1
|
Cen YY, Gao XL, Feng YH, Zhou C, Li CJ, Liu F, Shen JF, Zhang YY. The Double-Edged Effect of Connexins and Pannexins of Glial Cells in Central and Peripheral Nervous System After Nerve Injury. Mol Neurobiol 2025:10.1007/s12035-025-04991-6. [PMID: 40310549 DOI: 10.1007/s12035-025-04991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Glial cells play pivotal roles in homeostatic regulation and driving reactive pathologic changes after nerve injury. Connexins (Cxs) and pannexins (Panxs) have emerged as seminal proteins implicated in cell-cell communication, exerting a profound impact on the response processes of glial cell activation, proliferation, protein synthesis and secretion, as well as apoptosis following nerve injury. These influences are mediated through various forms, including protein monomers, hemichannel (HC), and gap junction (GJ), mainly by regulating intercellular or intracellular signaling pathways. Multiple Cx and Panx isoforms have been detected in central nervous system (CNS) or peripheral nervous system (PNS). Each isoform exhibits distinct cellular and subcellular localization, and the differential regulation and functional roles of various protein isoforms are observed post-injury. The quantitative and functional alterations of the same protein isoform in different studies remain inconsistent, attributable to factors such as the predominant mode of protein polymerization, the specific injury model, and the injury site. Similarly, the same protein isoforms have different roles in regulating the response processes after nerve injury, thus exerting a double-edged sword effect. This review describes the regulatory mechanisms and bidirectional effects of Cxs and Panxs. Additionally, it surveys the current status of research and application of drugs as therapeutic targets for neuropathic injuries. We summarize comprehensive and up-to-date information on these proteins in the glial cell response to nerve injury, providing new perspectives for future mechanistic exploration and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yue-Yan Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Lin Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Sedovy MW, Leng X, Leaf MR, Iqbal F, Payne LB, Chappell JC, Johnstone SR. Connexin 43 across the Vasculature: Gap Junctions and Beyond. J Vasc Res 2022; 60:101-113. [PMID: 36513042 PMCID: PMC11073551 DOI: 10.1159/000527469] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Connexin 43 (Cx43) is essential to the function of the vasculature. Cx43 proteins form gap junctions that allow for the exchange of ions and molecules between vascular cells to facilitate cell-to-cell signaling and coordinate vasomotor activity. Cx43 also has intracellular signaling functions that influence vascular cell proliferation and migration. Cx43 is expressed in all vascular cell types, although its expression and function vary by vessel size and location. This includes expression in vascular smooth muscle cells (vSMC), endothelial cells (EC), and pericytes. Cx43 is thought to coordinate homocellular signaling within EC and vSMC. Cx43 gap junctions also function as conduits between different cell types (heterocellular signaling), between EC and vSMC at the myoendothelial junction, and between pericyte and EC in capillaries. Alterations in Cx43 expression, localization, and post-translational modification have been identified in vascular disease states, including atherosclerosis, hypertension, and diabetes. In this review, we discuss the current understanding of Cx43 localization and function in healthy and diseased blood vessels across all vascular beds.
Collapse
Affiliation(s)
- Meghan W. Sedovy
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Translational Biology, Medicine, And Health Graduate Program, Virginia Tech, Blacksburg, VA, USA
| | - Xinyan Leng
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Melissa R. Leaf
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Farwah Iqbal
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Laura Beth Payne
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - John C. Chappell
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
| | - Scott R. Johnstone
- The Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Vascular and Heart Research, 4 Riverside Circle, Roanoke, VA, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
3
|
Gao RJ, Zhang AM, Jia QH, Dang ZT, Tian T, Zhang JR, Cao N, Tang XC, Ma KT, Li L, Si JQ. The promoting role of Cx43 on the proliferation and migration of arterial smooth muscle cells for angiotensin II-dependent hypertension. Pulm Pharmacol Ther 2021; 70:102072. [PMID: 34428599 DOI: 10.1016/j.pupt.2021.102072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies have shown that endothelin-1 and angiotensin II (AngII) can increase gap junctional intercellular communication (GJIC) by activating Mitogen-activated protein kinases (MAPKs) pathway. However, not only the precise interaction of AngII with Connexin43(Cx43) and the associated functions remain unclear, but also the regulatory role of Cx43 on the AngII-mediated promotion proliferation and migration of VSMCs is poorly understood. MATERIAL AND METHODS Our research applicated pressure myography measurements, immunofluorescence and Western blot analyses to investigate the changes in physiological indicators in spontaneously hypertensive rats (SHRs) and AngII-stimulated proliferation and migration of A7r5 SMCs(Rat vascular smooth muscle cells). The aim was to elucidate the role of CX43 in hypertension induced by AngII. RESULTS Chronic ramipril (angiotensin converting enzyme inhibitor) management for SHRs significantly attenuated blood pressure and blood vessel wall thickness, also reduced contraction rate in the cerebral artery. The cerebral artery contraction rates, mRNA and protein expression of Cx43, osteopontin (OPN) and proliferating cell nuclear antigen (PCNA) protein expression in the SHR + ramipril and SHR + ramipril + carbenoxolone (CBX, Cx43 specific blocker) groups were significantly lower than those in the SHR group. Cx43 protein expression and Ser368 phosphorylated Cx43 protein levels increased significantly in AngII-stimulated A7r5 cells. However, the levels of phosphorylated Cx43 decreased after pre-treatment with candesartan (AT1 receptor blocker), GF109203X (protein kinase C (PKC) blocker) and U0126 (mitogen-activated protein kinases/extracellular signal-regulated kinase1/2(MEK/ERK1/2)-specific blocker) in AngII-stimulated A7r5 cells. Cx43 was widely distributed in the cell membrane, nucleus, and cytoplasm of the SMCs. Furthermore, pre-treatment of the AngII- stimulated A7r5 cells with Gap26 (Cx43 blocker) significantly inhibited cell migration and decreased the expression levels of MEK1/2, ERK1/2, P-MEK1/2, and P-ERK1/2. CONCLUSION Our research confirms that Cx43 plays an important role in the regulation of proliferation and migration of VSMCs via MEK/ERK and PKC signal pathway in AngII-dependent hypertension.
Collapse
Affiliation(s)
- Rui-Juan Gao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Radiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ai-Mei Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Cardiology, First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Qi-Hua Jia
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Zi-Ting Dang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Commerce, Shanxi Institute of International Trade & Commerce, Xianyang, 712046, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Tian Tian
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Jing-Rong Zhang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Nan Cao
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Xue-Chun Tang
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Ke-Tao Ma
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, 314001, China.
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China; Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, 430070, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832002, China.
| |
Collapse
|
4
|
Cx43 phosphorylation sites regulate pancreatic cancer metastasis. Oncogene 2021; 40:1909-1920. [PMID: 33603164 PMCID: PMC8191514 DOI: 10.1038/s41388-021-01668-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 01/18/2021] [Indexed: 01/30/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is aggressive, highly metastatic and characterized by a robust desmoplasia. Connexin proteins that form gap junctions have been implicated in tumor suppression for over 30 years. Cx43, the most widely expressed connexin, regulates cell behaviors, including migration and proliferation. Thus, we hypothesized that Cx43 could regulate PDA progression. Phosphorylation of Cx43 by Casein Kinase 1 (CK1) regulates gap junction assembly. We interbred the well-established KrasLSL-G12D/+;p48Cre/+ (KC) mouse model of PDA with homozygous "knock-in" mutant Cx43 mice bearing amino acid substitution at CK1 sites (Cx43CK1A) and found profound and surprising effects on cancer progression. Crossing the Cx43CK1A mouse onto the KC background (termed KC;CxCK1A) led to significant extension of lifespan, from a median of 370 to 486 days (p = 0.03) and a decreased incidence of metastasis (p = 0.045). However, when we examined early stages of disease, we found more rapid onset of tissue remodeling in the KC;CxCK1A mouse followed by divergence to a cystic phenotype. During tumorigenesis, gap junctions are increasingly present in stromal cells of the KC mice but are absent from the KC;Cx43CK1A mice. Tail vein metastasis assays with cells derived from KC or KC;CxCK1A tumors showed that KC;CxCK1A cells could efficiently colonize the lung and downregulate Cx43 expression, arguing that inhibition of metastasis was not occurring at the distal site. Instead, stromal gap junctions, their associated signaling events or other unknown Cx43-dependent events facilitate metastatic capacity in the primary tumor.
Collapse
|
5
|
Dufeys C, Daskalopoulos EP, Castanares-Zapatero D, Conway SJ, Ginion A, Bouzin C, Ambroise J, Bearzatto B, Gala JL, Heymans S, Papageorgiou AP, Vinckier S, Cumps J, Balligand JL, Vanhaverbeke M, Sinnaeve P, Janssens S, Bertrand L, Beauloye C, Horman S. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol 2021; 116:10. [PMID: 33564961 PMCID: PMC7873123 DOI: 10.1007/s00395-021-00846-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
We have previously demonstrated that systemic AMP-activated protein kinase α1 (AMPKα1) invalidation enhanced adverse LV remodelling by increasing fibroblast proliferation, while myodifferentiation and scar maturation were impaired. We thus hypothesised that fibroblastic AMPKα1 was a key signalling element in regulating fibrosis in the infarcted myocardium and an attractive target for therapeutic intervention. The present study investigates the effects of myofibroblast (MF)-specific deletion of AMPKα1 on left ventricular (LV) adaptation following myocardial infarction (MI), and the underlying molecular mechanisms. MF-restricted AMPKα1 conditional knockout (cKO) mice were subjected to permanent ligation of the left anterior descending coronary artery. cKO hearts exhibit exacerbated post-MI adverse LV remodelling and are characterised by exaggerated fibrotic response, compared to wild-type (WT) hearts. Cardiac fibroblast proliferation and MF content significantly increase in cKO infarcted hearts, coincident with a significant reduction of connexin 43 (Cx43) expression in MFs. Mechanistically, AMPKα1 influences Cx43 expression by both a transcriptional and a post-transcriptional mechanism involving miR-125b-5p. Collectively, our data demonstrate that MF-AMPKα1 functions as a master regulator of cardiac fibrosis and remodelling and might constitute a novel potential target for pharmacological anti-fibrotic applications.
Collapse
Affiliation(s)
- Cécile Dufeys
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Evangelos-Panagiotis Daskalopoulos
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Diego Castanares-Zapatero
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Audrey Ginion
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Jean-Luc Gala
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCL, Brussels, Belgium
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Anna-Pia Papageorgiou
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
| | - Stefan Vinckier
- Center for Cancer Biology, University of Leuven and VIB, Louvain, Belgium
| | - Julien Cumps
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Jean-Luc Balligand
- Pôle de Pharmacologie et de Thérapeutique (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Maarten Vanhaverbeke
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Peter Sinnaeve
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, Louvain, Belgium
- Department of Cardiovascular Medicine, Leuven University Hospitals, Louvain, Belgium
| | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), 55, Avenue Hippocrate, 1200, Brussels, Belgium.
| |
Collapse
|
6
|
Tirosh A, Tuncman G, Calay ES, Rathaus M, Ron I, Tirosh A, Yalcin A, Lee YG, Livne R, Ron S, Minsky N, Arruda AP, Hotamisligil GS. Intercellular Transmission of Hepatic ER Stress in Obesity Disrupts Systemic Metabolism. Cell Metab 2021; 33:319-333.e6. [PMID: 33340456 PMCID: PMC7858244 DOI: 10.1016/j.cmet.2020.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/30/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum stress (ERS) has a pathophysiological role in obesity-associated insulin resistance. Yet, the coordinated tissue response to ERS remains unclear. Increased connexin 43 (Cx43)-mediated intercellular communication has been implicated in tissue-adaptive and -maladaptive response to various chronic stresses. Here, we demonstrate that in hepatocytes, ERS results in increased Cx43 expression and cell-cell coupling. Co-culture of ER-stressed "donor" cells resulted in intercellular transmission of ERS and dysfunction to ERS-naive "recipient" cells ("bystander response"), which could be prevented by genetic or pharmacologic suppression of Cx43. Hepatocytes from obese mice were able to transmit ERS to hepatocytes from lean mice, and mice lacking liver Cx43 were protected from diet-induced ERS, insulin resistance, and hepatosteatosis. Taken together, our results indicate that in obesity, the increased Cx43-mediated cell-cell coupling allows intercellular propagation of ERS. This novel maladaptive response to over-nutrition exacerbates the tissue ERS burden, promoting hepatosteatosis and impairing whole-body glucose metabolism.
Collapse
Affiliation(s)
- Amir Tirosh
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Harvard Medical School, Boston, MA 02115, USA.
| | - Gurol Tuncman
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ediz S Calay
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Moran Rathaus
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Tirosh
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abdullah Yalcin
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Adnan Menderes Üniversitesi Medical School, Department of Medical Biology, 09100 Aydin, Turkey
| | - Yankun G Lee
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Rinat Livne
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Ron
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Neri Minsky
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, 52621 Tel-HaShomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ana Paula Arruda
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Gökhan S Hotamisligil
- Sabri Ülker Center for Metabolic Research, Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
7
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
8
|
Fan Y, Zhu S, Wang J, Zhao Y, Wang X. Propofol protects against oxygen/glucose deprivation‑induced cell injury via gap junction inhibition in astrocytes. Mol Med Rep 2020; 22:2896-2904. [PMID: 32945367 PMCID: PMC7453496 DOI: 10.3892/mmr.2020.11357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022] Open
Abstract
Stroke is one of the leading causes of mortality and disability worldwide with limited clinical therapies available. The present study isolated primary astrocytes from the brains of rats and treated them with oxygen-glucose deprivation and re-oxygenation (OGD/R) to mimic hypoxia/reperfusion (H/R) injury in vitro to investigate stroke. It was revealed that propofol (2,6-diisopropylphenol), an intravenous sedative and anesthetic agent, protected against oxygen/glucose-deprivation (OGD) and induced cell injury. Furthermore, propofol exerted a protective effect by inhibiting gap junction function, which was also revealed to promote cell death in astrocytes. The present study further identified that propofol suppressed gap junction function by downregulating the protein expression levels of connexin43 (Cx43), which is one of the most essential components of gap junctions in astrocytes. In addition, when the expression levels of Cx43 were downregulated using small interfering RNA, OGD/R-induced cell death was decreased. Conversely, cell death was enhanced when Cx43 was overexpressed, which was reversed following propofol treatment. In summary, propofol protects against OGD-induced injury in astrocytes by decreasing the protein expression levels of Cx43 and suppressing gap junction function. The present study improved our understanding of how propofol protects astrocytes from OGD/R-induced injury.
Collapse
Affiliation(s)
- Yanting Fan
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Siyu Zhu
- Department of Medical Imaging, Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jing Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yuping Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Xudong Wang
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat‑sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
9
|
Abstract
Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.
Collapse
Affiliation(s)
- Ulrich Pohl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Planegg-Martinsried, Germany; Biomedical Centre, Cardiovascular Physiology, LMU Munich, Planegg-Martinsried, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
10
|
Expression and functional regulation of gap junction protein connexin 43 in dermal mesenchymal stem cells from psoriasis patients. Acta Histochem 2020; 122:151550. [PMID: 32303340 DOI: 10.1016/j.acthis.2020.151550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Psoriasis is a chronic recurrent inflammatory disease. Mesenchymal stem cells (MSCs) can regulate the inflammatory microenvironment, thereby controlling the proliferation, differentiation, and migration of immune cells. Connexin 43(Cx43), a key gap junction protein, has been shown to form gap junctions for communication between neighboring cells. OBJECTIVE We investigated the expression of Cx43 in dermal mesenchymal stem cells (DMSCs) derived from psoriasis patients and explored the relationship between the Cx43-mediated gap junction intercellular communication (GJIC) and DMSCs. METHODS Human DMSCs were isolated and propagated in adherent culture. Quantitative real-time reverse transcription PCR and western blot and immunofluorescence were used to detect the expression and localization of Cx43 in DMSCs. Fluorescence redistribution after photobleaching was performed to assess adjacent DMSCs GJIC. CCK8 was used to detect the proliferation of DMSCs before and after gap junction blocker (18α-glycyrrhetinic acid; AGA) treatment. Cell energy metabolism was analyzed with an energy metabolism analyzer. RESULTS Cx43 was located in the cytoplasm and cytomembrane, as well as partially in the nucleus of DMSCs. The expression of Cx43 in psoriasis DMSCs was higher than that in control samples and the gap junction function was enhanced. In addition, the glycolysis and mitochondrial respiration of psoriasis DMSCs were also enhanced. However, AGA inhibited the expression of Cx43, attenuated GJIC function, and inhibited the proliferation of DMSCs. CONCLUSIONS Our results indicated that the expression of Cx43 in DMSCs from psoriasis lesions is increased and that the inhibition of Cx43 leads to the inhibition of both GJIC and DMSCs proliferation.
Collapse
|
11
|
Wang M, Wu Y, Yu Y, Fu Y, Yan H, Wang X, Li T, Peng W, Luo D. Rutaecarpine prevented ox-LDL-induced VSMCs dysfunction through inhibiting overexpression of connexin 43. Eur J Pharmacol 2019; 853:84-92. [PMID: 30880182 DOI: 10.1016/j.ejphar.2019.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 01/29/2023]
Abstract
Overexpression of connexin 43 (Cx43) was related to dysfunction of vascular smooth muscle cells (VSMCs). Our previous study reported that rutaecarpine, an active ingredient of herbal medicine Evodia, modulated connexins expression in human umbilical vein endothelial cells. This study aims to explore the effects of rutaecarpine on Cx43 expression and VSMCs dysfunction induced by oxidized low-density lipoprotein (ox-LDL). In cultured rat thoracic aortic VSMCs, ox-LDL upregulated the level of Cx43 in a time- and dose-dependent manner, which were abolished by the NF-κB inhibitor BAY11-7082 and PDTC. Furthermore, exposure to ox-LDL for 4 h induced the nuclear translocation of the NF-κB p65 in VMSCs. Ox-LDL (50 mg/l,48 h) induced dysfunction of VSMCs, demonstrated as excessive proliferation, migration, and phenotype switch of cells, which were attenuated by treatment with Cx43 gap junction blocker Gap26(100 μM)) or rutaecarpine (1, 3, and 10 µM). Rutaecarpine inhibited ox-LDL-induced upregulation of Cx43, prevented nuclear translocation of the NF-κB p65, and increased intracellular calcium level in VSMCs. These effects were abolished by pretreatment with transient receptor potential vanilloid subtype 1 (TRPV1) antagonist capsazepine, intracellular calcium chelator BAPTA-AM or CaM antagonist W-7. In conclusion, this study demonstrated that rutaecarpine inhibited Cx43 overexpression through TRPV1/[Ca2+]i/CaM/NF-κB signal pathway, thereby preventing VSMCs dysfunction induced by ox-LDL. Our study provides a novel mechanism by which rutaecarpine modulate Cx43 expression and VSMC function.
Collapse
Affiliation(s)
- Meiling Wang
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| | - Yusi Wu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China; Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, Hunan, PR China
| | - Yanrong Yu
- Jiangxi Academy of Medical Science, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| | - Yanqi Fu
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| | - Hang Yan
- School of Pharmaceutics, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| | - Xiaoying Wang
- School of Pharmaceutics, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| | - Weijie Peng
- School of Pharmaceutics, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China; Jiangxi Academy of Medical Science, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| | - Dan Luo
- Department of Physiology, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Bayi Road 461, Nanchang 330006, Jiangxi Province, PR China
| |
Collapse
|
12
|
Li L, Liu H, Xu C, Deng M, Song M, Yu X, Xu S, Zhao X. VEGF promotes endothelial progenitor cell differentiation and vascular repair through connexin 43. Stem Cell Res Ther 2017; 8:237. [PMID: 29065929 PMCID: PMC5655878 DOI: 10.1186/s13287-017-0684-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023] Open
Abstract
Background Endothelial progenitor cell (EPC) differentiation is considered crucial for vascular repair. Vascular endothelial growth factor (VEGF) induces EPC differentiation, but the underlying mechanism of this phenomenon remains unclear. Connexin 43 (Cx43) is reported to be involved in the regulation of stem cell differentiation. Therefore, we sought to determine whether Cx43 is involved in VEGF-induced EPC differentiation and vascular repair. Methods Rat spleen-derived EPCs were cultured and treated with various concentrations of VEGF (0, 10, or 50 ng/mL), and the relationship between EPC differentiation and Cx43 expression was evaluated. Thereafter, fluorescence redistribution after photobleaching was performed to assess the relationship between adjacent EPC differentiation and Cx43-induced gap junction intercellular communication (GJIC). After carotid artery injury, EPCs pretreated with VEGF were injected into the tail veins, and the effects of Cx43 on vascular repair were evaluated. Results EPCs cultured with VEGF exhibited accelerated differentiation and increased expression of Cx43. However, inhibition of Cx43 expression using short interfering RNA (siRNA) attenuated EPC GJIC and consequent EPC differentiation. VEGF-pretreated EPC transplantation promoted EPC homing and reendothelialization, and inhibited neointimal formation. These effects were attenuated by siRNA inhibition of Cx43. Conclusions Our results from in vivo and in vitro experiments indicated that VEGF promotes EPC differentiation and vascular repair through Cx43. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0684-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lufeng Li
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Huanyun Liu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.,Cardiovascular Department, First People's Hospital of Chong Qing Liang Jiang New Zone, Chongqing, 401120, China
| | - Chunxin Xu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mengyang Deng
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Mingbao Song
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xuejun Yu
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Shangcheng Xu
- Department of Occupational Health, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohui Zhao
- Institute of Cardiovascular Research, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
13
|
Li H, Xiang Y, Fan LJ, Zhang XY, Li JP, Yu CX, Bao LY, Cao DS, Xing WB, Liao XH, Zhang TC. Myocardin inhibited the gap protein connexin 43 via promoted miR-206 to regulate vascular smooth muscle cell phenotypic switch. Gene 2017; 616:22-30. [PMID: 28342807 DOI: 10.1016/j.gene.2017.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 11/15/2022]
Abstract
Myocardin is regarded as a key mediator for the change of smooth muscle phenotype. The gap junction protein connexin 43 (Cx43) has been shown to be involved in vascular smooth muscle cells (VSMCs) proliferation and the development of atherosclerosis. However, the role of myocardin on gap junction of cell communication and the relation between myocardin and Cx43 in VSMC phenotypic switch has not been investigated. The goal of the present study is to investigate the molecular mechanism by which myocardin affects Cx43-regulated VSMC proliferation. Data presented in this study demonstrated that inhibition of the Cx43 activation process impaired VSMC proliferation. On the other hand, overexpression miR-206 inhibited VSMC proliferation. In additon, miR-206 silences the expression of Cx43 via targeting Cx43 3' Untranslated Regions. Importantly, myocardin can significantly promote the expression of miR-206. Cx43 regulates VSMCs' proliferation and metastasis through miR-206, which could be promoted by myocardin and used as a marker for diagnosis and a target for therapeutic intervention. Thus myocardin affected the gap junction by inhibited Cx43 and myocardin-miR-206-Cx43 formed a loop to regulate VSMC phenotypic switch.
Collapse
Affiliation(s)
- Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Li-Juan Fan
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xiao-Yu Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Le-Yuan Bao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Dong-Sun Cao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Wei-Bing Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China.
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, 430000, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, 300457, PR China.
| |
Collapse
|
14
|
Begandt D, Good ME, Keller AS, DeLalio LJ, Rowley C, Isakson BE, Figueroa XF. Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biol 2017; 18:2. [PMID: 28124621 PMCID: PMC5267334 DOI: 10.1186/s12860-016-0119-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Control of blood flow distribution and tissue homeostasis depend on the tight regulation of and coordination between the microvascular network and circulating blood cells. Channels formed by connexins or pannexins that connect the intra- and extracellular compartments allow the release of paracrine signals, such as ATP and prostaglandins, and thus play a central role in achieving fine regulation and coordination of vascular function. This review focuses on vascular connexin hemichannels and pannexin channels. We review their expression pattern within the arterial and venous system with a special emphasis on how post-translational modifications by phosphorylation and S-nitrosylation of these channels modulate their function and contribute to vascular homeostasis. Furthermore, we highlight the contribution of these channels in smooth muscle cells and endothelial cells in the regulation of vasomotor tone as well as how these channels in endothelial cells regulate inflammatory responses such as during ischemic and hypoxic conditions. In addition, this review will touch on recent evidence implicating a role for these proteins in regulating red blood cell and platelet function.
Collapse
Affiliation(s)
- Daniela Begandt
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Miranda E Good
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Alex S Keller
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Leon J DeLalio
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Carol Rowley
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Xavier F Figueroa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
15
|
HAN XIAOJIAN, HE DAN, XU LIANGJING, CHEN MIN, WANG YIQI, FENG JIUGENG, WEI MINJUN, HONG TAO, JIANG LIPING. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells. Int J Mol Med 2015; 36:1361-8. [DOI: 10.3892/ijmm.2015.2346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/24/2015] [Indexed: 11/05/2022] Open
|
16
|
Meens MJ, Kwak BR, Duffy HS. Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci 2015; 72:2779-92. [PMID: 26091747 PMCID: PMC11113959 DOI: 10.1007/s00018-015-1959-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/26/2022]
Abstract
Connexins and pannexins form connexons, pannexons and membrane channels, which are critically involved in many aspects of cardiovascular physiology. For that reason, a vast number of studies have addressed the role of connexins and pannexins in the arterial and venous systems as well as in the heart. Moreover, a role for connexins in lymphatics has recently also been suggested. This review provides an overview of the current knowledge regarding the involvement of connexins and pannexins in cardiovascular physiology.
Collapse
Affiliation(s)
- Merlijn J. Meens
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Department of Medical Specializations-Cardiology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
17
|
Hu W, Wang M, Yin H, Yao C, He Q, Yin L, Zhang C, Li W, Chang G, Wang S. MicroRNA-1298 is regulated by DNA methylation and affects vascular smooth muscle cell function by targeting connexin 43. Cardiovasc Res 2015; 107:534-45. [PMID: 26025955 DOI: 10.1093/cvr/cvv160] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 05/07/2015] [Indexed: 11/14/2022] Open
Abstract
AIMS Growing evidence links microRNA to the process of peripheral vascular disease. Recently, we have found that microRNA-1298(miR-1298) is one of the most significantly down-regulated microRNAs in human arteries with arteriosclerosis obliterans (ASO) of the lower extremities. However, little is known regarding its role in the process of ASO. The present study aimed to investigate the expression, regulatory mechanisms, and functions of miR-1298 in the process of ASO. METHODS AND RESULTS Using quantitative reverse-transcription PCR and in situ hybridization assays, miR-1298 was observed predominantly expressed in the vascular smooth muscle cells (VSMCs) and was significantly down-regulated in ASO compared with normal arteries. Pyrosequencing analysis revealed that the miR-1298 DNA upstream of CpG sites were hypermethylated in ASO compared with normal arteries. Next, the luciferase reporter assay revealed that miR-1298 down-regulation is related with upstream DNA CpG site hypermethylation. Introducing a miR-1298 mimic into cultured VSMCs significantly attenuated cell proliferation and migration. Connexin 43 (Cx43) was validated to be a functional target of miR-1298 that was involved in the miR-1298-mediated cellular effects. Finally, lentivirus-mediated delivery of miR-1298 and its target Cx43 into a rat carotid balloon injury model indicated that re-overexpression of miR-1298 significantly decreased neointimal formation by targeting connexin 43. CONCLUSION Our data demonstrate a specific role of the upstream DNA methylation/miR-1298/Cx43 pathway in regulating VSMC function and suggest that modulation of miR-1298 levels may offer a novel therapeutic approach for ASO.
Collapse
Affiliation(s)
- Wei Hu
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Mian Wang
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Henghui Yin
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Chen Yao
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Qiong He
- Department of Pathology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Leping Yin
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Chunxiang Zhang
- Department of Pharmacology, Rush University Medical Center, Chicago, USA
| | - Wen Li
- Laboratory of General Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangqi Chang
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| | - Shenming Wang
- Division of Vascular Surgery, The Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The Vascular Surgical Disease Research Center of Guangdong Province, First Affiliated Hospital, Sun Yat-sen University, 58 Zhong Shan Er Road, Guangzhou, Guangdong 510080, China
| |
Collapse
|
18
|
Schalper KA, Carvajal-Hausdorf D, Oyarzo MP. Possible role of hemichannels in cancer. Front Physiol 2014; 5:237. [PMID: 25018732 PMCID: PMC4073485 DOI: 10.3389/fphys.2014.00237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022] Open
Abstract
In humans, connexins (Cxs) and pannexins (Panxs) are the building blocks of hemichannels. These proteins are frequently altered in neoplastic cells and have traditionally been considered as tumor suppressors. Alteration of Cxs and Panxs in cancer cells can be due to genetic, epigenetic and post-transcriptional/post-translational events. Activated hemichannels mediate the diffusional membrane transport of ions and small signaling molecules. In the last decade hemichannels have been shown to participate in diverse cell processes including the modulation of cell proliferation and survival. However, their possible role in tumor growth and expansion remains largely unexplored. Herein, we hypothesize about the possible role of hemichannels in carcinogenesis and tumor progression. To support this theory, we summarize the evidence regarding the involvement of hemichannels in cell proliferation and migration, as well as their possible role in the anti-tumor immune responses. In addition, we discuss the evidence linking hemichannels with cancer in diverse models and comment on the current technical limitations for their study.
Collapse
Affiliation(s)
- Kurt A Schalper
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile ; Department of Pathology, Yale School of Medicine New Haven, CT, USA
| | | | - Mauricio P Oyarzo
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
19
|
Morel S. Multiple roles of connexins in atherosclerosis- and restenosis-induced vascular remodelling. J Vasc Res 2014; 51:149-61. [PMID: 24853725 DOI: 10.1159/000362122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Abstract
Endothelial dysfunction is the initial step in atherosclerotic plaque development in large- and medium-sized arteries. This progressive disease, which starts during childhood, is characterized by the accumulation of lipids, macrophages, neutrophils, T lymphocytes and smooth muscle cells in the intima of the vessels. Erosion and rupture of the atherosclerotic plaque may induce myocardial infarction and cerebrovascular accidents, which are responsible for a large percentage of sudden deaths. The most common treatment for atherosclerosis is angioplasty and stent implantation, but these surgical interventions favour a vascular reaction called restenosis and the associated de-endothelialization increases the risk of thrombosis. This review provides an overview of the role of connexins, a large family of transmembrane proteins, in vascular remodelling associated with atherosclerosis and restenosis. The connexins expressed in the vascular wall are Cx37, Cx40, Cx43 and Cx45; their expressions vary with vascular territory and species. Connexins form hemichannels or gap junction channels, allowing the exchange of ions and small metabolites between the cytosol and extracellular space or between neighbouring cells, respectively. Connexins have important roles in vascular physiology; they support radial and longitudinal cell-to-cell communication in the vascular wall, and significant changes in their expression patterns have been described during atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Zhang J, Chen J, Xu C, Yang J, Guo Q, Hu Q, Jiang H. Resveratrol inhibits phenotypic switching of neointimal vascular smooth muscle cells after balloon injury through blockade of Notch pathway. J Cardiovasc Pharmacol 2014; 63:233-239. [PMID: 24603118 DOI: 10.1097/fjc.0000000000000040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Phenotypic switching of vascular smooth muscle cells (VSMCs) plays an initial role in neointimal hyperplasia, the main cause of many occlusive vascular diseases. The aim of this study was to measure the effects of resveratrol (RSV) on the phenotypic transformation of VSMCs and to investigate its mechanism of action. METHODS Cultured VSMCs isolated from rat thoracic aorta were prepared with serum starvation for 72 hours followed by RSV treatment (50-200 μmol/L) and 10% serum stimulation. Male Sprague-Dawley rats, subjected to carotid arteries injury from a balloon catheter, were exposed to intraperitoneal injection of RSV (1 mg/kg) or saline and were killed after 7 or 28 days. RESULTS Compared with cells in the serum-induced group, VSMCs in the RSV or N-[N-(3, 5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment group exhibited significant decreases of proliferation and migration. The total and cytoplasmic Notch-1 levels were declined by RSV, accompanied by a significant increase in smooth muscle α-actin and smooth muscle myosin heavy chain protein. The expression of Notch-1, Jagged-1, Hey-1, and Hey-2 mRNA in balloon-injured arteries at 7 days was decreased by RSV treatment. Arteries from RSV-treated rats showed less neointimal hyperplasia, lower collagen content, and a lower rate of cells positive for proliferating cell nuclear antigen 28 days after injury, compared with saline controls. CONCLUSIONS The results indicate that RSV can attenuate phenotypic switching of VSMCs after arterial injury through inhibition of the Notch pathway.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/pathology
- Carotid Arteries/drug effects
- Carotid Arteries/pathology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cells, Cultured
- Disease Models, Animal
- Hyperplasia/prevention & control
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neointima/prevention & control
- Rats
- Rats, Sprague-Dawley
- Receptor, Notch1/genetics
- Resveratrol
- Stilbenes/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Jing Zhang
- *Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; †Departments of Cardiology; and ‡Ophthalmology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Dubuis C, May L, Alonso F, Luca L, Mylonaki I, Meda P, Delie F, Jordan O, Déglise S, Corpataux JM, Saucy F, Haefliger JA. Atorvastatin-loaded hydrogel affects the smooth muscle cells of human veins. J Pharmacol Exp Ther 2013; 347:574-81. [PMID: 24071735 DOI: 10.1124/jpet.113.208769] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intimal hyperplasia (IH) is the major cause of stenosis of vein grafts. Drugs such as statins prevent stenosis, but their systemic administration has limited effects. We developed a hyaluronic acid hydrogel matrix, which ensures a controlled release of atorvastatin (ATV) at the site of injury. The release kinetics demonstrated that 100% of ATV was released over 10 hours, independent of the loading concentration of the hydrogel. We investigated the effects of such a delivery on primary vascular smooth muscle cells isolated from human veins. ATV decreased the proliferation, migration, and passage of human smooth muscle cells (HSMCs) across a matrix barrier in a similar dose-dependent (5-10 µM) and time-dependent manner (24-72 hours), whether the drug was directly added to the culture medium or released from the hydrogel. Expression analysis of genes known to be involved in the development of IH demonstrated that the transcripts of both the gap junction protein connexin43 (Cx43) and plasminogen activator inhibitor-1 (PAI-1) were decreased after a 24-48-hour exposure to the hydrogel loaded with ATV, whereas the transcripts of the heme oxygenase (HO-1) and the inhibitor of tissue plasminogen activator were increased. At the protein level, Cx43, PAI-1, and metalloproteinase-9 expression were decreased, whereas HO-1 was upregulated in the presence of ATV. The data demonstrate that ATV released from a hydrogel has effects on HSMCs similar to the drug being freely dissolved in the environment.
Collapse
Affiliation(s)
- Céline Dubuis
- Department of Thoracic and Vascular Surgery, University Hospital, Laboratory of Experimental Medicine, Lausanne, Switzerland (C.D., L.M., F.A., S.D., J.-M.C., F.S., J.-A.H.); School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland (L.L., I.M., F.D., O.J.); and Department of Cell Physiology and Metabolism, University of Geneva, Medical Center, Geneva, Switzerland (P.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kiyan Y, Kurselis K, Kiyan R, Haller H, Chichkov BN, Dumler I. Urokinase receptor counteracts vascular smooth muscle cell functional changes induced by surface topography. Theranostics 2013; 3:516-26. [PMID: 23843899 PMCID: PMC3706695 DOI: 10.7150/thno.4119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials.
Collapse
Affiliation(s)
- Yulia Kiyan
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Kestutis Kurselis
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Roman Kiyan
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Hermann Haller
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Boris N. Chichkov
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Inna Dumler
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| |
Collapse
|
23
|
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
24
|
Lin YC, Chiang CH, Chang LT, Sun CK, Leu S, Shao PL, Hsieh MC, Tsai TH, Chua S, Chung SY, Kao YH, Yip HK. Simvastatin attenuates the additive effects of TNF-α and IL-18 on the connexin 43 up-regulation and over-proliferation of cultured aortic smooth muscle cells. Cytokine 2013; 62:341-51. [DOI: 10.1016/j.cyto.2013.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 02/03/2023]
|
25
|
Bol M, Van Geyt C, Baert S, Decrock E, Wang N, De Bock M, Gadicherla AK, Randon C, Evans WH, Beele H, Cornelissen R, Leybaert L. Inhibiting connexin channels protects against cryopreservation-induced cell death in human blood vessels. Eur J Vasc Endovasc Surg 2013; 45:382-90. [PMID: 23352273 DOI: 10.1016/j.ejvs.2012.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Cryopreserved blood vessels are being increasingly employed in vascular reconstruction procedures but freezing/thawing is associated with significant cell death that may lead to graft failure. Vascular cells express connexin proteins that form gap junction channels and hemichannels. Gap junction channels directly connect the cytoplasm of adjacent cells and may facilitate the passage of cell death messengers leading to bystander cell death. Two hemichannels form a gap junction channel but these channels are also present as free non-connected hemichannels. Hemichannels are normally closed but may open under stressful conditions and thereby promote cell death. We here investigated whether blocking gap junctions and hemichannels could prevent cell death after cryopreservation. MATERIALS AND METHODS Inclusion of Gap27, a connexin channel inhibitory peptide, during cryopreservation and thawing of human saphenous veins and femoral arteries was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assays and histological examination. RESULTS We report that Gap27 significantly reduces cell death in human femoral arteries and saphenous veins when present during cryopreservation/thawing. In particular, smooth muscle cell death was reduced by 73% in arteries and 71% in veins, while endothelial cell death was reduced by 32% in arteries and 51% in veins. CONCLUSIONS We conclude that inhibiting connexin channels during cryopreservation strongly promotes vascular cell viability.
Collapse
Affiliation(s)
- M Bol
- Department of Basic Medical Sciences - Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent 9000, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
OBJECTIVES Pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis associated with chronic pancreatitis and pancreatic cancer. Connexins (Cxs) allow direct intercellular communications as components of gap junction but also play important roles in the regulation of cell proliferation, cell differentiation, and tissue development. We here examined the expression of Cxs and Cx-mediated regulation of cell functions in PSCs. METHODS Human PSCs were isolated from patients undergoing operation for chronic pancreatitis or pancreatic cancer. The expression of Cxs was examined by reverse transcription polymerase chain reaction, Western blotting, and immunofluorescent staining. The roles of Cxs in PSC functions were examined by using carbenoxolone, a broad-spectrum Cx inhibitor, and small interfering RNA for Cx43. RESULTS Human activated PSCs expressed a variety of Cxs including Cx43 both in vitro and in vivo. Carbenoxolone inhibited platelet-derived growth factor-BB-induced proliferation and migration, and type I collagen expression in PSCs. In addition, carbenoxolone inhibited the activation of quiescent PSCs to a myofibroblastlike phenotype. Decreased Cx43 expression by small interfering RNA resulted in decreased proliferation and type I collagen expression. CONCLUSIONS Pancreatic stellate cells expressed a variety of Cxs. Connexins, especially Cx43, might regulate the cell functions and activation of PSCs.
Collapse
|
27
|
Abstract
In the renal vasculature of humans, rats, and mice, at least four isoforms of Cx, Cxs 37, 40, 43, and 45 are expressed. In the ECs, Cx40 is the predominantly expressed Cx, whereas Cx45 is suggested to be expressed in the VSMCs. The preglomerular vasculature has a higher expression of Cxs than the postglomerular vasculature. Cxs form gap junctions between neighboring cells, and as in other organ systems, the major function of Cxs in the kidney appears to be mediation of intercellular communication. Cxs may also form hemichannels that allow cellular secretion of signaling molecules like ATP, and thereby mediate paracrine signaling. Renal Cxs facilitate vascular conduction, juxtaglomerlar apparatus calcium signaling, and enable ECs and VSMCs to communicate. Thus, current research suggests multiple roles for Cxs in important regulatory mechanisms within the kidney, including the renin-angiotensin system, TGF, and salt and water homeostasis. Interestingly, changes in the activity of the renin-angiotensin system or changes in blood pressure seem to affect the expression of the renal vascular Cxs. At the systemic level, renal Cxs may be involved in blood pressure regulation, and possibly in the pathogenesis of hypertension and diabetes.
Collapse
Affiliation(s)
- Charlotte Mehlin Sorensen
- Division of Renal and Cardiovascular Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
28
|
Electrophysiology of single and aggregate Cx43 hemichannels. PLoS One 2012; 7:e47775. [PMID: 23112846 PMCID: PMC3480394 DOI: 10.1371/journal.pone.0047775] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
Connexin43 (Cx43) is the most ubiquitous gap junction protein in the human body and is essential for cell-to-cell communication in a variety of organs and organ systems. As a result, Cx43 is responsible for mediating both electrical and chemical signals, passing dissolved solutes and small signaling molecules between cells in a coordinated fashion. Here, we explore the electrophysiological properties of hemichannels formed from Cx43 and Cx43 fused to eGFP (Cx43eGFP) and their interactions in a planar lipid membrane (BLM). Unlike in vivo patch clamp experiments, Cx43 was purified and isolated from other membrane constituents allowing elucidation of individual protein responses to various electrical and chemical stimuli. Using this system, we examined hemichannel electrophysiology and the roles of several well-known gap junction blockers, namely: lanthanum, heptanol, carbenoxalone and lindane. We also observed a critical number of hemichannels required for an accelerated conductance increase, an emergent electrical signature indicative of plaque formation.
Collapse
|
29
|
Lohman AW, Billaud M, Isakson BE. Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 2012; 95:269-80. [PMID: 22678409 PMCID: PMC3400358 DOI: 10.1093/cvr/cvs187] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/14/2012] [Accepted: 05/31/2012] [Indexed: 12/27/2022] Open
Abstract
The nucleotide adenosine 5'-triphosphate (ATP) has classically been considered the cell's primary energy currency. Importantly, a novel role for ATP as an extracellular autocrine and/or paracrine signalling molecule has evolved over the past century and extensive work has been conducted to characterize the ATP-sensitive purinergic receptors expressed on almost all cell types in the body. Extracellular ATP elicits potent effects on vascular cells to regulate blood vessel tone but can also be involved in vascular pathologies such as atherosclerosis. While the effects of purinergic signalling in the vasculature have been well documented, the mechanism(s) mediating the regulated release of ATP from cells in the blood vessel wall and circulation are now a key target of investigation. The aim of this review is to examine the current proposed mechanisms of ATP release from vascular cells, with a special emphasis on the transporters and channels involved in ATP release from vascular smooth muscle cells, endothelial cells, circulating red blood cells, and perivascular sympathetic nerves, including vesicular exocytosis, plasma membrane F(1)/F(0)-ATP synthase, ATP-binding cassette (ABC) transporters, connexin hemichannels, and pannexin channels.
Collapse
Affiliation(s)
- Alexander W. Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908, USA
| | - Marie Billaud
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908, USA
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22908, USA
| |
Collapse
|
30
|
Yin VP, Lepilina A, Smith A, Poss KD. Regulation of zebrafish heart regeneration by miR-133. Dev Biol 2012; 365:319-27. [PMID: 22374218 DOI: 10.1016/j.ydbio.2012.02.018] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 01/05/2023]
Abstract
Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. Using pharmacological inhibition and EGFP sensor interaction studies, we found that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Viravuth P Yin
- Department of Cell Biology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
31
|
WNT3A induces a contractile and secretory phenotype in cultured vascular smooth muscle cells that is associated with increased gap junction communication. J Transl Med 2012; 92:246-55. [PMID: 22105568 DOI: 10.1038/labinvest.2011.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Evidence suggests a role for Wnt signaling in vascular wound repair and remodeling events. Despite this, very little is known about the effect of Wnt ligands on the structure and function of vascular cells. In this study, we treated vascular smooth muscle cells with 250 ng/ml of recombinant Wnt3a for 72 h and observed changes in the cell phenotype. Our data suggest Wnt3a completely alters the phenotype of vascular smooth muscle cells. The Wnt3a-treated cells appeared larger and had increased formation of stress fibers. These cells also had increased expression of the smooth muscle contractile proteins, calponin and smooth muscle α-actin, and contracted a collagen lattice faster than control cells. The Wnt3a-treated smooth muscle cells displayed increased extracellular matrix synthesis, as measured by collagen I and III mRNA expression, along with increased expression of MMP2 and MMP9, but decreased TIMP2 levels. The Wnt3a-induced change in cell phenotype was associated with increased expression of the gap junction protein connexin 43. Consistent with this, Wnt3a-treated smooth muscle cells displayed enhanced intercellular communication, as measured by the scrape-loading dye transfer technique. The canonical Wnt antagonist, dickkopf-related protein 1, completely reversed the contractile protein and connexin 43 expression seen in the Wnt3a-treated cells, suggesting these changes were dependent on canonical Wnt signaling. Collectively, this data suggest Wnt3a promotes a contractile and secretory phenotype in vascular smooth muscle cells that is associated with increased gap junction communication.
Collapse
|
32
|
Avila MA, Sell SL, Hawkins BE, Hellmich HL, Boone DR, Crookshanks JM, Prough DS, DeWitt DS. Cerebrovascular connexin expression: effects of traumatic brain injury. J Neurotrauma 2011; 28:1803-11. [PMID: 21895483 PMCID: PMC3172862 DOI: 10.1089/neu.2011.1900] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) results in dysfunction of the cerebrovasculature. Gap junctions coordinate vasomotor responses and evidence suggests that they are involved in cerebrovascular dysfunction after TBI. Gap junctions are comprised of connexin proteins (Cxs), of which Cx37, Cx40, Cx43, and Cx45 are expressed in vascular tissue. This study tests the hypothesis that TBI alters Cx mRNA and protein expression in cerebral vascular smooth muscle and endothelial cells. Anesthetized (1.5% isoflurane) male Sprague-Dawley rats received sham or fluid-percussion TBI. Two, 6, and 24 h after, cerebral arteries were harvested, fresh-frozen for RNA isolation, or homogenized for Western blot analysis. Cerebral vascular endothelial and smooth muscle cells were selected from frozen sections using laser capture microdissection. RNA was quantified by ribonuclease protection assay. The mRNA for all four Cx genes showed greater expression in the smooth muscle layer compared to the endothelial layer. Smooth muscle Cx43 mRNA expression was reduced 2 h and endothelial Cx45 mRNA expression was reduced 24 h after injury. Western blot analysis revealed that Cx40 protein expression increased, while Cx45 protein expression decreased 24 h after injury. These studies revealed significant changes in the mRNA and protein expression of specific vascular Cxs after TBI. This is the first demonstration of cell type-related differential expression of Cx mRNA in cerebral arteries, and is a first step in evaluating the effects of TBI on gap junction communication in the cerebrovasculature.
Collapse
Affiliation(s)
| | | | - Bridget E. Hawkins
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Helen L. Hellmich
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Debbie R. Boone
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Jeanna M. Crookshanks
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Donald S. Prough
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| | - Douglas S. DeWitt
- Charles Allen Laboratories, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
33
|
Lan WR, Hou CJY, Yen CH, Shih BF, Wang AM, Lee TY, Tsai CH, Yeh HI. Effects of carbenoxolone on flow-mediated vasodilatation in healthy adults. Am J Physiol Heart Circ Physiol 2011; 301:H1166-72. [DOI: 10.1152/ajpheart.00967.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gap junctions play a key role in maintaining the functional integrity of the vascular wall. Using carbenoxolone (CBX) as a gap junction blocker, we aimed to assess the contribution of gap junctions in the vascular wall to flow-mediated vasodilatation (FMD) in healthy adults. Percentage FMD (%FMD) and circulating vasoactive molecules/activity, including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), aldosterone, cortisol, plasma renin activity (PRA), and endothelin (ET-1), were measured in 25 healthy volunteers (mean age: 30.1 ± 5.4 yr; 14 males) before and after oral administration of CBX (100 mg). %FMD decreased after ingestion of CBX (9.71 ± 3.1 vs. 3.40 ± 2.0%; P < 0.0001). The levels of ANP, BNP, cortisol, and ET-1 remained stationary, while both PRA and aldosterone decreased ( P < 0.005) after CBX ingestion. Blood pressure and heart rate were minimally changed by CBX. Inhibition of gap junctional communication by CBX impairs FMD in healthy persons, suggesting that physiologically, vascular gap junctions participate in the maintenance of FMD. CBX does not induce the release of vasoconstricting molecules or enhance vasoconstriction, suggesting that inhibition of gap junctional communication by CBX underlies the impairment of FMD. Therefore, administering CBX in FMD examination can be a way to follow the effect of gap junctions on endothelial function, but further work remains to verify the specificity of CBX effect.
Collapse
Affiliation(s)
- Wei-Ren Lan
- Cardiovascular Section, Department of Internal Medicine, and
| | - Charles Jia-Yin Hou
- Cardiovascular Section, Department of Internal Medicine, and
- Mackay Medicine, Nursing and Management College; and
| | - Chih-Hsuan Yen
- Cardiovascular Section, Department of Internal Medicine, and
| | | | | | | | - Cheng-Ho Tsai
- Cardiovascular Section, Department of Internal Medicine, and
| | - Hung-I Yeh
- Cardiovascular Section, Department of Internal Medicine, and
- Mackay Medical College, Taipei, Taiwan
| |
Collapse
|
34
|
Tkachuk N, Tkachuk S, Patecki M, Kusch A, Korenbaum E, Haller H, Dumler I. The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells. Biochem Biophys Res Commun 2011; 410:531-6. [PMID: 21679692 DOI: 10.1016/j.bbrc.2011.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 12/22/2022]
Abstract
Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.
Collapse
Affiliation(s)
- Natalia Tkachuk
- Department of Nephrology, Hannover Medical School, Hannover D-30625, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Vinken M, Decrock E, De Vuyst E, Ponsaerts R, D'hondt C, Bultynck G, Ceelen L, Vanhaecke T, Leybaert L, Rogiers V. Connexins: sensors and regulators of cell cycling. Biochim Biophys Acta Rev Cancer 2010; 1815:13-25. [PMID: 20801193 DOI: 10.1016/j.bbcan.2010.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/13/2022]
Abstract
It is nowadays well established that gap junctions are critical gatekeepers of cell proliferation, by controlling the intercellular exchange of essential growth regulators. In recent years, however, it has become clear that the picture is not as simple as originally anticipated, as structural precursors of gap junctions can affect cell cycling by performing actions not related to gap junctional intercellular communication. Indeed, connexin hemichannels also foresee a pathway for cell growth communication, albeit between the intracellular compartment and the extracellular environment, while connexin proteins as such can directly or indirectly influence the production of cell cycle regulators independently of their channel activities. Furthermore, a novel set of connexin-like proteins, the pannexins, have lately joined in as regulators of the cell proliferation process, which they can affect as either single units or as channel entities. In the current paper, these multifaceted aspects of connexin-related signalling in cell cycling are reviewed.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of Toxicology, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|