1
|
Zhang SH, Yin J, Jing LJ, Cheng Y, Miao YL, Fan B, Zhang HF, Yang CH, Wang SS, Li Y, Jiao XY, Fan YY. Targeting astrocytic TDAG8 with delayed CO 2 postconditioning improves functional outcomes after controlled cortical impact injury in mice. Exp Neurol 2024; 380:114892. [PMID: 39047809 DOI: 10.1016/j.expneurol.2024.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO2 postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8-/- mice received DCPC daily by transiently inhaling 10% CO2 after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8-/- mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8-/- mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14-28 were much weaker than those of DCPC on Days 3-28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.
Collapse
Affiliation(s)
- Shu-Han Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jing Yin
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Lian-Ju Jing
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yao Cheng
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yu-Lu Miao
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bo Fan
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Hui-Feng Zhang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Cai-Hong Yang
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Shao-Shuai Wang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Yan Li
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Xiang-Ying Jiao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Yan-Ying Fan
- Department of Pharmacology, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
2
|
Bielanin JP, Metwally SAH, Oft HCM, Paruchuri SS, Lin L, Capuk O, Pennock ND, Song S, Sun D. NHE1 Protein in Repetitive Mild TBI-Mediated Neuroinflammation and Neurological Function Impairment. Antioxidants (Basel) 2024; 13:836. [PMID: 39061904 PMCID: PMC11274226 DOI: 10.3390/antiox13070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mild traumatic brain injuries (mTBIs) are highly prevalent and can lead to chronic behavioral and cognitive deficits often associated with the development of neurodegenerative diseases. Oxidative stress and formation of reactive oxygen species (ROS) have been implicated in mTBI-mediated axonal injury and pathogenesis. However, the underlying mechanisms and contributing factors are not completely understood. In this study, we explore these pathogenic mechanisms utilizing a murine model of repetitive mTBI (r-mTBI) involving five closed-skull concussions in young adult C57BL/6J mice. We observed a significant elevation of Na+/H+ exchanger protein (NHE1) expression in GFAP+ reactive astrocytes, IBA1+ microglia, and OLIG2+ oligodendrocytes across various brain regions (including the cerebral cortex, corpus callosum, and hippocampus) after r-mTBI. This elevation was accompanied by astrogliosis, microgliosis, and the accumulation of amyloid precursor protein (APP). Mice subjected to r-mTBI displayed impaired motor learning and spatial memory. However, post-r-mTBI administration of a potent NHE1 inhibitor, HOE642, attenuated locomotor and cognitive functional deficits as well as pathological signatures of gliosis, oxidative stress, axonal damage, and white matter damage. These findings indicate NHE1 upregulation plays a role in r-mTBI-induced oxidative stress, axonal damage, and gliosis, suggesting NHE1 may be a promising therapeutic target to alleviate mTBI-induced injuries and restore neurological function.
Collapse
Affiliation(s)
- John P. Bielanin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shamseldin A. H. Metwally
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Helena C. M. Oft
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Satya S. Paruchuri
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lin Lin
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Okan Capuk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nicholas D. Pennock
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA; (J.P.B.); (S.A.H.M.); (H.C.M.O.); (S.S.P.); (L.L.); (O.C.); (N.D.P.); (S.S.)
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Wasnik K, Gupta PS, Mukherjee S, Oviya A, Prakash R, Pareek D, Patra S, Maity S, Rai V, Singh M, Singh G, Yadav DD, Das S, Maiti P, Paik P. Poly( N-acryloylglycine-acrylamide) Hydrogel Mimics the Cellular Microenvironment and Promotes Neurite Growth with Protection from Oxidative Stress. ACS APPLIED BIO MATERIALS 2023; 6:5644-5661. [PMID: 37993284 DOI: 10.1021/acsabm.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
In this work, the glycine-based acryloyl monomer is polymerized to obtain a neurogenic polymeric hydrogel for regenerative applications. The synthesized poly(N-acryloylglycine-acrylamide) [poly(NAG-b-A)] nanohydrogel exhibits high swelling (∼1500%) and is mechanically very stable, biocompatible, and proliferative in nature. The poly(NAG-b-A) nanohydrogel provides a stable 3D extracellular mimetic environment and promotes healthy neurite growth for primary cortical neurons by facilitating cellular adhesion, proliferation, actin filament stabilization, and neuronal differentiation. Furthermore, the protective role of the poly(NAG-b-A) hydrogel for the neurons in oxidative stress conditions is revealed and it is found that it is a clinically relevant material for neuronal regenerative applications, such as for promoting nerve regeneration via GSK3β inhibition. This hydrogel additionally plays an important role in modulating the biological microenvironment, either as an agonist and antagonist or as an antioxidant. Furthermore, it favors the physiological responses and eases the neurite growth efficiency. Additionally, we found out that the conversion of glycine-based acryloyl monomers into their corresponding polymer modulates the mechanical performance, mimics the cellular microenvironment, and accelerates the self-healing capability due to the responsive behavior towards reactive oxygen species (ROS). Thus, the p(NAG-b-A) hydrogel could be a potential candidate to induce neuronal regeneration since it provides a physical cue and significantly boosts neurite outgrowth and also maintains the microtubule integrity in neuronal cells.
Collapse
Affiliation(s)
- Kirti Wasnik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Prem Shankar Gupta
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Alagu Oviya
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Ravi Prakash
- School of Material Science, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Divya Pareek
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Sukanya Patra
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Somedutta Maity
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, Telangana State 500 046, India
| | - Vipin Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Monika Singh
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Gurmeet Singh
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Desh Deepak Yadav
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Santanu Das
- Department of Ceramic Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Pralay Maiti
- School of Material Science, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| | - Pradip Paik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh 221 005, India
| |
Collapse
|
4
|
Shen Y, Luo Y, Liao P, Zuo Y, Jiang R. Role of the Voltage-Gated Proton Channel Hv1 in Nervous Systems. Neurosci Bull 2023; 39:1157-1172. [PMID: 37029856 PMCID: PMC10313628 DOI: 10.1007/s12264-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/20/2023] [Indexed: 04/09/2023] Open
Abstract
Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.
Collapse
Affiliation(s)
- Yu Shen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
5
|
Venturini S, Bhatti F, Timofeev I, Carpenter KLH, Hutchinson PJ, Guilfoyle MR, Helmy A. Microdialysis-Based Classifications of Abnormal Metabolic States after Traumatic Brain Injury: A Systematic Review of the Literature. J Neurotrauma 2023; 40:195-209. [PMID: 36112699 DOI: 10.1089/neu.2021.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
After traumatic brain injury (TBI), cerebral metabolism can become deranged, contributing to secondary injury. Cerebral microdialysis (CMD) allows cerebral metabolism assessment and is often used with other neuro-monitoring modalities. CMD-derived parameters such as the lactate/pyruvate ratio (LPR) show a failure of oxidative energy generation. CMD-based abnormal metabolic states can be described following TBI, informing the etiology of physiological derangements. This systematic review summarizes the published literature on microdialysis-based abnormal metabolic classifications following TBI. Original research studies in which the populations were patients with TBI were included. Studies that described CMD-based classifications of metabolic abnormalities were included in the synthesis of the narrative results. A total of 825 studies underwent two-step screening after duplicates were removed. Fifty-three articles that used CMD in TBI patients were included. Of these, 14 described abnormal metabolic states based on CMD parameters. Classifications were heterogeneous between studies. LPR was the most frequently used parameter in the classifications; high LPR values were described as metabolic crisis. Ischemia was consistently defined as high LPR with low CMD substrate levels (glucose or pyruvate). Mitochondrial dysfunction, describing inability to use energy substrate despite availability, was identified based on raised LPR with near-normal levels of pyruvate. This is the first systematic review summarizing the published literature on microdialysis-based abnormal metabolic states following TBI. Although variability exists among individual classifications, there is broad agreement about broad definitions of metabolic crisis, ischemia, and mitochondrial dysfunction. Identifying the etiology of deranged cerebral metabolism after TBI is important for targeting therapeutic interventions.
Collapse
Affiliation(s)
- Sara Venturini
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Faheem Bhatti
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Ivan Timofeev
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mathew R Guilfoyle
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Mohammed FS, Omay SB, Sheth KN, Zhou J. Nanoparticle-based drug delivery for the treatment of traumatic brain injury. Expert Opin Drug Deliv 2023; 20:55-73. [PMID: 36420918 PMCID: PMC9983310 DOI: 10.1080/17425247.2023.2152001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Traumatic brain injuries (TBIs) impact the breadth of society and remain without any approved pharmacological treatments. Despite successful Phase II clinical trials, the failure of many Phase III clinical trials may be explained by insufficient drug targeting and retention, preventing the proper attainment of an observable dosage threshold. To address this challenge, nanoparticles can be functionalized to protect pharmacological payloads, improve targeted drug delivery to sites of injury, and can be combined with supportive scaffolding to improve secondary outcomes. AREAS COVERED This review briefly covers the pathophysiology of TBIs and their subtypes, the current pre-clinical and clinical management strategies, explores the common models of focal, diffuse, and mixed traumatic brain injury employed in experimental animals, and surveys the existing literature on nanoparticles developed to treat TBIs. EXPERT OPINION Nanoparticles are well suited to improve secondary outcomes as their multifunctionality and customizability enhance their potential for efficient targeted delivery, payload protection, increased brain penetration, low off-target toxicity, and biocompatibility in both acute and chronic timescales.
Collapse
Affiliation(s)
- Farrah S. Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| | - Kevin N. Sheth
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
- Department of Neurology, Yale University, New Haven, Connecticut, USA
| | - Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Neurosurgery, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
7
|
A Brief Review of Bolus Osmotherapy Use for Managing Severe Traumatic Brain Injuries in the Pre-Hospital and Emergency Department Settings. TRAUMA CARE 2022. [DOI: 10.3390/traumacare2030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Severe traumatic brain injury (TBI) management begins in the pre-hospital setting, but clinicians are left with limited options for stabilisation during retrieval due to time and space constraints, as well as a lack of access to monitoring equipment. Bolus osmotherapy with hypertonic substances is commonly utilised as a temporising measure for life-threatening brain herniation, but much contention persists around its use, largely stemming from a limited evidence base. Method: The authors conducted a brief review of hypertonic substance use in patients with TBI, with a particular focus on studies involving the pre-hospital and emergency department (ED) settings. We aimed to report pragmatic information useful for clinicians involved in the early management of this patient group. Results: We reviewed the literature around the pharmacology of bolus osmotherapy, commercially available agents, potential pitfalls, supporting evidence and guideline recommendations. We further reviewed what the ideal agent is, when it should be administered, dosing and treatment endpoints and/or whether it confers meaningful long-term outcome benefits. Conclusions: There is a limited evidence-based argument in support of the implementation of bolus osmotherapy in the pre-hospital or ED settings for patients who sustain a TBI. However, decades’ worth of positive clinician experiences with osmotherapy for TBI will likely continue to drive its on-going use. Choices regarding osmotherapy will likely continue to be led by local policies, individual patient characteristics and clinician preferences.
Collapse
|
8
|
How Important Are Arterial Blood Gas Parameters for Severe Head Trauma in Children? JOURNAL OF CONTEMPORARY MEDICINE 2022. [DOI: 10.16899/jcm.1016696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Zwirner J, Lier J, Franke H, Hammer N, Matschke J, Trautz F, Tse R, Ondruschka B. GFAP positivity in neurons following traumatic brain injuries. Int J Legal Med 2021; 135:2323-2333. [PMID: 34114049 PMCID: PMC8523453 DOI: 10.1007/s00414-021-02568-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is a well-established astrocytic biomarker for the diagnosis, monitoring and outcome prediction of traumatic brain injury (TBI). Few studies stated an accumulation of neuronal GFAP that was observed in various brain pathologies, including traumatic brain injuries. As the neuronal immunopositivity for GFAP in Alzheimer patients was shown to cross-react with non-GFAP epitopes, the neuronal immunopositivity for GFAP in TBI patients should be challenged. In this study, cerebral and cerebellar tissues of 52 TBI fatalities and 17 controls were screened for immunopositivity for GFAP in neurons by means of immunohistochemistry and immunofluorescence. The results revealed that neuronal immunopositivity for GFAP is most likely a staining artefact as negative controls also revealed neuronal GFAP staining. However, the phenomenon was twice as frequent for TBI fatalities compared to non-TBI control cases (12 vs. 6%). Neuronal GFAP staining was observed in the pericontusional zone and the ipsilateral hippocampus, but was absent in the contralateral cortex of TBI cases. Immunopositivity for GFAP was significantly correlated with the survival time (r = 0.306, P = 0.015), but no correlations were found with age at death, sex nor the post-mortem interval in TBI fatalities. This study provides evidence that the TBI-associated neuronal immunopositivity for GFAP is indeed a staining artefact. However, an absence post-traumatic neuronal GFAP cannot readily be assumed. Regardless of the particular mechanism, this study revealed that the artefact/potential neuronal immunopositivity for GFAP is a global, rather than a regional brain phenomenon and might be useful for minimum TBI survival time determinations, if certain exclusion criteria are strictly respected.
Collapse
Affiliation(s)
- Johann Zwirner
- Department of Anatomy, University of Otago, Dunedin, New Zealand. .,Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Institute of Legal Medicine, University of Leipzig, Leipzig, Germany.
| | - Julia Lier
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Niels Hammer
- Institute of Macroscopic and Clinical Anatomy, University of Graz, Graz, Austria.,Department of Trauma, Orthopedic and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany.,Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Trautz
- Institute of Legal Medicine, University of Leipzig, Leipzig, Germany
| | - Rexon Tse
- Department of Forensic Pathology, LabPLUS, Auckland City Hospital, Auckland, New Zealand
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
11
|
Cheng S, Mao X, Lin X, Wehn A, Hu S, Mamrak U, Khalin I, Wostrack M, Ringel F, Plesnila N, Terpolilli NA. Acid-Ion Sensing Channel 1a Deletion Reduces Chronic Brain Damage and Neurological Deficits after Experimental Traumatic Brain Injury. J Neurotrauma 2021; 38:1572-1584. [PMID: 33779289 DOI: 10.1089/neu.2020.7568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes long-lasting neurodegeneration and cognitive impairments; however, the underlying mechanisms of these processes are not fully understood. Acid-sensing ion channels 1a (ASIC1a) are voltage-gated Na+- and Ca2+-channels shown to be involved in neuronal cell death; however, their role for chronic post-traumatic brain damage is largely unknown. To address this issue, we used ASIC1a-deficient mice and investigated their outcome up to 6 months after TBI. ASIC1a-deficient mice and their wild-type (WT) littermates were subjected to controlled cortical impact (CCI) or sham surgery. Brain water content was analyzed 24 h and behavioral outcome up to 6 months after CCI. Lesion volume was assessed longitudinally by magnetic resonance imaging and 6 months after injury by histology. Brain water content was significantly reduced in ASIC1a-/- animals compared to WT controls. Over time, ASIC1a-/- mice showed significantly reduced lesion volume and reduced hippocampal damage. This translated into improved cognitive function and reduced depression-like behavior. Microglial activation was significantly reduced in ASIC1a-/- mice. In conclusion, ASIC1a deficiency resulted in reduced edema formation acutely after TBI and less brain damage, functional impairments, and neuroinflammation up to 6 months after injury. Hence, ASIC1a seems to be involved in chronic neurodegeneration after TBI.
Collapse
Affiliation(s)
- Shiqi Cheng
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiang Mao
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Xiangjiang Lin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Antonia Wehn
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Senbin Hu
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Uta Mamrak
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Technical University Munich, Munich, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicole A Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Department of Neurosurgery, Munich University Hospital, Munich, Germany
| |
Collapse
|
12
|
He J, Ritzel RM, Wu J. Functions and Mechanisms of the Voltage-Gated Proton Channel Hv1 in Brain and Spinal Cord Injury. Front Cell Neurosci 2021; 15:662971. [PMID: 33897377 PMCID: PMC8063047 DOI: 10.3389/fncel.2021.662971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 12/25/2022] Open
Abstract
The voltage-gated proton channel Hv1 is a newly discovered ion channel that is highly conserved among species. It is known that Hv1 is not only expressed in peripheral immune cells but also one of the major ion channels expressed in tissue-resident microglia of the central nervous systems (CNS). One key role for Hv1 is its interaction with NADPH oxidase 2 (NOX2) to regulate reactive oxygen species (ROS) and cytosolic pH. Emerging data suggest that excessive ROS production increases and requires proton currents through Hv1 in the injured CNS, and manipulations that ablate Hv1 expression or induce loss of function may provide neuroprotection in CNS injury models including stroke, traumatic brain injury, and spinal cord injury. Recent data demonstrating microglial Hv1-mediated signaling in the pathophysiology of the CNS injury further supports the idea that Hv1 channel may function as a key mechanism in posttraumatic neuroinflammation and neurodegeneration. In this review, we summarize the main findings of Hv1, including its expression pattern, cellular mechanism, role in aging, and animal models of CNS injury and disease pathology. We also discuss the potential of Hv1 as a therapeutic target for CNS injury.
Collapse
Affiliation(s)
- Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, United States.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
13
|
Mismatch between Tissue Partial Oxygen Pressure and Near-Infrared Spectroscopy Neuromonitoring of Tissue Respiration in Acute Brain Trauma: The Rationale for Implementing a Multimodal Monitoring Strategy. Int J Mol Sci 2021; 22:ijms22031122. [PMID: 33498736 PMCID: PMC7865258 DOI: 10.3390/ijms22031122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
The brain tissue partial oxygen pressure (PbtO2) and near-infrared spectroscopy (NIRS) neuromonitoring are frequently compared in the management of acute moderate and severe traumatic brain injury patients; however, the relationship between their respective output parameters flows from the complex pathogenesis of tissue respiration after brain trauma. NIRS neuromonitoring overcomes certain limitations related to the heterogeneity of the pathology across the brain that cannot be adequately addressed by local-sample invasive neuromonitoring (e.g., PbtO2 neuromonitoring, microdialysis), and it allows clinicians to assess parameters that cannot otherwise be scanned. The anatomical co-registration of an NIRS signal with axial imaging (e.g., computerized tomography scan) enhances the optical signal, which can be changed by the anatomy of the lesions and the significance of the radiological assessment. These arguments led us to conclude that rather than aiming to substitute PbtO2 with tissue saturation, multiple types of NIRS should be included via multimodal systemic- and neuro-monitoring, whose values then are incorporated into biosignatures linked to patient status and prognosis. Discussion on the abnormalities in tissue respiration due to brain trauma and how they affect the PbtO2 and NIRS neuromonitoring is given.
Collapse
|
14
|
Li Y, Ritzel RM, He J, Cao T, Sabirzhanov B, Li H, Liu S, Wu LJ, Wu J. The voltage-gated proton channel Hv1 plays a detrimental role in contusion spinal cord injury via extracellular acidosis-mediated neuroinflammation. Brain Behav Immun 2021; 91:267-283. [PMID: 33039662 PMCID: PMC7749852 DOI: 10.1016/j.bbi.2020.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Tissue acidosis is an important secondary injury process in the pathophysiology of traumatic spinal cord injury (SCI). To date, no studies have examined the role of proton extrusion as mechanism of pathological acidosis in SCI. In the present study, we hypothesized that the phagocyte-specific proton channel Hv1 mediates hydrogen proton extrusion after SCI, contributing to increased extracellular acidosis and poor long-term outcomes. Using a contusion model of SCI in adult female mice, we demonstrated that tissue pH levels are markedly lower during the first week after SCI. Acidosis was most evident at the injury site, but also extended into proximal regions of the cervical and lumbar cord. Tissue reactive oxygen species (ROS) levels and expression of Hv1 were significantly increased during the week of injury. Hv1 was exclusively expressed in microglia within the CNS, suggesting that microglia contribute to ROS production and proton extrusion during respiratory burst. Depletion of Hv1 significantly attenuated tissue acidosis, NADPH oxidase 2 (NOX2) expression, and ROS production at 3 d post-injury. Nanostring analysis revealed decreased gene expression of neuroinflammatory and cytokine signaling markers in Hv1 knockout (KO) mice. Furthermore, Hv1 deficiency reduced microglia proliferation, leukocyte infiltration, and phagocytic oxidative burst detected by flow cytometry. Importantly, Hv1 KO mice exhibited significantly improved locomotor function and reduced histopathology. Overall, these data suggest an important role for Hv1 in regulating tissue acidosis, NOX2-mediated ROS production, and functional outcome following SCI. Thus, the Hv1 proton channel represents a potential target that may lead to novel therapeutic strategies for SCI.
Collapse
Affiliation(s)
- Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Hui Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Simon Liu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, USA; University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Ritzel RM, He J, Li Y, Cao T, Khan N, Shim B, Sabirzhanov B, Aubrecht T, Stoica BA, Faden AI, Wu LJ, Wu J. Proton extrusion during oxidative burst in microglia exacerbates pathological acidosis following traumatic brain injury. Glia 2020; 69:746-764. [PMID: 33090575 PMCID: PMC7819364 DOI: 10.1002/glia.23926] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 01/02/2023]
Abstract
Acidosis is among the least studied secondary injury mechanisms associated with neurotrauma. Acute decreases in brain pH correlate with poor long‐term outcome in patients with traumatic brain injury (TBI), however, the temporal dynamics and underlying mechanisms are unclear. As key drivers of neuroinflammation, we hypothesized that microglia directly regulate acidosis after TBI, and thereby, worsen neurological outcomes. Using a controlled cortical impact model in adult male mice we demonstrate that intracellular pH in microglia and extracellular pH surrounding the lesion site are significantly reduced for weeks after injury. Microglia proliferation and production of reactive oxygen species (ROS) were also increased during the first week, mirroring the increase in extracellular ROS levels seen around the lesion site. Microglia depletion by a colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622, markedly decreased extracellular acidosis, ROS production, and inflammation in the brain after injury. Mechanistically, we identified that the voltage‐gated proton channel Hv1 promotes oxidative burst activity and acid extrusion in microglia. Compared to wildtype controls, microglia lacking Hv1 showed reduced ability to generate ROS and extrude protons. Importantly, Hv1‐deficient mice exhibited reduced pathological acidosis and inflammation after TBI, leading to long‐term neuroprotection and functional recovery. Our data therefore establish the microglial Hv1 proton channel as an important link that integrates inflammation and acidosis within the injury microenvironment during head injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junyun He
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yun Li
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tuoxin Cao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Niaz Khan
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bosung Shim
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Boris Sabirzhanov
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Taryn Aubrecht
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, Maryland, USA.,University of Maryland Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Pietrancosta N, Djibo M, Daumas S, El Mestikawy S, Erickson JD. Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. Mol Neurobiol 2020; 57:3118-3142. [PMID: 32474835 PMCID: PMC7261050 DOI: 10.1007/s12035-020-01912-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) control quantal size of glutamatergic transmission and have been the center of numerous studies over the past two decades. VGLUTs contain two independent transport modes that facilitate glutamate packaging into synaptic vesicles and phosphate (Pi) ion transport into the synaptic terminal. While a transmembrane proton electrical gradient established by a vacuolar-type ATPase powers vesicular glutamate transport, recent studies indicate that binding sites and flux properties for chloride, potassium, and protons within VGLUTs themselves regulate VGLUT activity as well. These intrinsic ionic binding and flux properties of VGLUTs can therefore be modulated by neurophysiological conditions to affect levels of glutamate available for release from synapses. Despite their extraordinary importance, specific and high-affinity pharmacological compounds that interact with these sites and regulate VGLUT function, distinguish between the various modes of transport, and the different isoforms themselves, are lacking. In this review, we provide an overview of the physiologic sites for VGLUT regulation that could modulate glutamate release in an over-active synapse or in a disease state.
Collapse
Affiliation(s)
- Nicolas Pietrancosta
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Laboratoire des Biomolécules, Sorbonne Université, CNRS, ENS, LBM, 75005, Paris, France.
| | - Mahamadou Djibo
- Sorbonne Paris Cité, Université Paris Descartes, LCBPT, UMR 8601, 75006, Paris, France
| | - Stephanie Daumas
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Salah El Mestikawy
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS) INSERM, CNRS, Sorbonne Université, Paris, France. .,Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 boulevard Lasalle, Verdun, Montreal, QC, Canada.
| | - Jeffrey D Erickson
- Neuroscience Center, Louisiana State University, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Louisiana State University, New Orleans, LA, 70112, USA.
| |
Collapse
|
17
|
Ellingson BM, Yao J, Raymond C, Chakhoyan A, Khatibi K, Salamon N, Villablanca JP, Wanner I, Real CR, Laiwalla A, McArthur DL, Monti MM, Hovda DA, Vespa PM. pH-weighted molecular MRI in human traumatic brain injury (TBI) using amine proton chemical exchange saturation transfer echoplanar imaging (CEST EPI). Neuroimage Clin 2019; 22:101736. [PMID: 30826686 PMCID: PMC6396390 DOI: 10.1016/j.nicl.2019.101736] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/09/2019] [Accepted: 02/24/2019] [Indexed: 12/28/2022]
Abstract
Cerebral acidosis is a consequence of secondary injury mechanisms following traumatic brain injury (TBI), including excitotoxicity and ischemia, with potentially significant clinical implications. However, there remains an unmet clinical need for technology for non-invasive, high resolution pH imaging of human TBI for studying metabolic changes following injury. The current study examined 17 patients with TBI and 20 healthy controls using amine chemical exchange saturation transfer echoplanar imaging (CEST EPI), a novel pH-weighted molecular MR imaging technique, on a clinical 3T MR scanner. Results showed significantly elevated pH-weighted image contrast (MTRasym at 3 ppm) in areas of T2 hyperintensity or edema (P < 0.0001), and a strong negative correlation with Glasgow Coma Scale (GCS) at the time of the MRI exam (R2 = 0.4777, P = 0.0021), Glasgow Outcome Scale - Extended (GOSE) at 6 months from injury (R2 = 0.5334, P = 0.0107), and a non-linear correlation with the time from injury to MRI exam (R2 = 0.6317, P = 0.0004). This evidence suggests clinical feasibility and potential value of pH-weighted amine CEST EPI as a high-resolution imaging tool for identifying tissue most at risk for long-term damage due to cerebral acidosis.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Jingwen Yao
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ararat Chakhoyan
- UCLA Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasra Khatibi
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - J Pablo Villablanca
- Dept. of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ina Wanner
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Courtney R Real
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Azim Laiwalla
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David L McArthur
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Martin M Monti
- Dept. of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David A Hovda
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Paul M Vespa
- Dept. of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
18
|
Katirai A, Landau MJ, Berger JM. The utility of abnormal initial arterial blood gas values in determining clinical futility of trauma cases with severe hemorrhage. Am J Emerg Med 2018; 36:1253-1256. [PMID: 29606404 DOI: 10.1016/j.ajem.2018.03.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Patients who experience trauma with severe hemorrhage requiring immediate surgery and massive blood transfusion often present with markedly abnormal laboratory values. These cases require valuable resources; however, little is known regarding prognostic factors that correlate with mortality. The purpose of this study was to determine whether abnormal initial arterial blood gas (ABG) pH, a marker for severe blood loss, could serve as a prognostic indicator for these patients. METHODS An IRB approved retrospective study was performed at LAC+USC Medical Center Level I Trauma Center. Data was collected from trauma patients with severe hemorrhage admitted between June 2015 and April 2016 who were immediately admitted to the OR following entry into the ER. Baseline variables of age, sex and mechanism of trauma were collected. The pH readings from the initial three ABG data were obtained, and mortality was determined for each patient. RESULTS We identified 247 patients, 84.2% of which were male. Ages ranged from 1 to 91years (average=38.4). Overall mortality was 13.8%. The average initial pH value for non-survivors (7.10±0.13) was significantly lower than for survivors (7.34±0.07) [p<0.001]. Among patients whose initial three ABG pH values averaged ≤7.15, the survival rate was 8.7%. Ten patients had any single recorded pH value≤6.91. The mortality rate among these patients was 90%. CONCLUSIONS Consideration should be given to initial pH values when resuscitating "red blanket" patients. However, the pH values alone cannot reliably be used to determine clinical futility in individual patients in the early period after injury.
Collapse
Affiliation(s)
- Andrew Katirai
- Department of Anesthesiology, Keck School of Medicine of USC, 1520 San Pablo St, Suite 3451, Los Angeles, CA, USA
| | - Mark J Landau
- Department of Anesthesiology, Keck School of Medicine of USC, 1520 San Pablo St, Suite 3451, Los Angeles, CA, USA
| | - Jack M Berger
- Department of Anesthesiology, Keck School of Medicine of USC, 1520 San Pablo St, Suite 3451, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Hu W, Tung YC, Zhang Y, Liu F, Iqbal K. Involvement of Activation of Asparaginyl Endopeptidase in Tau Hyperphosphorylation in Repetitive Mild Traumatic Brain Injury. J Alzheimers Dis 2018; 64:709-722. [PMID: 29889065 PMCID: PMC6087458 DOI: 10.3233/jad-180177] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is an established risk factor for the development of neurodegeneration and dementia late in life. Repetitive mild TBI (r-mTBI) is directly associated with chronic traumatic encephalopathy (CTE), a progressive neurodegenerative disorder characterized by focal perivascular to widespread Alzheimer-type neurofibrillary pathology of hyperphosphorylated tau. Studies in animal models have shown hyperphosphorylation of tau after TBI. However, the molecular mechanisms by which TBI leads to tau pathology are not understood. In this study, we employed western blots and immunohistochemistry to test, in triple-transgenic mouse model of Alzheimer's disease (3xTg-AD), the effect of r-mTBI on tau hyperphosphorylation and activation of asparaginyl endopeptidase (AEP), a cysteine proteinase which is known to be involved in tau hyperphosphorylation. We found that the level of active AEP was increased and correlated with the level of tau hyperphosphorylation following r-mTBI, and that fimbria showed increased immunoreactivity to phospho-tau. In addition, inhibitor 2 of protein phosphatase 2A (I2PP2A) was translocated from neuronal nucleus to the cytoplasm and colocalized with hyperphosphorylated tau. These data suggest the involvement of AEP-I2PP2A-PP2A-ptau pathway in tau pathology in TBI.
Collapse
Affiliation(s)
- Wen Hu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, Jiangsu, P.R. China
| | - Yunn Chyn Tung
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Yanchong Zhang
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, Jiangsu, P.R. China
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
- Key Laboratory for Neuroregeneration of Ministry of Education and Co-innovation Center for Neuroregeneration of Jiangsu Province, Nantong University, Nantong, Jiangsu, P.R. China
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
20
|
Ng ZM, Hong WJ, Chong SL, Allen JC, Loh LE, Low DCY, Lee JH. Correlation of arterial blood gas markers and lactate levels with outcomes in pediatric traumatic brain injury. PROCEEDINGS OF SINGAPORE HEALTHCARE 2017. [DOI: 10.1177/2010105817704208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Various physical markers have been used to predict outcome of traumatic brain injury in children. However, the utility of metabolic alterations for prognostication has been poorly described. Thus, we aim to correlate arterial blood gas markers and lactate levels with outcomes in children with moderate to severe traumatic brain injury. Methods: This is a retrospective cohort study that included all patients <16 years old who presented to the Emergency Department with moderate to severe traumatic brain injury (Glasgow Coma Scale ⩽13). Serial arterial blood gas results and lactate levels in the first five days of admission to a pediatric intensive care unit (PICU) were reviewed. Primary outcome was in-hospital mortality. Secondary outcomes were 28-day ventilator-free and PICU-free days. A stepwise logistic regression analysis in conjunction with receiver operating characteristic analysis were used to identify variables that were associated with in-hospital mortality. Secondary outcomes were analyzed using multiple linear regression. Results: Among the 43 patients analyzed, more than half of the patients (60%) had severe traumatic brain injury (Glasgow Coma Scale 8). Twenty-seven of the 43 (65%) patients underwent neurosurgical intervention and overall mortality was 9/43 (20.9%). The worst base excess and lactate levels of Day 2 of PICU stay were found to be most predictive for mortality with maximal area-under-curve (95% confidence interval) of 0.967 (0.906, 1.000). Worst lactate level on day 2 of PICU stay was also found to be associated with ventilator-free days and PICU-free days. Conclusion: In children with moderate to severe traumatic brain injury, base excess and lactate on Day 2 of PICU stay were predictors of mortality, duration of mechanical ventilation and length of PICU stay.
Collapse
Affiliation(s)
- Zhi Min Ng
- Department of Pediatric Medicine, KK Women’s and Children’s Hospital, Singapore
| | - Wei Jie Hong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shu-Ling Chong
- Department of Emergency Medicine, KK Women’s and Children’s Hospital; Duke-NUS Medical School, Singapore
| | - John C Allen
- Center for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Lik Eng Loh
- Children’s Intensive Care Unit, KK Women’s and Children’s Hospital; Duke-NUS Medical School, Singapore
| | - David Chyi Yeu Low
- Department of Neurosurgery, KK Women’s and Children’s Hospital; Duke-NUS Medical School, Singapore
| | - Jan Hau Lee
- Children’s Intensive Care Unit, KK Women’s and Children’s Hospital; Duke-NUS Medical School, Singapore
| |
Collapse
|
21
|
Zeiler FA, Thelin EP, Helmy A, Czosnyka M, Hutchinson PJA, Menon DK. A systematic review of cerebral microdialysis and outcomes in TBI: relationships to patient functional outcome, neurophysiologic measures, and tissue outcome. Acta Neurochir (Wien) 2017; 159:2245-2273. [PMID: 28988334 PMCID: PMC5686263 DOI: 10.1007/s00701-017-3338-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To perform a systematic review on commonly measured cerebral microdialysis (CMD) analytes and their association to: (A) patient functional outcome, (B) neurophysiologic measures, and (C) tissue outcome; after moderate/severe TBI. The aim was to provide a foundation for next-generation CMD studies and build on existing pragmatic expert guidelines for CMD. METHODS We searched MEDLINE, BIOSIS, EMBASE, Global Health, Scopus, Cochrane Library (inception to October 2016). Strength of evidence was adjudicated using GRADE. RESULTS (A) Functional Outcome: 55 articles were included, assessing outcome as mortality or Glasgow Outcome Scale (GOS) at 3-6 months post-injury. Overall, there is GRADE C evidence to support an association between CMD glucose, glutamate, glycerol, lactate, and LPR to patient outcome at 3-6 months. (B) Neurophysiologic Measures: 59 articles were included. Overall, there currently exists GRADE C level of evidence supporting an association between elevated CMD measured mean LPR, glutamate and glycerol with elevated ICP and/or decreased CPP. In addition, there currently exists GRADE C evidence to support an association between elevated mean lactate:pyruvate ratio (LPR) and low PbtO2. Remaining CMD measures and physiologic outcomes displayed GRADE D or no evidence to support a relationship. (C) Tissue Outcome: four studies were included. Given the conflicting literature, the only conclusion that can be drawn is acute/subacute phase elevation of CMD measured LPR is associated with frontal lobe atrophy at 6 months. CONCLUSIONS This systematic review replicates previously documented relationships between CMD and various outcome, which have driven clinical application of the technique. Evidence assessments do not address the application of CMD for exploring pathophysiology or titrating therapy in individual patients, and do not account for the modulatory effect of therapy on outcome, triggered at different CMD thresholds in individual centers. Our findings support clinical application of CMD and refinement of existing guidelines.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9 Canada
- Clinician Investigator Program, University of Manitoba, Winnipeg, Canada
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Department of Clinical Neuroscience, Neurosurgical Research Laboratory, Karolinska University Hospital, Building R2:02, Karolinska Institutet, S-17176 Stockholm, Sweden
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
- Section of Brain Physics, Division of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Peter J. A. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK
| | - David K. Menon
- Department of Anesthesia, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Neurosciences Critical Care Unit, Addenbrooke’s Hospital, Cambridge, UK
- Queens’ College, Cambridge, UK
- National Institute for Health Research, Southampton, UK
| |
Collapse
|
22
|
Gu Y, Zhang J, Zhao Y, Su Y, Zhang Y. Potassium Aspartate Attenuates Brain Injury Induced by Controlled Cortical Impact in Rats Through Increasing Adenosine Triphosphate (ATP) Levels, Na+/K+-ATPase Activity and Reducing Brain Edema. Med Sci Monit 2016; 22:4894-4901. [PMID: 27959885 PMCID: PMC5175720 DOI: 10.12659/msm.898185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Potassium aspartate (PA), as an electrolyte supplement, is widely used in clinical practice. In our previous study, we found PA had neuroprotective effects against apoptosis after cerebral ischemia/reperfusion in rats. In this study, we examine whether PA has protective effects on traumatic brain injury (TBI). MATERIAL AND METHODS TBI was induced by controlled cortical impact (CCI) in rats. Vehicle treatment (control) or PA treatment was administered intraperitoneally at 30 minutes after CCI. The modified neurological severity score (mNSS) and cortical lesion volume were examined. Brain edema and blood-brain barrier (BBB) integrity were measured, as well as brain ATP contents, lactic acid levels, and Na+/K+-ATPase activities. RESULTS We found that CCI induced cortical injury in rats. Acute PA treatment at the dose of 62.5 mg/kg and 125 mg/kg significantly improved neurological deficits (p<0.05 and p<0.001, respectively) and decreased the cortical lesion volume (p<0.05 and p<0.001, respectively) compared with vehicle-only treatment. PA treatment at the dose of 125 mg/kg attenuated brain edema and ameliorated BBB integrity. In addition, PA treatment significantly reduced the loss of ATP (p<0.01), reduced lactic acid levels (p<0.001), and increased the activity of Na+/K+-ATPase (p<0.01). CONCLUSIONS Our results indicate PA has neuroprotective effects on TBI through increasing ATP levels, Na+/K+-ATPase activity, and reducing brain edema. It provides experimental evidence for the clinical application of PA.
Collapse
Affiliation(s)
- Yi Gu
- Department of Pharmacology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| | - Jie Zhang
- Department of Pediatrics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Yumei Zhao
- Department of Pharmacology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| | - Yujin Su
- Department of Pathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| | - Yazhuo Zhang
- Department of Pharmacology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing Key Laboratory of Central Nervous System Injury, China National Clinical Research Center for Neurological Diseases, Beijing, China (mainland)
| |
Collapse
|
23
|
Van Horn JD, Bhattrai A, Irimia A. Multimodal Imaging of Neurometabolic Pathology due to Traumatic Brain Injury. Trends Neurosci 2016; 40:39-59. [PMID: 27939821 DOI: 10.1016/j.tins.2016.10.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/28/2022]
Abstract
The impact of traumatic brain injury (TBI) involves a combination of complex biochemical processes beginning with the initial insult and lasting for days, months and even years post-trauma. These changes range from neuronal integrity losses to neurotransmitter imbalance and metabolite dysregulation, leading to the release of pro- or anti-apoptotic factors which mediate cell survival or death. Such dynamic processes affecting the brain's neurochemistry can be monitored using a variety of neuroimaging techniques, whose combined use can be particularly useful for understanding patient-specific clinical trajectories. Here, we describe how TBI changes the metabolism of essential neurochemical compounds, summarize how neuroimaging approaches facilitate the study of such alterations, and highlight promising ways in which neuroimaging can be used to investigate post-TBI changes in neurometabolism.
Collapse
Affiliation(s)
- John Darrell Van Horn
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA.
| | - Avnish Bhattrai
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| | - Andrei Irimia
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, 2025 Zonal Avenue, Keck School of Medicine of USC, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
24
|
Carpenter KLH, Czosnyka M, Jalloh I, Newcombe VFJ, Helmy A, Shannon RJ, Budohoski KP, Kolias AG, Kirkpatrick PJ, Carpenter TA, Menon DK, Hutchinson PJ. Systemic, local, and imaging biomarkers of brain injury: more needed, and better use of those already established? Front Neurol 2015; 6:26. [PMID: 25741315 PMCID: PMC4332345 DOI: 10.3389/fneur.2015.00026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/30/2015] [Indexed: 02/02/2023] Open
Abstract
Much progress has been made over the past two decades in the treatment of severe acute brain injury, including traumatic brain injury and subarachnoid hemorrhage, resulting in a higher proportion of patients surviving with better outcomes. This has arisen from a combination of factors. These include improvements in procedures at the scene (pre-hospital) and in the hospital emergency department, advances in neuromonitoring in the intensive care unit, both continuously at the bedside and intermittently in scans, evolution and refinement of protocol-driven therapy for better management of patients, and advances in surgical procedures and rehabilitation. Nevertheless, many patients still experience varying degrees of long-term disabilities post-injury with consequent demands on carers and resources, and there is room for improvement. Biomarkers are a key aspect of neuromonitoring. A broad definition of a biomarker is any observable feature that can be used to inform on the state of the patient, e.g., a molecular species, a feature on a scan, or a monitoring characteristic, e.g., cerebrovascular pressure reactivity index. Biomarkers are usually quantitative measures, which can be utilized in diagnosis and monitoring of response to treatment. They are thus crucial to the development of therapies and may be utilized as surrogate endpoints in Phase II clinical trials. To date, there is no specific drug treatment for acute brain injury, and many seemingly promising agents emerging from pre-clinical animal models have failed in clinical trials. Large Phase III studies of clinical outcomes are costly, consuming time and resources. It is therefore important that adequate Phase II clinical studies with informative surrogate endpoints are performed employing appropriate biomarkers. In this article, we review some of the available systemic, local, and imaging biomarkers and technologies relevant in acute brain injury patients, and highlight gaps in the current state of knowledge.
Collapse
Affiliation(s)
- Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,*Correspondence: Keri L. H. Carpenter, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Box 167, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK e-mail:
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ibrahim Jalloh
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Virginia F. J. Newcombe
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Richard J. Shannon
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karol P. Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Angelos G. Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter J. Kirkpatrick
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Thomas Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K. Menon
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Peter J. Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Lama S, Auer RN, Tyson R, Gallagher CN, Tomanek B, Sutherland GR. Lactate storm marks cerebral metabolism following brain trauma. J Biol Chem 2014; 289:20200-8. [PMID: 24849602 DOI: 10.1074/jbc.m114.570978] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain metabolism is thought to be maintained by neuronal-glial metabolic coupling. Glia take up glutamate from the synaptic cleft for conversion into glutamine, triggering glial glycolysis and lactate production. This lactate is shuttled into neurons and further metabolized. The origin and role of lactate in severe traumatic brain injury (TBI) remains controversial. Using a modified weight drop model of severe TBI and magnetic resonance (MR) spectroscopy with infusion of (13)C-labeled glucose, lactate, and acetate, the present study investigated the possibility that neuronal-glial metabolism is uncoupled following severe TBI. Histopathology of the model showed severe brain injury with subarachnoid and hemorrhage together with glial cell activation and positive staining for Tau at 90 min post-trauma. High resolution MR spectroscopy of brain metabolites revealed significant labeling of lactate at C-3 and C-2 irrespective of the infused substrates. Increased (13)C-labeled lactate in all study groups in the absence of ischemia implied activated astrocytic glycolysis and production of lactate with failure of neuronal uptake (i.e. a loss of glial sensing for glutamate). The early increase in extracellular lactate in severe TBI with the injured neurons rendered unable to pick it up probably contributes to a rapid progression toward irreversible injury and pan-necrosis. Hence, a method to detect and scavenge the excess extracellular lactate on site or early following severe TBI may be a potential primary therapeutic measure.
Collapse
Affiliation(s)
- Sanju Lama
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Roland N Auer
- the Hôpital Ste-Justine, Département de Pathologie, Université de Montréal, Montreal, Québec H3T 1C5, Canada
| | - Randy Tyson
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Clare N Gallagher
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Boguslaw Tomanek
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| | - Garnette R Sutherland
- From the Department of Clinical Neurosciences and the Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 2T9, Canada and
| |
Collapse
|
26
|
The electrogenic sodium bicarbonate cotransporter NBCe1 is a high-affinity bicarbonate carrier in cortical astrocytes. J Neurosci 2014; 34:1148-57. [PMID: 24453308 DOI: 10.1523/jneurosci.2377-13.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The electrogenic sodium bicarbonate cotransporter NBCe1 (SLC4A4) is a robust regulator of intracellular H(+) and a significant base carrier in many cell types. Using wild-type (WT) and NBCe1-deficient (NBC-KO) mice, we have studied the role of NBCe1 in cortical astrocytes in culture and in situ by monitoring intracellular H(+) using the H(+)-sensitive dye BCECF [2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein] in wide-field and confocal microscopy. Adding 0.1-3 mm HCO3(-) to an O2-gassed, HEPES-buffered saline solution lowered the intracellular H(+) concentration with a Km of 0.65 mm HCO3(-) in WT astrocytes, but slowly raised [H(+)]i in NBCe1-KO astrocytes. Human NBCe1 heterologously expressed in Xenopus oocytes could be activated by adding 1-3 mm HCO3(-), and even by residual HCO3(-) in a nominally CO2/HCO3(-)-free saline solution. Our results demonstrate a surprisingly high apparent bicarbonate sensitivity mediated by NBCe1 in cortical astrocytes, suggesting that NBCe1 may operate over a wide bicarbonate concentration in these cells.
Collapse
|
27
|
Rahimi S, Bidabadi E, Mashouf M, Seyed Saadat SM, Rahimi S. Prognostic value of arterial blood gas disturbances for in-hospital mortality in pediatric patients with severe traumatic brain injury. Acta Neurochir (Wien) 2014; 156:187-92. [PMID: 24221122 DOI: 10.1007/s00701-013-1929-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the changes of arterial blood gas as a secondary insult in children and young adults suffering from severe traumatic brain injury, and to assess the correlation, if any, with their in-hospital mortality. METHOD In this cross-sectional study, the medical data of all children and adolescents with severe head trauma admitted to the Rasht Poursina Hospital were reviewed between April 2006 and September 2011. Data including age, gender, GCS upon admission, arrival and daily ABG values for the first 3 days, results of brain CT scan, as well as in-hospital mortality rate were collected. A logistic regression model was used to determine the association between acid-base disturbance and in-hospital mortality after adjustment for potential confounding factors. RESULT Of the 108 patients, 75% were male and 25% were female; and 31.5% of them died in the hospital. Univariate analysis showed a significantly higher risk of mortality in patients who developed mixed metabolic acidosis plus respiratory acidosis on their admission day (OR = 3.94, p = 0.012). Multiple logistic regression analysis demonstrated that mixed metabolic acidosis plus respiratory acidosis (OR = 3.81, 95% CI = 1.18-12.27, p-value = 0.025) and GCS (OR = 0.457, 95 % CI = 0.31-0.65, p-value < 0.001) were two significant predictors of mortality, regardless of other confounding variables. CONCLUSION The results of present study show that, in pediatric patients with severe head injuries, initial mixed metabolic acidosis plus respiratory acidosis and GCS are significant predictors of mortality, but other factors after adjustment for potential confounding factors had no prognostic effect.
Collapse
|
28
|
Yin T, Lindley TE, Albert GW, Ahmed R, Schmeiser PB, Grady MS, Howard MA, Welsh MJ. Loss of Acid sensing ion channel-1a and bicarbonate administration attenuate the severity of traumatic brain injury. PLoS One 2013; 8:e72379. [PMID: 23991103 PMCID: PMC3753246 DOI: 10.1371/journal.pone.0072379] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3− after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3− administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.
Collapse
Affiliation(s)
- Terry Yin
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Timothy E. Lindley
- Department of Neurosurgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Gregory W. Albert
- Department of Neurosurgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Raheel Ahmed
- Department of Neurosurgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Peter B. Schmeiser
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - M. Sean Grady
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew A. Howard
- Department of Neurosurgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurosurgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
29
|
Reinert M, Andres RH, Fuhrer M, Müller A, Schaller B, Widmer H. Online correlation of spontaneous arterial and intracranial pressure fluctuations in patients with diffuse severe head injury. Neurol Res 2013; 29:455-62. [PMID: 17806207 DOI: 10.1179/016164107x164175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Determination of relevant clinical monitoring parameters for helping guide the intensive care therapy in patients with severe head injury, is one of the most demanding issues in neurotrauma research. New insights into cerebral autoregulation and metabolism have revealed that a rigid cerebral perfusion pressure (CPP) regimen might not be suitable for all severe head injured patients. We thus developed an online analysis technique to monitor the correlation (AI rho) between the spontaneous fluctuations of the mean arterial blood pressure (MABP) and the intracranial pressure (ICP). In addition, brain tissue oxygen (PtiO2) and metabolic microdialysate measures including glucose and lactate were registered. We found that in patients with good outcome, the AI rho values were significantly lower as compared with patients with poor outcome. Accordingly, microdialysate glucose and lactate were significantly higher in the good outcome group. We conclude that online determination of AI rho offers a valuable additional and technically easily performable tool for guidance of therapy in patients with severe head injury.
Collapse
Affiliation(s)
- Michael Reinert
- Department of Neurosurgery, Inselspital Bern, University of Bern, 3010 Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
30
|
Jin N, Morin EA, Henn DM, Cao Y, Woodcock JW, Tang S, He W, Zhao B. Agarose hydrogels embedded with pH-responsive diblock copolymer micelles for triggered release of substances. Biomacromolecules 2013; 14:2713-23. [PMID: 23815070 DOI: 10.1021/bm4005639] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hybrid agarose hydrogels embedded with pH-responsive diblock copolymers micelles were developed to achieve functional hydrogels capable of stimulus-triggered drug release. Specifically, a well-defined poly(ethylene oxide) (PEO)-based diblock copolymer, PEO-b-poly(2-(N,N-diisopropylamino)ethyl methacrylate) (PEO(113)-b-PDPAEMA(31), where the subscripts represent the degrees of polymerization of two blocks), was synthesized by atom transfer radical polymerization. PDPAEMA is a pH-responsive polymer with a pKa value of 6.3. The PEO(113)-b-PDPAEMA(31) micelles were formed by a solvent-switching method, and their pH-dependent dissociation behavior was investigated by dynamic light scattering and fluorescence spectroscopy. Both studies indicated that the micelles were completely disassembled at pH = 6.40. The biocompatibility of PEO(113)-b-PDPAEMA(31) micelles was demonstrated by in vitro primary cortical neural culture. Hybrid agarose hydrogels were made by cooling 1.0 wt % agarose solutions that contained various amounts of PEO(113)-b-PDPAEMA(31) micelles at either 2 or 4 °C. Rheological measurements showed that the mechanical properties of gels were not significantly adversely affected by the incorporation of diblock copolymer micelles with a concentration as high as 5.0 mg/g. Using Nile Red as a model hydrophobic drug, its incorporation into the core of diblock copolymer micelles was demonstrated. Characterized by fluorescent spectroscopy, the release of Nile Red from the hybrid hydrogel was shown to be controllable by pH due to the responsiveness of the block copolymer micelles. Based on the prominent use of agarose gels as scaffolds for cell transplantation for neural repair, the hybrid hydrogels embedded with stimuli-responsive block copolymer micelles could allow the controlled delivery of hydrophobic neuroprotective agents to improve survival of transplanted cells in tune with signals from the surrounding pathological environment.
Collapse
Affiliation(s)
- Naixiong Jin
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Timofeev I, Nortje J, Al-Rawi PG, Hutchinson PJA, Gupta AK. Extracellular brain pH with or without hypoxia is a marker of profound metabolic derangement and increased mortality after traumatic brain injury. J Cereb Blood Flow Metab 2013; 33:422-7. [PMID: 23232949 PMCID: PMC3587815 DOI: 10.1038/jcbfm.2012.186] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral hypoxia and acidosis can follow traumatic brain injury (TBI) and are associated with increased mortality. This study aimed to evaluate a relationship between reduced pH(bt) and disturbances of cerebral metabolism. Prospective data from 56 patients with TBI, receiving microdialysis and Neurotrend monitoring, were analyzed. Four tissue states were defined based on pH(bt) and P(bt)O(2): 1--low P(bt)O(2)/pH(bt), 2--low pH(bt)/normal P(bt)O(2), 3--normal pH(bt)/low P(bt)O(2), and 4--normal pH(bt)/P(bt)O(2)). Microdialysis values were compared between the groups. The relationship between P(bt)O(2) and lactate/pyruvate (LP) ratio was evaluated at different pH(bt) levels. Proportional contribution of each state was evaluated against mortality. As compared with the state 4, the state 3 was not different, the state 2 exhibited higher levels of lactate, LP, and glucose and the state 1--higher LP and reduced glucose (P<0.001). A significant negative correlation between LP and P(bt)O(2) (rho=-0.159, P<0.001) was stronger at low pH(bt) (rho=-0.201, P<0.001) and nonsignificant at normal pH(bt) (P=0.993). The state 2 was a significant discriminator of mortality categories (P=0.031). Decreased pH(bt) is associated with impaired metabolism. Measuring pH(bt) with P(bt)O(2) is a more robust way of detecting metabolic derangements.
Collapse
Affiliation(s)
- Ivan Timofeev
- Academic Neurosurgery Unit, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | |
Collapse
|
32
|
Smith JP, Uhernik AL, Li L, Liu Z, Drewes LR. Regulation of Mct1 by cAMP-dependent internalization in rat brain endothelial cells. Brain Res 2012; 1480:1-11. [PMID: 22925948 DOI: 10.1016/j.brainres.2012.08.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/08/2012] [Accepted: 08/15/2012] [Indexed: 10/28/2022]
Abstract
In the cerebrovascular endothelium, monocarboxylic acid transporter 1 (Mct1) controls blood-brain transport of short chain monocarboxylic and keto acids, including pyruvate and lactate, to support brain energy metabolism. Mct1 function is acutely decreased in rat brain cerebrovascular endothelial cells by β-adrenergic signaling through cyclic adenosine monophosphate (cAMP); however, the mechanism for this acute reduction in transport capacity is unknown. In this report, we demonstrate that cAMP induces the dephosphorylation and internalization of Mct1 from the plasma membrane into caveolae and early endosomes in the RBE4 rat brain cerebrovascular endothelial cell line. Additionally, we provide evidence that Mct1 constitutively cycles through clathrin vesicles and recycling endosomes in a pathway that is not dependent upon cAMP signaling in these cells. Our results are important because they show for the first time the regulated and unregulated vesicular trafficking of Mct1 in cerebrovascular endothelial cells; processes which have significance for better understanding normal brain energy metabolism, and the etiology and potential therapeutic approaches to treating brain diseases, such as stroke, in which lactic acidosis is a key component.
Collapse
Affiliation(s)
- Jeffrey P Smith
- Colorado State University-Pueblo, Department of Biology, 2200 Bonforte Blvd., Pueblo, CO 81001, USA.
| | | | | | | | | |
Collapse
|
33
|
Keddie S, Rohman L. Reviewing the reliability, effectiveness and applications of Licox in traumatic brain injury. Nurs Crit Care 2012; 17:204-12. [PMID: 22698163 DOI: 10.1111/j.1478-5153.2012.00499.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS AND OBJECTIVES To review the pathophysiology, accuracy, effectiveness and use of Licox for brain tissue oxygen monitoring in traumatic brain injury (TBI). BACKGROUND The Licox monitoring system allows continuous monitoring of partial pressure of brain tissue oxygen (PbO(2)), brain tissue temperature and intracranial pressure (ICP). The application and effectiveness of the use of Licox in TBI is not clearly explored within the literature. INCLUSION CRITERIA A date limit of 1995-2009, English language, all animal and human studies and the following terms were searched: Licox, brain tissue oxygenation, cerebral oxygenation and TBI. MEDLINE database was the primary data source. EXCLUSION CRITERIA All paediatric papers were excluded from the search. Studies not related to pathophysiology and management of TBI and brain tissue oximetry in adults were excluded. Data relevant to the subject under consideration were extracted by three independent clinicians to form a narrative report. Studies were critically evaluated using the NHS Public Health Resource Unit's checklist for each study analysed. CONCLUSIONS Licox offers new insights into cerebral pathology and physiology. The continuous bedside monitoring provides real-time data that can be used to improve patient management and prognosis in specialist units by trained and experienced staff. More research is required to understand the limitations of this technology and why it is not in widespread use. RELEVENCE TO CLINICAL PRACTICE: A clinical tool that could be utilized more often in the right setting to improve care to patients suffering from TBI by disseminating more information on this unique tool.
Collapse
Affiliation(s)
- Stephen Keddie
- Wansbeck General Hospital, Education Centre, Woodhorn Lane, Ashington, Northumberland, UK
| | | |
Collapse
|
34
|
Godoy DA, Di Napoli M, Rabinstein AA. Treating hyperglycemia in neurocritical patients: benefits and perils. Neurocrit Care 2011; 13:425-38. [PMID: 20652767 DOI: 10.1007/s12028-010-9404-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing debate over the value of intensive insulin therapy (IIT) in critically ill patients. Available trials have been performed in general medical or surgical intensive care units, and the results may not be directly applicable to patients with severe acute brain disease because these patients may have heightened susceptibility to hyperglycemia (HyperG) and hypoglycemia. Our objective was to review the pathophysiology and effects of HyperG and hypoglycemia in neurocritical patients and to analyze the potential role of IIT in this population. Source data were obtained from a PubMed search of the medical literature combining the terms HyperG, hypoglycemia, insulin, stroke, intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), spinal cord injury (SCI), and related diagnoses. Brain metabolism is highly dependent on constant supply of glucose. As a consequence, the acutely injured brain is particularly sensitive to hypoglycemia, which can induce a state of energy failure (metabolic crisis). Meanwhile, neurocritical patients have a high prevalence of HyperG, and its occurrence is associated with poor outcome after acute ischemic stroke, ICH, SAH, and TBI. It is unclear whether this association is due to direct detrimental effects exerted by HyperG or simply represents a marker of severe brain injury. Insulin has been shown to have various potentially pleiotropic neuroprotective properties in experimental models. However, the safety and efficacy of IIT in patients with critical brain disease have not been well studied. Available results do not support the use of IIT to maintain strict normoglycemia in this population. Patients with critical brain disease should have frequent glucose monitoring because severe HyperG and even modest hypoglycemia may be detrimental. Careful use of insulin infusion protocols appears advisable, but maintenance of strict normoglycemia cannot be recommended. Rigorous studies must be conducted to assess the value of insulin therapy and to determine the optimal blood glucose targets in patients with the most common acute vascular and traumatic brain insults.
Collapse
Affiliation(s)
- Daniel A Godoy
- Neurointensive Care Unit, Sanatorio Pasteur, Catamarca, Argentina
| | | | | |
Collapse
|
35
|
Mazzio EA, Close F, Soliman KFA. The biochemical and cellular basis for nutraceutical strategies to attenuate neurodegeneration in Parkinson's disease. Int J Mol Sci 2011; 12:506-69. [PMID: 21340000 PMCID: PMC3039966 DOI: 10.3390/ijms12010506] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 12/19/2022] Open
Abstract
Future therapeutic intervention that could effectively decelerate the rate of degeneration within the substantia nigra pars compacta (SNc) could add years of mobility and reduce morbidity associated with Parkinson’s disease (PD). Neurodegenerative decline associated with PD is distinguished by extensive damage to SNc dopaminergic (DAergic) neurons and decay of the striatal tract. While genetic mutations or environmental toxins can precipitate pathology, progressive degenerative succession involves a gradual decline in DA neurotransmission/synaptic uptake, impaired oxidative glucose consumption, a rise in striatal lactate and chronic inflammation. Nutraceuticals play a fundamental role in energy metabolism and signaling transduction pathways that control neurotransmission and inflammation. However, the use of nutritional supplements to slow the progression of PD has met with considerable challenge and has thus far proven unsuccessful. This review re-examines precipitating factors and insults involved in PD and how nutraceuticals can affect each of these biological targets. Discussed are disease dynamics (Sections 1 and 2) and natural substances, vitamins and minerals that could impact disease processes (Section 3). Topics include nutritional influences on α-synuclein aggregation, ubiquitin proteasome function, mTOR signaling/lysosomal-autophagy, energy failure, faulty catecholamine trafficking, DA oxidation, synthesis of toxic DA-quinones, o-semiquinones, benzothiazolines, hyperhomocyseinemia, methylation, inflammation and irreversible oxidation of neuromelanin. In summary, it is clear that future research will be required to consider the multi-faceted nature of this disease and re-examine how and why the use of nutritional multi-vitamin-mineral and plant-based combinations could be used to slow the progression of PD, if possible.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy and Pharmaceutical Sciences, Tallahassee, FL 32307, USA; E-Mails: (E.A.M.); (F.C.)
| | | | | |
Collapse
|
36
|
Tran ND, Kim S, Vincent HK, Rodriguez A, Hinton DR, Bullock MR, Young HF. Aquaporin-1-mediated cerebral edema following traumatic brain injury: effects of acidosis and corticosteroid administration. J Neurosurg 2010; 112:1095-104. [PMID: 19731985 DOI: 10.3171/2009.8.jns081704] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECT Dysregulation of water homeostasis induces cerebral edema. Edema is a major cause of morbidity and mortality following traumatic brain injury (TBI). Aquaporin-1 (AQP-1), a water channel found in the brain, can function as a transporter for CO2 across the cellular membrane. Additionally, AQP-1's promoter contains a glucocorticoid response element. Thus, AQP-1 may be involved with edema-related brain injury and might be modulated by external conditions such as the pH and the presence of steroids. In this study, the authors investigated the hypotheses that: 1) AQP-1 participates in brain water homeostasis following TBI; 2) secondary injury (for example, acidosis) alters the expression of AQP-1 and exacerbates cerebral edema; and 3) corticosteroids augment brain AQP-1 expression and differentially affect cerebral edema under nonacidotic and acidotic conditions. METHODS Anesthetized Sprague-Dawley rats were subjected to moderate to severe TBI (2.5-3.5 atm) or surgery without injury, and they were randomized to receive a 3-mg/kg bolus of intravenous dexamethasone within 10 minutes after injury or surgery, a 3-mg/kg bolus of dexamethasone followed by 1-mg/kg maintenance doses every 8 hours for 24 hours, or saline boluses at similar time intervals. A second group of animals was subjected to respiratory acidosis with target arterial blood pH 6.8-7.2 for 1 hour following the surgery or injury. To evaluate selective blockage of AQP-1, some animals received a single intraperitoneal dose of HgCl2 (0.3-30.0 mmol/L) within 30 minutes of injury or surgery. At 4 or 24 hours postinjury, animals were killed and their brains were harvested for mRNA, protein, or water content analyses. RESULTS The authors demonstrated elevated cerebral edema levels at 4 and 24 hours following TBI. Dexamethasone administration within 1 hour of TBI attenuated the cerebral edema under nonacidotic conditions but worsened it under acidotic conditions. Selective blockage of AQP-1 channels with HgCl2 attenuated the edematous effects of corticosteroids and acidosis. Reverse transcriptase polymerase chain reaction and immunohistochemical analyses demonstrated a paucity of AQP-1 in the cerebral cortices of the uninjured animals. In contrast, AQP-1 mRNA and protein levels were higher in the cerebral cortices of animals that sustained a TBI. CONCLUSIONS These findings implicate an important, modifiable role for AQP-1 in water homeostasis within the CNS following TBI.
Collapse
Affiliation(s)
- Nam D Tran
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Cao Y, He W. Synthesis and Characterization of Glucocorticoid Functionalized Poly(N-vinyl pyrrolidone): A Versatile Prodrug for Neural Interface. Biomacromolecules 2010; 11:1298-307. [DOI: 10.1021/bm100095t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Cao
- Departments of Materials Science and Engineering and Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee 37996
| | - Wei He
- Departments of Materials Science and Engineering and Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
38
|
Meierhans R, Béchir M, Ludwig S, Sommerfeld J, Brandi G, Haberthür C, Stocker R, Stover JF. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury. Crit Care 2010; 14:R13. [PMID: 20141631 PMCID: PMC2875528 DOI: 10.1186/cc8869] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/20/2009] [Accepted: 02/08/2010] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 microl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. RESULTS Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. CONCLUSIONS Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury.
Collapse
Affiliation(s)
- Roman Meierhans
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Markus Béchir
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Silke Ludwig
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Jutta Sommerfeld
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Giovanna Brandi
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
- Ospedale Maggiore Policlinico Milano, Via Francesco Sforza, 28, I-20122 Milano, Italy
| | - Christoph Haberthür
- Surgical Intensive Care, Luzerner Kantonsspital, 6000 Luzern 16, Switzerland
| | - Reto Stocker
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - John F Stover
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| |
Collapse
|
39
|
Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 2009; 29:14371-80. [PMID: 19906984 DOI: 10.1523/jneurosci.2186-09.2009] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-activated currents in cortical neurons. Dynorphin potentiation of ASIC1a activity is independent of opioid or bradykinin receptor activation but is prevented in the presence of PcTx1, a peptide which is known to bind the extracellular domain of ASIC1a. This suggests that dynorphins interact directly with ASIC1a to enhance channel activity. Inducing steady-state desensitization prevents ASIC1a-mediated cell death during prolonged acidosis. This neuroprotection is abolished in the presence of dynorphins. Together, these results define ASIC1a as a new nonopioid target for dynorphin action and suggest that dynorphins enhance neuronal damage following ischemia by preventing steady-state desensitization of ASIC1a.
Collapse
|
40
|
Summy-Long JY, Hu S. Peripheral osmotic stimulation inhibits the brain's innate immune response to microdialysis of acidic perfusion fluid adjacent to supraoptic nucleus. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1532-45. [PMID: 19759333 DOI: 10.1152/ajpregu.00340.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
During the brain's innate immune response microglia, astroglia and ependymal cells resolve/repair damaged tissue and control infection. Released interleukin-1beta (IL-1beta) reaching cerebroventricles stimulates circumventricular organs (CVOs; subfornical organ, SFO; organum vasculosum lamina terminalis, OVLT), the median preoptic nucleus (MePO), and magnocellular and parvocellular neurons in the supraoptic (SON) and paraventricular (PVN) nuclei. Hypertonic saline (HS) also activates these osmosensory CVOs and neuroendocrine systems, but, in contrast to IL-1beta, inhibits the peripheral immune response. To examine whether the brain's innate immune response is attenuated by osmotic stimulation, sterile acidic perfusion fluid was microdialyzed (2 microl/min) in the SON area of conscious rats for 6 h with sterile HS (1.5 M NaCl) injected subcutaneously (15 ml/kg) at 5 h. Immunohistochemistry identified cytokine sources (IL-1beta(+); OX-42(+) microglia) and targets (IL-1R(+); inducible cyclooxygenase, COX-2(+); c-Fos(+)) near the probe, in CVOs, MePO, ependymal cells, periventricular hypothalamus, SON, and PVN. Inserting the probe stimulated magnocellular neurons (c-Fos(+); SON; PVN) via the MePO (c-Fos(+)), a response enhanced by HS. Microdialysis activated microglia (OX-42(+); amoeboid/hypertrophied; IL-1beta(+)) in the adjacent SON and bilaterally in perivascular areas of the PVN, periventricular hypothalamus and ependyma, coincident with c-Fos expression in ependymal cells and COX-2 in the vasculature. These microglial responses were attenuated by HS, coincident with activating parvocellular and magnocellular neuroendocrine systems and elevating circulating IL-1beta, oxytocin, and vasopressin. Acidosis-induced cellular injury from microdialysis activated the brain's innate immune response by a mechanism inhibited by peripheral osmotic stimulation.
Collapse
Affiliation(s)
- Joan Y Summy-Long
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
41
|
Dulla CG, Frenguelli BG, Staley KJ, Masino SA. Intracellular acidification causes adenosine release during states of hyperexcitability in the hippocampus. J Neurophysiol 2009; 102:1984-93. [PMID: 19625534 PMCID: PMC2746788 DOI: 10.1152/jn.90695.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/08/2009] [Indexed: 12/20/2022] Open
Abstract
Decreased pH increases extracellular adenosine in CNS regions as diverse as hippocampus and ventral medulla. However, thus far there is no clear consensus whether the critical pH change is a decrease in intracellular and/or extracellular pH. Previously we showed that a decrease in extracellular pH is necessary and a decrease in intracellular pH alone is not sufficient, to increase extracellular adenosine in an acute hippocampal slice preparation. Here we explored further the role of intracellular pH under different synaptic conditions in the hippocampal slice. When synaptic excitability was increased, either during gamma-aminobutyric acid type A receptor blockade in CA1 or after the induction of persistent bursting in CA3, a decrease in intracellular pH alone was now sufficient to: 1) elevate extracellular adenosine concentration, 2) activate adenosine A1 receptors, 3) decrease excitatory synaptic transmission (CA1), and 4) attenuate burst frequency in an in vitro seizure model (CA3). Hippocampal slices obtained from adenosine A1 receptor knockout mice did not exhibit these pH-mediated effects on synaptic transmission, further confirming the role of adenosine acting at the adenosine A1 receptor. Taken together, these data strengthen and add significantly to the evidence outlining a change in pH as an important stimulus influencing extracellular adenosine. In addition, we identify conditions under which intracellular pH plays a dominant role in regulating extracellular adenosine concentrations.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
42
|
Adamides AA, Rosenfeldt FL, Winter CD, Pratt NM, Tippett NJ, Lewis PM, Bailey MJ, Cooper DJ, Rosenfeld JV. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg 2009; 209:531-9. [PMID: 19801326 DOI: 10.1016/j.jamcollsurg.2009.05.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 05/13/2009] [Indexed: 02/06/2023]
Affiliation(s)
- Alexios A Adamides
- Department of Neurosurgery, the Alfred Hospital, and the National Trauma Research Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Xing G, Ren M, Watson WD, Watson WA, O'Neill JT, O'Neil JT, Verma A. Traumatic brain injury-induced expression and phosphorylation of pyruvate dehydrogenase: a mechanism of dysregulated glucose metabolism. Neurosci Lett 2009; 454:38-42. [PMID: 19429050 DOI: 10.1016/j.neulet.2009.01.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/11/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Dysregulated brain glucose metabolism and lactate accumulation are seen following traumatic brain injury (TBI). The underlying molecular mechanism is poorly understood. Pyruvate dehydrogenase (PDH), the rate-limiting enzyme coupling cytosolic glycolysis to mitochondrial citric acid cycle, plays a critical role in maintaining homeostasis of brain glucose metabolism. PDH activity is maintained by the expression of its E1alpha1 subunit 1 (PDHE1alpha1) and is inhibited by the phosphorylation of PDHE1alpha1 (p-PDHE1alpha1). We hypothesized that PDHE1alpha1 expression and phosphorylation was altered in rat brain following controlled cortical impact (CCI)-induced TBI. Compared to naïve controls (=100%), PDHE1alpha1 protein decreased significantly ipsilateral to CCI (62%, P<0.05; 75%, P<0.05; 57%, P<0.05; and 39%, P<0.01) and contralateral to CCI (77%, 78%, 78% and 36% P<0.01) at 4h, 24h, 3- and 7-day post-CCI, respectively. PDHE1alpha1 protein phosphorylation level also decreased significantly ipsilateral to CCI (31%, P<0.01; 102%, P>0.05; 64%, P<0.05; and 14%, P<0.01) and to contralateral CCI (35%, 74%, P<0.05; 60%, P<0.05; 20%, P<0.01) at 4h, 24h, 3- and 7-day post-CCI, respectively. Similar reduction in PDHE1alpha1 and p-PDHE1alpha1 protein was found in the craniotomy (sham CCI) group. TBI-induced change in PDHE1alpha1 expression and phosphorylation could alter brain PDH activity and glucose metabolism.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, United States.
| | | | | | | | | | | | | |
Collapse
|
44
|
Holbein M, Béchir M, Ludwig S, Sommerfeld J, Cottini SR, Keel M, Stocker R, Stover JF. Differential influence of arterial blood glucose on cerebral metabolism following severe traumatic brain injury. Crit Care 2009; 13:R13. [PMID: 19196488 PMCID: PMC2688130 DOI: 10.1186/cc7711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/01/2008] [Accepted: 02/06/2009] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. METHODS In 69 patients with severe traumatic brain injury (TBI), cerebral metabolism was monitored by assessing changes in arterial and jugular venous blood at normocarbia (partial arterial pressure of carbon dioxide (paCO2) 4.4 to 5.6 kPa), normoxia (partial arterial pressure of oxygen (paO2) 9 to 20 kPa), stable haematocrit (27 to 36%), brain temperature 35 to 38 degrees C, and cerebral perfusion pressure (CPP) 70 to 90 mmHg. This resulted in a total of 43,896 values for glucose uptake, lactate release, oxygen extraction ratio (OER), carbon dioxide (CO2) and bicarbonate (HCO3) production, jugular venous oxygen saturation (SjvO2), oxygen-glucose index (OGI), lactate-glucose index (LGI) and lactate-oxygen index (LOI). Arterial blood glucose concentration-dependent influence was determined retrospectively by assessing changes in these parameters within pre-defined blood glucose clusters, ranging from less than 4 to more than 9 mmol/l. RESULTS Arterial blood glucose significantly influenced signs of cerebral metabolism reflected by increased cerebral glucose uptake, decreased cerebral lactate production, reduced oxygen consumption, negative LGI and decreased cerebral CO2/HCO3 production at arterial blood glucose levels above 6 to 7 mmol/l compared with lower arterial blood glucose concentrations. At blood glucose levels more than 8 mmol/l signs of increased anaerobic glycolysis (OGI less than 6) supervened. CONCLUSIONS Maintaining arterial blood glucose levels between 6 and 8 mmol/l appears superior compared with lower and higher blood glucose concentrations in terms of stabilised cerebral metabolism. It appears that arterial blood glucose values below 6 and above 8 mmol/l should be avoided. Prospective analysis is required to determine the optimal arterial blood glucose target in patients suffering from severe TBI.
Collapse
Affiliation(s)
- Monika Holbein
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Markus Béchir
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Silke Ludwig
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Jutta Sommerfeld
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Silvia R Cottini
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Marius Keel
- Department of Surgery, Division of Trauma Surgery, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Reto Stocker
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - John F Stover
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| |
Collapse
|
45
|
Doering CJ, McRory JE. Effects of extracellular pH on neuronal calcium channel activation. Neuroscience 2007; 146:1032-43. [PMID: 17434266 DOI: 10.1016/j.neuroscience.2007.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 02/23/2007] [Accepted: 02/28/2007] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that extracellular pH (pHo) alters gating and permeation properties of cardiac L- and T-type channels. However, a comprehensive study investigating the effects of pHo on all other voltage-gated calcium channels is lacking. Here, we report the effects of pHo on activation parameters slope factor (S), half-activation potential (Va), reversal potential (Erev), and maximum slope conductance (Gmax) of the nine known neuronal voltage-gated calcium channels transiently expressed in tsA-201 cells. In all cases, acidification of the extracellular bathing solution results in a depolarizing shift in the activation curve and reduction in peak current amplitudes. Relative to a physiological pHo of 7.25, statistically significant depolarizing shifts in Va were observed for all channels at pHo 7.00 except Cav1.3 and 3.2, which showed significant shifts at pHo 6.75 and below. All channels displayed significant reductions in Gmax relative to pHo 7.25 at pHo 7.00 except Cav1.2, 2.1, and 3.1 which required acidification to pHo 6.75. Upon acidification Cav3 channels displayed the largest changes in Vas and exhibited the largest reduction in Gmax compared with other channel subtypes. Taken together, these results suggest that significant modulation of calcium channel currents can occur with changes in pHo. Acidification of the external solution did not produce significant shifts in observed Erevs or blockade of outward currents for any of the nine channel subtypes. Finally, we tested a simple Woodhull-type model of current block by assuming blockade of the pore by a single proton. In all cases, the amount of blockade observed could not be explained in these simple terms, suggesting that proton modulation is more complicated, involving more than one site or gating modification as has been previously described for cardiac L- and T-type channels.
Collapse
Affiliation(s)
- C J Doering
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | | |
Collapse
|
46
|
Lang EW, Mulvey JM, Mudaliar Y, Dorsch NWC. Direct cerebral oxygenation monitoring--a systematic review of recent publications. Neurosurg Rev 2007; 30:99-106; discussion 106-7. [PMID: 17221264 DOI: 10.1007/s10143-006-0062-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/15/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
This review has been compiled to assess publications related to the clinical application of direct cerebral tissue oxygenation (PtiO2) monitoring published in international, peer-reviewed scientific journals. Its goal was to extract relevant, i.e. positive and negative information on indications, clinical application, safety issues and impact on clinical situations as well as treatment strategies in neurosurgery, neurosurgical anaesthesiology, neurosurgical intensive care, neurology and related specialties. For completeness' sake it also presents some related basic science research. PtiO2 monitoring technology is a safe and valuable cerebral monitoring device in neurocritical care. Although a randomized outcome study is not available its clinical utility has repeatedly been clearly confirmed because it adds a monitoring parameter, independent from established cerebral monitoring devices. It offers new insights into cerebral physiology and pathophysiology. Pathologic values have been established in peer-reviewed research, which are not only relevant to outcome but are treatable. The benefits clearly outweigh the risks, which remains unchallenged in all publications retrieved. It is particularly attractive because it offers continuous, real-time data and is available at the bedside.
Collapse
Affiliation(s)
- Erhard W Lang
- Neurosurgical Associates, Red Cross Hospital, Bergmannstrasse 32, 34121 Kassel, Germany
| | | | | | | |
Collapse
|
47
|
Johnson MD, Kao OE, Kipke DR. Spatiotemporal pH dynamics following insertion of neural microelectrode arrays. J Neurosci Methods 2006; 160:276-87. [PMID: 17084461 DOI: 10.1016/j.jneumeth.2006.09.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 09/19/2006] [Accepted: 09/22/2006] [Indexed: 12/18/2022]
Abstract
Insertion trauma is a critical issue when assessing intracortical electrophysiological and neurochemical recordings. Previous reports document a wide variety of insertion techniques with speeds ranging from 10 microm/s to 10 m/s. We hypothesize that insertion speed has an effect on tissue trauma induced by implantation of a neural probe. In order to monitor the neural interface during and after probe insertion, we have developed a silicon-substrate array with hydrous iridium oxide microelectrodes for potentiometric recording of extracellular pH (pH(e)), a measure of brain homeostasis. Microelectrode sites were sensitive to pH in the super-Nernstian range (-85.9 mV/pH unit) and selective over other analytes including ascorbic acid, Na(+), K(+), Ca(2+), and Mg(2+). Following insertion, arrays recorded either triphasic or biphasic pH(e) responses, with a greater degree of prolonged acidosis for insertions at 50 microm/s than at 0.5 mm/s or 1.0 mm/s (p<0.05). Spatiotemporal analysis of the recordings also revealed micro-scale variability in the pH(e) response along the array, even when using the same insertion technique. Implants with more intense acidosis were often associated histologically with blood along the probe tract. The potentiometric microsensor array has implications not only as a useful tool to measure extracellular pH, but also as a feedback tool for delivery of pharmacological agents to treat surgical brain trauma.
Collapse
Affiliation(s)
- Matthew D Johnson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
48
|
Nortje J, Gupta AK. The role of tissue oxygen monitoring in patients with acute brain injury. Br J Anaesth 2006; 97:95-106. [PMID: 16751641 DOI: 10.1093/bja/ael137] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cerebral ischaemia is implicated in poor outcome after brain injury, and is a very common post-mortem finding. The inability of the brain to store metabolic substrates, in the face of high oxygen and glucose requirements, makes it very susceptible to ischaemic damage. The clinical challenge, however, remains the reliable antemortem detection and treatment of ischaemic episodes in the intensive care unit. Outcomes have improved in the traumatic brain injury setting after the introduction of progressive protocol-driven therapy, based, primarily, on the monitoring and control of intracranial pressure, and the maintenance of an adequate cerebral perfusion pressure through manipulation of the mean arterial pressure. With the increasing use of multi-modal monitoring, the complex pathophysiology of the injured brain is slowly being unravelled, emphasizing the heterogeneity of the condition, and the requirement for individualization of therapy to prevent secondary adverse hypoxic cerebral events. Brain tissue oxygen partial pressure (Pb(O2) monitoring is emerging as a clinically useful modality, and this review examines its role in the management of brain injury.
Collapse
Affiliation(s)
- J Nortje
- Department of Anaesthesia, University of Cambridge Addenbrooke's Hospital, Cambridge CB2 2QQ, UK.
| | | |
Collapse
|