauma. Early enteral nutrition (EN) started within 48 h post-injury reduces clinical malnutrition, prevents bacterial translocation from the gastrointestinal tract, and improves outcome in sTBI patients sustaining hypermetabolism and hypercatabolism. The aim of this study was to examine the effect of early EN support on survival rate, Glasgow Coma Scale (GCS) score, and clinical outcome of sTBI patients. Medical records of sTBI patients with GCS scores 4-8 were recruited from 18 hospitals in Taiwan, excluding patients with GCS scores ≤3. During 2002-2010, data from 145 EN patients receiving appropriate calories and nutrients within 48 h post-trauma were collected and compared with 152 non-EN controls matched for gender, age, body weight, initial GCS score, and operative status. The EN patients had a greater survival rate and GCS score on the 7th day in the intensive care unit (ICU), and a better outcome at 1 month post-injury. After adjusting for age, gender, initial GCS score, and recruitment period, the non-EN patients had a hazard ratio of 14.63 (95% CI 8.58-24.91) compared with EN patients. The GCS score during the first 7 ICU days was significantly improved among EN patients with GCS scores of 6-8 compared with EN patients with GCS scores of 4-5 and non-EN patients with GCS scores of 6-8. This finding demonstrates that EN within 48 h post-injury is associated with better survival, GCS recovery, and outcome among sTBI patients, particularly in those with a GCS score of 6-8.
Collapse
Affiliation(s)
- Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jivnani S, Iyer S, Umakumar K, Gore MA. Impact of enteral nutrition on nitrogen balance in patients of trauma. J Emerg Trauma Shock 2011; 3:109-14. [PMID: 20606784 PMCID: PMC2884438 DOI: 10.4103/0974-2700.62101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/05/2009] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND A prospective study of 50 patients of trauma was carried out at a tertiary level trauma center in Mumbai. The aim was to study the hypermetabolic response to trauma and the effect of early enteral feeding and nutritional supplementation in blunting this response in these patients. METHODS Early enteral feeding was started within 72 h in most patients. The caloric requirement was calculated as per the body weight and a 150: 1 ratio of nonprotein calories to protein was maintained. A 24-h urinary nitrogen loss was estimated and nitrogen balance was calculated on days 1, 3 and 7. RESULTS The correlation between the injury severity and the severity of catabolism was also analysed. Urinary nitrogen loss and nitrogen balance were used as parameters to evaluate the hypermetabolic response. CONCLUSIONS Early (within 72 h) enteral nutritional support blunts this hypermetabolic response to some extent in these trauma patients.
Collapse
Affiliation(s)
- Sabita Jivnani
- Department of Surgery, LTMGH & LTMMC, Sion, Mumbai, India
| | | | | | | |
Collapse
|
40
|
Dickerson RN. Optimal caloric intake for critically ill patients: first, do no harm. Nutr Clin Pract 2011; 26:48-54. [PMID: 21266697 DOI: 10.1177/0884533610393254] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite considerable efforts to define energy requirements for critically ill patients, no single method has been found to be precise and unbiased for all patients. As a result, clinicians have used various methods that may overestimate energy requirements for some patients. Provision of target caloric intake without regard to the complications of overfeeding, such as hyperglycemia, hypercapnia, or gastric feeding intolerance, could result in overall detrimental clinical outcome. Inadequate nutrition support is also associated with adverse clinical outcomes that necessitate optimization of delivery and tolerance of the nutrition regimen. A pivotal paper by Krishnan and colleagues published in 2003 brought these issues to the forefront of clinical practice. Key papers that support or refute the practice of "permissive underfeeding" are reviewed. Further research is necessary to determine the minimum amount of nutrition required to achieve a therapeutic benefit as well as to ascertain at what amount of additional nutrition intake offers no further improvement in clinical outcome.
Collapse
|
41
|
Miller MA, Conley Y, Scanlon JM, Ren D, Ilyas Kamboh M, Niyonkuru C, Wagner AK. APOE genetic associations with seizure development after severe traumatic brain injury. Brain Inj 2010; 24:1468-77. [DOI: 10.3109/02699052.2010.520299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Kim CT, Moberg-Wolff E, Trovato M, Kim H, Murphy N. Pediatric rehabilitation: 1. Common medical conditions in children with disabilities. PM R 2010; 2:S3-S11. [PMID: 20359677 DOI: 10.1016/j.pmrj.2009.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This self-directed learning module focuses on the physiatric management of the common morbidities associated with pediatric traumatic brain injury and cerebral palsy. It is part of the study guide on pediatric rehabilitation in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation and pediatric medicine. The goal of this article is to enhance the learner's knowledge regarding current physiatric management of complications related with pediatric traumatic brain injury and cerebral palsy.
Collapse
Affiliation(s)
- Chong Tae Kim
- Department of PM&R, University of Pennsylvania, School of Medicine, 3405 Civic Center Boulevard, Philadelphia, PA 19096, USA.
| | | | | | | | | |
Collapse
|
43
|
Dickerson RN, Mitchell JN, Morgan LM, Maish GO, Croce MA, Minard G, Brown RO. Disparate response to metoclopramide therapy for gastric feeding intolerance in trauma patients with and without traumatic brain injury. JPEN J Parenter Enteral Nutr 2010; 33:646-55. [PMID: 19892902 DOI: 10.1177/0148607109335307] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Patients with traumatic brain injury (TBI) have delayed gastric emptying and often require prokinetic drug therapy to improve enteral feeding tolerance. The authors hypothesized that metoclopramide was less efficacious for improving gastric feeding tolerance for trauma patients with TBI compared to trauma patients without TBI. A retrospective analysis was conducted of patients admitted to the trauma or neurosurgical intensive care unit who received gastric feeding from January 2006 to April 2008. Gastric feeding intolerance was defined by a gastric residual volume >200 mL or emesis with abdominal distension or discomfort. Patients with gastric feeding intolerance were given metoclopramide 10 mg intravenously every 6 hours, followed by a dose escalation to 20 mg, and then combination therapy with metoclopramide and erythromycin 250 mg intravenously every 6 hours if intolerance persisted. In total, 882 trauma patients (49% with TBI) were evaluated. TBI patients had a higher incidence of gastric feeding intolerance than those without TBI (18.6% vs 10.4%, P < or = .001). Efficacy rates for metoclopramide 10 mg, metoclopramide 20 mg, and metoclopramide-erythromycin were 55%, 62%, and 79%, respectively (P < or = .03). Metoclopramide failure occurred in 54% of patients with TBI compared to 35% of patients without TBI, respectively (P < or = .02), due to a greater prevalence of tachyphylaxis. Single-drug therapy with metoclopramide was less effective for TBI trauma patients compared to trauma patients without TBI. Combination therapy with erythromycin as first-line therapy for TBI trauma patients with gastric feeding intolerance is indicated if there are no contraindications or significant drug interactions.
Collapse
Affiliation(s)
- Roland N Dickerson
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Joffe A, Anton N, Lequier L, Vandermeer B, Tjosvold L, Larsen B, Hartling L. Nutritional support for critically ill children. Cochrane Database Syst Rev 2009:CD005144. [PMID: 19370617 DOI: 10.1002/14651858.cd005144.pub2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Nutritional support in the critically ill child has not been well investigated and is a controversial topic within paediatric intensive care. There are no clear guidelines as to the best form or timing of nutrition in critically ill infants and children. OBJECTIVES To assess the impact of enteral and total parenteral nutrition on clinically important outcomes for critically ill children. SEARCH STRATEGY We searched: the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2007, Issue 1); Ovid MEDLINE (1966 to February 2007); Ovid EMBASE (1988 to February 2007); OVID Evidence-Based Medicine Reviews; ISI Web of Science - Science Citation Index Expanded (1965 to February 2007); WebSPIRS Biological Abstracts (1969 to February 2007); and WebSPIRS CAB Abstracts (1972 to February 2007). We also searched trial registries; reviewed reference lists of all potentially relevant studies; handsearched relevant conference proceedings; and contacted experts in the area and manufacturers of enteral and parenteral nutrition products. We did not limit the search by language or publication status. SELECTION CRITERIA We included studies if they were randomized controlled trials; involved paediatric patients, aged one day to 18 years of age, cared for in a paediatric intensive care unit setting (PICU) and received nutrition within the first seven days of admission; and reported data for at least one of the pre-specified outcomes (30-day or PICU mortality; length of stay in PICU or hospital; number of ventilator days; and morbid complications, such as nosocomial infections). We excluded studies if they only reported nutritional outcomes, quality of life assessments, or economic implications. Furthermore, other areas of paediatric nutrition, such as immunonutrition and different routes of delivering enteral nutrition, were not addressed in this review. DATA COLLECTION AND ANALYSIS Two authors independently screened searches, applied inclusion criteria, and performed quality assessments. We resolved discrepancies through discussion and consensus. One author extracted data and a second checked data for accuracy and completeness. MAIN RESULTS Only one trial was identified as relevant. Seventy-seven children in intensive care with burns involving > 25% of the total body surface area were randomized to either enteral nutrition within 24 hours or after at least 48 hours. No statistically significant differences were observed for mortality, sepsis, ventilator days, length of stay, unexpected adverse events, resting energy expenditure, nitrogen balance, or albumin levels. The trial was assessed as of low methodological quality (based on the Jadad scale) with an unclear risk of bias. AUTHORS' CONCLUSIONS There was only one randomized trial relevant to the review question. Research is urgently needed to identify best practices regarding the timing and forms of nutrition for critically ill infants and children.
Collapse
Affiliation(s)
- Ari Joffe
- Department of Pediatrics, Division of Pediatric Intensive Care, University of Alberta and Stollery Children's Hospital, Office 3A3.07, 8440- 112 St, Edmonton, Alberta, Canada, T6G 2B7.
| | | | | | | | | | | | | |
Collapse
|
46
|
Tang ME, Lobel DA. Severe traumatic brain injury: maximizing outcomes. ACTA ACUST UNITED AC 2009; 76:119-28. [DOI: 10.1002/msj.20106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Abstract
PURPOSE Adequate caloric intake is associated with improved outcome in neurocritical illness, but factors influencing the provision of enteral nutrition (EN) have not been systematically evaluated. The primary goal of the study was to determine the EN intake of neurosurgical intensive care unit (ICU) patients within the first week of illness and investigate the factors contributing to achieving caloric goals. METHODS A retrospective cohort of adult patients admitted to the neurosurgery service (NS) during August 2005-August 2006 were randomly selected and stratified into three groups based on their ICU-admission Glasgow Coma Scale Score (GCS) (GCS > 11, GCS 8-11, GCS 4-7). Daily EN intake, GCS, and other clinical data were collected. RESULTS A total of 71 patients were included (GCS > 11 = 23, GCS 8-11 = 23, GCS 4-7 = 25). Admitting diagnoses included traumatic brain injury (TBI) (32%), subarachnoid hemorrhage (SAH) (32%), and intracerebral hemorrhage (17%). The overall in-hospital mortality was 23.9%. Overall, the maximum daily mean calories provided was 1,100 kcal (mean of 55% of caloric goal on hospital day 6). The median time to feeding was approximately 3 days in each group. GCS did not appear to significantly affect the mean % of caloric goal administered in patients with a minimum daily GCS < or = 11 (P = 0.053). Multivariate analysis revealed that clinical care factors, such as time to EN orders and enteral access confirmation, were significant impediments to EN provision (P = 0.001). CONCLUSION System-based clinical care factors appear to have great impact on the successful provision of EN in the first week of neurocritical illness.
Collapse
|
48
|
Cook AM, Peppard A, Magnuson B. Nutrition Considerations in Traumatic Brain Injury. Nutr Clin Pract 2008; 23:608-20. [DOI: 10.1177/0884533608326060] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Aaron M. Cook
- From the University of Kentucky Healthcare, Lexington
| | - Amy Peppard
- From the University of Kentucky Healthcare, Lexington
| | | |
Collapse
|
49
|
Härtl R, Gerber LM, Ni Q, Ghajar J. Effect of early nutrition on deaths due to severe traumatic brain injury. J Neurosurg 2008; 109:50-6. [DOI: 10.3171/jns/2008/109/7/0050] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Traumatic brain injury (TBI) remains a serious public health crisis requiring continuous improvement in pre-hospital and inhospital care. This condition results in a hypermetabolic state that increases systemic and cerebral energy requirements, but achieving adequate nutrition to meet this demand has not been a priority in reducing death due to TBI. The effect of timing and quantity of nutrition on death within the first 2 weeks of injury was analyzed in a large prospective database of adult patients with severe TBI in New York State.
Methods
The study is based on 797 patients with severe TBI (Glasgow Coma Scale [GCS] score < 9) treated at 22 trauma centers enrolled in a New York State quality improvement program between 2000 and 2006. The inhospital section of the prospectively collected database includes information on age, initial GCS score, weight and height, results of CT scanning, and daily parameters such as pupillary status, arterial hypotension, GCS score, and number of calories fed per day.
Results
Patients who were not fed within 5 and 7 days after TBI had a 2- and 4-fold increased likelihood of death, respectively. The amount of nutrition in the first 5 days was related to death; every 10-kcal/kg decrease in caloric intake was associated with a 30–40% increase in mortality rates. This held up even after controlling for factors known to affect mortality, including arterial hypotension, age, pupillary status, initial GCS score, and CT scan findings.
Conclusions
Nutrition is a significant predictor of death due to TBI. Together with prevention of arterial hypotension, hypoxia, and intracranial hypertension it is one of the few therapeutic interventions that can directly affect TBI outcome.
Collapse
Affiliation(s)
| | | | - Quanhong Ni
- 2Public Health, Weill Cornell Medical College; and
| | - Jamshid Ghajar
- 1Departments of Neurological Surgery and
- 3Brain Trauma Foundation, New York, New York
| |
Collapse
|
50
|
Nutrition. Surgery 2008. [DOI: 10.1007/978-0-387-68113-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|