1
|
Fournier S, Clarhaut J, Cronier L, Monvoisin A. GJA1-20k, a Short Isoform of Connexin43, from Its Discovery to Its Potential Implication in Cancer Progression. Cells 2025; 14:180. [PMID: 39936974 PMCID: PMC11817742 DOI: 10.3390/cells14030180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
The Connexin43 transmembrane protein (Cx43), encoded by the GJA1 gene, is a member of a multigenic family of proteins that oligomerize to form hemichannels and intercellular channels, allowing gap junctional intercellular communication between adjacent cells or communication between the intracellular and extracellular compartments. Cx43 has long been shown to play a significant but complex role in cancer development, acting as a tumor suppressor and/or tumor promoter. The effects of Cx43 are associated with both channel-dependent and -independent functionalities and differ depending on the expression level, subcellular location and the considered stage of cancer progression. Recently, six isoforms of Cx43 have been described and one of them, called GJA1-20k, has also been found to be expressed in cancer cells. This isoform is generated by alternative translation and corresponds to the end part of the fourth transmembrane domain and the entire carboxyl-terminal (CT) domain. Initial studies in the cardiac model implicated GJA1-20k in the trafficking of full-length Cx43 to the plasma membrane, in cytoskeletal dynamics and in mitochondrial fission and subcellular distribution. As these processes are associated with cancer progression, a potential link between Cx43 functions, mitochondrial activity and GJA1-20k expression can be postulated in this context. This review synthetizes the current knowledge on GJA1-20k and its potential involvement in processes related to epithelial-to-mesenchymal transition (EMT) and the proliferation, dissemination and quiescence of cancer cells. Particular emphasis is placed on the putative roles of GJA1-20k in full-length Cx43 exportation to the plasma membrane, mitochondrial activity and functions originally attributed to the CT domain.
Collapse
Affiliation(s)
- Sarah Fournier
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| | - Jonathan Clarhaut
- Pharmacology of Antimicrobial Agents and Antibioresistance (PHAR2), INSERM U1070, University of Poitiers; 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
- University Hospital Center of Poitiers, 2 Rue de la Milétrie, 86021 Poitiers, France
| | - Laurent Cronier
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| | - Arnaud Monvoisin
- Laboratory Channels and Connexins in Cancer and Cell Stemness (4CS), UR 22751, University of Poitiers, 1 Rue Georges Bonnet, TSA 51106, CEDEX 09, 86073 Poitiers, France;
| |
Collapse
|
2
|
Sade O, Boneberg R, Weiss Y, Beldjilali-Labro M, Leichtmann-Bardoogo Y, Talpir I, Gottfried I, Ashery U, Rauti R, Maoz BM. Super-Resolution-Chip: an in-vitro platform that enables super-resolution microscopy of co-cultures and 3D systems. BIOMEDICAL OPTICS EXPRESS 2023; 14:5223-5237. [PMID: 37854575 PMCID: PMC10581794 DOI: 10.1364/boe.498038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/06/2023] [Accepted: 08/12/2023] [Indexed: 10/20/2023]
Abstract
The development of organs-on-a-chip platforms has revolutionized in-vitro cellular culture by allowing cells to be grown in an environment that better mimics human physiology. However, there is still a challenge in integrating those platforms with advanced imaging technology. This is extremely important when we want to study molecular changes and subcellular processes on the level of a single molecule using super-resolution microscopy (SRM), which has a resolution beyond the diffraction limit of light. Currently, existing platforms that include SRM have certain limitations, either as they only support 2D monocultures, without flow or as they demand a lot of production and handling. In this study, we developed a Super-Res-Chip platform, consisting of a 3D-printed chip and a porous membrane, that could be used to co-culture cells in close proximity either in 2D or in 3D while allowing SRM on both sides of the membrane. To demonstrate the functionality of the device, we co-cultured in endothelial and epithelial cells and used direct stochastic optical reconstruction microscopy (dSTORM) to investigate how glioblastoma cells affect the expression of the gap-junction protein Connexin43 in endothelial cells grown in 2D and in 3D. Cluster analysis of Connexin43 distribution revealed no difference in the number of clusters, their size, or radii, but did identify differences in their density. Furthermore, the spatial resolution was high also when the cells were imaged through the membrane (20-30 nm for x-y) and 10-20 nm when imaged directly both for 2D and 3D conditions. Overall, this chip allows to characterize of complex cellular processes on a molecular scale in an easy manner and improved the capacity for imaging in a single molecule resolution complex cellular organization.
Collapse
Affiliation(s)
- Ofir Sade
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ronja Boneberg
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yifat Weiss
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | | | | | - Itay Talpir
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rossana Rauti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, 61029, Italy
| | - Ben M Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
3
|
Chen T, Li L, Ye B, Chen W, Zheng G, Xie H, Guo Y. Knockdown of hsa_circ_0005699 attenuates inflammation and apoptosis induced by ox-LDL in human umbilical vein endothelial cells through regulation of the miR-450b-5p/NFKB1 axis. Mol Med Rep 2022; 26:290. [PMID: 35904173 PMCID: PMC9366159 DOI: 10.3892/mmr.2022.12806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Atherosclerosis (AS) remains the leading cause of mortality throughout the world, and vascular endothelial cell dysfunction is one of the key events leading to this pathology. In recent years, there has been an increased interest in the role of circulating RNAs in various diseases; these noncoding RNAs can regulate gene products by acting as microRNA (miR) sponges. Furthermore, it has been shown that foam cells exhibit high expression levels of hsa_circ_0005699 (circ_0005699); however, to the best of our knowledge, no previous study has investigated the role of circ_0005699 in the regulation of vascular endothelial function. The present study employed human umbilical vein endothelial cells (HUVECs), which have been widely used to study vascular endothelial cell function. In addition, apolipoprotein E (ApoE)-deficient mice were used, which have been shown to rapidly develop AS and are widely used as a model of this disease. Cellular and biochemical techniques were performed, including gene transfection and short hairpin RNA-mediated gene silencing for cell transfection, luciferase reporter gene assay to confirm predicted genes, Cell Counting Kit-8 assay and flow cytometry to assess cell viability and apoptosis, and reverse transcription-quantitative PCR and western blotting for detection of mRNA and protein expression. In the present study, the expression levels of circ_0005699 were increased by oxidized low-density lipoprotein in a time- and dose-dependent manner in HUVECs; this was also associated with increased apoptosis of these cells. In addition, the expression levels of circ_0005699 were elevated, along with increased levels of inflammatory cytokines, in ApoE-deficient mice. An RNA pull-down assay indicated that circ_0005699 can bind miR-450b-5p to decrease its expression, whereas silencing of circ_0005699 resulted in increased expression of miR-450b-5p. In addition, the online bioinformatics tool starBase predicted NFKB1 as a target gene of miR-450b-5p, which was further confirmed by the luciferase reporter gene assay. Notably, knockdown of circ_0005699 resulted in the increased survival of HUVECs, which was associated with decreased protein expression levels of NFKB1 and inflammatory cytokines. By contrast, the effects of circ-0005699 silencing on survival were reversed by miR-450b-5p inhibition or NFKB1 overexpression. In conclusion, knockdown of circ_0005699 may ameliorate endothelial cell injury through regulation of the miR-450b-5P/NFKB1 signaling axis.
Collapse
Affiliation(s)
- Tao Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lei Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Bo Ye
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Weiqing Chen
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Guofu Zheng
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Hailiang Xie
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| | - Yi Guo
- Department of Vascular Surgery, Ganzhou People's Hospital, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
4
|
Lauko A, Lo A, Ahluwalia MS, Lathia JD. Cancer cell heterogeneity & plasticity in glioblastoma and brain tumors. Semin Cancer Biol 2022; 82:162-175. [PMID: 33640445 PMCID: PMC9618157 DOI: 10.1016/j.semcancer.2021.02.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/25/2022]
Abstract
Brain tumors remain one of the most difficult tumors to treat and, depending on the diagnosis, have a poor prognosis. Of brain tumors, glioblastoma (GBM) is the most common malignant glioma and has a dismal prognosis, with only about 5% of patients alive five years after diagnosis. While advances in targeted therapies and immunotherapies are rapidly improving outcomes in a variety of other cancers, the standard of care for GBM has largely remained unaltered since 2005. There are many well-studied challenges that are either unique to brain tumors (i.e., blood-brain barrier and immunosuppressive environment) or amplified within GBM (i.e., tumor heterogeneity at the cellular and molecular levels, plasticity, and cancer stem cells) that make this disease particularly difficult to treat. While we touch on all these concepts, the focus of this review is to discuss the immense inter- and intra-tumoral heterogeneity and advances in our understanding of tumor cell plasticity and epigenetics in GBM. With each improvement in technology, our understanding of the complexity of tumoral heterogeneity and plasticity improves and we gain more clarity on the causes underlying previous therapeutic failures. However, these advances are unlocking new therapeutic opportunities that scientists and physicians are currently exploiting and have the potential for new breakthroughs.
Collapse
Affiliation(s)
- Adam Lauko
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alice Lo
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Manmeet S Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - Justin D Lathia
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, United States; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, United States; Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, United States; Case Comprehensive Cancer Center, Cleveland, OH, United States.
| |
Collapse
|
5
|
Testa E, Palazzo C, Mastrantonio R, Viscomi MT. Dynamic Interactions between Tumor Cells and Brain Microvascular Endothelial Cells in Glioblastoma. Cancers (Basel) 2022; 14:3128. [PMID: 35804908 PMCID: PMC9265028 DOI: 10.3390/cancers14133128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
GBM is the most aggressive brain tumor among adults. It is characterized by extensive vascularization, and its further growth and recurrence depend on the formation of new blood vessels. In GBM, tumor angiogenesis is a multi-step process involving the proliferation, migration and differentiation of BMECs under the stimulation of specific signals derived from the cancer cells through a wide variety of communication routes. In this review, we discuss the dynamic interaction between BMECs and tumor cells by providing evidence of how tumor cells hijack the BMECs for the formation of new vessels. Tumor cell-BMECs interplay involves multiple routes of communication, including soluble factors, such as chemokines and cytokines, direct cell-cell contact and extracellular vesicles that participate in and fuel this cooperation. We also describe how this interaction is able to modify the BMECs structure, metabolism and physiology in a way that favors tumor growth and invasiveness. Finally, we briefly reviewed the recent advances and the potential future implications of some high-throughput 3D models to better understanding the complexity of BMECs-tumor cell interaction.
Collapse
Affiliation(s)
- Erika Testa
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Claudia Palazzo
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Roberta Mastrantonio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Maria Teresa Viscomi
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
- IRCCS, Fondazione Policlinico Universitario “Agostino Gemelli”, L.go A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
6
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
7
|
Xiang J, Ma L, Gu Z, Jin H, Zhai H, Tong J, Liang T, Li J, Ren Q, Liu Q. A Boronated Derivative of Temozolomide Showing Enhanced Efficacy in Boron Neutron Capture Therapy of Glioblastoma. Cells 2022; 11:cells11071173. [PMID: 35406737 PMCID: PMC8998031 DOI: 10.3390/cells11071173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
There is an incontestable need for improved treatment modality for glioblastoma due to its extraordinary resistance to traditional chemoradiation therapy. Boron neutron capture therapy (BNCT) may play a role in the future. We designed and synthesized a 10B-boronated derivative of temozolomide, TMZB. BNCT was carried out with a total neutron radiation fluence of 2.4 ± 0.3 × 1011 n/cm2. The effects of TMZB in BNCT were measured with a clonogenic cell survival assay in vitro and PET/CT imaging in vivo. Then, 10B-boronated phenylalanine (BPA) was tested in parallel with TMZB for comparison. The IC50 of TMZB for the cytotoxicity of clonogenic cells in HS683 was 0.208 mM, which is comparable to the IC50 of temozolomide at 0.213 mM. In BNCT treatment, 0.243 mM TMZB caused 91.2% ± 6.4% of clonogenic cell death, while 0.239 mM BPA eliminated 63.7% ± 6.3% of clonogenic cells. TMZB had a tumor-to-normal brain ratio of 2.9 ± 1.1 and a tumor-to-blood ratio of 3.8 ± 0.2 in a mouse glioblastoma model. BNCT with TMZB in this model caused 58.2% tumor shrinkage at 31 days after neutron irradiation, while the number for BPA was 35.2%. Therefore, by combining the effects of chemotherapy from temozolomide and radiotherapy with heavy charged particles from BNCT, TMZB-based BNCT exhibited promising potential for therapeutic applications in glioblastoma treatment.
Collapse
Affiliation(s)
- Jing Xiang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
| | - Lin Ma
- Department of Stomatology, General Hospital, Shenzhen University, Shenzhen 518055, China;
| | - Zheng Gu
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
| | - Hongjun Jin
- Guangdong Provincial Key Lab of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China;
| | - Hongbin Zhai
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
| | - Jianfei Tong
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Tianjiao Liang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Juan Li
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China; (J.T.); (T.L.); (J.L.)
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.R.); (Q.L.); Tel.: +86-0755-26038837 (Q.R. & Q.L.)
| | - Qi Liu
- Shenzhen Bay Laboratory, Institute of Biomedical Engineering, Shenzhen 518132, China;
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China;
- Correspondence: (Q.R.); (Q.L.); Tel.: +86-0755-26038837 (Q.R. & Q.L.)
| |
Collapse
|
8
|
Kumar VS, Anjali K. Tumour generated exosomal miRNAs: A major player in tumour angiogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166383. [DOI: 10.1016/j.bbadis.2022.166383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
|
9
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
10
|
Peleli M, Moustakas A, Papapetropoulos A. Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies. Int J Mol Sci 2020; 21:E7371. [PMID: 33036204 PMCID: PMC7582718 DOI: 10.3390/ijms21197371] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC-TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells). At the signaling level, we outline the role of important mediators, like the gasotransmitter nitric oxide and different types of reactive oxygen species and the systems producing them. Finally, we briefly discuss the current antiangiogenic therapies used against brain and CNS tumors and the potential of new pharmacological interventions that target the EC-TC interaction.
Collapse
Affiliation(s)
- Maria Peleli
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden;
| | - Andreas Papapetropoulos
- Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece;
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece
| |
Collapse
|
11
|
Wang Y, Wang W, Wu X, Li C, Huang Y, Zhou H, Cui Y. Resveratrol Sensitizes Colorectal Cancer Cells to Cetuximab by Connexin 43 Upregulation-Induced Akt Inhibition. Front Oncol 2020; 10:383. [PMID: 32318334 PMCID: PMC7155766 DOI: 10.3389/fonc.2020.00383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Cetuximab is a monoclonal antibody that acts as an anti-epidermal growth factor receptor (EGFR) agent. Cetuximab inhibits the phosphorylation and activation of EGFR and blocks downstream signal pathways of EGF/EGFR, including Ras-Raf-MAPK and PI3K-Akt pathways. Akt activation is an important factor in cetuximab resistance. It has been reported that resveratrol and connexin 43 regulate Akt in different ways based on tissue type. Since connexin 43 interacts with Akt, and resveratrol is known to upregulate connexin 43, we investigated whether resveratrol can sensitize colorectal cancer cells to cetuximab via connexin 43 upregulation. Our work confirmed that resveratrol increases the inhibition of growth by cetuximab in vitro and in vivo, upregulates connexin 43 expression and phosphorylation, increases gap junction function, and inhibits the activation of Akt and NFκB in parental or cetuximab-treated parental HCT116 and CT26 cells. Resveratrol did not exhibit these effects on connexin 43-shRNA transfected cells, so connexin 43 upregulation may contribute to Akt inhibition in these cells. Given these data, resveratrol may sensitize colorectal cancer cells to cetuximab via upregulating connexin 43 to inhibit the Akt pathway.
Collapse
Affiliation(s)
- Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, NanKai University, Tianjin, China
| | - Wenhong Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Xiaojing Wu
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Chunjun Li
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Yaping Huang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Huiyan Zhou
- Beijing Enmin Technology Co. Ltd, Beijing, China
| | - Yu Cui
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
12
|
Brocardo L, Acosta LE, Piantanida AP, Rela L. Beneficial and Detrimental Remodeling of Glial Connexin and Pannexin Functions in Rodent Models of Nervous System Diseases. Front Cell Neurosci 2019; 13:491. [PMID: 31780897 PMCID: PMC6851021 DOI: 10.3389/fncel.2019.00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/17/2019] [Indexed: 01/30/2023] Open
Abstract
A variety of glial cell functions are supported by connexin and pannexin proteins. These functions include the modulation of synaptic gain, the control of excitability through regulation of the ion and neurotransmitter composition of the extracellular milieu and the promotion of neuronal survival. Connexins and pannexins support these functions through diverse molecular mechanisms, including channel and non-channel functions. The former comprise the formation of gap junction-mediated networks supported by connexin intercellular channels and the formation of pore-like membrane structures or hemichannels formed by both connexins and pannexins. Non-channel functions involve adhesion properties and the participation in signaling intracellular cascades. Pathological conditions of the nervous system such as ischemia, neurodegeneration, pathogen infection, trauma and tumors are characterized by distinctive remodeling of connexin expression and function. However, whether these changes can be interpreted as part of the pathogenesis, or as beneficial compensatory effects, remains under debate. Here we review the available evidence addressing this matter with a special emphasis in mouse models with selective manipulation of glial connexin and pannexin proteins in vivo. We postulate that the beneficial vs. detrimental effects of glial connexin remodeling in pathological conditions depend on the impact of remodeling on the different connexin and pannexin channel and non-channel functions, on the characteristics of the inflammatory environment and on the type of interaction among glial cells types.
Collapse
Affiliation(s)
- Lucila Brocardo
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luis Ernesto Acosta
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Paula Piantanida
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lorena Rela
- Grupo de Neurociencia de Sistemas, Facultad de Medicina, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Thuringer D, Boucher J, Jego G, Pernet N, Cronier L, Hammann A, Solary E, Garrido C. Transfer of functional microRNAs between glioblastoma and microvascular endothelial cells through gap junctions. Oncotarget 2018; 7:73925-73934. [PMID: 27661112 PMCID: PMC5342024 DOI: 10.18632/oncotarget.12136] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/04/2016] [Indexed: 12/29/2022] Open
Abstract
Extensive invasion and angiogenesis are hallmark features of malignant glioblastomas. Here, we co-cultured U87 human glioblastoma cells and human microvascular endothelial cells (HMEC) to demonstrate the exchange of microRNAs that initially involve the formation of gap junction communications between the two cell types. The functional inhibition of gap junctions by carbenoxolone blocks the transfer of the anti-tumor miR-145-5p from HMEC to U87, and the transfer of the pro-invasive miR-5096 from U87 to HMEC. These two microRNAs exert opposite effects on angiogenesis in vitro. MiR-5096 was observed to promote HMEC tubulogenesis, initially by increasing Cx43 expression and the formation of heterocellular gap junctions, and secondarily through a gap-junction independent pathway. Our results highlight the importance of microRNA exchanges between tumor and endothelial cells that in part involves the formation of functional gap junctions between the two cell types.
Collapse
Affiliation(s)
| | | | - Gaetan Jego
- INSERM, U866, Faculty of Medecine, 21000 Dijon, France.,University of Bourgogne-Franche-Comté, 21000 Dijon, France
| | - Nicolas Pernet
- INSERM, U866, Faculty of Medecine, 21000 Dijon, France.,University of Bourgogne-Franche-Comté, 21000 Dijon, France
| | | | | | - Eric Solary
- INSERM, U1170, Institut Gustave Roussy, 94508 Villejuif, France
| | - Carmen Garrido
- INSERM, U866, Faculty of Medecine, 21000 Dijon, France.,University of Bourgogne-Franche-Comté, 21000 Dijon, France.,CGFL, 21000 Dijon, France
| |
Collapse
|
14
|
Dong H, Zhou XW, Wang X, Yang Y, Luo JW, Liu YH, Mao Q. Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review). Mol Med Rep 2017; 16:7890-7900. [PMID: 28983585 DOI: 10.3892/mmr.2017.7618] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/19/2017] [Indexed: 02/05/2023] Open
Abstract
Connexin (Cx)43 is a multifunction protein which forms gap junction channels and hemi‑channels. It also contains abundant binding domains which possess the ability to interact with certain Cx43‑associated proteins and therefore serve a fundamental role in various physiological and pathological functions. However, the understanding of the association between cancer and Cx43 along with Cx43‑gap junctions (GJ) remains unclear. All available data illustrate that Cx43 and its associated GJ serve important functions in cancers. The expression levels of Cx43 demonstrate a downward trend and an increase in the levels of malignancy, particularly in astrocytomas. The GJ intercellular communication activity in glioma cells can be adjusted via Cx43 phosphorylation and through the combination of Cx43 and its associated protein. Available evidence reveals Cx43 as a tumor‑inhibiting factor that suppresses glioma growth and proliferation. However, its mechanism is also regarded as complicated and ambiguous. Furthermore, it is apparent that Cx43‑GJ and the carboxyl tail may contribute to glioma growth and proliferation too. However, this valuable role could be weakened by its effects on migration and invasiveness. The detailed mechanism remains unclear and full of controversies. Cx43 can enhance the motor ability and invasiveness of astrocytic glioma cells. It is also able to influence glioma cells to detach from the tumor core to the peritumoral neocortex. This peritumoral region has recently been regarded as the basic focus of glioma‑associated seizure. Thus, Cx43 may take part in the onset and development of glioma‑associated epileptic discharge. In addition, change and increase of Cx43 expression in GJs has been observed in seizure perilesional tissue, which is associated with brain tumors. Cx43 or GJ/hemi‑channels exert enduring effects in the promotion of glioma‑associated epileptic release through direct mass effects and change of the tumor microenvironment. However, there are still a number of issues concerning this aspect that require further exploration. Cx43, as a potential treatment target against this incurable disease and its common symptom of epilepsy, requires further investigation.
Collapse
Affiliation(s)
- Hui Dong
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Wang Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie-Wen Luo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Hui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
15
|
Thuringer D, Solary E, Garrido C. The Microvascular Gap Junction Channel: A Route to Deliver MicroRNAs for Neurological Disease Treatment. Front Mol Neurosci 2017; 10:246. [PMID: 28824376 PMCID: PMC5543088 DOI: 10.3389/fnmol.2017.00246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Brain microvascular endothelial cells (BMECs) separate the peripheral blood from the brain. These cells, which are surrounded by basal lamina, pericytes and glial cells, are highly interconnected through tight and gap junctions. Their permeability properties restrict the transfer of potentially useful therapeutic agents. In such a hermetic system, the gap junctional exchange of small molecules between cerebral endothelial and non-endothelial cells is crucial for maintaining tissue homeostasis. MicroRNA were shown to cross gap junction channels, thereby modulating gene expression and function of the recipient cell. It was also shown that, when altered, BMEC could be regenerated by endothelial cells derived from pluripotent stem cells. Here, we discuss the transfer of microRNA through gap junctions between BMEC, the regeneration of BMEC from induced pluripotent stem cells that could be engineered to express specific microRNA, and how such an innovative approach could benefit to the treatment of glioblastoma and other neurological diseases.
Collapse
Affiliation(s)
| | - Eric Solary
- INSERM U1170, Institut Gustave RoussyVillejuif, France
| | - Carmen Garrido
- INSERM U1231, Université de Bourgogne Franche ComtéDijon, France
| |
Collapse
|
16
|
Tang N, Liu J, Chen B, Zhang Y, Yu M, Cai Z, Chen H. Effects of gap junction intercellular communication on the docetaxel-induced cytotoxicity in rat hepatocytes. Mol Med Rep 2017; 15:2689-2694. [PMID: 28447724 DOI: 10.3892/mmr.2017.6295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
The effect of gap junction intercellular communication (GJIC) on docetaxel-induced hepatotoxicity and its underlying mechanisms are largely unknown. The present study involved investigating the effect of downregulating GJs derived from connexin (Cx) 32 in BRL-3A cells by three different mechanisms: Using a low-density culture; suppression of Cx32 using small interfering RNA; and use of the chemical inhibitor 2‑aminoethoxydiphenyl borate (2‑APB), all of which led to attenuated docetaxel hepatotoxicity. In order to investigate the relevant mechanisms involved, apoptosis and caspase activities of BRL‑3A cells were determined. The increase of apoptosis and the activation of caspase‑3 and caspase‑9, but not caspase-8, were detected following cell exposure with docetaxel, demonstrating that the mitochondrial‑mediated apoptosis pathway is largely responsible for docetaxel hepatotoxicity. However, reduced apoptosis and caspase‑3, and ‑9 activities were observed following docetaxel application when BRL‑3A GJIC was deficient from the knockdown of Cx32 expression or pretreatment with 2‑APB. These observations illustrate that GJs are important in docetaxel-induced hepatotoxicity. Furthermore, inhibition of GJIC could prevent amplification of toxicity to docetaxel. Due to GJIC blockage, this hepatoprotection was associated, in part, with decreasing apoptosis of BRL‑3A cells through the mitochondrial pathway. The present study provides evidence for potential therapeutic targets for the treatment of docetaxel-induced liver injury.
Collapse
Affiliation(s)
- Nan Tang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Jinghua Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bo Chen
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yuan Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Ziqing Cai
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongpeng Chen
- School of Information Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
17
|
Dumpich M, Theiss C. VEGF in the nervous system: an important target for research in neurodevelopmental and regenerative medicine. Neural Regen Res 2016; 10:1725-6. [PMID: 26807091 PMCID: PMC4705768 DOI: 10.4103/1673-5374.170287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Matthias Dumpich
- Faculty of Medicine, Institute of Anatomy, Department of Cytology Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Faculty of Medicine, Institute of Anatomy, Department of Cytology Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
18
|
Karpinich NO, Caron KM. Gap junction coupling is required for tumor cell migration through lymphatic endothelium. Arterioscler Thromb Vasc Biol 2015; 35:1147-55. [PMID: 25792452 DOI: 10.1161/atvbaha.114.304752] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The lymphatic vasculature is a well-established conduit for metastasis, but the mechanisms by which tumor cells interact with lymphatic endothelial cells (LECs) to facilitate escape remain poorly understood. Elevated levels of the lymphangiogenic peptide adrenomedullin are found in many tumors, and we previously characterized that its expression is necessary for lymphatic vessel growth within both tumors and sentinel lymph nodes and for distant metastasis. APPROACH AND RESULTS This study used a tumor cell-LEC coculture system to identify a series of adrenomedullin-induced events that facilitated transendothelial migration of the tumor cells through a lymphatic monolayer. High levels of adrenomedullin expression enhanced adhesion of tumor cells to LECs, and further analysis revealed that adrenomedullin promoted gap junction coupling between LECs as evidenced by spread of Lucifer yellow dye. Adrenomedullin also enhanced heterocellular gap junction coupling as demonstrated by Calcein dye transfer from tumor cells into LECs. This connexin-mediated gap junction intercellular communication was necessary for tumor cells to undergo transendothelial migration because pharmacological blockade of this heterocellular communication prevented the ability of tumor cells to transmigrate through the lymphatic monolayer. In addition, treatment of LECs with adrenomedullin caused nuclear translocation of β-catenin, a component of endothelial cell junctions, causing an increase in transcription of the downstream target gene C-MYC. Importantly, blockade of gap junction intercellular communication prevented β-catenin nuclear translocation. CONCLUSIONS Our findings indicate that maintenance of cell-cell communication is necessary to facilitate a cascade of events that lead to tumor cell migration through the lymphatic endothelium.
Collapse
Affiliation(s)
- Natalie O Karpinich
- From the Department of Cell Biology and Physiology (N.O.K., K.M.C.) and Department of Genetics (K.M.C.), University of North Carolina at Chapel Hill
| | - Kathleen M Caron
- From the Department of Cell Biology and Physiology (N.O.K., K.M.C.) and Department of Genetics (K.M.C.), University of North Carolina at Chapel Hill.
| |
Collapse
|
19
|
Chernet BT, Fields C, Levin M. Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos. Front Physiol 2015; 5:519. [PMID: 25646081 PMCID: PMC4298169 DOI: 10.3389/fphys.2014.00519] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/18/2014] [Indexed: 11/21/2022] Open
Abstract
In addition to the immediate microenvironment, long-range signaling may be an important component of cancer. Molecular-genetic analyses have implicated gap junctions-key mediators of cell-cell communication-in carcinogenesis. We recently showed that the resting voltage potential of distant cell groups is a key determinant of metastatic transformation and tumor induction. Here, we show in the Xenopus laevis model that gap junctional communication (GJC) is a modulator of the long-range bioelectric signaling that regulates tumor formation. Genetic disruption of GJC taking place within tumors, within remote host tissues, or between the host and tumors significantly lowers the incidence of tumors induced by KRAS mutations. The most pronounced suppression of tumor incidence was observed upon GJC disruption taking place farther away from oncogene-expressing cells, revealing a role for GJC in distant cells in the control of tumor growth. In contrast, enhanced GJC communication through the overexpression of wild-type connexin Cx26 increased tumor incidence. Our data confirm a role for GJC in tumorigenesis, and reveal that this effect is non-local. Based on these results and on published data on movement of ions through GJs, we present a quantitative model linking the GJC coupling and bioelectrical state of cells to the ability of oncogenes to initiate tumorigenesis. When integrated with data on endogenous bioelectric signaling during left-right patterning, the model predicts differential tumor incidence outcomes depending on the spatial configurations of gap junction paths relative to tumor location and major anatomical body axes. Testing these predictions, we found that the strongest influence of GJ modulation on tumor suppression by hyperpolarization occurred along the embryonic left-right axis. Together, these data reveal new, long-range aspects of cancer control by the host's physiological parameters.
Collapse
Affiliation(s)
- Brook T. Chernet
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts UniversityMedford, MA, USA
| | | | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts UniversityMedford, MA, USA
| |
Collapse
|
20
|
Connexins in migration during development and cancer. Dev Biol 2014; 401:143-51. [PMID: 25553982 DOI: 10.1016/j.ydbio.2014.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Connexins, the gap junction proteins, through their multitude of actions are implicated in a variety of cell processes during animal development and cancer. They allow direct or paracrine/autocrine cell communication through their channel and hemi-channel functions. They enable adhesion and interact with a plethora of signalling molecules. Here, we review the common themes in developmental and pathological processes and we focus in their involvement in cell migration in four different systems: neurons, astrocytes, neural crest and cancer.
Collapse
|
21
|
Ryszawy D, Sarna M, Rak M, Szpak K, Kędracka-Krok S, Michalik M, Siedlar M, Zuba-Surma E, Burda K, Korohoda W, Madeja Z, Czyż J. Functional links between Snail-1 and Cx43 account for the recruitment of Cx43-positive cells into the invasive front of prostate cancer. Carcinogenesis 2014; 35:1920-30. [PMID: 24503443 DOI: 10.1093/carcin/bgu033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Suppressive function of connexin(Cx)43 in carcinogenesis was recently contested by reports that showed a multifaceted function of Cx43 in cancer progression. These studies did not attempt to model the dynamics of intratumoral heterogeneity involved in the metastatic cascade. An unorthodox look at the phenotypic heterogeneity of prostate cancer cells in vitro enabled us to identify links between Cx43 functions and Snail-1-regulated functional speciation of invasive cells. Incomplete Snail-1-dependent phenotypic shifts accounted for the formation of phenotypically stable subclones of AT-2 cells. These subclones showed diverse predilection for invasive behavior. High Snail-1 and Cx43 levels accompanied high motility and nanomechanical elasticity of the fibroblastoid AT-2_Fi2 subclone, which determined its considerable invasiveness. Transforming growth factor-β and ectopic Snail-1 overexpression induced invasiveness and Cx43 expression in epithelioid AT-2 subclones and DU-145 cells. Functional links between Snail-1 function and Cx43 expression were confirmed by Cx43 downregulation and phenotypic shifts in AT-2_Fi2, DU-145 and MAT-LyLu cells upon Snail-1 silencing. Corresponding morphological changes and Snail-1 downregulation were seen upon Cx43 silencing in AT-2_Fi2 cells. This indicates that feedback loops between both proteins regulate cell invasive behavior. We demonstrate that Cx43 may differentially predispose prostate cancer cells for invasion in a coupling-dependent and coupling-independent manner. When extrapolated to in vivo conditions, these data show the complexity of Cx43 functions during the metastatic cascade of prostate cancer. They may explain how Cx43 confers a selective advantage during cooperative invasion of clonally evolving, invasive prostate cancer cell subpopulations.
Collapse
Affiliation(s)
- Damian Ryszawy
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Michał Sarna
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Monika Rak
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Katarzyna Szpak
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Sylwia Kędracka-Krok
- Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Ewa Zuba-Surma
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Kvetoslava Burda
- Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Włodzimierz Korohoda
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| | - Jarosław Czyż
- Department of Cell Biology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland, Department of Medical Physics and Biophysics, AGH University of Science and Technology, 30-059 Kraków, Poland, Department of Physical Biochemistry, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland and Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland
| |
Collapse
|
22
|
Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication. Exp Cell Res 2013; 319:2617-26. [PMID: 23916873 DOI: 10.1016/j.yexcr.2013.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 07/05/2013] [Accepted: 07/26/2013] [Indexed: 11/22/2022]
Abstract
Six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) is a novel cell surface protein overexpressed only in the prostate among normal tissues and various types of cancer including prostate, bladder, lung, and ovarian cancer. Although its function in prostate and tumor cells has been remained unclear, due to its unique and restricted expression, STEAP-1 is expected to be an attractive target for cancer therapy. Here, we show that knockdown of STEAP-1 in human cancer cells caused the retardation of tumor growth compared with wild type in vivo. In contrast, STEAP-1 introduced tumor cells augmented the tumor growth compared with STEAP-1-negative wild type cells. Using dye transfer assay, we demonstrate that the STEAP-1 is involved in intercellular communication between tumor cells and adjacent tumor stromal cells and therefore may play a key role for the tumor growth in vivo. These data indicate the inhibition of the STEAP-1 function or expression can be a new strategy for cancer therapy.
Collapse
|
23
|
Tang N, Wang Q, Wu D, Zhang S, Zhang Y, Tao L. Differential effects of paclitaxel and docetaxel on gap junctions affects their cytotoxicities in transfected HeLa cells. Mol Med Rep 2013; 8:638-44. [PMID: 23799576 DOI: 10.3892/mmr.2013.1546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/23/2013] [Indexed: 11/06/2022] Open
Abstract
Gap junctions (GJs) enhance the cytotoxicity of specific cancer chemotherapeutic drugs and therefore, the inhibition of functional GJs may represent a mechanism by which the toxicity of chemotherapeutics in cancer cells can be reduced. In the present study, the effects and mechanisms of paclitaxel and docetaxel on GJ intercellular communication (GJIC) and the modulation of drug cytotoxicity were investigated in HeLa cells that were stably transfected with the connexin (Cx) 32 expression plasmid. Paclitaxel, but not docetaxel, was observed to inhibit dye‑coupling through junctional channels. Gating closure rather than the alteration of Cx32 expression or its membrane localization was responsible for the inhibitory action of paclitaxel on GJ function following short‑term exposure. The results revealed that the cytotoxicity of paclitaxel or docetaxel increased in the presence of functional GJs compared with that observed when GJIC was suppressed. In addition, paclitaxel‑induced downregulation of GJIC decreased the cytotoxicity of paclitaxel in the presence of functional GJs compared with that of docetaxel, which did not affect Cx32 channels. These observations demonstrated that the differential effects of paclitaxel and docetaxel on GJIC may affect the cytotoxicity of chemotherapeutic drugs. The present study provides a promising new approach to select antineoplastics and improve drug efficacy in carcinoma cells that form GJs.
Collapse
Affiliation(s)
- Nan Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Blanke K, Dähnert I, Salameh A. Role of connexins in infantile hemangiomas. Front Pharmacol 2013; 4:41. [PMID: 23596415 PMCID: PMC3627141 DOI: 10.3389/fphar.2013.00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/25/2013] [Indexed: 12/12/2022] Open
Abstract
The circulatory system is one of the first systems that develops during embryogenesis. Angiogenesis describes the formation of blood vessels as a part of the circulatory system and is essential for organ growth in embryogenesis as well as repair in adulthood. A dysregulation of vessel growth contributes to the pathogenesis of many disorders. Thus, an imbalance between pro- and antiangiogenic factors could be observed in infantile hemangioma (IH). IH is the most common benign tumor during infancy, which appears during the first month of life. These vascular tumors are characterized by rapid proliferation and subsequently slower involution. Most IHs regress spontaneously, but in some cases they cause disfigurement and systemic complications, which requires immediate treatment. Recently, a therapeutic effect of propranolol on IH has been demonstrated. Hence, this non-selective β-blocker became the first-line therapy for IH. Over the last years, our understanding of the underlying mechanisms of IH has been improved and possible mechanisms of action of propranolol in IH have postulated. Previous studies revealed that gap junction proteins, the connexins (Cx), might also play a role in the pathogenesis of IH. Therefore, affecting gap junctional intercellular communication is suggested as a novel therapeutic target of propranolol in IH. In this review we summarize the current knowledge of the molecular processes, leading to IH and provide new insights of how Cxs might be involved in the development of these vascular tumors.
Collapse
Affiliation(s)
- Katja Blanke
- Department of Pediatric Cardiology, Heart Center Leipzig, University of Leipzig Germany
| | | | | |
Collapse
|
25
|
Opposing roles of connexin43 in glioma progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2058-67. [DOI: 10.1016/j.bbamem.2011.10.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/17/2011] [Accepted: 10/24/2011] [Indexed: 12/12/2022]
|
26
|
Joshi CN, Martin DN, Shaver P, Madamanchi C, Muller-Borer BJ, Tulis DA. Control of vascular smooth muscle cell growth by connexin 43. Front Physiol 2012; 3:220. [PMID: 22737133 PMCID: PMC3380337 DOI: 10.3389/fphys.2012.00220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/01/2012] [Indexed: 12/04/2022] Open
Abstract
Connexin 43 (Cx43), the principal gap junction protein in vascular smooth muscle cells (VSMCs), regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC) and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC) stimulator BAY 41-2272 (BAY), or the Cx inducer diallyl disulfide (DADS) significantly reduced proliferation after 72 h compared with vehicle controls. Bromodeoxyuridine uptake revealed reduction (p < 0.05) in DNA synthesis after 6 h and flow cytometry showed reduced (40%) S-phase cell numbers after 16 h in DADS-treated cells compared with vehicle controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at MAPK-sensitive Serine (Ser)255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared with controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays important roles in the regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSM.
Collapse
Affiliation(s)
- Chintamani N Joshi
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wuestefeld R, Chen J, Meller K, Brand-Saberi B, Theiss C. Impact of vegf on astrocytes: analysis of gap junctional intercellular communication, proliferation, and motility. Glia 2012; 60:936-47. [PMID: 22431192 DOI: 10.1002/glia.22325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 02/16/2012] [Indexed: 12/12/2022]
Abstract
The purpose of the present study was to investigate the effects of vascular endothelial growth factor (VEGF) on gap junctional intercellular communication (GJIC), cell proliferation, and cell dynamics in primary astrocytes. VEGF is known as a dimeric polypeptide that potentially binds to two receptors, VEGFR-1 and VEGFR-2, however many effects are mediated by VEGFR-2, for example, actin polymerization, forced cell migration, angiogenesis, and cell proliferation. Recently it has been shown that in case of hypoxia, ischemia or injury VEGF is upregulated to stimulate angiogenesis and cell proliferation. Besides this, VEGF reveals a potent therapeutical target for averting tumor vascularization, emerging in bevacizumab, the first humanized anti-VEGF-A antibody for treating recurrent Glioblastoma multiforme. To expand our knowledge about VEGF effects in glial cells, we cultivated rat astrocytes in medium containing VEGF for 1 and 2 days. To investigate the effects of VEGF on GJIC, we microinjected neurobiotin into a single cell and monitored dye-spreading into adjacent cells. These experiments showed that VEGF significantly enhances astrocytic GJIC compared with controls. Cell proliferation measured by BrdU-labeling also revealed a significant increase of astrocytic mitose rates subsequent to 1 day of VEGF exposure, whereas longer VEGF treatment for 2 days did not have additive effects. To study cell-dynamics of astrocytes subsequent to VEGF treatment, we additionally transfected astrocytes with LifeAct-RFP. Live-cell imaging and quantitative analysis of these cells with aid of confocal laser scanning microscopy revealed higher process movement of VEGF-treated astrocytes. In conclusion, VEGF strongly affects cell proliferation, GJIC, and motility in astrocytes.
Collapse
Affiliation(s)
- Ricarda Wuestefeld
- Institute of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | |
Collapse
|
28
|
Neschadim A, Wang JCM, Lavie A, Medin JA. Bystander killing of malignant cells via the delivery of engineered thymidine-active deoxycytidine kinase for suicide gene therapy of cancer. Cancer Gene Ther 2012; 19:320-7. [PMID: 22388453 DOI: 10.1038/cgt.2012.4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activity and specificity of chemotherapeutic agents against solid tumors can be augmented via the targeted or localized delivery of 'suicide' genes. Selective activation of specific prodrugs in cells expressing the 'suicide' gene drives their elimination by apoptosis, while also enabling the killing of adjacent bystander cells. Strong bystander effects can compensate for poor 'suicide' gene delivery, and depend on the prodrugs used and mechanisms for the acquisition of activated drug by the bystander population, such as the presence of gap junctional intercellular communications. Although a number of 'suicide' gene therapies for cancer have been developed and characterized, such as herpes simplex virus-derived thymidine kinase (HSV-tk)-based activation of ganciclovir, their limited success highlights the need for the development of more robust approaches. Limiting activation kinetics and evolution of chemoresistance are major obstacles. Here we describe 'suicide' gene therapy of cancer based on the lentivirus-mediated delivery of a thymidine-active human deoxycytidine kinase variant. This enzyme possesses substrate plasticity that enables it to activate a multitude of prodrugs, some with distinct mechanisms of action. We evaluated the magnitude and mechanisms of bystander effects induced by different prodrugs, and show that when used in combination, they can synergistically enhance the bystander effect while avoiding off-target toxicity.
Collapse
Affiliation(s)
- A Neschadim
- Department of Medical Biophysics, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
29
|
Fukumasu H, Avanzo JL, Sanches DS, Mennecier G, Mori CMC, Dagli MLZ. Higher susceptibility of spontaneous and NNK-induced lung neoplasms in connexin 43 deficient CD1 × AJ F1 mice: paradoxical expression of connexin 43 during lung carcinogenesis. Mol Carcinog 2012; 52:497-506. [PMID: 22344786 DOI: 10.1002/mc.21884] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 11/08/2022]
Abstract
Connexins (Cxs) are proteins that form the communicating gap junctions, and reportedly have a role in carcinogenesis. Here, we evaluated the importance of Connexin43 (Cx43) in spontaneous and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung carcinogenesis. Male wild-type (Cx43(+/+) ) and hemizygote (Cx43(+/-) ) CD1 × AJ F1 mice were injected with NNK or saline. After 60 weeks mice were euthanized; lung nodules were counted, measured, and fixed in formalin or snap frozen. Immunohistochemistry for Cx43 and Beta-catenin (β-catenin) was performed and Cx43 mRNA expression was evaluated by real-time PCR. Cx43 deletion significantly increased the incidence and number of spontaneous nodules in the CD1 × AJ F1 mice and the number of gross lesions and the aggressiveness of lesions in NNK-treated mice. Cx43 mRNA increased significantly and was correlated with the aggressiveness of tumors, although lesions from Cx43(+/-) mice expressed less Cx43 RNAm than their counterparts. Lung parenchyma presented a Cx43 immunostaining pattern with points or plaques between cells. In hyperplasias and adenomas, Cx43 was found in the membrane and in cytoplasm. Malignant lesions presented increased Cx43 in cytoplasm and a few membrane spots of immunostaining. β-catenin was weakly expressed in lung parenchyma. Though hyperplasias presented some cells with nuclear β-catenin, NNK-induced tumors contained a higher number of this staining pattern. Also, no difference in β-catenin occurred between both genotypes independently of the histological grade. In summary, our results indicate that Cx43 acts as a tumor suppressor gene in early lung tumorigenesis and loses this property in advanced carcinogenesis. Therefore, Cxs are better classified as conditional tumor suppressors.
Collapse
Affiliation(s)
- Heidge Fukumasu
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
The gap junction protein Cx43 is involved in the bone-targeted metastatic behaviour of human prostate cancer cells. Clin Exp Metastasis 2011; 29:111-22. [PMID: 22080401 DOI: 10.1007/s10585-011-9434-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/01/2011] [Indexed: 01/20/2023]
Abstract
For decades, cancer was associated with gap-junction defects. However, more recently it appeared that the gap junction proteins (connexins) could be re-expressed and participate to cancer cell dissemination during the late stages of tumor progression. Since primary tumors of prostate cancer (PCa) are known to be connexin deficient, it was interesting to verify whether their bone-targeted metastatic behaviour could be influenced by the re-expression of the connexin type (connexin43) which is originally present in prostate tissue and highly expressed in bone where it participates to the differentiation of osteoblastic cells. Thus, we investigated the effect of the increased Cx43 expression, by retroviral infection, on the metastatic behaviour of two well-characterized cell lines (PC-3 and LNCaP) representing different stages of PCa progression. It appeared that Cx43 differently behaved in those cell lines and induced different phenotypes. In LNCaP, Cx43 was functional, localized at the plasma membrane and its high expression was correlated with a more aggressive phenotype both in vitro and in vivo. In particular, those Cx43-expressing LNCaP cells exhibited a high incidence of osteolytic metastases generated by bone xenografts in mice. Interestingly, LNCaP cells were also able to decrease the proliferation of cocultured osteoblastic cells. In contrast, the increased expression of Cx43 in PC-3 cells led to an unfunctional, cytoplasmic localization of the protein and was correlated with a reduction of proliferation, adhesion and invasion of the cells. In conclusion, the localization and the functionality of Cx43 may govern the ability of PCa cells to metastasize in bones.
Collapse
|
31
|
DU-145 prostate carcinoma cells that selectively transmigrate narrow obstacles express elevated levels of Cx43. Cell Mol Biol Lett 2011; 16:625-37. [PMID: 21910090 PMCID: PMC6275569 DOI: 10.2478/s11658-011-0027-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/06/2011] [Indexed: 12/16/2022] Open
Abstract
The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the "leading front" formation during cancer invasion.
Collapse
|
32
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
33
|
|
34
|
Villares GJ, Dobroff AS, Wang H, Zigler M, Melnikova VO, Huang L, Bar-Eli M. Overexpression of protease-activated receptor-1 contributes to melanoma metastasis via regulation of connexin 43. Cancer Res 2009; 69:6730-7. [PMID: 19679555 PMCID: PMC2727665 DOI: 10.1158/0008-5472.can-09-0300] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protease-activated receptor-1 (PAR-1) is a key player in melanoma metastasis with higher expression seen in metastatic melanoma cell lines and tissue specimens. cDNA microarray and Western blot analyses reveal that the gap junctional intracellular communication molecule connexin 43 (Cx-43), known to be involved in tumor cell diapedesis and attachment to endothelial cells, is significantly decreased after PAR-1 silencing in metastatic melanoma cell lines. Furthermore, Cx-43 promoter activity was significantly inhibited in PAR-1-silenced cells, suggesting that PAR-1 regulates Cx-43 at the transcriptional level. Chromatin immunoprecipitation studies showed a reduction in the binding of SP-1 and AP-1 transcription factors to the promoter of Cx-43. Both transcription factors have been shown previously to be required for maximal Cx-43 promoter activity. These results were corroborated by mutating the AP-1 and SP-1 binding sites resulting in decreased Cx-43 promoter activity in PAR-1-positive cells. Moreover, as Cx-43 has been shown to facilitate arrest of circulating tumor cells at the vascular endothelium, melanoma cell attachment to endothelial cells was significantly decreased in PAR-1-silenced cells, with this effect being abrogated after PAR-1 rescue. Herein, we report that up-regulation of PAR-1 expression, seen in melanoma progression, mediates high levels of Cx-43 expression. As both SP-1 and AP-1 transcription factors act as positive regulators of Cx-43, our data provide a novel mechanism for the regulation of Cx-43 expression by PAR-1. Indeed, Cx-43 expression was restored following PAR-1 rescue in PAR-1-silenced cells. Taken together, our data support the tumor promoting function of Cx-43 in melanoma.
Collapse
Affiliation(s)
- Gabriel J Villares
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Tannous BA, Christensen AP, Pike L, Wurdinger T, Perry KF, Saydam O, Jacobs AH, García-Añoveros J, Weissleder R, Sena-Esteves M, Corey DP, Breakefield XO. Mutant sodium channel for tumor therapy. Mol Ther 2009; 17:810-9. [PMID: 19259066 PMCID: PMC2751883 DOI: 10.1038/mt.2009.33] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 01/31/2009] [Indexed: 12/28/2022] Open
Abstract
Viral vectors have been used to deliver a wide range of therapeutic genes to tumors. In this study, a novel tumor therapy was achieved by the delivery of a mammalian brain sodium channel, ASIC2a, carrying a mutation that renders it constitutively open. This channel was delivered to tumor cells using a herpes simplex virus-1/Epstein-Barr virus (HSV/EBV) hybrid amplicon vector in which gene expression was controlled by a tetracycline regulatory system (tet-on) with silencer elements. Upon infection and doxycycline induction of mutant channel expression in tumor cells, the open channel led to amiloride-sensitive sodium influx as assessed by patch clamp recording and sodium imaging in culture. Within hours, tumor cells swelled and died. In addition to cells expressing the mutant channel, adjacent, noninfected cells connected by gap junctions also died. Intratumoral injection of HSV/EBV amplicon vector encoding the mutant sodium channel and systemic administration of doxycycline led to regression of subcutaneous tumors in nude mice as assessed by in vivo bioluminescence imaging. The advantage of this direct mode of tumor therapy is that all types of tumor cells become susceptible and death is rapid with no time for the tumor cells to become resistant.
Collapse
Affiliation(s)
- Bakhos A Tannous
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lu ZJ, Ren YQ, Wang GP, Song Q, Li M, Jiang SS, Ning T, Guan YS, Yang JL, Luo F. Biological behaviors and proteomics analysis of hybrid cell line EAhy926 and its parent cell line A549. J Exp Clin Cancer Res 2009; 28:16. [PMID: 19216771 PMCID: PMC2657126 DOI: 10.1186/1756-9966-28-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/13/2009] [Indexed: 02/05/2023] Open
Abstract
Background It is well established that cancer cells can fuse with endothelial cells to form hybrid cells spontaneously, which facilitates cancer cells traversing the endothelial barrier to form metastases. However, up to now, little is known about the biologic characteristics of hybrid cells. Therefore, we investigate the malignant biologic behaviors and proteins expression of the hybrid cell line EAhy926 with its parent cell line A549. Methods Cell counting and flow cytometry assay were carried out to assess cell proliferation. The number of cells attached to the extracellular matrix (Matrigel) was measured by MTT assay for the adhesion ability of cells. Transwell chambers were established for detecting the ability of cell migration and invasion. Tumor xenograft test was carried out to observe tumorigenesis of the cell lines. In addition, two-dimensional electrophoresis (2-DE) and mass spectrometry were utilized to identify differentially expressed proteins between in Eahy926 cells and in A549 cells. Results The doubling time of EAhy926 cell and A549 cell proliferation was 25.32 h and 27.29 h, respectively (P > 0.1). Comparing the phase distribution of cell cycle of EAhy926 cells with that of A549 cells, the percentage of cells in G0/G1 phase, in S phase and in G2/M phase was (63.7% ± 2.65%) VS (60.0% ± 3.17%), (15.4% ± 1.52%) VS (13.8% ± 1.32%), and (20.9% ± 3.40%) VS (26.3% ± 3.17%), respectively (P > 0.05). For the ability of cell adhesion of EAhy926 cells and A549 cells, the value of OD in Eahy926 cells was significantly higher than that in A549 cells (0.3236 ± 0.0514 VS 0.2434 ± 0.0390, P < 0.004). We also found that the migration ability of Eahy926 cells was stronger than that of A549 cells (28.00 ± 2.65 VS 18.00 ± 1.00, P < 0.01), and that the invasion ability of Eahy926 cells was significantly weak than that of A549 cells (15.33 ± 0.58 VS 26.67 ± 2.52, P < 0.01). In the xenograft tumor model, expansive masses of classic tumor were found in the A549 cells group, while subcutaneous inflammatory focuses were found in the EAhy926 cells group. Besides, twenty-eight proteins were identified differentially expressed between in EAhy926 cells and in A549 cells by proteomics technologies. Conclusion As for the biological behaviors, the ability of cell proliferation in Eahy926 cells was similar to that in A549 cells, but the ability in adhesion and migration of Eahy926 cells was higher. In addition, Eahy926 cells had weaker ability in invasion and could not form tumor mass. Furthermore, there were many differently expressed proteins between hybrid cell line Eahy926 cells and A549 cells, which might partly account for some of the differences between their biological behaviors at the molecular level. These results may help to understand the processes of tumor angiogenesis, invasion and metastasis, and to search for screening method for more targets for tumor therapy in future.
Collapse
Affiliation(s)
- Ze Jun Lu
- Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M. Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 2009; 11:323-38. [PMID: 18834328 DOI: 10.1089/ars.2008.2153] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer was one of the first pathologies to be associated with gap-junction defect. Despite the evidence accumulated over the last 40-year period, the molecular involvement of gap junctions and their structural proteins (connexins) in cancer has not been elucidated. The lack of a satisfying explanation may come from the complexity of the disease, evolving through various stages during tumor progression, with cancer cells exhibiting different phenotypes. Here, the question of the involvement of gap junctions has been readdressed by considering the connexin expression/function level at different fundamental stages of carcinogenesis (cell proliferation, cell invasion, and cancer cell dissemination). By performing this analysis, it becomes clear that gap junctions are probably differently involved, depending on the stage of the cancer progression considered. In particular, the most recent data suggest that connexins may act on cell growth by controlling gene expression through a variety of processes (independent of or dependent on the gap-junctional communication capacity). During invasion, connexins have been demonstrated to enhance adherence of cancer cells to the stroma, migration, and probably their dissemination by establishing communication with the endothelial barrier. All these data present a complex picture of connexins in various functions, depending on the cell phenotype.
Collapse
Affiliation(s)
- Laurent Cronier
- Institute of Cellular Physiology and Biology, University of Poitiers/CNRS, Poitiers, France
| | | | | | | | | |
Collapse
|
38
|
Johnstone S, Isakson B, Locke D. Biological and biophysical properties of vascular connexin channels. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:69-118. [PMID: 19815177 PMCID: PMC2878191 DOI: 10.1016/s1937-6448(09)78002-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell-type-independent and cell-type-specific transcription factors, posttranslational modifications, and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this chapter in the physiological and pathophysiological context of vessel function.
Collapse
Affiliation(s)
- Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Brant Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 29908
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 29908
| | - Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103
| |
Collapse
|
39
|
Elzarrad MK, Haroon A, Willecke K, Dobrowolski R, Gillespie MN, Al-Mehdi AB. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med 2008; 6:20. [PMID: 18647409 PMCID: PMC2492868 DOI: 10.1186/1741-7015-6-20] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/22/2008] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The modulation of gap junctional communication between tumor cells and between tumor and vascular endothelial cells during tumorigenesis and metastasis is complex. The notion of a role for loss of gap junctional intercellular communication in tumorigenesis and metastasis has been controversial. While some of the stages of tumorigenesis and metastasis, such as uncontrolled cell division and cellular detachment, would necessitate the loss of intercellular junctions, other stages, such as intravasation, endothelial attachment, and vascularization, likely require increased cell-cell contact. We hypothesized that, in this multi-stage scheme, connexin-43 is centrally involved as a cell adhesion molecule mediating metastatic tumor attachment to the pulmonary endothelium. METHODS Tumor cell attachment to pulmonary vasculature, tumor growth, and connexin-43 expression was studied in metastatic lung tumor sections obtained after tail-vein injection into nude mice of syngeneic breast cancer cell lines, overexpressing wild type connexin-43 or dominant-negatively mutated connexin-43 proteins. High-resolution immunofluorescence microscopy and Western blot analysis was performed using a connexin-43 monoclonal antibody. Calcein Orange Red AM dye transfer by fluorescence imaging was used to evaluate the gap junction function. RESULTS Adhesion of breast cancer cells to the pulmonary endothelium increased with cancer cells overexpressing connexin-43 and markedly decreased with cells expressing dominant-negative connexin-43. Upregulation of connexin-43 was observed in tumor cell-endothelial cell contact areas in vitro and in vivo, and in areas of intratumor blood vessels and in micrometastatic foci. CONCLUSION Connexin-43 facilitates metastatic 'homing' by increasing adhesion of cancer cells to the lung endothelial cells. The marked upregulation of connexin-43 in tumor cell-endothelial cell contact areas, whether in preexisting 'homing' vessels or in newly formed tumor vessels, suggests that connexin-43 can serve as a potential marker of micrometastases and tumor vasculature and that it may play a role in the early incorporation of endothelial cells into small tumors as seeds for vasculogenesis.
Collapse
Affiliation(s)
- M Khair Elzarrad
- Department of Pharmacology and Center for Lung Biology, University of South Alabama, North University Boulevard, Mobile, AL 36688, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Challita-Eid PM, Morrison K, Etessami S, An Z, Morrison KJ, Perez-Villar JJ, Raitano AB, Jia XC, Gudas JM, Kanner SB, Jakobovits A. Monoclonal antibodies to six-transmembrane epithelial antigen of the prostate-1 inhibit intercellular communication in vitro and growth of human tumor xenografts in vivo. Cancer Res 2007; 67:5798-805. [PMID: 17575147 DOI: 10.1158/0008-5472.can-06-3849] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) is a novel cell surface protein highly expressed in primary prostate cancer, with restricted expression in normal tissues. In this report, we show STEAP-1 expression in prostate metastases to lymph node and bone and in the majority of human lung and bladder carcinomas. We identify STEAP-1 function in mediating the transfer of small molecules between adjacent cells in culture, indicating its potential role in tumor cell intercellular communication. The successful generation of two monoclonal antibodies (mAb) that bind to cell surface STEAP-1 epitopes provided the tools to study STEAP-1 susceptibility to naked antibody therapy. Both mAbs inhibited STEAP-1-induced intercellular communication in a dose-dependent manner. Furthermore, both mAbs significantly inhibited tumor growth in mouse models using patient-derived LAPC-9 prostate cancer xenografts and established UM-UC-3 bladder tumors. These studies validate STEAP-1 as an attractive target for antibody therapy in multiple solid tumors and provide a putative mechanism for mAb-induced tumor growth inhibition.
Collapse
|
41
|
Park HJ, Zhang Y, Georgescu SP, Johnson KL, Kong D, Galper JB. Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. ACTA ACUST UNITED AC 2007; 2:93-102. [PMID: 17237547 DOI: 10.1007/s12015-006-0015-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/25/2023]
Abstract
Human umbilical vein endothelial cells (HUVECs) have played a major role as a model system for the study of the regulation of endothelial cell function and the role of the endothelium in the response of the blood vessel wall to stretch, shear forces, and the development of atherosclerotic plaques and angiogenesis. Here, we use HUVECs and human microvascular endothelial cells to study the role of the HMG-CoA reductase inhibitor, simvastatin, and the small GTP-binding protein Rho in the regulation of angiogenesis. Simvastatin inhibited angiogenesis in response to FGF-2 in the corneal pocket assay of the mouse and in vascular endothelial growth factor (VEGF)-stimulated angiogenesis in the chick chorioallontoic membrane. Furthermore, simvastatin inhibited VEGF-stimulated tube formation by human dermal microvascular endothelial cells and the formation of honeycomb-like structures by HUVECs. The effect was dose-dependent and was not secondary to apoptosis. Geranylgeranyl-pyrophosphate (GGPP), a product of the cholesterol metabolic pathway that serves as a substrate for the posttranslational lipidation of RhoA, was required for membrane localization, but not farnesylpyrophosphate (FPP), the substrate for the lipidation of Ras. Furthermore, GGTI, a specific inhibitor of GGPP, mimicked the effect of simvastatin of tube formation and the formation of honeycombs whereas FTI, a specific inhibitor of the farnesylation of Ras, had no effect. Adenoviral expression of a DN-RhoA mutant mimicked the effect of simvastatin on tube formation and the formation of honeycombs, whereas a dominant activating mutant of RhoA reversed the effect of simvastatin on tube formation. Finally, simvastatin interfered with the membrane localization of RhoA with a dose-dependence similar to that for the inhibition of tube formation. Simvastatin also inhibited the VEGFstimulated phosphorylation of the VEGF receptor KDR, and the tyrosine kinase FAK, which plays a role in cell migration. These data demonstrate that simvastatin interfered with angiogenesis via the inhibition of RhoA. Data supporting a role for angiogenesis in the development and growth of atherosclerotic plaques suggest that this antiangiogenic effect of Statins might prevent the progression of atherosclerosis via the inhibition of plaque angiogenesis.
Collapse
Affiliation(s)
- Ho-Jin Park
- Molecular Cardiology Research Institute, Cardiology Division, Department of Medicine, Tufts New England Medical Center, 750 Washington St. Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
42
|
Conejo VA, De Haro R, Sosa-Melgarejo J, Méndez JD. New insights in endothelial and smooth muscle cell communication. Biomed Pharmacother 2007; 61:173-9. [PMID: 17383847 DOI: 10.1016/j.biopha.2006.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 10/18/2006] [Accepted: 10/27/2006] [Indexed: 11/25/2022] Open
Abstract
Based on immunohistochemical techniques against connexins and the intercellular flux of staining molecules, it has previously been shown that electrotonic communication occurs among endothelial and vascular smooth muscle cells, this due to the presence of myoendothelial gap junctions. The aim of this study was to evaluate the density of myoendothelial contacts in the left coronary and internal mammary arteries as well as in the left saphenous vein by means of electron microscopy, the distance between both cells participating in an myoendothelial contact with a semi-automatic image analysis system and the presence of homocellular and heterocellular gap junctions between endothelial and smooth muscle cells by using the immunohistochemical technique and confocal microscopy in thoracic aorta were also analyzed. The results are that all blood vessels studied present myoendothelial contacts, while density studies show that they are more abundant in the saphenous vein. The myoendothelial contact distance is constant and in no case the cytoplasmic processes reach the plasma membrane of the partner cell toward which they are advanced. Homocellular gap junctions were found between smooth muscle cells and between endothelial cells. Heterocellular gap junctions were absent, evidencing the possibility that signaling molecules between endothelial and smooth muscle cells may be transferred through plasma membranes as was once thought and not necessarily by electrotonic communication.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/physiology
- Cell Communication
- Coronary Vessels/cytology
- Coronary Vessels/physiology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Gap Junctions/metabolism
- Gap Junctions/physiology
- Immunohistochemistry
- Male
- Mammary Arteries/cytology
- Mammary Arteries/physiopathology
- Microscopy, Confocal
- Microscopy, Electron
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/physiology
- Rats
- Rats, Sprague-Dawley
- Saphenous Vein/cytology
- Saphenous Vein/physiology
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Víctor Arana Conejo
- Department of Pathological Anatomy, Zonal General Hospital #47, Mexican Institute of Social Security, Mexico City, Mexico
| | | | | | | |
Collapse
|