1
|
Abo-Zaid MA, Elsapagh RM, Sultan NS, Mawkili W, Hegazy MM, Ismail AH. Allergy Treatment: A Comprehensive Review of Nanoparticle-based Allergen Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26550. [PMID: 40152375 DOI: 10.31083/fbl26550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 03/29/2025]
Abstract
Allergic disorders rising in prevalence globally, affecting a substantial proportion of individuals in industrialized nations. The imbalance in the immune system, characterized by elevated allergen-specific T helper 2 (Th2) cells and immunoglobulin E (IgE) antibodies, is a key factor in allergy development. Allergen-specific immunotherapy (AIT) is the only treatment capable of alleviating allergic symptoms, preventing new sensitizations, and reducing asthma risk in allergic rhinitis patients. Traditional AIT, however, faces challenges such as frequent administration, adverse effects, and inconsistent patient outcomes. Nanoparticle-based approaches have emerged as a promising strategy to enhance AIT. This review explores the utilization of nanoparticles in AIT, highlighting their ability to interact with the immune system and improve therapeutic outcomes. Various types of nanoparticles, including polyesters, polysaccharide polymers, liposomes, protamine-based nanoparticles (NPs), and polyanhydrides, have been employed as adjuvants or carriers to enhance AIT's efficacy and safety. Nanoparticles offer advantages such as allergen protection, improved immune response modulation, targeted cell delivery, and reduced side effects. This review provides an overview of the current landscape of nanoparticle-based allergen immunotherapy, discussing its potential to revolutionize allergy treatment compared to traditional immunotherapy.
Collapse
Affiliation(s)
- Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| | | | - Nourhan S Sultan
- Biotechnology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142 Jazan, Kingdom of Saudi Arabia
| | - Maysa M Hegazy
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, 45142 Jazan, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Wu J, Ding X, Pang Y, Liu Q, Lei J, Zhang H, Zhang T. Research advance of occupational exposure risks and toxic effects of semiconductor nanomaterials. J Appl Toxicol 2025; 45:61-76. [PMID: 38837250 DOI: 10.1002/jat.4647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
In recent years, semiconductor nanomaterials, as one of the most promising and applied classes of engineered nanomaterials, have been widely used in industries such as photovoltaics, electronic devices, and biomedicine. However, occupational exposure is unavoidable during the production, use, and disposal stages of products containing these materials, thus posing potential health risks to workers. The intricacies of the work environment present challenges in obtaining comprehensive data on such exposure. Consequently, there remains a significant gap in understanding the exposure risks and toxic effects associated with semiconductor nanomaterials. This paper provides an overview of the current classification and applications of typical semiconductor nanomaterials. It also delves into the existing state of occupational exposure, methodologies for exposure assessment, and prevailing occupational exposure limits. Furthermore, relevant epidemiological studies are examined. Subsequently, the review scrutinizes the toxicity of semiconductor nanomaterials concerning target organ toxicity, toxicity mechanisms, and influencing factors. The aim of this review is to lay the groundwork for enhancing the assessment of occupational exposure to semiconductor nanomaterials, optimizing occupational exposure limits, and promoting environmentally sustainable development practices in this domain.
Collapse
Affiliation(s)
- Jiawei Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiaomeng Ding
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Jialin Lei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haopeng Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices Southeast University, Nanjing, China
| |
Collapse
|
3
|
Tan LY, Setyawati MI, Ng KW. Effects of metal oxide nanoparticles on healthy and psoriasis-like human epidermal keratinocytes in vitro. Arch Toxicol 2024; 98:3689-3711. [PMID: 39186148 DOI: 10.1007/s00204-024-03848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The use of metal oxide nanoparticles (NPs) in skincare products has significantly increased human skin exposure, raising safety concerns. Whilst NP's ability to penetrate healthy skin is minimal, studies have demonstrated that metal oxide NPs can induce toxicity in keratinocytes through direct contact. Moreover, NP's effect on common skin disorders like psoriasis, where barrier impairments and underlying inflammation could potentially increase NP penetration and worsen nanotoxicity is largely unstudied. In this paper, we investigated whether psoriasis-like human keratinocytes (Pso HKs) would exhibit heightened toxic responses to titanium dioxide (TiO2), zinc oxide (ZnO), and/or silica (SiO2) NPs compared to healthy HKs. Cells were exposed to each NP at concentrations ranging between 0.5 and 500 µg/ml for 6, 24, and 48 h. Amongst the metal oxide NPs, ZnO NPs produced the most pronounced toxic effects in both cell types, affecting cell viability, inducing oxidative stress, and activating the inflammasome pathway. Notably, only in ZnO NPs-treated Pso HKs, trappin-2/pre-elafin was cleaved intracellularly through a non-canonical process. In addition, tissue remodelling-related cytokines were upregulated in ZnO NP-treated Pso HKs. The full impact of the observed outcomes on psoriatic symptoms will need further evaluation. Nonetheless, our findings indicate the importance of understanding the sub-lethal impacts of NP exposures on keratinocytes, even though direct exposure may be low, particularly in the context of skin disorders where repeated and long-term exposures are anticipated.
Collapse
Affiliation(s)
- Li Yi Tan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore.
- Nanyang Environment and Water Research Institute, Cleantech Loop 1, Singapore, 637141, Singapore.
| |
Collapse
|
4
|
Nanoparticles for Topical Application in the Treatment of Skin Dysfunctions-An Overview of Dermo-Cosmetic and Dermatological Products. Int J Mol Sci 2022; 23:ijms232415980. [PMID: 36555619 PMCID: PMC9780930 DOI: 10.3390/ijms232415980] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials (NM) arouse interest in various fields of science and industry due to their composition-tunable properties and the ease of modification. They appear currently as components of many consumer products such as sunscreen, dressings, sports clothes, surface-cleaning agents, computer devices, paints, as well as pharmaceutical and cosmetics formulations. The use of NPs in products for topical applications improves the permeation/penetration of the bioactive compounds into deeper layers of the skin, providing a depot effect with sustained drug release and specific cellular and subcellular targeting. Nanocarriers provide advances in dermatology and systemic treatments. Examples are a non-invasive method of vaccination, advanced diagnostic techniques, and transdermal drug delivery. The mechanism of action of NPs, efficiency of skin penetration, and potential threat to human health are still open and not fully explained. This review gives a brief outline of the latest nanotechnology achievements in products used in topical applications to prevent and treat skin diseases. We highlighted aspects such as the penetration of NPs through the skin (influence of physical-chemical properties of NPs, the experimental models for skin penetration, methods applied to improve the penetration of NPs through the skin, and methods applied to investigate the skin penetration by NPs). The review summarizes various therapies using NPs to diagnose and treat skin diseases (melanoma, acne, alopecia, vitiligo, psoriasis) and anti-aging and UV-protectant nano-cosmetics.
Collapse
|
5
|
Exposure to nanoparticles and occupational allergy. Curr Opin Allergy Clin Immunol 2022; 22:55-63. [DOI: 10.1097/aci.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Mayorga C, Perez‐Inestrosa E, Rojo J, Ferrer M, Montañez MI. Role of nanostructures in allergy: Diagnostics, treatments and safety. Allergy 2021; 76:3292-3306. [PMID: 33559903 DOI: 10.1111/all.14764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
Nanotechnology is science, engineering and technology conducted at the nanoscale, which is about 1-100 nm. It has led to the development of nanomaterials, which behave very differently from materials with larger scales and can have a wide range of applications in biomedicine. The physical and chemical properties of materials of such small compounds depend mainly on the size, shape, composition and functionalization of the system. Nanoparticles, carbon nanotubes, liposomes, polymers, dendrimers and nanogels, among others, can be nanoengineeried for controlling all parameters, including their functionalization with ligands, which provide the desired interaction with the immunological system, that is dendritic cell receptors to activate and/or modulate the response, as well as specific IgE, or effector cell receptors. However, undesired issues related to toxicity and hypersensitivity responses can also happen and would need evaluation. There are wide panels of accessible structures, and controlling their physico-chemical properties would permit obtaining safer and more efficient compounds for clinical applications goals, either in diagnosis or treatment. The application of dendrimeric antigens, nanoallergens and nanoparticles in allergy diagnosis is very promising since it can improve sensitivity by increasing specific IgE binding, mimicking carrier proteins or enhancing signal detection. Additionally, in the case of immunotherapy, glycodendrimers, liposomes, polymers and nanoparticles have shown interest, behaving as platforms of allergenic structures, adjuvants or protectors of allergen from degradation or having a depot capacity. Taken together, the application of nanotechnology to allergy shows promising facts facing important goals related to the improvement of diagnosis as well as specific immunotherapy.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Allergy Unit Hospital Regional Universitario de Málaga Málaga Spain
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| | - Ezequiel Perez‐Inestrosa
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
- Departamento de Química Orgánica, and the Biomimetic Dendrimers and Photonic Laboratory Instituto de Investigación Biomédica de Málaga‐IBIMAUniversidad de Málaga Málaga Spain
| | - Javier Rojo
- Glycosystems Laboratory Instituto de Investigaciones Químicas (IIQ)CSIC—Universidad de Sevilla Sevilla Spain
| | - Marta Ferrer
- Department of Allergy and Clinical Immunology Clínica Universidad de NavarraInstituto de Investigación Sanitaria de Navarra (IdiSNA) Pamplona Spain
| | - Maria Isabel Montañez
- Allergy Research Group Instituto de Investigación Biomédica de Málaga‐IBIMA Málaga Spain
- Andalusian Centre for Nanomedicine and Biotechnology‐BIONAND Málaga Spain
| |
Collapse
|
7
|
Energy-Dispersive X-Ray Spectroscopic Analysis of an Extraorally Installed Implant in a Silicone Facial Prosthesis Patient. J Craniofac Surg 2021; 33:e338-e341. [PMID: 34560744 DOI: 10.1097/scs.0000000000008239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Titanium implants are considered to be highly biocompatible relative to other metals, and the use of this metal is increasing more and more. However, studies on its possible toxic effects are rare. A patient who had a large midface defect was treated with an implant-supported magnet-retained silicone prosthesis; however, the extraoral implant failed. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to analyze the surface characteristics and the chemical compositions of the failed implant fixture and attached bone tissue. The contamination of the implant and bone tissue with aluminum (Al), iron (Fe), and mercury (Hg) potentially had an influence on the integration of bone tissue and the health of peri-implant tissue. The exposure of the facial prosthesis and its implant to the external environment may have caused the contamination. Careful clinical examination during the follow-up period and adequate hygiene is essential for the long-term success of implant-supported prostheses.
Collapse
|
8
|
Shabbir S, Kulyar MFEA, Bhutta ZA, Boruah P, Asif M. Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO 2NPs) and Their Jeopardy to Human Population. BIONANOSCIENCE 2021; 11:621-632. [PMID: 33520589 PMCID: PMC7835448 DOI: 10.1007/s12668-021-00836-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 01/31/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are the most produced nanomaterial for food additives, pigments, photocatalysis, and personal care products. These nanomaterials are at the forefront of rapidly developing indispensable nanotechnology. In all these nanomaterials, titanium dioxide (TiO2) is the most common nanomaterial which is being synthesized for many years. These nanoparticles of TiO2 are widely used at the commercial level, especially in cosmetic industries. High usage in such a way has increased the toxicological consequences of the human population. Several studies have shown that TiO2 NPs accumulated after oral exposure or inhalation in the alimentary canal, lungs, heart, liver, spleen, cardiac muscle, and kidneys. Additionally, in mice and rats, they disturb glucose and lipid homeostasis. Moreover, TiO2 nanoparticles primarily cause adverse reactions by inducing oxidative stress that leads to cell damage, inflammation, genotoxicity, and adverse immune responses. The form and level of destruction are strongly based on the physical and chemical properties of TiO2 nanoparticles, which administer their reactivity and bioavailability. Studies give indications that TiO2 NPs cause both DNA strand breaks and chromosomal damages. The effects of genotoxicity do not depend only on particle surface changes, size, and exposure route, but also relies on the duration of exposure. Most of these effects may be because of a very high dose of TiO2 NPs. Despite increased production and use, epidemiological data for TiO2 NPs is still missing. This review discusses previous research regarding the impact of TiO2 NP toxicity on human health and highlights areas that require further understanding in concern of jeopardy to the human population. This review is important to point out areas where extensive research is needed; thus, their possible impact on individual health should be investigated in more details.
Collapse
Affiliation(s)
- Samina Shabbir
- Biogas Institute of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | | | - Zeeshan Ahmad Bhutta
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, Scotland EH25 9RG UK
| | - Prerona Boruah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Muhammad Asif
- Department of Surgery, University of Veterinary and Animal Sciences, Lahore, Punjab 54000 Pakistan
| |
Collapse
|
9
|
Palmer BC, DeLouise LA. Morphology-dependent titanium dioxide nanoparticle-induced keratinocyte toxicity and exacerbation of allergic contact dermatitis. HSOA JOURNAL OF TOXICOLOGY : CURRENT RESEARCH 2020; 4:019. [PMID: 33163967 PMCID: PMC7643926 DOI: 10.24966/tcr-3735/100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Titanium dioxide (TiO2) nanoparticles are commonly found in consumer products, such as sunscreens, and human dermal exposures are relatively high. Research suggests potential differences in the toxicity of anatase and rutile crystalline forms of TiO2. Additionally, transition metal dopants are frequently used to enhance physicochemical properties of TiO2, and the toxicity of these nanoparticles are not extensively studied. Therefore, this work examined the keratinocyte toxicity and in vivo skin allergy responses after treatment with 30 nm anatase, 30 nm rutile, or <100 nm Mn-doped TiO2 nanoparticles. After a 24-hour exposure, there were no differences in keratinocyte cytotoxicity; however, Mn-doped TiO2 nanoparticles induced significant in vitro ROS generation and in vivo skin swelling responses in a model of allergic contact dermatitis.
Collapse
Affiliation(s)
- Brian C. Palmer
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
10
|
Damiani G, Eggenhöffner R, Pigatto PDM, Bragazzi NL. Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact Mater 2019; 4:380-386. [PMID: 31872162 PMCID: PMC6909150 DOI: 10.1016/j.bioactmat.2019.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis is a chronic, relapsing, non-contiguous, exudative eczema/dermatitis, which represents a complex, multi-factorial disorder, due to an impairment of the stratum corneum barrier. Currently available drugs have a low skin bioavailability and may give rise to severe adverse events. Nanotechnologies, including nano-particles, liposomes, nano-gels, nano-mixtures, nano-emulsions and other nano-carriers, offer unprecedented solutions to these issues, enabling: i) the management of different clinical forms of atopic dermatitis, especially the recalcitrant ones, i) a better bio-availability and trans-dermal drug targeted delivery at the inflammation site, ii) dose control, iii) significant improvements both in clinical symptoms and immune responses, iv) with less adverse events being reported and a better safety profile. However, some nano-sized structures could amplify and even worsen symptoms in particularly susceptible individuals. Furthermore, most studies included in the present systematic review have been conducted in-vitro or in-vivo, with few randomized controlled clinical trials (RCTs). Future investigations should adopt this design in order to enable scholars achieving robust findings and evidence. Therefore, given the above-mentioned shortcomings, further research in the field is urgently warranted. Atopic dermatitis is a chronic, relapsing eczema/dermatitis, due to an impairment of the stratum corneum barrier. Currently available drugs have a low skin bioavailability and may give rise to severe adverse events. Nanotechnologies offer unprecedented solutions, enabling the management of different clinical forms of atopic dermatitis.
Collapse
Affiliation(s)
- Giovanni Damiani
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Department of Dermatology, Case Western Reserve University, Cleveland, OH, USA
- Young Dermatologists Italian Network, Centro Studi GISED, Bergamo, Italy
| | - Roberto Eggenhöffner
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Paolo Daniele Maria Pigatto
- Clinical Dermatology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Nicola Luigi Bragazzi
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Postgraduate School of Public Health, Department of Health Sciences, University of Genoa, Genoa, Italy
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal/Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
- Corresponding author. Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Roach KA, Stefaniak AB, Roberts JR. Metal nanomaterials: Immune effects and implications of physicochemical properties on sensitization, elicitation, and exacerbation of allergic disease. J Immunotoxicol 2019; 16:87-124. [PMID: 31195861 PMCID: PMC6649684 DOI: 10.1080/1547691x.2019.1605553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 12/25/2022] Open
Abstract
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and their corresponding use in occupational settings have raised concerns over the potential for metals to induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the immune system and allergic disease remain largely unknown. This knowledge gap is particularly concerning since metals are historically recognized as common inducers of allergic contact dermatitis, occupational asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects following exposure to metal nanomaterials is becoming an area of scientific interest since these characteristically lightweight materials are easily aerosolized and inhaled, and their small size may allow for penetration of the skin, which may promote unique size-specific immune effects with implications for allergic disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influence their interactions with components of biological systems, potentially leading to implications for inducing or exacerbating allergic disease. Although some research has been directed toward addressing these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall, more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial exposure on respiratory allergy have been more thoroughly-characterized than their potential influence on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of several remaining knowledge gaps and considerations for future studies is provided.
Collapse
Affiliation(s)
- Katherine A Roach
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
- b School of Pharmacy , West Virginia University , Morgantown , WV , USA
| | - Aleksandr B Stefaniak
- c Respiratory Health Division (RHD) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Allergy and Clinical Immunology Branch (ACIB) , National Institute of Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
12
|
Magrone T, Russo MA, Jirillo E. Impact of Heavy Metals on Host Cells: Special Focus on Nickel-Mediated Pathologies and Novel Interventional Approaches. Endocr Metab Immune Disord Drug Targets 2019; 20:1041-1058. [PMID: 31782370 DOI: 10.2174/1871530319666191129120253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heavy metals [arsenic, aluminium, cadmium, chromium, cobalt, lead, nickel (Ni), palladium and titanium] are environmental contaminants able to impact with host human cells, thus, leading to severe damage. OBJECTIVE In this review, the detrimental effects of several heavy metals on human organs will be discussed and special emphasis will be placed on Ni. In particular, Ni is able to interact with Toll-like receptor-4 on immune and non-immune cells, thus, triggering the cascade of pro-inflammatory cytokines. Then, inflammatory and allergic reactions mediated by Ni will be illustrated within different organs, even including the central nervous system, airways and the gastrointestinal system. DISCUSSION Different therapeutic strategies have been adopted to mitigate Ni-induced inflammatoryallergic reactions. In this context, the ability of polyphenols to counteract the inflammatory pathway induced by Ni on peripheral blood leukocytes from Ni-sensitized patients will be outlined. In particular, polyphenols are able to decrease serum levels of interleukin (IL)-17, while increasing levels of IL- 10. These data suggest that the equilibrium between T regulatory cells and T helper 17 cells is recovered with IL-10 acting as an anti-inflammatory cytokine. In the same context, polyphenols reduced elevated serum levels of nitric oxide, thus, expressing their anti-oxidant potential. Finally, the carcinogenic potential of heavy metals, even including Ni, will be highlighted. CONCLUSION Heavy metals, particularly Ni, are spread in the environment. Nutritional approaches seem to represent a novel option in the treatment of Ni-induced damage and, among them, polyphenols should be taken into consideration for their anti-oxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, Rome, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, Bari, Italy
| |
Collapse
|
13
|
Palmer BC, Jatana S, Phelan-Dickinson SJ, DeLouise LA. Amorphous silicon dioxide nanoparticles modulate immune responses in a model of allergic contact dermatitis. Sci Rep 2019; 9:5085. [PMID: 30911099 PMCID: PMC6434075 DOI: 10.1038/s41598-019-41493-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/26/2019] [Indexed: 01/11/2023] Open
Abstract
Amorphous silicon dioxide nanoparticles (SiNPs) are ubiquitous, and they are currently found in cosmetics, drugs, and foods. Biomedical research is also focused on using these nanoparticles as drug delivery and bio-sensing platforms. Due to the high potential for skin exposure to SiNPs, research into the effect of topical exposure on both healthy and inflammatory skin models is warranted. While we observe only minimal effects of SiNPs on healthy mouse skin, there is an immunomodulatory effect of these NPs in a model of allergic contact dermatitis. The effect appears to be mediated partly by keratinocytes and results in decreases in epidermal hyperplasia, inflammatory cytokine release, immune cell infiltration, and a subsequent reduction in skin swelling. Additional research is required to further our mechanistic understanding and to validate the extent of this immunomodulatory effect in human subjects in order to assess the potential prophylactic use of SiNPs for treating allergic skin conditions.
Collapse
Affiliation(s)
- Brian C. Palmer
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Samreen Jatana
- 0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA
| | - Sarah J. Phelan-Dickinson
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA
| | - Lisa A. DeLouise
- 0000 0004 1936 9166grid.412750.5Department of Environmental Medicine, University of Rochester Medical Center, New York, USA ,0000 0004 1936 9174grid.16416.34Department of Biomedical Engineering, University of Rochester, Rochester, New York USA ,0000 0004 1936 9166grid.412750.5Department of Dermatology, University of Rochester Medical Center, Rochester, New York USA
| |
Collapse
|
14
|
Priyam A, Singh PP, Gehlout S. Role of Endocrine-Disrupting Engineered Nanomaterials in the Pathogenesis of Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2018; 9:704. [PMID: 30542324 PMCID: PMC6277880 DOI: 10.3389/fendo.2018.00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Nanotechnology has enabled the development of innovative technologies and products for several industrial sectors. Their unique physicochemical and size-dependent properties make the engineered nanomaterials (ENMs) superior for devising solutions for various research and development sectors, which are otherwise unachievable by their bulk forms. However, the remarkable advantages mediated by ENMs and their applications have also raised concerns regarding their possible toxicological impacts on human health. The actual issue stems from the absence of systematic data on ENM exposure-mediated health hazards. In this direction, a comprehensive exploration on the health-related consequences, especially with respect to endocrine disruption-related metabolic disorders, is largely lacking. The reasons for the rapid increase in diabetes and obesity in the modern world remain largely unclear, and epidemiological studies indicate that the increased presence of endocrine disrupting chemicals (EDCs) in the environment may influence the incidence of metabolic diseases. Functional similarities, such as mimicking natural hormonal actions, have been observed between the endocrine-disrupting chemicals (EDCs) and ENMs, which supports the view that different types of NMs may be capable of altering the physiological activity of the endocrine system. Disruption of the endocrine system leads to hormonal imbalance, which may influence the development and pathogenesis of metabolic disorders, particularly type 2 diabetes mellitus (T2DM). Evidence from many in vitro, in vivo and epidemiological studies, suggests that ENMs generally exert deleterious effects on the molecular/hormonal pathways and the organ systems involved in the pathogenesis of T2DM. However, the available data from several such studies are not congruent, especially because of discrepancies in study design, and therefore need to be carefully examined before drawing meaningful inferences. In this review, we discuss the outcomes of ENM exposure in correlation with the development of T2DM. In particular, the review focuses on the following sub-topics: (1) an overview of the sources of human exposure to NMs, (2) systems involved in the uptake of ENMs into human body, (3) endocrine disrupting engineered nanomaterials (EDENMs) and mechanisms underlying the pathogenesis of T2DM, (4) evidence of the role of EDENMs in the pathogenesis of T2DM from in vitro, in vivo and epidemiological studies, and (5) conclusions and perspectives.
Collapse
Affiliation(s)
| | - Pushplata Prasad Singh
- TERI Deakin Nanobiotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | | |
Collapse
|
15
|
Balke J, Volz P, Neumann F, Brodwolf R, Wolf A, Pischon H, Radbruch M, Mundhenk L, Gruber AD, Ma N, Alexiev U. Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800310. [PMID: 29726099 DOI: 10.1002/smll.201800310] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Nanoparticles hold a great promise in biomedical science. However, due to their unique physical and chemical properties they can lead to overproduction of intracellular reactive oxygen species (ROS). As an important mechanism of nanotoxicity, there is a great need for sensitive and high-throughput adaptable single-cell ROS detection methods. Here, fluorescence lifetime imaging microscopy (FLIM) is employed for single-cell ROS detection (FLIM-ROX) providing increased sensitivity and enabling high-throughput analysis in fixed and live cells. FLIM-ROX owes its sensitivity to the discrimination of autofluorescence from the unique fluorescence lifetime of the ROS reporter dye. The effect of subcytotoxic amounts of cationic gold nanoparticles in J774A.1 cells and primary human macrophages on ROS generation is investigated. FLIM-ROX measures very low ROS levels upon gold nanoparticle exposure, which is undetectable by the conventional method. It is demonstrated that cellular morphology changes, elevated senescence, and DNA damage link the resulting low-level oxidative stress to cellular adverse effects and thus nanotoxicity. Multiphoton FLIM-ROX enables the quantification of spatial ROS distribution in vivo, which is shown for skin tissue as a target for nanoparticle exposure. Thus, this innovative method allows identifying of low-level ROS in vitro and in vivo and, subsequently, promotes understanding of ROS-associated nanotoxicity.
Collapse
Affiliation(s)
- Jens Balke
- Department of Physics, Freie Universität Berlin, Arnimalllee 14, 14195, Berlin, Germany
| | - Pierre Volz
- Department of Physics, Freie Universität Berlin, Arnimalllee 14, 14195, Berlin, Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Robert Brodwolf
- Department of Physics, Freie Universität Berlin, Arnimalllee 14, 14195, Berlin, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513, Teltow, Germany
| | - Alexander Wolf
- Department of Physics, Freie Universität Berlin, Arnimalllee 14, 14195, Berlin, Germany
| | - Hannah Pischon
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertagstraße 15, 14163, Berlin, Germany
| | - Moritz Radbruch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertagstraße 15, 14163, Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertagstraße 15, 14163, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertagstraße 15, 14163, Berlin, Germany
| | - Nan Ma
- Helmholtz-Zentrum Geesthacht (HZG), Institut für Biomaterialforschung Kantstr. 55, 14513, Teltow, Germany
| | - Ulrike Alexiev
- Department of Physics, Freie Universität Berlin, Arnimalllee 14, 14195, Berlin, Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht Kantstr. 55, 14513, Teltow, Germany
| |
Collapse
|
16
|
The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010104. [PMID: 29320402 PMCID: PMC5800203 DOI: 10.3390/ijerph15010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. METHODS Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. RESULTS Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. CONCLUSIONS (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.
Collapse
|
17
|
Jatana S, Palmer BC, Phelan SJ, DeLouise LA. Immunomodulatory Effects of Nanoparticles on Skin Allergy. Sci Rep 2017; 7:3979. [PMID: 28638049 PMCID: PMC5479793 DOI: 10.1038/s41598-017-03729-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/22/2017] [Indexed: 11/24/2022] Open
Abstract
In recent years there has been considerable effort to understand the interaction of nanomaterials with the skin. In this study we use an in vivo mouse model of allergic contact dermatitis to investigate how nanoparticles (NPs) may alter allergic responses in skin. We investigate a variety of NPs that vary in size, charge and composition. Results show that small (<200 nm) negative and neutral charged NPs exhibit an immunosuppressive effect but that positively charged NPs do not. Confocal imaging suggests positively charged NPs may penetrate skin to a lesser extent and thereby are less able interact with and alter the local immune responses. Interestingly, negatively charged silica (20 nm) NPs suppress allergic response to two chemically distinct sensitizers; 1-fluoro-2, 4-dinitrobenzene and 2-deoxyurushiol. Skin wiping and NP application time studies suggest that the immunomodulatory mechanism is not due solely to the blocking of sensitizer adduct formation in skin. Results suggest that NPs modulate early immune events that impact mast cell degranulation. Our study shows for the first time the potential to modulate the elicitation phase of the allergic response which depends on the NP charge and composition. These finding can be used to inform the design topical therapeutics to mitigate allergic responses in skin.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Brian C Palmer
- Department of Toxicology, University of Rochester Medical Center, New York, USA
| | - Sarah J Phelan
- Department of Toxicology, University of Rochester Medical Center, New York, USA
| | - Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.
- Department of Dermatology, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
18
|
Takano H, Inoue KI. Environmental pollution and allergies. J Toxicol Pathol 2017; 30:193-199. [PMID: 28798526 PMCID: PMC5545671 DOI: 10.1293/tox.2017-0028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
Environmental changes are thought to be the main factor in the rapid increase and worsening of allergic diseases. While there have been significant changes in many environmental factors, including in environments such as residential, health and sanitation, food, and water/soil/atmospheric environments, the root of each of these changes is likely an increase in chemical substances. In fact, various environmental pollutants, such as air pollutants and chemical substances, have been shown to worsen various allergies in experimental studies. For example, diesel exhaust particles (DEPs), which are an agglomeration of particles and a wide array of chemical substances, aggravate asthma, primarily due to the principle organic chemical components of DEPs. In addition, environmental chemicals such as phthalate esters, which are commonly used as plasticizers in plastic products, also aggravate atopic dermatitis. It has also become evident that extremely small nanomaterials and Asian sand dust particles can enhance allergic inflammation. While the underlying mechanisms that cause such aggravation are becoming clearer at the cellular and molecular levels, methods to easily and quickly evaluate (screen) the ever-increasing amount of environmental pollutants for exacerbating effects on allergies are also under development. To eliminate and control allergic diseases, medical measures are necessary, but it is also essential to tackle this issue by ameliorating environmental changes.
Collapse
Affiliation(s)
- Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto-shi, Kyoto 615-8540, Japan
| | - Ken-Ichiro Inoue
- School of Nursing, University of Shizuoka, 52-1 Yada, Suruga, Shizuoka 422-8526, Japan
| |
Collapse
|
19
|
Nano-ophthalmology: Applications and considerations. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1459-1472. [DOI: 10.1016/j.nano.2017.02.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/11/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
20
|
Hong F, Yu X, Wu N, Zhang YQ. Progress of in vivo studies on the systemic toxicities induced by titanium dioxide nanoparticles. Toxicol Res (Camb) 2017; 6:115-133. [PMID: 30090482 PMCID: PMC6061230 DOI: 10.1039/c6tx00338a] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 12/09/2016] [Indexed: 01/29/2023] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are inorganic materials with a diameter of 1-100 nm. In recent years, TiO2 NPs have been used in a wide range of products, including food, toothpaste, cosmetics, medicine, paints and printing materials, due to their unique properties (high stability, anti-corrosion, and efficient photocatalysis). Following exposure via various routes including inhalation, injection, dermal deposition and gastrointestinal tract absorption, NPs can be found in various organs in the body potentially inducing toxic effects. Thus more attention to the safety of TiO2 NPs is necessary. Therefore, the present review aims to provide a comprehensive evaluation of the toxic effects induced by TiO2 NPs in the lung, liver, stomach, intestine, kidney, spleen, brain, hippocampus, heart, blood vessels, ovary and testis of mice and rats in in vivo experiments, and evaluate their potential toxic mechanisms. The findings will provide an important reference for human risk evaluation and management following TiO2 NP exposure.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Xiaohong Yu
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| | - Nan Wu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection , Huaiyin Normal University , Huaian 223300 , China .
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake , Huaiyin Normal University , Huaian 223300 , China
- School of Life Sciences , Huaiyin Normal University , Huaian 223300 , China
| | - Yu-Qing Zhang
- School of Basic Medical and Biological Sciences , Soochow University , Suzhou 215123 , China .
| |
Collapse
|
21
|
Yoshioka Y, Kuroda E, Hirai T, Tsutsumi Y, Ishii KJ. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure. Front Immunol 2017; 8:169. [PMID: 28261221 PMCID: PMC5311046 DOI: 10.3389/fimmu.2017.00169] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/02/2017] [Indexed: 01/13/2023] Open
Abstract
Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of nanomaterials with biological components and by presenting recent data about the adjuvant effects of well-characterized particle adjuvant, aluminum salt, as an example of immunomodulatory particulate.
Collapse
Affiliation(s)
- Yasuo Yoshioka
- Vaccine Creation Project, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka, Japan; Laboratory of Nano-Design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Etsushi Kuroda
- Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University , Suita, Osaka , Japan
| | - Toshiro Hirai
- Department of Dermatology and Immunology, University of Pittsburgh , Pittsburgh, PA , USA
| | - Yasuo Tsutsumi
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan; Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, World Premier International Research Center, Osaka University, Suita, Osaka, Japan; Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| |
Collapse
|
22
|
Engineered Nanomaterials and Occupational Allergy. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2017. [DOI: 10.1007/978-981-10-0351-6_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
You S, Luo J, Grossniklaus HE, Gou ML, Meng K, Zhang Q. Nanomedicine in the application of uveal melanoma. Int J Ophthalmol 2016; 9:1215-25. [PMID: 27588278 DOI: 10.18240/ijo.2016.08.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
Rapid advances in nanomedicine have significantly changed many aspects of nanoparticle application to the eye including areas of diagnosis, imaging and more importantly drug delivery. The nanoparticle-based drug delivery systems has provided a solution to various drug solubility-related problems in ophthalmology treatment. Nanostructured compounds could be used to achieve local ocular delivery with minimal unwanted systematic side effects produced by taking advantage of the phagocyte system. In addition, the in vivo control release by nanomaterials encapsulated drugs provides prolong exposure of the compound in the body. Furthermore, certain nanoparticles can overcome important body barriers including the blood-retinal barrier as well as the corneal-retinal barrier of the eye for effective delivery of the drug. In summary, the nanotechnology based drug delivery system may serve as an important tool for uveal melanoma treatment.
Collapse
Affiliation(s)
- Shuo You
- Department of Endocrinology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China; Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Jing Luo
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Hans E Grossniklaus
- Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia 30322, USA; Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA; Department of Pathology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ma-Ling Gou
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ke Meng
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qing Zhang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China; Department of Ophthalmology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
24
|
Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review. Biol Trace Elem Res 2016; 172:1-36. [PMID: 26554951 DOI: 10.1007/s12011-015-0550-x] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023]
Abstract
Nano-titanium dioxide (TiO2) is one of the most commonly used materials being synthesized for use as one of the top five nanoparticles. Due to the extensive application of TiO2 nanoparticles and their inclusion in many commercial products, the increased exposure of human beings to nanoparticles is possible. This exposure could be routed via dermal penetration, inhalation and oral ingestion or intravenous injection. Therefore, regular evaluation of their potential toxicity and distribution in the bodies of exposed individuals is essential. Keeping in view the potential health hazards of TiO2 nanoparticles for humans, we reviewed the research articles about studies performed on rats or other mammals as animal models. Most of these studies utilized the dermal or skin and the pulmonary exposures as the primary routes of toxicity. It was interesting that only very few studies revealed that the TiO2 nanoparticles could penetrate through the skin and translocate to other tissues, while many other studies demonstrated that no penetration or translocation could happen through the skin. Conversely, the TiO2 nanoparticles that entered through the pulmonary route were translocated to the brain or the systemic circulation from where these reached other organs like the kidney, liver, etc. In most studies, TiO2 nanoparticles appeared to have caused oxidative stress, histopathological alterations, carcinogenesis, genotoxicity and immune disruption. Therefore, the use of such materials in humans must be either avoided or strictly managed to minimise risks for human health in various situations.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Samina Shabbir
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Saleem Khan
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
25
|
Mocan T, Matea CT, Iancu C, Agoston-Coldea L, Mocan L, Orasan R. Hypersensitivity and nanoparticles: update and research trends. ACTA ACUST UNITED AC 2016; 89:216-9. [PMID: 27152071 PMCID: PMC4849378 DOI: 10.15386/cjmed-574] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/05/2015] [Indexed: 11/23/2022]
Abstract
Nanotechnology holds a great promise for a wide range of medical-intent applications (diagnostic, treatment and prophylaxis of various diseases). Their advantages are due to their size, versatility and potential for multiple simultaneous applications. However, concerns have been formulated by scientific world due to insufficient data on toxicity of nanomaterials. One area of interest is represented by the interactions between nanoparticles and the components of the immune system. We review herein reported data on hypersensitivity reactions. The role exerted by nanoparticles in both immunostimulation and immunosuppression in allergen-driven mechanisms was studied, as well as future trends in worldwide research.
Collapse
Affiliation(s)
- Teodora Mocan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Cristian T Matea
- Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| | - Cornel Iancu
- Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucia Agoston-Coldea
- Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; 2Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania; 3Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Orasan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Nanomedicine Department, Octavian Fodor Regional Institute of Gastroenterology and Hepatology, Cluj-Napoca, Romania
| |
Collapse
|
26
|
Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 2016; 74:323-45. [PMID: 27027398 DOI: 10.1111/cod.12565] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations for detection of type IV hypersensitivity is currently inadequate for Ti. Although several other methods for contact allergy detection have been suggested, including lymphocyte stimulation tests, none has yet been generally accepted, and the diagnosis of Ti allergy is therefore still based primarily on clinical evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved.
Collapse
Affiliation(s)
- Simon W Fage
- Department of Dermato-Venereology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Joris Muris
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stig S Jakobsen
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| |
Collapse
|
27
|
Matsuo K, Hirobe S, Okada N, Nakagawa S. Analysis of Skin Permeability and Toxicological Properties of Amorphous Silica Particles. Biol Pharm Bull 2016; 39:1201-5. [DOI: 10.1248/bpb.b16-00258] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kazuhiko Matsuo
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Sachiko Hirobe
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Naoki Okada
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shinsaku Nakagawa
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
28
|
Potential Hazards of Skin Exposure to Nanoparticles. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
29
|
Villatte G, Massard C, Descamps S, Sibaud Y, Forestier C, Awitor KO. Photoactive TiO₂ antibacterial coating on surgical external fixation pins for clinical application. Int J Nanomedicine 2015; 10:3367-75. [PMID: 26005347 PMCID: PMC4428362 DOI: 10.2147/ijn.s81518] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
External fixation is a method of osteosynthesis currently used in traumatology and orthopedic surgery. Pin tract infection is a common problem in clinical practice. Infection occurs after bacterial colonization of the pin due to its contact with skin and the local environment. One way to prevent such local contamination is to create a specific coating that could be applied in the medical field. In this work, we developed a surface coating for external fixator pins based on the photocatalytic properties of titanium dioxide, producing a bactericidal effect with sufficient mechanical strength to be compatible with surgical use. The morphology and structure of the sol-gel coating layers were characterized using, respectively, scanning electron microscopy and X-ray diffraction. The resistance properties of the coating were investigated by mechanical testing. Photodegradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of the titanium dioxide layers under ultraviolet irradiation. The bactericidal effect induced by the process was evaluated against two strains, ie, Staphylococcus aureus and multiresistant Staphylococcus epidermidis. The coated pins showed good mechanical strength and an efficient antibacterial effect after 1 hour of ultraviolet irradiation.
Collapse
Affiliation(s)
- Guillaume Villatte
- Laboratory C-Biosenss EA 4676, Clermont-Ferrand University, Université d'Auvergne, Clermont-Ferrand, France ; Department of Orthopedics, Clermont-Ferrand University Hospital (CHU), Clermont-Ferrand, France
| | - Christophe Massard
- Laboratory C-Biosenss EA 4676, Clermont-Ferrand University, Université d'Auvergne, Clermont-Ferrand, France
| | - Stéphane Descamps
- Laboratory C-Biosenss EA 4676, Clermont-Ferrand University, Université d'Auvergne, Clermont-Ferrand, France ; Department of Orthopedics, Clermont-Ferrand University Hospital (CHU), Clermont-Ferrand, France
| | - Yves Sibaud
- Laboratory C-Biosenss EA 4676, Clermont-Ferrand University, Université d'Auvergne, Clermont-Ferrand, France
| | - Christiane Forestier
- Laboratory Microorganism UMR 6023, Clermont-Ferrand University, Université d'Auvergne, Clermont-Ferrand, France
| | - Komla-Oscar Awitor
- Laboratory C-Biosenss EA 4676, Clermont-Ferrand University, Université d'Auvergne, Clermont-Ferrand, France
| |
Collapse
|
30
|
Kim CS, Nguyen HD, Ignacio RM, Kim JH, Cho HC, Maeng EH, Kim YR, Kim MK, Park BK, Kim SK. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int J Nanomedicine 2014; 9 Suppl 2:195-205. [PMID: 25565837 PMCID: PMC4279726 DOI: 10.2147/ijn.s57935] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
While zinc oxide (ZnO) nanoparticles (NPs) have been recognized to have promising applications in biomedicine, their immunotoxicity has been inconsistent and even contradictory. To address this issue, we investigated whether ZnO NPs with different size (20 or 100 nm) and electrostatic charge (positive or negative) would cause immunotoxicity in vitro and in vivo, and explored their underlying molecular mechanism. Using Raw 264.7 cell line, we examined the immunotoxicity mechanism of ZnO NPs as cell viability. We found that in a cell viability assay, ZnO NPs with different size and charge could induce differential cytotoxicity to Raw 264.7 cells. Specifically, the positively charged ZnO NPs exerted higher cytotoxicity than the negatively charged ones. Next, to gauge systemic immunotoxicity, we assessed immune responses of C57BL/6 mice after oral administration of 750 mg/kg/day dose of ZnO NPs for 2 weeks. In parallel, ZnO NPs did not alter the cell-mediated immune response in mice but suppressed innate immunity such as natural killer cell activity. The CD4(+)/CD8(+) ratio, a marker for matured T-cells was slightly reduced, which implies the alteration of immune status induced by ZnO NPs. Accordingly, nitric oxide production from splenocyte culture supernatant in ZnO NP-fed mice was lower than control. Consistently, serum levels of pro/anti-inflammatory (interleukin [IL]-1β, tumor necrosis factor-α, and IL-10) and T helper-1 cytokines (interferon-γ and IL-12p70) in ZnO NP-fed mice were significantly suppressed. Collectively, our results indicate that different sized and charged ZnO NPs would cause in vitro and in vivo immunotoxicity, of which nature is an immunosuppression.
Collapse
Affiliation(s)
- Cheol-Su Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hai-Duong Nguyen
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Rosa Mistica Ignacio
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Jae-Hyun Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Hyeon-Cheol Cho
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Eun Ho Maeng
- Healthcare Laboratory, Medical Device Evaluation Team, Korea Testing and Research Institute, Gimpo-si, Gyeonggi-do, Republic of Korea
| | - Yu-Ri Kim
- Department of Biochemistry and Molecular Biology, Medical School and College, Korea University, Seoul, Republic of Korea
| | - Meyoung-Kon Kim
- Department of Biochemistry and Molecular Biology, Medical School and College, Korea University, Seoul, Republic of Korea
| | - Bae-Keun Park
- Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| | - Soo-Ki Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
- Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, Republic of Korea
| |
Collapse
|
31
|
Ilves M, Palomäki J, Vippola M, Lehto M, Savolainen K, Savinko T, Alenius H. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Part Fibre Toxicol 2014; 11:38. [PMID: 25123235 PMCID: PMC4237966 DOI: 10.1186/s12989-014-0038-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 08/05/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. METHODS Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). RESULTS Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. CONCLUSIONS These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Harri Alenius
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| |
Collapse
|
32
|
Zhang Y, Bai Y, Jia J, Gao N, Li Y, Zhang R, Jiang G, Yan B. Perturbation of physiological systems by nanoparticles. Chem Soc Rev 2014; 43:3762-809. [PMID: 24647382 DOI: 10.1039/c3cs60338e] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology is having a tremendous impact on our society. However, societal concerns about human safety under nanoparticle exposure may derail the broad application of this promising technology. Nanoparticles may enter the human body via various routes, including respiratory pathways, the digestive tract, skin contact, intravenous injection, and implantation. After absorption, nanoparticles are carried to distal organs by the bloodstream and the lymphatic system. During this process, they interact with biological molecules and perturb physiological systems. Although some ingested or absorbed nanoparticles are eliminated, others remain in the body for a long time. The human body is composed of multiple systems that work together to maintain physiological homeostasis. The unexpected invasion of these systems by nanoparticles disturbs normal cell signaling, impairs cell and organ functions, and may even cause pathological disorders. This review examines the comprehensive health risks of exposure to nanoparticles by discussing how nanoparticles perturb various physiological systems as revealed by animal studies. The potential toxicity of nanoparticles to each physiological system and the implications of disrupting the balance among systems are emphasized.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ostrowski A, Nordmeyer D, Mundhenk L, Fluhr JW, Lademann J, Graf C, Rühl E, Gruber AD. AHAPS-functionalized silica nanoparticles do not modulate allergic contact dermatitis in mice. NANOSCALE RESEARCH LETTERS 2014; 9:524. [PMID: 25276110 PMCID: PMC4177380 DOI: 10.1186/1556-276x-9-524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/16/2014] [Indexed: 05/16/2023]
Abstract
Allergic contact dermatitis (ACD) is a common skin disease in people and may become a potential site of exposure to nanoparticles (NP). Silica nanoparticles (SiO2-NP) possess a promising potential for various medical and non-medical applications, including normal and diseased skin as target organs. However, it has been shown that negatively charged SiO2-NP may act as proinflammatory adjuvant in allergic diseases. The effect of topical SiO2-NP exposure on preexisting ACD has not been studied to date although this reflects a common in vivo situation. Of particular interest are the potential effects of positively charged N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS)-functionalized SiO2-NP which are promising candidates for delivery systems, including gene delivery into the skin. Here, the effects of such AHAPS-functionalized SiO2-NP (55 ± 6 nm in diameter) were studied in an oxazolone-induced ACD model in SKH1 mice and compared to ACD mice treated with vehicle only. The clinical course of the disease was assessed by monitoring of the transepidermal water loss (TEWL) and the erythema. In histologic and morphometric analyses, the distribution of particles, the degree of inflammation, epidermal thickness, and the inflammatory infiltrate were characterized and quantified by standard and special histological stains as well as immunohistochemistry for CD3+ lymphocytes. To assess possible systemic effects, serum immunoglobulin E (IgE) was determined by enzyme-linked immunosorbent assay. Following administration of AHAPS-SiO2-NP for five consecutive days, no effects were observed in all clinical, histologic, morphometric, and molecular parameters investigated. In conclusion, positively charged AHAPS-SiO2-NP seem not to affect the course of ACD during exposure for 5 days.
Collapse
Affiliation(s)
- Anja Ostrowski
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Daniel Nordmeyer
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Joachim W Fluhr
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christina Graf
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Eckart Rühl
- Institute of Chemistry and Biochemistry - Physical and Theoretical Chemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| |
Collapse
|
34
|
SUN MINGLI, WANG SHUANG, ZHAO LIN, ZHAO HAISHAN, YAO WEIFAN, JIN WANBAO, WEI MINJIE. Suppression of 2,4-dinitrochlorobenzene-induced atopic dermatitis by extract of Bacillus Calmette-Guerin. Mol Med Rep 2013; 9:689-94. [DOI: 10.3892/mmr.2013.1865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/28/2013] [Indexed: 11/06/2022] Open
|
35
|
Exposition professionnelle aux nanoparticules et protection cutanée. ARCH MAL PROF ENVIRO 2013. [DOI: 10.1016/j.admp.2013.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Jatana S, DeLouise LA. Understanding engineered nanomaterial skin interactions and the modulatory effects of ultraviolet radiation skin exposure. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:61-79. [PMID: 24123977 DOI: 10.1002/wnan.1244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/11/2013] [Accepted: 07/29/2013] [Indexed: 12/24/2022]
Abstract
The study of engineered nanomaterials for the development of technological applications, nanomedicine, and nano-enabled consumer products is an ever-expanding discipline as is the concern over the impact of nanotechnology on human environmental health and safety. In this review, we discuss the current state of understanding of nanomaterial skin interactions with a specific emphasis on the effects of ultraviolet radiation (UVR) skin exposure. Skin is the largest organ of the body and is typically exposed to UVR on a daily basis. This necessitates the need to understand how UVR skin exposure can influence nanomaterial skin penetration, alter nanomaterial systemic trafficking, toxicity, and skin immune function. We explore the unique dichotomy that UVR has on inducing both deleterious and therapeutic effects in skin. The subject matter covered in this review is broadly informative and will raise awareness of potential increased risks from nanomaterial skin exposure associated with specific occupational and life style choices. The UVR-induced immunosuppressive response in skin raises intriguing questions that motivate future research directions in the nanotoxicology and nanomedicine fields.
Collapse
Affiliation(s)
- Samreen Jatana
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
37
|
Wang Y, Chen Z, Ba T, Pu J, Chen T, Song Y, Gu Y, Qian Q, Xu Y, Xiang K, Wang H, Jia G. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1742-52. [PMID: 22945798 DOI: 10.1002/smll.201201185] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/18/2012] [Indexed: 05/25/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have potential applications as food additives, but concerns persist about their safety. Children are identified as having the highest exposure and may face the greatest health risks. However, the toxicological sensitivity of TiO2 NPs in different ages is not clear. Here, a comparative toxicity study of TiO2 NPs in 3-week (youth) and 8-week (adult) old Sprague-Dawley rats is reported following oral exposure at doses of 0, 10, 50, 200 mg kg(-1) body weight per day for 30 days. The organ mass and histology, blood biochemistry and redox state, intestinal function, and biodistribution of NPs are characterized. The results show that TiO2 NPs induce different toxic effects on young and adult rats. The liver edema, heart injuries and non-allergic mast cell activation in stomach tissues are found in young rats. On the other hand, only slight injury in the liver and kidney and decreased intestinal permeability and molybdenum contents are found in adult rats. Furthermore, TiO2 NP exposure can provoke reductive stress (i.e., increased reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios) in plasmas through enhancing the glucose and GSH levels in young rats or reducing the glutathione peroxidase (GSH-Px) acitivity and GSSG levels in adult rats. These results suggest that different ages may require different biomarkers for identifying and monitoring oral toxicity of nanoparticles.
Collapse
Affiliation(s)
- Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang X, Reece SP, Brown JM. Immunotoxicological impact of engineered nanomaterial exposure: mechanisms of immune cell modulation. Toxicol Mech Methods 2013; 23:168-77. [PMID: 23256453 DOI: 10.3109/15376516.2012.757686] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract Engineered nanomaterials (ENMs) are increasingly being utilized in many consumer products and various medical applications, thereby leading to the potentiality of increased human exposures. Assessment of the adverse effects on the immune system is an important component for evaluating the overall health and safety of ENM. Tasked with eliminating pathogens and removing cancerous cells, the immune system is constantly functioning to maintain homeostasis. Small modifications to the immune system, which may occur following ENM exposure, could lead to impaired protection or an inappropriate immune response resulting in autoimmunity and damage to the host. This review seeks to survey and evaluate the current literature to better understand the impact of ENM exposure on cells critical to the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Xiaojia Wang
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | | | |
Collapse
|
39
|
Hussain S, Smulders S, De Vooght V, Ectors B, Boland S, Marano F, Van Landuyt KL, Nemery B, Hoet PHM, Vanoirbeek JAJ. Nano-titanium dioxide modulates the dermal sensitization potency of DNCB. Part Fibre Toxicol 2012; 9:15. [PMID: 22621278 PMCID: PMC3583227 DOI: 10.1186/1743-8977-9-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 05/02/2012] [Indexed: 11/10/2022] Open
Abstract
We determined the ability of a model nanoparticle (NP) (titanium dioxide, TiO(2)) to modulate sensitization induced by a known potent dermal sensitizer (dinitrochlorobenzene) using a variant of the local lymph node assay called lymph node proliferation assay.BALB/c mice received sub-cutaneous injections of vehicle (2.5 mM sodium citrate), TiO(2) NPs (0.004, 0.04 or 0.4 mg/ml) or pigment particles (0.04 mg/ml) both stabilized in sodium citrate buffer at the base of each ear (2x50μl), before receiving dermal applications (on both ears) of 2,4-Dinitrochlorobenzene (DNCB) (2x25μl of 0.1%) or its vehicle (acetone olive oil - AOO (4:1)) on days 0, 1 and 2. On day 5, the stimulation index (SI) was calculated as a ratio of (3)HTdR incorporation in lymphocytes from DNBC-treated mice and AOO-treated controls. In a second experiment the EC(3)-value for DNCB (0 to 0.1%) was assessed in the absence or presence of 0.04 mg/ml TiO(2). In a third experiment, the lymphocyte subpopulations and the cytokine secretion profile were analyzed after TiO(2) (0.04 mg/ml) and DNCB (0.1%) treatment. Injection of NPs in AOO-treated control mice did not have any effect on lymph node (LN) proliferation. DNCB sensitization resulted in LN proliferation, which was further increased by injection of TiO(2) NPs before DNCB sensitization. The EC(3) of DNCB, with prior injection of vehicle control was 0.041%, while injection with TiO(2) decreased the EC(3) of DNCB to 0.015%. TiO(2) NPs pre-treatment did not alter the lymphocyte subpopulations, but significantly increased the level of IL-4 and decreased IL-10 production in DNCB treated animals.In conclusion, our study demonstrates that administration of nano-TiO(2) increases the dermal sensitization potency of DNCB, by augmenting a Th(2) response, showing the immunomodulatory abilities of NPs.
Collapse
Affiliation(s)
- Salik Hussain
- Unit of Functional and Adaptive Biology CNRS EAC 4413, Laboratory of Molecular and Cellular Responses to Xenobiotics, Univ Paris Diderot, Sorbonne Paris Cité, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
What are nanoparticles and why are they important in dermatology? These questions are addressed by highlighting recent developments in the nanotechnology field that have increased the potential for intentional and unintentional nanoparticle skin exposure. The role of environmental factors in the interaction of nanoparticles with skin and the potential mechanisms by which nanoparticles may influence skin response to environmental factors are discussed. Trends emerging from recent literature suggest that the positive benefit of engineered nanoparticles for use in cosmetics and as tools for understanding skin biology and curing skin disease outweigh potential toxicity concerns. Discoveries reported in this journal are highlighted. This review begins with a general introduction to the field of nanotechnology and nanomedicine. This is followed by a discussion of the current state of understanding of nanoparticle skin penetration and their use in three therapeutic applications. Challenges that must be overcome to derive clinical benefit from the application of nanotechnology to skin are discussed last, providing perspective on the significant opportunity that exists for future studies in investigative dermatology.
Collapse
Affiliation(s)
- Lisa A DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA.
| |
Collapse
|
41
|
Hirai T, Yoshikawa T, Nabeshi H, Yoshida T, Tochigi S, Ichihashi KI, Uji M, Akase T, Nagano K, Abe Y, Kamada H, Itoh N, Tsunoda SI, Yoshioka Y, Tsutsumi Y. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part Fibre Toxicol 2012; 9:3. [PMID: 22296706 PMCID: PMC3395831 DOI: 10.1186/1743-8977-9-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/02/2012] [Indexed: 01/23/2023] Open
Abstract
Background Due to the rising use of nanomaterials (NMs), there is concern that NMs induce undesirable biological effects because of their unique physicochemical properties. Recently, we reported that amorphous silica nanoparticles (nSPs), which are one of the most widely used NMs, can penetrate the skin barrier and induce various biological effects, including an immune-modulating effect. Thus, it should be clarified whether nSPs can be a risk factor for the aggravation of skin immune diseases. Thus, in this study, we investigated the relationship between the size of SPs and adjuvant activity using a model for atopic dermatitis. Results We investigated the effects of nSPs on the AD induced by intradermaly injected-mite antigen Dermatophagoides pteronyssinus (Dp) in NC/Nga mice. Ear thickness measurements and histopathological analysis revealed that a combined injection of amorphous silica particles (SPs) and Dp induced aggravation of AD in an SP size-dependent manner compared to that of Dp alone. In particular, aggravation was observed remarkably in nSP-injected groups. Furthermore, these effects were correlated with the excessive induction of total IgE and a stronger systemic Th2 response. We demonstrated that these results are associated with the induction of IL-18 and thymic stromal lymphopoietin (TSLP) in the skin lesions. Conclusions A particle size reduction in silica particles enhanced IL-18 and TSLP production, which leads to systemic Th2 response and aggravation of AD-like skin lesions as induced by Dp antigen treatment. We believe that appropriate regulation of nanoparticle physicochemical properties, including sizes, is a critical determinant for the design of safer forms of NMs.
Collapse
Affiliation(s)
- Toshiro Hirai
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen EY, Garnica M, Wang YC, Mintz AJ, Chen CS, Chin WC. A mixture of anatase and rutile TiO₂ nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol 2012; 9:2. [PMID: 22260553 PMCID: PMC3275461 DOI: 10.1186/1743-8977-9-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background Histamine released from mast cells, through complex interactions involving the binding of IgE to FcεRI receptors and the subsequent intracellular Ca2+ signaling, can mediate many allergic/inflammatory responses. The possibility of titanium dioxide nanoparticles (TiO2 NPs), a nanomaterial pervasively used in nanotechnology and pharmaceutical industries, to directly induce histamine secretion without prior allergen sensitization has remained uncertain. Results TiO2 NP exposure increased both histamine secretion and cytosolic Ca2+ concentration ([Ca2+]C) in a dose dependent manner in rat RBL-2H3 mast cells. The increase in intracellular Ca2+ levels resulted primarily from an extracellular Ca2+ influx via membrane L-type Ca2+ channels. Unspecific Ca2+ entry via TiO2 NP-instigated membrane disruption was demonstrated with the intracellular leakage of a fluorescent calcein dye. Oxidative stress induced by TiO2 NPs also contributed to cytosolic Ca2+ signaling. The PLC-IP3-IP3 receptor pathways and endoplasmic reticulum (ER) were responsible for the sustained elevation of [Ca2+]C and histamine secretion. Conclusion Our data suggests that systemic circulation of NPs may prompt histamine release at different locales causing abnormal inflammatory diseases. This study provides a novel mechanistic link between environmental TiO2 NP exposure and allergen-independent histamine release that can exacerbate manifestations of multiple allergic responses.
Collapse
Affiliation(s)
- Eric Y Chen
- Bioengineering, University of California at Merced, Merced, CA, USA, 5200 North Lake RD, Merced, CA 95343, USA
| | | | | | | | | | | |
Collapse
|
43
|
Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; is it safe? Radiol Oncol 2011; 45:227-47. [PMID: 22933961 PMCID: PMC3423755 DOI: 10.2478/v10019-011-0037-0] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/27/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Titanium dioxide (TiO(2)) is considered as an inert and safe material and has been used in many applications for decades. However, with the development of nanotechnologies TiO(2) nanoparticles, with numerous novel and useful properties, are increasingly manufactured and used. Therefore increased human and environmental exposure can be expected, which has put TiO(2) nanoparticles under toxicological scrutiny. Mechanistic toxicological studies show that TiO(2) nanoparticles predominantly cause adverse effects via induction of oxidative stress resulting in cell damage, genotoxicity, inflammation, immune response etc. The extent and type of damage strongly depends on physical and chemical characteristics of TiO(2) nanoparticles, which govern their bioavailability and reactivity. Based on the experimental evidence from animal inhalation studies TiO(2) nanoparticles are classified as "possible carcinogenic to humans" by the International Agency for Research on Cancer and as occupational carcinogen by the National Institute for Occupational Safety and Health. The studies on dermal exposure to TiO(2) nanoparticles, which is in humans substantial through the use of sunscreens, generally indicate negligible transdermal penetration; however data are needed on long-term exposure and potential adverse effects of photo-oxidation products. Although TiO(2) is permitted as an additive (E171) in food and pharmaceutical products we do not have reliable data on its absorption, distribution, excretion and toxicity on oral exposure. TiO(2) may also enter environment, and while it exerts low acute toxicity to aquatic organisms, upon long-term exposure it induces a range of sub-lethal effects. CONCLUSIONS Until relevant toxicological and human exposure data that would enable reliable risk assessment are obtained, TiO(2) nanoparticles should be used with great care.
Collapse
Affiliation(s)
- Matej Skocaj
- Jožef Stefan Institute, Department for Nanostructured Materials, Ljubljana, Slovenia
| | - Metka Filipic
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia
| | - Jana Petkovic
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Ljubljana, Slovenia
| | - Sasa Novak
- Jožef Stefan Institute, Department for Nanostructured Materials, Ljubljana, Slovenia
| |
Collapse
|
44
|
Choi EJ, Lee S, Kim HH, Singh TSK, Choi JK, Choi HG, Suh WM, Lee SH, Kim SH. Suppression of dust mite extract and 2,4-dinitrochlorobenzene-induced atopic dermatitis by the water extract of Lindera obtusiloba. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:802-807. [PMID: 21762765 DOI: 10.1016/j.jep.2011.06.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/17/2011] [Accepted: 06/28/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Lindera obtusiloba has been used in traditional medicine for the treatment of inflammation and dermatitis. In this study, we investigated the effect of topical application of Lindera obtusiloba water extract (LOWE) on the house dust mite extract (Dermatophagoides farinae extract, DFE) and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD). MATERIALS AND METHODS We established AD model in BALB/c mice by repeated local exposure of DFE/DNCB to the ears. After a topical application of LOWE on the skin lesions, the epidermal thickness, mast cell infiltration, and serum immunoglobulin E (IgE) and histamine were measured. In addition, the gene expression of interleukin (IL)-4, IL-13, IL-31, and tumor necrosis factor (TNF)-α in the ears was assayed. RESULTS LOWE reduced AD symptoms based on ear thickness, histopathological analysis, and serum IgE levels. LOWE inhibited mast cell infiltration into the ear and elevation of serum histamine in AD model. Moreover, LOWE suppressed DFE/DNCB-induced expression of IL-4, IL-13, IL-31, and TNF-α in the ears. CONCLUSIONS Our results showed that topical application of LOWE exerts beneficial effects in AD symptoms, suggesting that LOWE might be a candidate for the treatment of AD.
Collapse
MESH Headings
- Administration, Cutaneous
- Animals
- Anti-Allergic Agents/administration & dosage
- Anti-Allergic Agents/chemistry
- Anti-Allergic Agents/isolation & purification
- Anti-Allergic Agents/pharmacology
- Antigens, Dermatophagoides
- Dermatitis, Atopic/chemically induced
- Dermatitis, Atopic/genetics
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Dermatitis, Atopic/prevention & control
- Dinitrochlorobenzene
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Ear
- Female
- Gene Expression Regulation/drug effects
- Histamine/blood
- Immunoglobulin E/blood
- Interleukin-13/genetics
- Interleukin-4/genetics
- Interleukins/genetics
- Lindera/chemistry
- Mast Cells/drug effects
- Mast Cells/immunology
- Mice
- Mice, Inbred BALB C
- Plant Extracts/administration & dosage
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Skin/drug effects
- Skin/immunology
- Skin/pathology
- Solvents/chemistry
- Time Factors
- Tumor Necrosis Factor-alpha/genetics
- Water/chemistry
Collapse
Affiliation(s)
- Eun-Ju Choi
- Division of Sport Science, College of Natural Sciences, Konkuk University, Chungbuk 380-702, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Iavicoli I, Leso V, Fontana L, Bergamaschi A. Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2011; 15:481-508. [PMID: 21744743 DOI: 10.1155/2012/964381] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent rapid advances in nanotechnology raise concerns about development, production route, and diffusion in industrial and consumer products of titanium dioxide nanoparticles (TiO2-NPs). In fact, compared to recent increase in applications of this nanomaterial, the health effects of human exposure have not been systematically investigated. The aim of this review was to provide a comprehensive overview on the current knowledge regarding the effects of TiO2-NPs on mammalian cells. EVIDENCE AND INFORMATION SOURCES This review is based on an analysis of the current literature on this topic. STATE OF THE ART Fine TiO2 particles have been considered as safe and to pose little risk to humans, suggesting that exposure to this material is relatively harmless. However, available data in the literature showed that TiO2-NPs can cause several adverse effects on mammalian cells such as increase of reactive oxygen species (ROS) production and cytokines levels, reduction of cell viability and proliferation, induction of apoptosis and genotoxicity. PERSPECTIVES AND CONCLUSIONS Additional research is needed to obtain up-to-date knowledge on health effects of TiO2-NPs and to avoid any potential risk correlated to their exposure. Consequently, future studies need to: (1) use an homogeneous and rigorous exposure classification to clarify how the physicochemical properties of TiO2-NPs correlate with their toxicological effects; (2) assess the potential adverse effects of low level exposures to TiO2-NPs, as most of the information currently available originates from studies in which exposure levels were excessively and unrealistically high; (3) identify the possible roles of TiO2-NPs in genotoxicity and carcinogenicity (4) carry out epidemiologic studies of exposed workers to provide an assessment of possible risks correlated to the occupational exposure to TiO2-NPs.
Collapse
Affiliation(s)
- I Iavicoli
- Institute of Occupational Medicine, School of Medicine, Catholic University of the Sacred Heart, Rome, Italy.
| | | | | | | |
Collapse
|
46
|
Choi EJ, Lee S, Hwang JS, Im SH, Jun CD, Lee HS, Kim SH. DA-9601 suppresses 2, 4-dinitrochlorobenzene and dust mite extract-induced atopic dermatitis-like skin lesions. Int Immunopharmacol 2011; 11:1260-4. [PMID: 21511060 DOI: 10.1016/j.intimp.2011.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/22/2011] [Accepted: 04/05/2011] [Indexed: 11/19/2022]
Abstract
DA-9601 (Stillen™) is a novel anti-peptic formulation prepared from the ethanol extracts of Artemisia asiatica possessing anti-oxidative, anti-allergic and anti-inflammatory activities. However, their effect on atopic dermatitis (AD) has not been studied yet. In this study, we report that topical application of DA-9601 suppressed house dust mite extract (Dermatophagoides farinae extract, DFE) and 2, 4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in BALB/c mice model. We established atopic dermatitis model in BALB/c mice by repeated local exposure of DFE/DNCB to the ears. Repeated alternative treatment of DFE/DNCB caused AD-like lesions. DA-9601 reduced AD-like skin lesions based on ear thickness and histopathological analysis, and serum IgE levels. DA-9601 inhibited mast cell infiltration into the ear and elevation of serum histamine in AD model. In addition, DA-9601 suppressed DFE/DNCB-induced expression of IL-4, IL-13, IL-31, and TNF-α in the ears. Taken together, our results showed that topical application of DA-9601 exerts beneficial effects in animal model of AD, suggesting that DA-9601 might be a candidate for the treatment of AD.
Collapse
Affiliation(s)
- Eun-Ju Choi
- Division of Sport Science, College of Natural Sciences, Konkuk University, Chungbuk 380-702, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Teow Y, Asharani PV, Hande MP, Valiyaveettil S. Health impact and safety of engineered nanomaterials. Chem Commun (Camb) 2011; 47:7025-38. [DOI: 10.1039/c0cc05271j] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
|
49
|
|
50
|
Fluid exudates from inflamed bone-anchored hearing aids demonstrate elevated levels of cytokines and biomarkers of tissue and bone metabolism. Otol Neurotol 2010; 31:433-9. [PMID: 20087242 DOI: 10.1097/mao.0b013e3181cddb78] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The purpose of the current study was to determine the presence of biomarkers of tissue and bone metabolism and 10 cytokines within the fluid exudate from around bone anchored hearing aids (BAHAs), with a view to understanding the mechanisms of peri-BAHA inflammation. STUDY DESIGN Fluid exudate from around BAHAs was collected from volunteers (n = 10) with inflammation and controls (n = 10) without inflammation around the BAHA. SETTING Studies of periodontitis and dental peri-implantitis have demonstrated that fluid exudate, arising from the hard tissue-soft tissue junction, is increased during disease; this fluid contains biomarkers of tissue metabolism, bone metabolism and inflammation. PATIENTS Volunteers were recruited from the Queen Elizabeth Hospital, Birmingham, UK and New Cross Hospital, Wolverhampton, UK. INTERVENTIONS This was an observational study and no interventions were carried out as part of the study. MAIN OUTCOME MEASURE Biomarkers of tissue metabolism (MMP9, TIMP1 and 2), bone metabolism (RANKL and OPG) and cytokines (GM-CSF, interferon (IFN)-*, IL-1A, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10 and TNF>) were measured in the fluid samples by Luminex multianalyte assay. RESULTS Volumes of fluid exudate were significantly higher (p < 0.05) at sites of inflammation than from un-inflamed tissues surrounding BAHAs. IL-1*, IL-6, IL-8, TNF*, MMP9, TIMP1 and 2 were found in both inflamed and un-inflamed samples and levels were significantly higher in samples from inflamed sites. RANKL, IFN*, IL-2, IL-4, and GM-CSF were detected only at inflamed sites whereas OPG, IL-5 and IL-10 were not detected in any samples. CONCLUSION These data demonstrate that peri-BAHA tissues showing clinical signs of inflammation are associated with increased fluid exudate, which contains elevated levels of key biomarkers of inflammation and a biomarker profile that is consistent with increased tissue and bone remodeling around BAHAs.
Collapse
|