1
|
Stanners M, O'Riordan M, Theodosiou E, Souppez JBRG, Gardner A. The mechanical properties of the spinal cord: a systematic review. Spine J 2024; 24:1302-1312. [PMID: 38432298 DOI: 10.1016/j.spinee.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND CONTENT Spinal cord compression is a source of pathology routinely seen in clinical practice. However, there remain unanswered questions surrounding both the understanding of pathogenesis and the best method of treatment. This arises from limited real-life testing of the mechanical properties of the spinal cord, either through cadaveric human specimens or animal testing, both of which suffer from methodological, as well as ethical, issues. PURPOSE To conduct a review of the literature on the mechanical properties of the spinal cord. STUDY DESIGN/SETTING A systematic review of the literature on the mechanical properties of the spinal cord is undertaken. PATIENT SAMPLE All literature reporting the testing of the mechanical properties of the spinal cord. OUTCOME MEASURES Reported physiological mechanical properties of the spinal cord. METHODS The methodological quality of the studies has been assessed within the ARRIVE guidelines using the CAMARADES framework and SYRCLE's risk of bias tool. This paper details the methodologies and results of the reported testing. RESULTS We show that (1) the research quality of previous work does not follow published guidelines on animal treatment or risk of bias, (2) no standard protocol has been employed for sample preparation or mechanical testing, (3) this leads to a wide distribution of results for the tested mechanical properties, not applicable to the living human or animal, and (4) animal testing is not a good proxy for human application. CONCLUSIONS The findings summarize the sum of current knowledge inherent to the mechanical properties of the spinal cord and may contribute to the development of a physical model which is applicable to the living human for analysis and testing in a controlled and repeatable fashion. Such a model would be the basis for further clinical research to improve outcomes from spinal cord compression.
Collapse
Affiliation(s)
- Megan Stanners
- Aston Medical School, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | | | - Eirini Theodosiou
- Department of Chemical Engineering and Applied Chemistry, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jean-Baptiste R G Souppez
- Department of Mechanical, Biomedical and Design Engineering, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Adrian Gardner
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK; The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK.
| |
Collapse
|
2
|
Xu ML, Yang YT, Zeng HZ, Cao YT, Zheng LD, Jin C, Zhu SJ, Zhu R. Finite element modeling and analysis of effect of preexisting cervical degenerative disease on the spinal cord during flexion and extension. Med Biol Eng Comput 2024; 62:1089-1104. [PMID: 38148413 DOI: 10.1007/s11517-023-02993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Recent studies have emphasized the importance of dynamic activity in the development of myelopathy. However, current knowledge of how degenerative factors affect the spinal cord during motion is still limited. This study aimed to investigate the effect of various types of preexisting herniated cervical disc and the ligamentum flavum ossification on the spinal cord during cervical flexion and extension. A detailed dynamic fluid-structure interaction finite element model of the cervical spine with the spinal cord was developed and validated. The changes of von Mises stress and maximum principal strain within the spinal cord in the period of normal, hyperflexion, and hyperextension were investigated, considering various types and grades of disc herniation and ossification of the ligamentum flavum. The flexion and extension of the cervical spine with spinal canal encroachment induced high stress and strain inside the spinal cord, and this effect was also amplified by increased canal encroachments and cervical hypermobility. The spinal cord might evade lateral encroachment, leading to a reduction in the maximum stress and principal strain within the spinal cord in local-type herniation. Although the impact was limited in the case of diffuse type, the maximum stress tended to appear in the white matter near the encroachment site while compression from both ventral and dorsal was essential to make maximum stress appear in the grey matter. The existence of canal encroachment can reduce the safe range for spinal cord activities, and hypermobility activities may induce spinal cord injury. Besides, the ligamentum flavum plays an important role in the development of central canal syndrome.Significance. This model will enable researchers to have a better understanding of the influence of cervical degenerative diseases on the spinal cord during extension and flexion.
Collapse
Affiliation(s)
- Meng-Lei Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yi-Ting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui-Zi Zeng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu-Ting Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Liang-Dong Zheng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chen Jin
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Shi-Jie Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
3
|
Davies B, Schaefer S, Rafati Fard A, Newcombe V, Sutcliffe M. Finite Element Analysis for Degenerative Cervical Myelopathy: Scoping Review of the Current Findings and Design Approaches, Including Recommendations on the Choice of Material Properties. JMIR BIOMEDICAL ENGINEERING 2024; 9:e48146. [PMID: 38875683 PMCID: PMC11041437 DOI: 10.2196/48146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/31/2023] [Accepted: 02/15/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Degenerative cervical myelopathy (DCM) is a slow-motion spinal cord injury caused via chronic mechanical loading by spinal degenerative changes. A range of different degenerative changes can occur. Finite element analysis (FEA) can predict the distribution of mechanical stress and strain on the spinal cord to help understand the implications of any mechanical loading. One of the critical assumptions for FEA is the behavior of each anatomical element under loading (ie, its material properties). OBJECTIVE This scoping review aims to undertake a structured process to select the most appropriate material properties for use in DCM FEA. In doing so, it also provides an overview of existing modeling approaches in spinal cord disease and clinical insights into DCM. METHODS We conducted a scoping review using qualitative synthesis. Observational studies that discussed the use of FEA models involving the spinal cord in either health or disease (including DCM) were eligible for inclusion in the review. We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. The MEDLINE and Embase databases were searched to September 1, 2021. This was supplemented with citation searching to retrieve the literature used to define material properties. Duplicate title and abstract screening and data extraction were performed. The quality of evidence was appraised using the quality assessment tool we developed, adapted from the Newcastle-Ottawa Scale, and shortlisted with respect to DCM material properties, with a final recommendation provided. A qualitative synthesis of the literature is presented according to the Synthesis Without Meta-Analysis reporting guidelines. RESULTS A total of 60 papers were included: 41 (68%) "FEA articles" and 19 (32%) "source articles." Most FEA articles (33/41, 80%) modeled the gray matter and white matter separately, with models typically based on tabulated data or, less frequently, a hyperelastic Ogden variant or linear elastic function. Of the 19 source articles, 14 (74%) were identified as describing the material properties of the spinal cord, of which 3 (21%) were considered most relevant to DCM. Of the 41 FEA articles, 15 (37%) focused on DCM, of which 9 (60%) focused on ossification of the posterior longitudinal ligament. Our aggregated results of DCM FEA indicate that spinal cord loading is influenced by the pattern of degenerative changes, with decompression alone (eg, laminectomy) sufficient to address this as opposed to decompression combined with other procedures (eg, laminectomy and fusion). CONCLUSIONS FEA is a promising technique for exploring the pathobiology of DCM and informing clinical care. This review describes a structured approach to help future investigators deploy FEA for DCM. However, there are limitations to these recommendations and wider uncertainties. It is likely that these will need to be overcome to support the clinical translation of FEA to DCM.
Collapse
Affiliation(s)
- Benjamin Davies
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Samuel Schaefer
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Amir Rafati Fard
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Virginia Newcombe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael Sutcliffe
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Zheng LD, Cao YT, Yang YT, Xu ML, Zeng HZ, Zhu SJ, Jin C, Yuan Q, Zhu R. Effect of Different Types of Ossification of the Posterior Longitudinal Ligament on the Dynamic Biomechanical Response of the Spinal Cord: A Finite Element Analysis. J Biomech Eng 2023; 145:121002. [PMID: 37578172 DOI: 10.1115/1.4063194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) has been identified as an important cause of cervical myelopathy. However, the biomechanical mechanism between the OPLL type and the clinical characteristics of myelopathy remains unclear. The aim of this study was to evaluate the effect of different types of OPLL on the dynamic biomechanical response of the spinal cord. A three-dimensional finite element model of the fluid-structure interaction of the cervical spine with spinal cord was established and validated. The spinal cord stress and strain, cervical range of motion (ROM) in different types of OPLL models were predicted during dynamic flexion and extension activity. Different types of OPLL models showed varying degrees of increase in stress and strain under the process of flexion and extension, and there was a surge toward the end of extension. Larger spinal cord stress was observed in segmental OPLL. For continuous and mixed types of OPLL, the adjacent segments of OPLL showed a dramatic increase in ROM, while the ROM of affected segments was limited. As a dynamic factor, flexion and extension of the cervical spine play an amplifying role in OPLL-related myelopathy, while appropriate spine motion is safe and permitted. Segmental OPLL patients are more concerned about the spinal cord injury induced by large stress, and patients with continuous OPLL should be noted to progressive injuries of adjacent level.
Collapse
Affiliation(s)
- Liang-Dong Zheng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Yu-Ting Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Yi-Ting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Meng-Lei Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Hui-Zi Zeng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Shi-Jie Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Chen Jin
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Qing Yuan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| |
Collapse
|
5
|
Yang YT, Zhu SJ, Xu ML, Zheng LD, Cao YT, Yuan Q, Zhang K, Zhu R. The biomechanical effect of different types of ossification of the ligamentum flavum on the spinal cord during cervical dynamic activities. Med Eng Phys 2023; 121:104062. [PMID: 37985028 DOI: 10.1016/j.medengphy.2023.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Ossification of the ligamentum flavum (OLF) is thought to be an influential etiology of myelopathy, as thickened ligamentum flavum causes the stenosis of the vertebral canal, which could subsequently compress the spinal cord. Unfortunately, there was little information available on the effects of cervical OLF on spinal cord compression, such as the relationship between the progression of cervical OLF and nervous system symptoms during dynamic cervical spine activities. In this research, a finite element model of C1-C7 including the spinal cord featured by dynamic fluid-structure interaction was reconstructed and utilized to analyze how different types of cervical OLF affect principal strain and stress distribution in spinal cord during spinal activities towards six directions. For patients with cervical OLF, cervical extension induces higher stress within the spinal cord among all directions. From the perspective of biomechanics, extension leads to stress concentration in the lateral corticospinal tracts or the posterior of gray matter. Low energy damage to the spinal cord would be caused by the high and fluctuating stresses during cervical movements to the affected side for patients with unilateral OLF at lower grades.
Collapse
Affiliation(s)
- Yi-Ting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Shi-Jie Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Meng-Lei Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Liang-Dong Zheng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Yu-Ting Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Qing Yuan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Kai Zhang
- Department of Orthopedics, Shanghai Liqun Hospital, Taopu road 910, Shanghai 200333, China.
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China.
| |
Collapse
|
6
|
Kurokawa R, Endo T, Takami T, for the Investigators of Intramedullary Spinal Cord Tumors in the Neurospinal Society of Japan. Acceptance of Early Surgery for Treatment of Spinal Cord Cavernous Malformation in Contemporary Japan. Neurospine 2023; 20:587-594. [PMID: 37401077 PMCID: PMC10323330 DOI: 10.14245/ns.2346134.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 07/05/2023] Open
Abstract
OBJECTIVE Spinal cord cavernous malformation (CM) is an intramedullary vascular lesion that may present with progressive symptoms. Surgery is recommended for symptomatic patients, but optimal timing of surgery is debatable. Some advocate waiting until plateau of neurological recovery and others support emergency surgery. There is no statistic on how commonly these strategies are utilized. We aimed to find contemporary practice pattern among neurosurgical spine centers in Japan. METHODS A database of intramedullary spinal cord tumors assembled by Neurospinal Society of Japan was surveyed and 160 patients with spinal cord CM were identified. Neurological function, disease duration, and number of days between presentation to hospitals and surgery were analyzed. RESULTS Duration of disease before presentation to hospitals ranged from 0 to 336 months (median, 4 months). Number of days between patients' presentation and surgery ranged from 0 to 6,011 days (median, 32 days). Time from symptom onset to surgery ranged from 0 to 336.9 months (median, 6.6 months). Patients with severe preoperative neurological dysfunction had shorter duration of disease, fewer days between presentation and surgery, and shorter time between symptom onset and surgery. Patients with paraplegia or quadriplegia were more likely to improve when operated on within 3 months from onset. CONCLUSION Timing of surgery for spinal cord CM in Japanese neurosurgical spine centers generally was early, with 50% of patients undergoing surgery within 32 days after presentation. Further study is needed to clarify optimal timing of surgery.
Collapse
Affiliation(s)
- Ryu Kurokawa
- Department of Neurosurgery, Dokkyo Medical University, Tochigi, Japan
| | - Toshiki Endo
- Division of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | | |
Collapse
|
7
|
Xue F, Deng H, Chen Z, Yang H, Li Y, Yuan S, Zheng N, Chen M. Effects of cervical rotatory manipulation on the cervical spinal cord complex with ossification of the posterior longitudinal ligament in the vertebral canal: A finite element study. Front Bioeng Biotechnol 2023; 11:1095587. [PMID: 36714008 PMCID: PMC9880201 DOI: 10.3389/fbioe.2023.1095587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Background: There are few studies focusing on biomechanism of spinal cord injury according to the ossification of the posterior longitudinal ligament (OPLL) during cervical rotatory manipulation (CRM). This study aimed to explore the biomechanical effects of CRM on the spinal cord, dura matter and nerve roots with OPLL in the cervical vertebral canal. Methods: Three validated FE models of the craniocervical spine and spinal cord complex were constructed by adding mild, moderate, and severe OPLL to the healthy FE model, respectively. We simulated the static compression of the spinal cord by OPLL and the dynamic compression during CRM in the flexion position. The stress distribution of the spinal cord complex was investigated. Results: The cervical spinal cord experienced higher von Mises stress under static compression by the severe OPLL. A higher von Mises stress was observed on the spinal cord in the moderate and severe OPLL models during CRM. The dura matter and nerve roots had a higher von Mises stress in all three models during CRM. Conclusion: The results show a high risk in performing CRM in the flexion position on patients with OPLL, in that different occupying ratios in the vertebral canal due to OPLL could significantly increase the stress on the spinal cord complex.
Collapse
Affiliation(s)
- Fan Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao Deng
- Department of Orthopaedics, Jiashan Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Zujiang Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Han Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China,*Correspondence: Yikai Li, ; Shiguo Yuan,
| | - Shiguo Yuan
- Department of Orthopaedics, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, China,*Correspondence: Yikai Li, ; Shiguo Yuan,
| | - Nansheng Zheng
- Department of Orthopaedics, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, China
| | - Meixiong Chen
- Department of Orthopaedics, Hainan Traditional Chinese Medicine Hospital, Haikou, Hainan, China
| |
Collapse
|
8
|
Effect of degenerative factors on cervical spinal cord during flexion and extension: a dynamic finite element analysis. Biomech Model Mechanobiol 2022; 21:1743-1759. [PMID: 35931861 DOI: 10.1007/s10237-022-01617-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/13/2022] [Indexed: 11/02/2022]
Abstract
Spinal cord injury (SCI) is a global problem that brings a heavy burden to both patients and society. Recent investigations indicated degenerative disease is taking an increasing part in SCI with the growth of the aging population. However, little insight has been gained about the effect of cervical degenerative disease on the spinal cord during dynamic activities. In this work, a dynamic fluid-structure interaction model was developed and validated to investigate the effect of anterior and posterior encroachment caused by degenerative disease on the spinal cord during normal extension and flexion. Maximum von-Mises stress and maximum principal strain were observed at the end of extension and flexion. The abnormal stress distribution caused by degenerative factors was concentrated in the descending tracts of the spinal cord. Our finding indicates that the excessive motion of the cervical spine could potentially exacerbate spinal cord injury and enlarge injury areas. Stress and strain remained low compared to extension during moderate flexion. This suggests that patients with cervical degenerative disease should avoid frequent or excessive flexion and extension which could result in motor function impairment, whereas moderate flexion is safe. Besides, encroachment caused by degenerative factors that are not significant in static imaging could also cause cord compression during normal activities.
Collapse
|
9
|
Kiang L, Woodington B, Carnicer-Lombarte A, Malliaras G, Barone DG. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng 2022; 19. [PMID: 35320780 DOI: 10.1088/1741-2552/ac605f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022]
Abstract
Bioelectronic stimulation of the spinal cord has demonstrated significant progress in restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow SCR to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.
Collapse
Affiliation(s)
- Lei Kiang
- Orthopaedic Surgery, Singapore General Hospital, Outram Road, Singapore, Singapore, 169608, SINGAPORE
| | - Ben Woodington
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Alejandro Carnicer-Lombarte
- Clinical Neurosciences, University of Cambridge, Bioelectronics Laboratory, Cambridge, CB2 0PY, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - George Malliaras
- University of Cambridge, University of Cambridge, Cambridge, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Damiano G Barone
- Department of Engineering, University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
10
|
Evin M, Sudres P, Weber P, Godio-Raboutet Y, Arnoux PJ, Wagnac E, Petit Y, Tillier Y. Experimental Bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison. Acta Biomater 2022; 140:446-456. [PMID: 34838701 DOI: 10.1016/j.actbio.2021.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/01/2022]
Abstract
Introduction This study aims at identifying mechanical characteristics under bi-axial loading conditions of extracted swine pia mater (PM) and dura and arachnoid complex (DAC). Methods 59 porcine spinal samples have been tested on a bi-axial experimental device with a pre-load of 0.01 N and a displacement rate of 0.05 mm·s-1. Post-processing analysis included an elastic modulus, as well as constitutive model identification for Ogden model, reduced Gasser Ogden Holzapfel (GOH) model, anisotropic GOH model, transverse isotropic and anisotropic Gasser models as well as a Mooney-Rivlin model including fiber strengthening for PM. Additionally, micro-structure of the tissue was investigated using a bi-photon microscopy. Results Linear elastic moduli of 108 ± 40 MPa were found for DAC longitudinal direction, 53 ± 32 MPa for DAC circumferential direction, with a significant difference between directions (p < 0.001). PM presented significantly higher longitudinal than circumferential elastic moduli (26 ± 13 MPa vs 13 ± 9 MPa, p < 0.001). Transversely isotropic and anisotropic Gasser models were the most suited models for DAC (r2 = 0.99 and RMSE:0.4 and 0.3 MPa) and PM (r2 = 1 and RMSE:0.06 and 0.07 MPa) modelling. Conclusion This work provides reference values for further quasi-static bi-axial studies, and is the first for PM. Collagen structures observed by two photon microscopy confirmed the use of anisotropic Gasser model for PM and the existence of fenestration. The results from anisotropic Gasser model analysis depicted the best fit to experimental data as per this protocol. Further investigations are required to allow the use of meningeal tissue mechanical behaviour in finite element modelling with respect to physiological applications. STATEMENT OF SIGNIFICANCE: This study is the first to present biaxial tensile test of pia mater as well as constitutive model comparisons for dura and arachnoid complex tissue based on such tests. Collagen structures observed by semi-quantitative analysis of two photon microscopy confirmed the use of anisotropic Gasser model for pia mater and existence of fenestration. While clear identification of fibre population was not possible in DAC, results from anisotropic Gasser model depicted better fitting on experimental data as per this protocol. Bi-axial mechanical testing allows quasi-static characterization under conditions closer to the physiological context and the results presented could be used for further simulations of physiology. Indeed, the inclusion of meningeal tissue in finite element models will allow more accurate and reliable numerical simulations.
Collapse
|
11
|
Rycman A, McLachlin S, Cronin DS. Comparison of numerical methods for cerebrospinal fluid representation and fluid-structure interaction during transverse impact of a finite element spinal cord model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3570. [PMID: 34997836 DOI: 10.1002/cnm.3570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Spinal cord impacts can have devastating consequences. Computational models can investigate such impacts but require biofidelic numerical representations of the neural tissues and fluid-structure interaction with cerebrospinal fluid. Achieving this biofidelity is challenging, particularly for efficient implementation of the cerebrospinal fluid in full computational human body models. The goal of this study was to assess the biofidelity and computational efficiency of fluid-structure interaction methods representing the cerebrospinal fluid interacting with the spinal cord, dura, and pia mater using experimental pellet impact test data from bovine spinal cords. Building on an existing finite element model of the spinal cord and pia mater, an orthotropic hyperelastic constitutive model was proposed for the dura mater and fit to literature data. The dura mater and cerebrospinal fluid were integrated with the existing finite element model to assess four fluid-structure interaction methods under transverse impact: Lagrange, pressurized volume, smoothed particle hydrodynamics, and arbitrary Lagrangian-Eulerian. The Lagrange method resulted in an overly stiff mechanical response, whereas the pressurized volume method over-predicted compression of the neural tissues. Both the smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods were able to effectively model the impact response of the pellet on the dura mater, outflow of the cerebrospinal fluid, and compression of the spinal cord; however, the arbitrary Lagrangian-Eulerian compute time was approximately five times higher than smoothed particle hydrodynamics. Crucial to implementation in human body models, the smoothed particle hydrodynamics method provided a computationally efficient and representative approach to model spinal cord fluid-structure interaction during transverse impact.
Collapse
Affiliation(s)
- Aleksander Rycman
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Stewart McLachlin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Duane S Cronin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Subdural neural interfaces for long-term electrical recording, optical microscopy and magnetic resonance imaging. Biomaterials 2021; 281:121352. [PMID: 34995902 DOI: 10.1016/j.biomaterials.2021.121352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/23/2023]
Abstract
Though commonly used, metal electrodes are incompatible with brain tissues, often leading to injury and failure to achieve long-term implantation. Here we report a subdural neural interface of hydrogel functioning as an ionic conductor, and elastomer as a dielectric. We demonstrate that it incurs a far less glial reaction and less cerebrovascular destruction than a metal electrode. Using a cat model, the hydrogel electrode was able to record electrical signals comparably in quality to a metal electrode. The hydrogel-elastomer neural interface also readily facilitated multimodal functions. Both the hydrogel and elastomer are transparent, enabling in vivo optical microscopy. For imaging, cerebral vessels and calcium signals were imaged using two-photon microscopy. The new electrode is compatible with magnetic resonance imaging and does not cause artifact images. Such a new multimodal neural interface could represent immediate opportunity for use in broad areas of application in neuroscience research and clinical neurology.
Collapse
|
13
|
Xue F, Chen Z, Yang H, Chen T, Li Y. Effects of cervical rotatory manipulation on the cervical spinal cord: a finite element study. J Orthop Surg Res 2021; 16:737. [PMID: 34952620 PMCID: PMC8710013 DOI: 10.1186/s13018-021-02885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Little information is available concerning the biomechanism involved in the spinal cord injury after cervical rotatory manipulation (CRM). The primary purpose of this study was to explore the biomechanical and kinematic effects of CRM on a healthy spinal cord. METHODS A finite element (FE) model of the basilaris cranii, C1-C7 vertebral bodies, nerve root complex and vertebral canal contents was constructed and validated against in vivo and in vitro published data. The FE model simulated CRM in the flexion, extension and neutral positions. The stress distribution, forma and relative position of the spinal cord were observed. RESULTS Lower von Mises stress was observed on the spinal cord after CRM in the flexion position. The spinal cord in CRM in the flexion and neutral positions had a lower sagittal diameter and cross-sectional area. In addition, the spinal cord was anteriorly positioned after CRM in the flexion position, while the spinal cord was posteriorly positioned after CRM in the extension and neutral positions. CONCLUSION CRM in the flexion position is less likely to injure the spinal cord, but caution is warranted when posterior vertebral osteophytes or disc herniations exist.
Collapse
Affiliation(s)
- Fan Xue
- School of Traditional Chinese Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong Province, China
| | - Zujiang Chen
- School of Traditional Chinese Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong Province, China
| | - Han Yang
- School of Traditional Chinese Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong Province, China
| | - Taijun Chen
- Zunyi Medical and Pharmaceutical College, Pingan District, Zunyi, Guizhou Province, China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Baiyun District, Guangzhou, Guangdong Province, China.
| |
Collapse
|
14
|
Al-Habib A, Alhothali W, Albakr A, Elwatidy S, Alawaji G, Alabdulsalam H, Albadr F, Alkubeyyer M, Abu Jamea A, Awwad W, Ullah A, Fakhouri F, Ajlan A. Effects of compressive lesions on intraoperative human spinal cord elasticity. J Neurosurg Spine 2021; 35:807-816. [PMID: 34416718 DOI: 10.3171/2021.1.spine201482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although evaluating tissue elasticity has various clinical applications, spinal cord elasticity (SCE) in humans has never been well documented. In this study, the authors aimed to evaluate the impact of compression on human SCE in vivo. METHODS The authors prospectively assessed SCE using intraoperative shear wave elastography (SWE). All consecutive patients undergoing spinal cord (SC) decompression (laminectomy or corpectomy) between June 2018 and June 2019 were included. After intraoperative exposure of the patient's dura mater, at least three SWE measurements of the SC and its coverings were performed. Intraoperative neurological monitoring in the form of motor and somatosensory evoked potentials was utilized. Cases were divided into two groups based on the state of SC compression following bone removal (laminectomy or corpectomy): patients with adequate decompression (the decompressed SC group [DCG]) following bone removal and patients with remining compression, e.g., compressing tumor or instability (the compressed SC group [COG]). RESULTS A total of 25 patients were included (8 females and 17 males) with a mean age of 48.28 ± 21.47 years. Most cases were degenerative diseases (10 cases) followed by tumors (6 cases), and the compression was observed at cervical (n = 14), thoracic (n = 9), and conus medullaris (n = 2) levels. The COG (6 cases) expressed significantly higher elasticity values, i.e., greater stiffness (median 93.84, IQR 75.27-121.75 kPa) than the decompressed SC in DCG (median 9.35, IQR 6.95-11.22 kPa, p < 0.001). Similarly, the compressed dura mater in the COG was significantly stiffer (mean ± SD 121.83 ± 70.63 kPa) than that in the DCG (29.78 ± 18.31 kPa, p = 0.042). Following SC decompression in COG, SCE values were significantly reduced (p = 0.006; adjusted for multiple comparisons). Intraoperative monitoring demonstrated no worsening from the baseline. CONCLUSIONS The current study is to the authors' knowledge the first to quantitatively demonstrate increased stiffness (i.e., elasticity value) of the human SC and dura mater in response to external compression in vivo. It appears that SCE is a dynamic phenomenon and is reduced following decompression. Moreover, the evaluation of human SCE using the SWE technique is feasible and safe. Information from future studies aiming to further define SCE could be valuable in the early and accurate diagnosis of the compressed SC.
Collapse
Affiliation(s)
- Amro Al-Habib
- 1Division of Neurosurgery, Department of Surgery, College of Medicine
| | - Wajda Alhothali
- 1Division of Neurosurgery, Department of Surgery, College of Medicine
| | | | - Sherif Elwatidy
- 1Division of Neurosurgery, Department of Surgery, College of Medicine
| | - Ghaida Alawaji
- 1Division of Neurosurgery, Department of Surgery, College of Medicine
| | | | - Fahad Albadr
- 1Division of Neurosurgery, Department of Surgery, College of Medicine
| | | | | | | | - Anhar Ullah
- 4Department of Cardiac Sciences, King Fahad Cardiac Center, College of Medicine; and
| | - Faisal Fakhouri
- 5Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrazag Ajlan
- 1Division of Neurosurgery, Department of Surgery, College of Medicine
| |
Collapse
|
15
|
Rycman A, McLachlin S, Cronin DS. A Hyper-Viscoelastic Continuum-Level Finite Element Model of the Spinal Cord Assessed for Transverse Indentation and Impact Loading. Front Bioeng Biotechnol 2021; 9:693120. [PMID: 34458242 PMCID: PMC8387872 DOI: 10.3389/fbioe.2021.693120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Finite Element (FE) modelling of spinal cord response to impact can provide unique insights into the neural tissue response and injury risk potential. Yet, contemporary human body models (HBMs) used to examine injury risk and prevention across a wide range of impact scenarios often lack detailed integration of the spinal cord and surrounding tissues. The integration of a spinal cord in contemporary HBMs has been limited by the need for a continuum-level model owing to the relatively large element size required to be compatible with HBM, and the requirement for model development based on published material properties and validation using relevant non-linear material data. The goals of this study were to develop and assess non-linear material model parameters for the spinal cord parenchyma and pia mater, and incorporate these models into a continuum-level model of the spinal cord with a mesh size conducive to integration in HBM. First, hyper-viscoelastic material properties based on tissue-level mechanical test data for the spinal cord and hyperelastic material properties for the pia mater were determined. Secondly, the constitutive models were integrated in a spinal cord segment FE model validated against independent experimental data representing transverse compression of the spinal cord-pia mater complex (SCP) under quasi-static indentation and dynamic impact loading. The constitutive model parameters were fit to a quasi-linear viscoelastic model with an Ogden hyperelastic function, and then verified using single element test cases corresponding to the experimental strain rates for the spinal cord (0.32–77.22 s−1) and pia mater (0.05 s−1). Validation of the spinal cord model was then performed by re-creating, in an explicit FE code, two independent ex-vivo experimental setups: 1) transverse indentation of a porcine spinal cord-pia mater complex and 2) dynamic transverse impact of a bovine SCP. The indentation model accurately matched the experimental results up to 60% compression of the SCP, while the impact model predicted the loading phase and the maximum deformation (within 7%) of the SCP experimental data. This study quantified the important biomechanical contribution of the pia mater tissue during spinal cord deformation. The validated material models established in this study can be implemented in computational HBM.
Collapse
Affiliation(s)
- Aleksander Rycman
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Stewart McLachlin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Duane S Cronin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
16
|
Wang JJ, Xu ML, Zeng HZ, Zheng LD, Zhu SJ, Jin C, Zeng ZL, Cheng LM, Zhu R. The biomechanical effect of preexisting different types of disc herniation in cervical hyperextension injury. J Orthop Surg Res 2021; 16:527. [PMID: 34429142 PMCID: PMC8383414 DOI: 10.1186/s13018-021-02677-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/15/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Preexisting severe cervical spinal cord compression is a significant risk factor in cervical hyperextension injury, and the neurological function may deteriorate after a slight force to the forehead. There are few biomechanical studies regarding the influence of pathological factors in hyperextension loading condition. The aim of this study is to analyze the effects of preexisting different types of cervical disc herniation and different degrees of compression on the spinal cord in cervical hyperextension. METHOD A 3D finite element (FE) model of cervical spinal cord was modeled. Local type with median herniation, local type with lateral herniation, diffuse type with median herniation, and diffuse type with lateral herniation were simulated in neutral and extention positions. The compressions which were equivalent to 10%, 20%, 30%, and 40% of the sagittal diameter of the spinal cord were modeled. RESULTS The results of normal FE model were consistent with those of previous studies. The maximum von Mises stresses appeared in the pia mater for all 32 loading conditions. The maximum von Mises stresses in extension position were much higher than in neutral position. In most cases, the maximum von Mises stresses in diffuse type were higher than in local type. CONCLUSION Cervical spinal cord with preexisting disc herniation is more likely to be compressed in hyperextension situation than in neutral position. Diffuse type with median herniation may cause more severe compression with higher von Mises stresses concentrated at the anterior horn and the peripheral white matter, resulting in acute central cord syndrome from biomechanical point of view.
Collapse
Affiliation(s)
- Jian-Jie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Meng-Lei Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Hui-Zi Zeng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Liang-Dong Zheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Shi-Jie Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Chen Jin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Zhi-Li Zeng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
| | - Rui Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, 200065, Shanghai, People's Republic of China.
- Shanghai Clinical Research Center for Aging and Medicine, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
17
|
Beausejour MH, Wagnac E, Arnoux PJ, Mac-Thiong JM, Petit Y. Numerical Investigation of Spinal Cord Injury After Flexion-Distraction Injuries At the Cervical Spine. J Biomech Eng 2021; 144:1115612. [PMID: 34369552 DOI: 10.1115/1.4052003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/08/2022]
Abstract
Flexion-distraction injuries frequently cause traumatic cervical spinal cord injury (SCI). Post-traumatic instability can cause aggravation of the secondary SCI during patient's care. However, there is little information on how the pattern of disco-ligamentous injury affects the SCI severity and mechanism. This study objective was to analyze how different flexion-distraction disco-ligamentous injuries affect the SCI mechanisms during post-traumatic flexion and extension. A cervical spine finite element model including the spinal cord was used and different combinations of partial or complete intervertebral disc (IVD) rupture and disruption of various posterior ligaments were modeled at C4-C5, C5-C6 or C6-C7. In flexion, complete IVD rupture combined with posterior ligamentous complex rupture was the most severe injury leading to the most extreme von Mises stress (47 to 66 kPa), principal strains p1 (0.32 to 0.41 in white matter) and p3 (-0.78 to -0.96 in white matter) in the spinal cord and to the most important spinal cord compression (35 to 48 %). The main post-trauma SCI mechanism was identified as compression of the anterior white matter at the injured level combined with distraction of the posterior spinal cord during flexion. There was also a concentration of the maximum stresses in the gray matter after injury. Finally, in extension, the injuries tested had little impact on the spinal cord. The capsular ligament was the most important structure in protecting the spinal cord. Its status should be carefully examined during patient's management.
Collapse
Affiliation(s)
- Marie-Helene Beausejour
- Department of Mechanical Engineering,École de technologie supérieure; Research Center, Hôpital du Sacré-Coeur de Montréal; International Laboratory on Spine Imaging and Biomechanics; Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel; Aix-Marseille Université, 1100, rue Notre-Dame Ouest, H3C 1K3, Montreal, Quebec, Canada
| | - Eric Wagnac
- Department of Mechanical Engineering,École de technologie supérieure; Research Center, Hôpital du Sacré-Coeur de Montréal; International Laboratory on Spine Imaging and Biomechanics, 1100, rue Notre-Dame Ouest, H3C 1K3, Montreal, Quebec, Canada
| | - Pierre-Jean Arnoux
- International Laboratory on Spine Imaging and Biomechanics; Laboratoire de Biomécanique Appliquée-Université Gustave-Eiffel; Aix-Marseille Université, Faculté de Médecine Secteur Nord, Boulevard P. Dramard, 13916, Marseille, France
| | - Jean-Marc Mac-Thiong
- Department of Surgery, Medicine Faculty, Université de Montréal; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400, boulevard Gouin Ouest, H4J 1C5, Montreal, Quebec, Canada
| | - Yvan Petit
- Department of Mechanical Engineering,École de technologie supérieure; Research Center, Hôpital du Sacré-Coeur de Montréal; International Laboratory on Spine Imaging and Biomechanics, 1100, rue Notre-Dame Ouest, H3C 1K3, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Simulation of harmonic shear waves in the human brain and comparison with measurements from magnetic resonance elastography. J Mech Behav Biomed Mater 2021; 118:104449. [PMID: 33770585 DOI: 10.1016/j.jmbbm.2021.104449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/07/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022]
Abstract
Magnetic Resonance Elastography (MRE) provides a non-invasive method to characterize the mechanical response of the living brain subjected to harmonic loading conditions. The peak magnitude of the harmonic strain is small and the excitation results in harmless deformation waves propagating through the brain. In this paper, we describe a three-dimensional computational model of the brain for comparison of simulated harmonic deformations of the brain with MRE measurements. Relevant substructures of the head were constructed from MRI scans. Harmonic wave motions in a live human brain obtained in an MRE experiment were used to calibrate the viscoelastic properties at 50 Hz and assess accuracy of the computational model by comparing the measured and the simulated harmonic response of the brain. Quantitative comparison of strain field from simulations with measured data from MRE shows that the harmonic deformation of the brain tissue is responsive to changes in the viscoelastic properties, loss and storage moduli, of the brain. The simulation results demonstrate, in agreement with MRE measurements, that the presence of the falx and tentorium membranes alter the spatial distribution of harmonic deformation field and peak strain amplitudes in the computational model of the brain.
Collapse
|
19
|
Yu QQ, Liu SQ, Wang JJ, Xu ML, Zhang WX, Cheng LM, Zhu R. Effects of a contusion load on spinal cord with different curvatures. Comput Methods Biomech Biomed Engin 2021; 24:1302-1309. [PMID: 33586540 DOI: 10.1080/10255842.2021.1884232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The cervical spine injury is a complicated procedure in the combination of different injury loads and postures. The aim of this study is to investigate the injury mechanism considering different types of cervical curvatures subjected to contusion loads. A finite element model of a cervical spinal cord was constructed. Gray matter, white matter and pia matter were modeled and hyperelastic material properties were assigned. Convergence analysis and validation analysis were carried out. The model was simulated in 3 different spinal curvatures and loaded by 2 directions with 4 compression degrees. The maximum von Mises stress in the whole model was concentrated in the pia matter in all loading cases. When investigating spinal cord injury, the pia matter must be considered. For all three curvatures, the stress in the gray matter and white matter was higher in front-to-back loading condition than that in back-to-front loading condition. The front-to-back impact may cause a larger damage. A back-to-front load damaged the structure around the central canal and a front-to-back contusion load damaged the anterior horn of the spinal cord at most time. From the view of the maximum stress, the lordotic curvature did not show significant buffering effect. However, the pathological curvature had large areas affected and the lordotic curvature showed some benefits to some degree from the view of stress distribution.
Collapse
Affiliation(s)
- Qian-Qian Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, China.,Department of Structural Engineering, Tongji University, Shanghai, China
| | - Si-Qing Liu
- Department of Structural Engineering, Tongji University, Shanghai, China
| | - Jian-Jie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Meng-Lei Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Wen-Xuan Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Li-Ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Rui Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Herthum H, Dempsey SCH, Samani A, Schrank F, Shahryari M, Warmuth C, Tzschätzsch H, Braun J, Sack I. Superviscous properties of the in vivo brain at large scales. Acta Biomater 2021; 121:393-404. [PMID: 33326885 DOI: 10.1016/j.actbio.2020.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022]
Abstract
There is growing awareness that brain mechanical properties are important for neural development and health. However, published values of brain stiffness differ by orders of magnitude between static measurements and in vivo magnetic resonance elastography (MRE), which covers a dynamic range over several frequency decades. We here show that there is no fundamental disparity between static mechanical tests and in vivo MRE when considering large-scale properties, which encompass the entire brain including fluid filled compartments. Using gradient echo real-time MRE, we investigated the viscoelastic dispersion of the human brain in, so far, unexplored dynamic ranges from intrinsic brain pulsations at 1 Hz to ultralow-frequency vibrations at 5, 6.25, 7.8 and 10 Hz to the normal frequency range of MRE of 40 Hz. Surprisingly, we observed variations in brain stiffness over more than two orders of magnitude, suggesting that the in vivo human brain is superviscous on large scales with very low shear modulus of 42±13 Pa and relatively high viscosity of 6.6±0.3 Pa∙s according to the two-parameter solid model. Our data shed light on the crucial role of fluid compartments including blood vessels and cerebrospinal fluid (CSF) for whole brain properties and provide, for the first time, an explanation for the variability of the mechanical brain responses to manual palpation, local indentation, and high-dynamic tissue stimulation as used in elastography.
Collapse
|
21
|
Baker C, Wagner K, Wagner P, Officer DL, Mawad D. Biofunctional conducting polymers: synthetic advances, challenges, and perspectives towards their use in implantable bioelectronic devices. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1899850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Carly Baker
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Klaudia Wagner
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Pawel Wagner
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - David L. Officer
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, AIIM Faculty, Innovation Campus, University of Wollongong, North Wollongong, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Sudres P, Evin M, Wagnac E, Bailly N, Diotalevi L, Melot A, Arnoux PJ, Petit Y. Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges. J Mech Behav Biomed Mater 2021; 115:104280. [PMID: 33395616 DOI: 10.1016/j.jmbbm.2020.104280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND The spinal meninges play a mechanical protective role for the spinal cord. Better knowledge of the mechanical behavior of these tissues wrapping the cord is required to accurately model the stress and strain fields of the spinal cord during physiological or traumatic motions. Then, the mechanical properties of meninges along the spinal canal are not well documented. The aim of this study was to quantify the elastic meningeal mechanical properties along the porcine spinal cord in both the longitudinal direction and in the circumferential directions for the dura-arachnoid maters complex (DAC) and solely in the longitudinal direction for the pia mater. This analysis was completed in providing a range of isotropic hyperelastic coefficients to take into account the toe region. METHODS Six complete spines (C0 - L5) were harvested from pigs (2-3 months) weighing 43±13 kg. The mechanical tests were performed within 12 h post mortem. A preload of 0.5 N was applied to the pia mater and of 2 N to the DAC samples, followed by 30 preconditioning cycles. Specimens were then loaded to failure at the same strain rate 0.2 mm/s (approximately 0.02/s, traction velocity/length of the sample) up to 12 mm of displacement. RESULTS The following mean values were proposed for the elastic moduli of the spinal meninges. Longitudinal DAC elastic moduli: 22.4 MPa in cervical, 38.1 MPa in thoracic and 36.6 MPa in lumbar spinal levels; circumferential DAC elastic moduli: 20.6 MPa in cervical, 21.2 MPa in thoracic and 12.2 MPa in lumbar spinal levels; and longitudinal pia mater elastic moduli: 18.4 MPa in cervical, 17.2 MPa in thoracic and 19.6 MPa in lumbar spinal levels. DISCUSSION The variety of mechanical properties of the spinal meninges suggests that it cannot be regarded as a homogenous structure along the whole length of the spinal cord.
Collapse
Affiliation(s)
- Patrice Sudres
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Morgane Evin
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada.
| | - Eric Wagnac
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Nicolas Bailly
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Lucien Diotalevi
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Anthony Melot
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada; Hôpital privé Clairval, Marseille, France
| | - Pierre-Jean Arnoux
- Laboratoire de Biomécanique Appliquée, UMRT24 AMU/IFSTTAR, Marseille, France; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| | - Yvan Petit
- Department of Mechanical Engineering, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montréal, Québec H3C 1K3, Canada; Research Center, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin blvd, Montréal Québec, H4J 1C5, Canada; iLab-Spine - Laboratoire International en Imagerie et Biomécanique du Rachis, Marseille, France & Montréal, Canada
| |
Collapse
|
23
|
Liang D, Tu GJ, Han YX, Guo DW. Accurate simulation of the herniated cervical intervertebral disc using controllable expansion: a finite element study. Comput Methods Biomech Biomed Engin 2020; 24:897-904. [PMID: 33331162 DOI: 10.1080/10255842.2020.1857745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Expansions were carried out in finite element (FE) models of disc hernia including symmetric (median, lateral, paramedian) and asymmetric types. In all models, lubricous disk bulging that applied a linear compression to the anterior part of the cord was observed at the posterior surfaces of the expansion zone, respectively. The shape and position of protrusions varyed with the temperature, magnitude, and location of expanding elements. The geometric deformation and stress distribution of the spinal cord increased as the extent of compression grew. This method is in possession of enormous potential in promoting further individualized research of cervical spondylotic myelopathy.
Collapse
Affiliation(s)
- Dong Liang
- Department of Orthopedics Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Guan-Jun Tu
- Department of Orthopedics Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ya-Xin Han
- Department of Orthopedics Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da-Wei Guo
- Department of Sport Medicine, Shenyang Orthopedics Hospital, Shenyang, China
| |
Collapse
|
24
|
Li Y, Zhang W, Lu YC, Wu CW. Hyper-viscoelastic mechanical behavior of cranial pia mater in tension. Clin Biomech (Bristol, Avon) 2020; 80:105108. [PMID: 32736277 DOI: 10.1016/j.clinbiomech.2020.105108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 04/28/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cranial pia mater, the innermost layer of the meninges, protects the central nervous system by tightly wrapping the brain and damping the external impact force to the brain. Accurate experimental data of the mechanical property of the cranial pia mater can enhance the theoretical prediction of traumatic brain injury or the scientific surgery design for brain disease. The aim of this study is to characterize the mechanical behavior of the cranial pia mater. METHODS In vitro tensile and stress-relaxation experiments of ovine cranial pia mater specimens were conducted at eight strain rates to characterize the rate-dependent viscoelastic property. The tensile and stress-relaxation experimental data were fitted by an Ogden hyper-viscoelastic model with a strain rate function to describe the mechanical behavior of the cranial pia mater. FINDINGS The elastic modulus and the ultimate stress are significantly increased from 5.545 MPa and 0.535 MPa at 0.00167 s-1 to 18.345 MPa and 2.547 MPa at 0.83 s-1 (p < .0001), respectively. The initial stress and the long-term stress (300 s) are also increased significantly with the increasing strain rates (p < .0001). A good fit of the experimental data with the Ogden hyper-viscoelastic model incorporated with a strain rate function was achieved (R2 > 0.93). INTERPRETATION The cranial pia mater exhibits as a rate-dependent hyper-viscoelastic material in the tensile and stress-relaxation experiments. Compared with the brain, the stiffer nature of the cranial pia mater indicates its essential role in brain protection. The rate-dependent constitutive model provides a proper description of the hyper-viscoelastic characteristics of the cranial pia mater in tension and may provide a basic constitutive relationship for numerical simulations of traumatic brain injury.
Collapse
Affiliation(s)
- Y Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China
| | - W Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Y-C Lu
- Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC 20010, USA
| | - C W Wu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
25
|
Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension. Fluids Barriers CNS 2020; 17:68. [PMID: 33183314 PMCID: PMC7664091 DOI: 10.1186/s12987-020-00229-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background The pia arachnoid complex (PAC) is a cerebrospinal fluid-filled tissue conglomerate that surrounds the brain and spinal cord. Pia mater adheres directly to the surface of the brain while the arachnoid mater adheres to the deep surface of the dura mater. Collagen fibers, known as subarachnoid trabeculae (SAT) fibers, and microvascular structure lie intermediately to the pia and arachnoid meninges. Due to its structural role, alterations to the biomechanical properties of the PAC may change surface stress loading in traumatic brain injury (TBI) caused by sub-concussive hits. The aim of this study was to quantify the mechanical and morphological properties of ovine PAC. Methods Ovine brain samples (n = 10) were removed from the skull and tissue was harvested within 30 min post-mortem. To access the PAC, ovine skulls were split medially from the occipital region down the nasal bone on the superior and inferior aspects of the skull. A template was used to remove arachnoid samples from the left and right sides of the frontal and occipital regions of the brain. 10 ex-vivo samples were tested with uniaxial tension at 2 mm s−1, average strain rate of 0.59 s−1, until failure at < 5 h post extraction. The force and displacement data were acquired at 100 Hz. PAC tissue collagen fiber microstructure was characterized using second-harmonic generation (SHG) imaging on a subset of n = 4 stained tissue samples. To differentiate transverse blood vessels from SAT by visualization of cell nuclei and endothelial cells, samples were stained with DAPI and anti-von Willebrand Factor, respectively. The Mooney-Rivlin model for average stress–strain curve fit was used to model PAC material properties. Results The elastic modulus, ultimate stress, and ultimate strain were found to be 7.7 ± 3.0, 2.7 ± 0.76 MPa, and 0.60 ± 0.13, respectively. No statistical significance was found across brain dissection locations in terms of biomechanical properties. SHG images were post-processed to obtain average SAT fiber intersection density, concentration, porosity, tortuosity, segment length, orientation, radial counts, and diameter as 0.23, 26.14, 73.86%, 1.07 ± 0.28, 17.33 ± 15.25 µm, 84.66 ± 49.18°, 8.15%, 3.46 ± 1.62 µm, respectively. Conclusion For the sizes, strain, and strain rates tested, our results suggest that ovine PAC mechanical behavior is isotropic, and that the Mooney-Rivlin model is an appropriate curve-fitting constitutive equation for obtaining material parameters of PAC tissues.
Collapse
|
26
|
A comprehensive finite element model of surgical treatment for cervical myelopathy. Clin Biomech (Bristol, Avon) 2020; 74:79-86. [PMID: 32145673 DOI: 10.1016/j.clinbiomech.2020.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cervical myelopathy is a common and debilitating chronic spinal cord dysfunction. Treatment includes anterior and/or posterior surgical intervention to decompress the spinal cord and stabilize the spine, but no consensus has been made as to the preferable surgical intervention. The objective of this study was to develop an finite element model of the healthy and myelopathic C2-T1 cervical spine and common anterior and posterior decompression techniques to determine how spinal cord stress and strain is altered in healthy and diseased states. METHODS A finite element model of the C2-T1 cervical spine, spinal cord, pia, dura, cerebral spinal fluid, and neural ligaments was developed and validated against in vivo human displacement data. To model cervical myelopathy, disc herniation and osteophytes were created at the C4-C6 levels. Three common surgical interventions were then incorporated at these levels. FINDINGS The finite element model accurately predicted healthy and myelopathic spinal cord displacement compared to motions observed in vivo. Spinal cord strain increased during extension in the cervical myelopathy finite element model. All surgical techniques affected spinal cord stress and strain. Specifically, adjacent levels had increased stress and strain, especially in the anterior cervical discectomy and fusion case. INTERPRETATIONS This model is the first biomechanically validated, finite element model of the healthy and myelopathic C2-T1 cervical spine and spinal cord which predicts spinal cord displacement, stress, and strain during physiologic motion. Our findings show surgical intervention can cause increased strain in the adjacent levels of the spinal cord which is particularly worse following anterior cervical discectomy and fusion.
Collapse
|
27
|
Singh M, Yin CS, Page SJ, Liu Y, Wicaksono G, Pujar R, Choudhary SK, Kulkarni GU, Chen J, Hanna JV, Webster RD, Steele TWJ. Synergistic Voltaglue Adhesive Mechanisms with Alternating Electric Fields. CHEMISTRY OF MATERIALS 2020; 32:2440-2449. [DOI: 10.1021/acs.chemmater.9b04962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Cheong See Yin
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Samuel J. Page
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Yuqing Liu
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2522, Australia
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Gautama Wicaksono
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| | - Rajashekhar Pujar
- Centre for Nano and Soft Matter Sciences, Jalahalli, Bengaluru 560013, India
| | | | | | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute (IPRI), Australian Institute of Innovative Materials (AIIM), University of Wollongong, Wollongong, NSW 2522, Australia
| | - John V. Hanna
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Richard D. Webster
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Terry W. J. Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), 50 Nanyang Drive, 637553 Singapore
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), 639798 Singapore
| |
Collapse
|
28
|
Abstract
PURPOSE/AIM We aimed to characterize the connective tissue microanatomy, elastin abundance, and fiber orientation in the human optic nerve sheath, also known as the optic nerve dura mater, for correlation with its biomechanical properties. MATERIALS AND METHODS Seven whole human orbits aged 4-93 years, and five isolated human optic nerve sheaths aged 26-75 years were formalin fixed, paraffin embedded, coronally sectioned, stained by Masson trichrome and van Gieson's elastin methods, and analyzed quantitatively for elastin fiber abundance and orientation. Elastin area fraction was defined as area stained for elastin divided by total area. RESULTS While unilaminar in children, the adult ON sheath exhibited distinct inner and outer layers. Collagen was denser and more compact in the inner layer. Elastin area fraction was significantly greater at 6.0 ± 0.4% (standard error of mean) in the inner than outer layer at 3.6 ± 0.4% (P < 10-5). Elastin fibers had three predominant orientations: longitudinal, diagonal, and circumferential. Of circumferential fibers, 63 ± 4.7% were in the inner and 37 ± 4.7% in the outer layer (P < 10-4). Longitudinal and diagonal fibers were uniformly distributed in both layers. Elastin density and sheath thickness increased significantly with age (P < .01). CONCLUSIONS The adult human optic nerve sheath is bilaminar, with each layer containing elastin fibers oriented in multiple directions consistent with isotropic properties. Differences in laminar elastin density and orientation may reflect greater tensile loading in the inner than in the outer layer.
Collapse
Affiliation(s)
- Alan Le
- Department of Bioengineering, University of California , Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA
| | - Andrew Shin
- Wellman Center for Photomedicine, Harvard Medical School and Massachusetts General Hospital , Boston, Massachusetts, USA
| | - Joseph Park
- Department of Bioengineering, University of California , Los Angeles, California, USA.,Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA
| | - Vadims Poukens
- Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA
| | - Joseph L Demer
- Department of Ophthalmology and Stein Eye Institute, University of California , Los Angeles, California, USA.,Department of Neurology, University of California , Los Angeles, California, USA.,Neuroscience, University of California , Los Angeles, California, USA.,Bioengineering Interdepartmental Programs, University of California , Los Angeles, California, USA.,David Geffen Medical School, University of California , Los Angeles, California, USA
| |
Collapse
|
29
|
Micromechanical heterogeneity of the rat pia-arachnoid complex. Acta Biomater 2019; 100:29-37. [PMID: 31585202 DOI: 10.1016/j.actbio.2019.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
Abstract
To better understand the onset of damage occurring in the brain upon traumatic events, it is essential to analyze how external mechanical loads propagate through the skull and meninges and down to the brain cortex. However, despite their crucial role as structural dampers protecting the brain, the mechanical properties and dynamic behavior of the meningeal layers are still poorly understood. Here, we characterized the local mechanical heterogeneity of rat pia-arachnoid complex (PAC) at the microscale via atomic force microscopy (AFM) indentation experiments to understand how microstructural variations at the tissue level can differentially affect load propagation. By coupling AFM mechanical testing with fresh tissue immunofluorescent staining, we could directly observe the effect of specific anatomical features on the local mechanical properties of tissue. We observed a two-fold stiffening of vascularized tissue when compared to non-vascularized PAC (with instantaneous Young's modulus distribution means of 1.32 ± 0.03 kPa and 2.79 ± 0.08 kPa, respectively), and statistically significant differences between regions of low- and high-vimentin density, reflecting trabecular density (with means of 0.67 ± 0.05 kPa and 1.29 ± 0.06 kPa, respectively). No significant differences were observed between cortical and cerebellar PAC. Additionally, by performing force relaxation experiments at the AFM, we identified the characteristic time constant τ1 of PAC tissue to be in the range of 2.7 ± 1.2 s to 3.1 ± 0.9 s for the different PAC regions analyzed. Taken together, the results presented point at the complex biomechanical nature of the meningeal tissue, and underscore the need to account for its heterogeneity when modeling its behavior into finite element simulations or other computational methods enabling the prediction of load propagation during injury events. STATEMENT OF SIGNIFICANCE: The meningeal layers are pivotal in shielding the brain during injury events, yet the mechanical properties of this complex biological interface are still under investigation. Here, we present the first anatomically-informed micromechanical characterization of mammalian pia-arachnoid complex (PAC). We developed a protocol for the isolation and fresh immunostaining of rat PAC and subjected the tissue to AFM indentation and relaxation experiments, while visualizing the local anatomy via fluorescence microscopy. We found statistically significant variations in regional PAC stiffness according to the degree of vascularization and trabecular cell density, besides identifying the tissue's characteristic relaxation constant. In essence, this study captures the relationship between anatomy and mechanical heterogeneity in a key component of the brain-skull interface for the first time.
Collapse
|
30
|
Lee SJ, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, Zuo YY, Zhang LG. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 2019; 15:016018. [PMID: 29064377 DOI: 10.1088/1741-2552/aa95a5] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. APPROACH Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. MAIN RESULTS Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. SIGNIFICANCE Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.
Collapse
Affiliation(s)
- Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Relative Contributions of Intracranial Pressure and Intraocular Pressure on Lamina Cribrosa Behavior. J Ophthalmol 2019; 2019:3064949. [PMID: 31007950 PMCID: PMC6441528 DOI: 10.1155/2019/3064949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose To characterize the relative contributions of intraocular pressure (IOP) and intracranial pressure (ICP) on lamina cribrosa (LC) behavior, specifically LC depth (LCD) and LC peak strain. Methods An axially symmetric finite element model of the posterior eye was constructed with an elongated optic nerve and retro-orbital subarachnoid space ensheathed by pia and dura mater. The mechanical environment in LC was evaluated with ICP ranging from 5 to 15 mmHg and IOP from 10 to 45 mmHg. LCD and LC peak strains at various ICP and IOP levels were estimated using full factorial experiments. Multiple linear regression analyses were then applied to estimate LCD and LC peak strain using ICP and IOP as independent variables. Results Both increased ICP and decreased IOP led to a smaller LCD and LC peak strain. The regression correlation coefficient for LCD was -1.047 for ICP and 1.049 for IOP, and the ratio of the two regression coefficients was -1.0. The regression correlation coefficient for LC peak strain was -0.025 for ICP and 0.106 for IOP, and the ratio of the two regression coefficients was -0.24. A stiffer sclera increased LCD but decreased LC peak strain; besides, it increased the relative contribution of ICP on the LCD but decreased that on the LC peak strain. Conclusions ICP and IOP have opposing effects on LCD and LC peak strain. While their effects on LCD are equivalent, the effect of IOP on LC peak strain is 3 times larger than that of ICP. The influences of these pressure are dependent on sclera material properties, which might explain the pathogenesis of ocular hypertension and normal-tension glaucoma.
Collapse
|
32
|
Ramo NL, Troyer K, Puttlitz C. Comparing Predictive Accuracy and Computational Costs for Viscoelastic Modeling of Spinal Cord Tissues. J Biomech Eng 2019; 141:2727822. [PMID: 30835287 DOI: 10.1115/1.4043033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 11/08/2022]
Abstract
The constitutive equation used to characterize and model spinal tissues can significantly influence the conclusions from experimental and computational studies. Therefore, researchers must make critical judgements regarding the balance of computational efficiency and predictive accuracy necessary for their purposes. The objective of this study is to quantitatively compare the fitting and prediction accuracy of linear viscoelastic (LV), quasi-linear viscoelastic (QLV), and (fully) non-linear viscoelastic (NLV) modeling of spinal-cord-pia-arachnoid-construct (SCPC), isolated cord parenchyma, and isolated pia-arachnoid-complex (PAC) mechanics in order to better inform these judgements. Experimental data collected during dynamic cyclic testing of each tissue condition were used to fit each viscoelastic formulation. These fitted models were then used to predict independent experimental data from stress-relaxation testing. Relative fitting accuracy was found not to directly reflect relative predictive accuracy, emphasizing the need for material model validation through predictions of independent data. For the SCPC and isolated cord, the NLV formulation best predicted the mechanical response to arbitrary loading conditions, but required significantly greater computational run time. The mechanical response of the PAC under arbitrary loading conditions was best predicted by the QLV formulation.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, 1376 Campus Delivery, Fort Collins, CO 80523
| | - Kevin Troyer
- Department of Mechanical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523
| | - Christian Puttlitz
- School of Biomedical Engineering, Colorado State University, Department of Mechanical Engineering, Colorado State University, Department of Clinical Sciences, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523
| |
Collapse
|
33
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
34
|
Lucas E, Whyte T, Liu J, Russell C, Tetzlaff W, Cripton PA. High-Speed Fluoroscopy to Measure Dynamic Spinal Cord Deformation in an In Vivo Rat Model. J Neurotrauma 2018; 35:2572-2580. [PMID: 29786472 DOI: 10.1089/neu.2017.5478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Although spinal cord deformation is thought to be a predictor of injury severity, few researchers have investigated dynamic cord deformation, in vivo, during impact. This is needed to establish correlations among impact parameters, internal cord deformation, and histological and functional outcomes. Relying on surface deformations alone may not sufficiently represent spinal cord deformation. The objective of this study was to develop a high-speed fluoroscopic method of tracking the surface and internal cord deformations of rat spinal cord during experimental cord injury. Two radio-opaque beads were injected into the cord at C5/6 in the dorsal and ventral white matter. Four additional beads were glued to the surface of the cord. Dynamic bead displacement was tracked during a dorsal impact (130 mm/sec, 1 mm depth) by high-speed radiographic imaging at 3000 FPS, laterally. The internal spinal cord beads displaced significantly more than the surface beads in the ventral direction (1.1-1.9 times) and more than most surface beads in the cranial direction (1.2-1.5 times). The dorsal beads (internal and surface) displaced more than the ventral beads during all impacts. The bead displacement pattern implies that the spinal cord undergoes complex internal and surface deformations during impact. Residual displacement of the internal beads was significantly greater than that of the surface beads in the cranial-caudal direction but not the dorsoventral direction. Finite element simulation confirmed that the additional bead mass likely had little effect on the internal cord deformations. These results support the merit of this technique for measuring in vivo spinal cord deformation.
Collapse
Affiliation(s)
- Erin Lucas
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Thomas Whyte
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Jie Liu
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Colin Russell
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Wolfram Tetzlaff
- 2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| | - Peter Alec Cripton
- 1 Orthopaedic Injury Biomechanics Group, Departments of Mechanical Engineering and Orthopaedics and the School of Biomedical Engineering, The University of British Columbia , Vancouver, British Columbia, Canada .,2 International Collaboration on Repair Discoveries (ICORD), The University of British Columbia , Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Al-Habib A, Albakr A, Al Towim A, Alkubeyyer M, Abu Jamea A, Albadr F, Eldawlatly AA, Kashour T, Alkhalidi H, Alzahrani T. In vivo assessment of spinal cord elasticity using shear wave ultrasound in dogs. J Neurosurg Spine 2018; 29:461-469. [DOI: 10.3171/2018.2.spine171195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVEEvaluation of living tissue elasticity has wide applications in disease characterization and prognosis prediction. Few previous ex vivo attempts have been made to characterize spinal cord elasticity (SCE). Recently, tissue elasticity assessment has been clinically feasible using ultrasound shear wave elastography (SWE). The current study aims to characterize SCE in healthy dogs, in vivo, utilizing SWE, and to address SCE changes during compression.METHODSTen Greyhound dogs (mean age 14 months; mean weight 14.3 kg) were anesthetized and tracheally intubated, with hemodynamic and neurological monitoring. A 3-level, midcervical laminectomy was performed. SCE was assessed at baseline. Next, 8- and 13-mm balloon compressions were sequentially applied ventral to the spinal cord.RESULTSThe mean SCE was 18.5 ± 7 kPa. Elasticity of the central canal, pia mater, and dura mater were 21.7 ± 9.6 kPa, 26.1 ± 14.8 kPa, and 63.2 ± 11.5 kPa, respectively. As expected, the spinal cord demonstrated less elasticity than the dura mater (p < 0.0001) and pia mater (trend toward significance p = 0.08). Notably, the 13-mm balloon compression resulted in a stiffer spinal cord than at baseline (233 ± 73 kPa versus 18.5 ± 7 kPa, p < 0.0001) and 8-mm balloon compression (233 ± 73 kPa versus 185 ± 68 kPa, p < 0.048).CONCLUSIONSIn vivo SCE evaluation using SWE is feasible and comparable to earlier reports, as demonstrated by physical sectioning of the spinal cord. The compressed spinal cord is stiffer than a free spinal cord, with a linear increase in SCE with increasing mechanical compression. Knowledge of the biomechanical properties of the spinal cord including SCE has potential implications for disease management and prognosis.
Collapse
Affiliation(s)
- Amro Al-Habib
- 1Division of Neurosurgery, Department of Surgery, and
| | | | | | | | | | | | | | | | - Hisham Alkhalidi
- 5Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
36
|
Vinje V, Brucker J, Rognes ME, Mardal KA, Haughton V. Fluid dynamics in syringomyelia cavities: Effects of heart rate, CSF velocity, CSF velocity waveform and craniovertebral decompression. Neuroradiol J 2018; 31:482-489. [PMID: 30114970 DOI: 10.1177/1971400918795482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose How fluid moves during the cardiac cycle within a syrinx may affect its development. We measured syrinx fluid velocities before and after craniovertebral decompression in a patient and simulated syrinx fluid velocities for different heart rates, syrinx sizes and cerebrospinal fluid (CSF) flow velocities in a model of syringomyelia. Materials and methods With phase-contrast magnetic resonance we measured CSF and syrinx fluid velocities in a Chiari patient before and after craniovertebral decompression. With an idealized two-dimensional model of the subarachnoid space (SAS), cord and syrinx, we simulated fluid movement in the SAS and syrinx with the Navier-Stokes equations for different heart rates, inlet velocities and syrinx diameters. Results In the patient, fluid oscillated in the syrinx at 200 to 210 cycles per minute before and after craniovertebral decompression. Velocities peaked at 3.6 and 2.0 cm per second respectively in the SAS and the syrinx before surgery and at 2.7 and 1.5 cm per second after surgery. In the model, syrinx velocity varied between 0.91 and 12.70 cm per second. Increasing CSF inlet velocities from 1.56 to 4.69 cm per second increased peak syrinx fluid velocities in the syrinx by 151% to 299% for the three cycle rates. Increasing cycle rates from 60 to 120 cpm increased peak syrinx velocities by 160% to 312% for the three inlet velocities. Peak velocities changed inconsistently with syrinx size. Conclusions CSF velocity, heart rate and syrinx diameter affect syrinx fluid velocities, but not the frequency of syrinx fluid oscillation. Craniovertebral decompression decreases both CSF and syrinx fluid velocities.
Collapse
Affiliation(s)
- V Vinje
- 1 Simula Research Laboratory, Norway
| | - J Brucker
- 2 Department of Radiology, University of Wisconsin, USA
| | | | - K A Mardal
- 1 Simula Research Laboratory, Norway.,3 Department of Mathematics, University of Oslo, Norway
| | - V Haughton
- 2 Department of Radiology, University of Wisconsin, USA
| |
Collapse
|
37
|
Ramo NL, Troyer KL, Puttlitz CM. Viscoelasticity of spinal cord and meningeal tissues. Acta Biomater 2018; 75:253-262. [PMID: 29852238 DOI: 10.1016/j.actbio.2018.05.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 01/08/2023]
Abstract
Compared to the outer dura mater, the mechanical behavior of spinal pia and arachnoid meningeal layers has received very little attention in the literature. This is despite experimental evidence of their importance with respect to the overall spinal cord stiffness and recovery following compression. Accordingly, inclusion of the mechanical contribution of the pia and arachnoid maters would improve the predictive accuracy of finite element models of the spine, especially in the distribution of stresses and strain through the cord's cross-section. However, to-date, only linearly elastic moduli for what has been previously identified as spinal pia mater is available in the literature. This study is the first to quantitatively compare the viscoelastic behavior of isolated spinal pia-arachnoid-complex, neural tissue of the spinal cord parenchyma, and intact construct of the two. The results show that while it only makes up 5.5% of the overall cross-sectional area, the thin membranes of the innermost meninges significantly affect both the elastic and viscous response of the intact construct. Without the contribution of the pia and arachnoid maters, the spinal cord has very little inherent stiffness and experiences significant relaxation when strained. The ability of the fitted non-linear viscoelastic material models of each condition to predict independent data within experimental variability supports their implementation into future finite element computational studies of the spine. STATEMENT OF SIGNIFICANCE The neural tissue of the spinal cord is surrounded by three fibrous layers called meninges which are important in the behavior of the overall spinal-cord-meningeal construct. While the mechanical properties of the outermost layer have been reported, the pia mater and arachnoid mater have received considerably less attention. This study is the first to directly compare the behavior of the isolated neural tissue of the cord, the isolated pia-arachnoid complex, and the construct of these individual components. The results show that, despite being very thin, the inner meninges significantly affect the elastic and time-dependent response of the spinal cord, which may have important implications for studies of spinal cord injury.
Collapse
Affiliation(s)
- Nicole L Ramo
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Kevin L Troyer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Christian M Puttlitz
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
38
|
Lecomte A, Descamps E, Bergaud C. A review on mechanical considerations for chronically-implanted neural probes. J Neural Eng 2018; 15:031001. [DOI: 10.1088/1741-2552/aa8b4f] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
Hua Y, Tong J, Ghate D, Kedar S, Gu L. Intracranial Pressure Influences the Behavior of the Optic Nerve Head. J Biomech Eng 2017; 139:2593203. [PMID: 27935009 DOI: 10.1115/1.4035406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 11/08/2022]
Abstract
In this work, the biomechanical responses of the optic nerve head (ONH) to acute elevations in intracranial pressure (ICP) were systematically investigated through numerical modeling. An orthogonal experimental design was developed to quantify the influence of ten input factors that govern the anatomy and material properties of the ONH on the peak maximum principal strain (MPS) in the lamina cribrosa (LC) and postlaminar neural tissue (PLNT). Results showed that the sensitivity of ONH responses to various input factors was region-specific. In the LC, the peak MPS was most strongly dependent on the sclera thickness, LC modulus, and scleral canal size, whereas in the PLNT, the peak MPS was more sensitive to the scleral canal size, neural tissue modulus, and pia mater modulus. The enforcement of clinically relevant ICP in the retro-orbital subarachnoid space influenced the sensitivity analysis. It also induced much larger strains in the PLNT than in the LC. Moreover, acute elevation of ICP leads to dramatic strain distribution changes in the PLNT, but had minimal impact on the LC. This work could help to better understand patient-specific responses, to provide guidance on biomechanical factors resulting in optic nerve diseases, such as glaucoma, papilledema, and ischemic optic neuropathy, and to illuminate the possibilities for exploiting their potential to treat and prevent ONH diseases.
Collapse
Affiliation(s)
- Yi Hua
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656
| | - Junfei Tong
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656
| | - Deepta Ghate
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119;Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198-6245
| | - Sachin Kedar
- Stanley Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68105-1119;Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198-8440
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0656;Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198-6245;Nebraska Center for Materials and Nanoscience, Lincoln, NE 68588-0656 e-mail:
| |
Collapse
|
40
|
Bertram CD, Heil M. A Poroelastic Fluid/Structure-Interaction Model of Cerebrospinal Fluid Dynamics in the Cord With Syringomyelia and Adjacent Subarachnoid-Space Stenosis. J Biomech Eng 2017; 139:2552971. [PMID: 27617710 DOI: 10.1115/1.4034657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/08/2022]
Abstract
An existing axisymmetric fluid/structure-interaction (FSI) model of the spinal cord, pia mater, subarachnoid space, and dura mater in the presence of syringomyelia and subarachnoid-space stenosis was modified to include porous solids. This allowed investigation of a hypothesis for syrinx fluid ingress from cerebrospinal fluid (CSF). Gross model deformation was unchanged by the addition of porosity, but pressure oscillated more in the syrinx and the subarachnoid space below the stenosis. The poroelastic model still exhibited elevated mean pressure in the subarachnoid space below the stenosis and in the syrinx. With realistic cord permeability, there was slight oscillatory shunt flow bypassing the stenosis via the porous tissue over the syrinx. Weak steady streaming flow occurred in a circuit involving craniocaudal flow through the stenosis and back via the syrinx. Mean syrinx volume was scarcely altered when the adjacent stenosis bisected the syrinx, but increased slightly when the syrinx was predominantly located caudal to the stenosis. The fluid content of the tissues over the syrinx oscillated, absorbing most of the radial flow seeping from the subarachnoid space so that it did not reach the syrinx. To a lesser extent, this cyclic swelling in a boundary layer of cord tissue just below the pia occurred all along the cord, representing a mechanism for exchange of interstitial fluid (ISF) and cerebrospinal fluid which could explain recent tracer findings without invoking perivascular conduits. The model demonstrates that syrinx volume increase is possible when there is subarachnoid-space stenosis and the cord and pia are permeable.
Collapse
Affiliation(s)
- C D Bertram
- School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
| | - M Heil
- School of Mathematics, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
41
|
MacManus DB, Pierrat B, Murphy JG, Gilchrist MD. Protection of cortex by overlying meninges tissue during dynamic indentation of the adolescent brain. Acta Biomater 2017; 57:384-394. [PMID: 28501711 DOI: 10.1016/j.actbio.2017.05.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Traumatic brain injury (TBI) has become a recent focus of biomedical research with a growing international effort targeting material characterization of brain tissue and simulations of trauma using computer models of the head and brain to try to elucidate the mechanisms and pathogenesis of TBI. The meninges, a collagenous protective tri-layer, which encloses the entire brain and spinal cord has been largely overlooked in these material characterization studies. This has resulted in a lack of accurate constitutive data for the cranial meninges, particularly under dynamic conditions such as those experienced during head impacts. The work presented here addresses this lack of data by providing for the first time, in situ large deformation material properties of the porcine dura-arachnoid mater composite under dynamic indentation. It is demonstrated that this tissue is substantially stiffer (shear modulus, μ=19.10±8.55kPa) and relaxes at a slower rate (τ1=0.034±0.008s, τ2=0.336±0.077s) than the underlying brain tissue (μ=6.97±2.26kPa, τ1=0.021±0.007s, τ2=0.199±0.036s), reducing the magnitudes of stress by 250% and 65% for strains that arise during indentation-type deformations in adolescent brains. STATEMENT OF SIGNIFICANCE We present the first mechanical analysis of the protective capacity of the cranial meninges using in situ micro-indentation techniques. Force-relaxation tests are performed on in situ meninges and cortex tissue, under large strain dynamic micro-indentation. A quasi-linear viscoelastic model is used subsequently, providing time-dependent mechanical properties of these neural tissues under loading conditions comparable to what is experienced in TBI. The reported data highlights the large differences in mechanical properties between these two tissues. Finite element simulations of the indentation experiments are also performed to investigate the protective capacity of the meninges. These simulations show that the meninges protect the underlying brain tissue by reducing the overall magnitude of stress by 250% and up to 65% for strains.
Collapse
|
42
|
Khaing ZZ, Cates LN, Fischedick AE, McClintic AM, Mourad PD, Hofstetter CP. Temporal and Spatial Evolution of Raised Intraspinal Pressure after Traumatic Spinal Cord Injury. J Neurotrauma 2017; 34:645-651. [DOI: 10.1089/neu.2016.4490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington
| | - Lindsay N. Cates
- Department of Neurological Surgery, The University of Washington, Seattle, Washington
| | - Amanda E. Fischedick
- Department of Neurological Surgery, The University of Washington, Seattle, Washington
| | - Abbi M. McClintic
- Department of Neurological Surgery, The University of Washington, Seattle, Washington
| | - Pierre D. Mourad
- Department of Neurological Surgery, The University of Washington, Seattle, Washington
| | | |
Collapse
|
43
|
Imagama S, Ito Z, Ando K, Kobayashi K, Hida T, Ito K, Ishikawa Y, Tsushima M, Matsumoto A, Nakashima H, Wakao N, Sakai Y, Matsuyama Y, Ishiguro N. Rapid Worsening of Symptoms and High Cell Proliferative Activity in Intra- and Extramedullary Spinal Hemangioblastoma: A Need for Earlier Surgery. Global Spine J 2017; 7:6-13. [PMID: 28451503 PMCID: PMC5400160 DOI: 10.1055/s-0036-1580612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 12/14/2022] Open
Abstract
STUDY DESIGN A retrospective analysis of a prospective database. OBJECTIVE To compare preoperative symptoms, ambulatory ability, intraoperative spinal cord monitoring, and pathologic cell proliferation activity between intramedullary only and intramedullary plus extramedullary hemangioblastomas, with the goal of determining the optimal timing for surgery. METHODS The subjects were 28 patients (intramedullary only in 23 cases [group I] and intramedullary plus extramedullary in 5 cases [group IE]) who underwent surgery for spinal hemangioblastoma. Preoperative symptoms, ambulatory ability on the McCormick scale, intraoperative spinal cord monitoring, and pathologic findings using Ki67 were compared between the groups. RESULTS In group IE, preoperative motor paralysis was significantly higher (100 versus 26%, p < 0.005), the mean period from initial symptoms to motor paralysis was significantly shorter (3.5 versus 11.9 months, p < 0.05), and intraoperative spinal cord monitoring aggravation was higher (65 versus 6%, p < 0.05). All 5 patients without total resection in group I underwent reoperation. Ki67 activity was higher in group IE (15% versus 1%, p < 0.05). Preoperative ambulatory ability was significantly poorer in group IE (p < 0.05), but all cases in this group improved after surgery, and postoperative ambulatory ability did not differ significantly between the two groups. CONCLUSIONS Intramedullary plus extramedullary spinal hemangioblastoma is characterized by rapid preoperative progression of symptoms over a short period, severe spinal cord damage including preoperative motor paralysis, and poor gait ability compared with an intramedullary tumor only. Earlier surgery with intraoperative spinal cord monitoring is recommended for total resection and good surgical outcome especially for an IE tumor compared with an intramedullary tumor.
Collapse
Affiliation(s)
- Shiro Imagama
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan,Address for correspondence Shiro Imagama, MD, PhD, Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, 65, Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan (e-mail: )
| | - Zenya Ito
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kei Ando
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kazuyoshi Kobayashi
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Tetsuro Hida
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Kenyu Ito
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Yoshimoto Ishikawa
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Mikito Tsushima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Akiyuki Matsumoto
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Hiroaki Nakashima
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Norimitsu Wakao
- Department of Orthopaedic Surgery, Aichi Medical University, Aichi, Japan
| | - Yoshihito Sakai
- Department of Orthopaedic Surgery, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yukihiro Matsuyama
- Department of Orthopaedic Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University Graduate School of Medicine, Aichi, Japan
| |
Collapse
|
44
|
Hua Y, Song Y, Ghate D, Kedar S, Hawks J, Gu L. Lamina Cribrosa Deformation Induced by Elevated Intracranial Pressure1. J Med Device 2016. [DOI: 10.1115/1.4033852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Yi Hua
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Yingxiao Song
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Deepta Ghate
- Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198
| | - Sachin Kedar
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Jeff Hawks
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Linxia Gu
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588
- Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE 68198
- Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588
| |
Collapse
|
45
|
Mechanically Stable Intraspinal Microstimulation Implants for Human Translation. Ann Biomed Eng 2016; 45:681-694. [DOI: 10.1007/s10439-016-1709-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
|
46
|
The Filum Terminale: A Cadaver Study of Anatomy, Histology, and Elastic Properties. World Neurosurg 2016; 90:565-573.e1. [DOI: 10.1016/j.wneu.2015.12.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/31/2015] [Indexed: 11/22/2022]
|
47
|
Karnaushenko D, Münzenrieder N, Karnaushenko DD, Koch B, Meyer AK, Baunack S, Petti L, Tröster G, Makarov D, Schmidt OG. Biomimetic Microelectronics for Regenerative Neuronal Cuff Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:6797-6805. [PMID: 26397039 DOI: 10.1002/adma.201503696] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/20/2015] [Indexed: 06/05/2023]
Abstract
Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self-assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or guide the growth of neuronal cells during regeneration.
Collapse
Affiliation(s)
- Daniil Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Niko Münzenrieder
- Electronics Laboratory, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
- Sensor Technology Research Center, University of Sussex, Falmer, Brighton, BN1 9QT, UK
| | - Dmitriy D Karnaushenko
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Britta Koch
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Anne K Meyer
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Stefan Baunack
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Luisa Petti
- Electronics Laboratory, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Gerhard Tröster
- Electronics Laboratory, ETH Zürich, Gloriastrasse 35, 8092, Zürich, Switzerland
| | - Denys Makarov
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069, Dresden, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany
- Center for Advancing Electronics Dresden, Dresden University of Technology, 01062, Dresden, Germany
| |
Collapse
|
48
|
Khanna AR, Coumans JV. Spontaneous Improvement of Chiari I Malformation and Syringomyelia in a Patient With Cystic Fibrosis. Neurosurgery 2015; 78:E305-8. [DOI: 10.1227/neu.0000000000000980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ABSTRACT
BACKGROUND AND IMPORTANCE:
Syringomyelia is highly associated with Chiari I malformation, but the pathophysiologic mechanism of syrinx formation and its relation to downward cerebellar tonsillar displacement remains elusive. Cough, Valsalva maneuver, and other physiological strains transiently exacerbate the clinical symptoms of these conditions, exert profound effects on the flow dynamics across the craniospinal junction, and are thought to play an important role in the pathogenesis of syringomyelia.
CLINICAL PRESENTATION:
We report the case of a patient with cystic fibrosis who presented during an exacerbation of bronchiectasis and was found to have a Chiari I malformation with associated syringomyelia. Eight months later, when the patient had returned to baseline pulmonary status, repeat imaging showed interval improvement in both the size of the syrinx and descent of cerebellar tonsils.
CONCLUSION:
This rare case of spontaneous improvement of syringomyelia and Chiari I malformation attributable to relief from chronic cough offers interesting insight into the mechanism of these disorders.
Collapse
Affiliation(s)
- Arjun R. Khanna
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Jean-Valery Coumans
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
49
|
Støverud KH, Alnæs M, Langtangen HP, Haughton V, Mardal KA. Poro-elastic modeling of Syringomyelia - a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord. Comput Methods Biomech Biomed Engin 2015; 19:686-98. [PMID: 26176823 DOI: 10.1080/10255842.2015.1058927] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Syringomyelia, fluid-filled cavities within the spinal cord, occurs frequently in association with a Chiari I malformation and produces some of its most severe neurological symptoms. The exact mechanism causing syringomyelia remains unknown. Since syringomyelia occurs frequently in association with obstructed cerebrospinal fluid (CSF) flow, it has been hypothesized that syrinx formation is mechanically driven. In this study we model the spinal cord tissue either as a poro-elastic medium or as a solid linear elastic medium, and simulate the propagation of pressure waves through an anatomically plausible 3D geometry, with boundary conditions based on in vivo CSF pressure measurements. Then various anatomic and tissue properties are modified, resulting in a total of 11 variations of the model that are compared. The results show that an open segment of the central canal and a stiff pia (relative to the cord) both increase the radial pressure gradients and enhance interstitial fluid flow in the central canal. The anterior median fissure, anisotropic permeability of the white matter, and Poisson ratio play minor roles.
Collapse
Affiliation(s)
- Karen H Støverud
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,b Department of Informatics , University of Oslo , P.O. Box 1080 Blindern, 0316 Oslo , Norway
| | - Martin Alnæs
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway
| | - Hans Petter Langtangen
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,b Department of Informatics , University of Oslo , P.O. Box 1080 Blindern, 0316 Oslo , Norway
| | - Victor Haughton
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,c Wisconsin Institutes of Medical Research , 1111 Highland Ave., Madison , WI 53705 , USA
| | - Kent-André Mardal
- a Simula Research Laboratory , P.O. Box 134, 1325 Lysaker , Norway.,d Department of Mathematics , University of Oslo , P.O. Box 1080 Blindern, 0316 Oslo , Norway
| |
Collapse
|
50
|
Jakus AE, Secor EB, Rutz AL, Jordan SW, Hersam MC, Shah RN. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. ACS NANO 2015; 9:4636-48. [PMID: 25858670 DOI: 10.1021/acsnano.5b01179] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The exceptional properties of graphene enable applications in electronics, optoelectronics, energy storage, and structural composites. Here we demonstrate a 3D printable graphene (3DG) composite consisting of majority graphene and minority polylactide-co-glycolide, a biocompatible elastomer, 3D-printed from a liquid ink. This ink can be utilized under ambient conditions via extrusion-based 3D printing to create graphene structures with features as small as 100 μm composed of as few as two layers (<300 μm thick object) or many hundreds of layers (>10 cm thick object). The resulting 3DG material is mechanically robust and flexible while retaining electrical conductivities greater than 800 S/m, an order of magnitude increase over previously reported 3D-printed carbon materials. In vitro experiments in simple growth medium, in the absence of neurogenic stimuli, reveal that 3DG supports human mesenchymal stem cell (hMSC) adhesion, viability, proliferation, and neurogenic differentiation with significant upregulation of glial and neuronal genes. This coincides with hMSCs adopting highly elongated morphologies with features similar to axons and presynaptic terminals. In vivo experiments indicate that 3DG has promising biocompatibility over the course of at least 30 days. Surgical tests using a human cadaver nerve model also illustrate that 3DG has exceptional handling characteristics and can be intraoperatively manipulated and applied to fine surgical procedures. With this unique set of properties, combined with ease of fabrication, 3DG could be applied toward the design and fabrication of a wide range of functional electronic, biological, and bioelectronic medical and nonmedical devices.
Collapse
Affiliation(s)
- Adam E Jakus
- †Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- §Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
| | - Ethan B Secor
- †Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Alexandra L Rutz
- ‡Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- §Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
| | - Sumanas W Jordan
- ⊥Department of Surgery, Northwestern University, 251 East Huron Street, Galter 3-150, Illinois 60611, United States
| | - Mark C Hersam
- †Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- ∥Department of Chemistry, Northwestern University, 2220 Campus Drive, Evanston Illinois 60208, United States
| | - Ramille N Shah
- †Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- §Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
- ⊥Department of Surgery, Northwestern University, 251 East Huron Street, Galter 3-150, Illinois 60611, United States
| |
Collapse
|