1
|
Ejiohuo O, Bajia D, Pawlak J, Szczepankiewicz A. In silico identification of novel ligands targeting stress-related human FKBP5 protein in mental disorders. PLoS One 2025; 20:e0320017. [PMID: 40096182 PMCID: PMC11913304 DOI: 10.1371/journal.pone.0320017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
FK506-binding protein 51 (FKBP51 or FKBP5) serves as a crucial stress modulator implicated in mental disorders, presenting a potential target for intervention. Inhibitors like SAFit2, rapamycin, and tacrolimus exhibit promising interactions with this protein. Despite these advances, challenges persist in diversifying FKBP5 ligands, prompting further exploration of interaction partners. Hence, this study aims to identify other potential ligands. Employing molecular docking, we generated complexes with various ligands (rapamycin, tacrolimus, SAFit2-Selective antagonist of FKBP51 by induced fit, ascomycin, pimecrolimus, rosavin, salidroside, curcumin, apigenin, uvaricin, ruscogenin, neoruscogenin, pumicalagin, castalagin, and grandinin). We identified the top 3 best ligands, of which ruscogenin and neoruscogenin had notable abilities to cross the blood-brain barrier and have high gastrointestinal absorption, like curcumin. Toxicity predictions show ruscogenin and neoruscogenin to be the least toxic based on oral toxicity classification (Class VI). Tyrosine (Tyr113) formed consistent interactions with all ligands in the complex, reinforcing their potential and involvement in stress modulation. Molecular dynamic (MD) simulation validated strong interactions between our three key ligands and FKBP5 protein and provided an understanding of the stability of the complex. The binding free energy (ΔG) of the best ligands (based on pharmacological properties) from MD simulation analysis is -31.78 kcal/mol for neoruscogenin, -30.41 kcal/mol for ruscogenin, and -27.6 kcal/mol for curcumin. These molecules, therefore, can serve as therapeutic molecules or biomarkers for research in stress-impacted mental disorders. While offering therapeutic implications for mental disorders by attenuating stress impact, it is crucial to emphasize that these ligands' transition to clinical applications necessitates extensive experimental research, including clinical trials, to unravel the intricate molecular and neural pathways involved in these interactions.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Donald Bajia
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Department of Pediatric Oncology, Hematology, and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
2
|
Lin T, Meegaskumbura M. Fish MicroRNA Responses to Thermal Stress: Insights and Implications for Aquaculture and Conservation Amid Global Warming. Animals (Basel) 2025; 15:624. [PMID: 40075907 PMCID: PMC11898199 DOI: 10.3390/ani15050624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
In the context of global warming, heat tolerance is becoming a crucial physiological trait influencing fish species' distribution and survival. While our understanding of fish heat tolerance and stress has expanded from behavioral studies to transcriptomic analyses, knowledge at the transcriptomic level is still limited. Recently, the highly conserved microRNAs (miRNAs) have provided new insights into the molecular mechanisms of heat stress in fish. This review systematically examines current research across three main reference databases to elucidate the universal responses and mechanisms of fish miRNAs under heat stress. Our initial screening of 569 articles identified 13 target papers for comprehensive analysis. Among these, at least 214 differentially expressed miRNAs (DEMs) were found, with 15 DEMs appearing in at least two studies (12 were upregulated and 13 were downregulated). The 15 recurrent DEMs were analyzed using DIANA mirPath v.3 and the microT-CDS v5.0 database to identify potential target genes. The results suggest that multiple miRNAs target various genes, forming a complex network that regulates glucose and energy metabolism, maintains homeostasis, and modulates inflammation and immune responses. Significantly, miR-1, miR-122, let-7a, and miR-30b were consistently differentially expressed in multiple studies, indicating their potential relevance in heat stress responses. However, these miRNAs should not be considered definitive biomarkers without further validation. Future research should focus on experimentally confirming their regulatory roles through functional assays, conducting transcriptomic comparisons across different species, and performing target validation studies. These miRNAs, conserved across species, could be valuable for monitoring wild fish health, enhancing aquaculture breeding, and guiding conservation strategies. However, the specific regulatory mechanisms of these miRNAs need clarification to confirm their reliability as biomarkers for thermal stress.
Collapse
Affiliation(s)
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Liu C, Gershon ES. Endophenotype 2.0: updated definitions and criteria for endophenotypes of psychiatric disorders, incorporating new technologies and findings. Transl Psychiatry 2024; 14:502. [PMID: 39719446 PMCID: PMC11668880 DOI: 10.1038/s41398-024-03195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Recent genetic studies have linked numerous loci to psychiatric disorders. However, the biological pathways that connect these genetic associations to psychiatric disorders' specific pathophysiological processes are largely unclear. Endophenotypes, first defined over five decades ago, are heritable traits, independent of disease state that are associated with a disease, encompassing a broad range of neurophysiological, biochemical, endocrinological, neuroanatomical, cognitive, and neuropsychological characteristics. Considering the advancements in genetics and genomics over recent decades, we propose a revised definition of endophenotypes as 'genetically influenced phenotypes linked to disease or treatment characteristics and their related events.' We also updated endophenotype criteria to include (1) reliable measurement, (2) association with the disease or its related events, and (3) genetic mediation. 'Genetic mediation' is introduced to differentiate between causality and pleiotropic effects and allows non-linear relationships. Furthermore, this updated Endophenotype 2.0 framework expands to encompass genetically regulated responses to disease-related factors, including environmental risks, illness progression, treatment responses, and resilience phenotypes, which may be state-dependent. This broadened definition paves the way for developing new endophenotypes crucial for genetic analyses in psychiatric disorders. Integrating genetics, genomics, and diverse endophenotypes into multi-dimensional mechanistic models is vital for advancing our understanding of psychiatric disorders. Crucially, elucidating the biological underpinnings of endophenotypes will enhance our grasp of psychiatric genetics, thereby improving disease risk prediction and treatment approaches.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA.
- School of Life Sciences, Central South University, Changsha, China.
| | - Elliot S Gershon
- Departments of Psychiatry and Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Wu Z, Hindle MM, Bishop VR, Reid AMA, Miedzinska K, Pérez JH, Krause JS, Wingfield JC, Meddle SL, Smith J. Response strategies to acute and chronic environmental stress in the arctic breeding Lapland longspur (Calcarius lapponicus). Commun Biol 2024; 7:1654. [PMID: 39702772 DOI: 10.1038/s42003-024-07370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024] Open
Abstract
The potentially devastating effects of climate change have raised awareness of the need to understand how the biology of wild animals is influenced by extreme-weather events. We investigate how a wild arctic-breeding bird, the Lapland longspur (Calcarius lapponicus), responds to different environmental perturbations and its coping strategies. We explore the transcriptomic response to environmental adversity during the transition from arrival at the breeding grounds to incubation on the Arctic tundra. The effects of an extremely cold spring on arrival and a severe storm during incubation are examined through RNA-seq analysis of pertinent tissues sampled across the breeding cycle. The stress response, circadian rhythms, reproduction, and metabolism are all affected. A key gene of the Hypothalamic-Pituitary-Adrenal axis, FKBP5, was significantly up-regulated in hypothalamus. The genome assembly and gene expression profiles provide comprehensive resources for future studies. Our findings on different coping strategies to chronic and acute stressors will contribute to understanding the interplay between changing environments and genomic regulation.
Collapse
Affiliation(s)
- Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK.
| | - Matthew M Hindle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Valerie R Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Angus M A Reid
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Jonathan H Pérez
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
- Department of Biology, University of South Alabama, Mobile, AL, USA
| | - Jesse S Krause
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, USA
| | - Simone L Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| |
Collapse
|
5
|
Ruiz-Sastre P, Gómez-Sánchez-Lafuente C, Martín-Martín J, Herrera-Imbroda J, Mayoral-Cleries F, Santos-Amaya I, Rodríguez de Fonseca F, Guzmán-Parra J, Rivera P, Suárez J. Pharmacotherapeutic value of inflammatory and neurotrophic biomarkers in bipolar disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111056. [PMID: 38879067 DOI: 10.1016/j.pnpbp.2024.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The various pharmacological interventions, ranging from mood stabilizers and antipsychotics to antidepressants, reflect the diff/iculty of treating depressive/manic symptomatology of bipolar disorder (BD). Among a broad range of mechanisms implicated, immune dysregulation may contribute to the increased inflammation that influences the course of BD. Inflammatory, neurotrophic and oxidative stress factors may be identified as promising peripheral biomarkers in brain functioning, perhaps serving as predictors of an effective response to treatment for BD. The present systematic review aimed to examine the evidence supporting the pharmacotherapeutic value of inflammatory and neurotrophic biomarkers in BD. METHODS PubMed, PsychINFO, Scopus and Web of Science were searched from inception to May 2024 by two independent reviewers. A total of 40 studies with 3371 patients with diagnosis and intervention of BD were selected. RESULTS Inconsistencies in the effects of pharmacological treatments on the connection between the expected anti-inflammatory response and symptomatologic improvement were identified. Mood stabilizers (lithium), antipsychotics (quetiapine), antidepressants (ketamine) or their combination were described to increase both pro-inflammatory (TNFα, IL-6) and anti-inflammatory (IL-4, IL-8) factors. Other medications, such as memantine and dextromethorphan, autoimmune (infliximab) non-steroidal anti-inflammatory (aspirin, celecoxib) drugs, antidiabetics (pioglitazone), and even dietary supplementation (omega-3), or their combination, clearly decrease inflammatory factors (TNFα, IL-6, IL-1β, C-reactive protein) and/or increase the neurotrophic factor BDNF in BD patients. CONCLUSION Inflammation in BD requires further investigation to understand the underlying immunologic mechanism, to identify predictors of treatment response, and to make informed decisions about the use and development of more effective pharmacological interventions for BD.
Collapse
Affiliation(s)
- Paloma Ruiz-Sastre
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; Facultad de Medicina, Universidad de Málaga, Andalucia Tech, Campus de Teatinos, 29071 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Carlos Gómez-Sánchez-Lafuente
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Jaime Martín-Martín
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Bulevar Louis Pasteur 32, 29071 Málaga, Spain
| | - Jesús Herrera-Imbroda
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fermín Mayoral-Cleries
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Ignacio Santos-Amaya
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Bulevar Louis Pasteur 32, 29071 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; Servicio Neurologia, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - José Guzmán-Parra
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; UGC Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain.
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma BIONAND, Calle Severo Ochoa 35, 29590 Málaga, Spain; Departamento de Anatomía Humana, Medicina Legal e Historia de la Ciencia, Universidad de Málaga, Bulevar Louis Pasteur 32, 29071 Málaga, Spain.
| |
Collapse
|
6
|
Arslan G, Coşkun M. Coronavirus-Related Stressors, Resilient Mindset, Loneliness, Depressive Symptoms in College Students: Testing a Moderated Mediation Model. Psychol Rep 2024; 127:1633-1651. [PMID: 36377653 DOI: 10.1177/00332941221139721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The coronavirus (COVID-19) outbreak alarmingly threats the mental health and functioning of people globally. The present study aims to examine the moderated mediation role of resilient mindset and loneliness in the association of coronavirus stress and depressive symptoms. We recruited 394 undergraduate students from a state university in Türkiye, ranging in age between 18 and 47 years (M = 22.76, SD = 3.88; 65% female). The main results revealed that resilient mindset mediated the relationship between coronavirus-related stress and depressive symptoms. Moreover, loneliness moderated the mediating effect of resilient mindset in the coronavirus stress and depressive symptoms association. Taken together, these findings pointed out that the effects of the coronavirus stress on depressive symptoms can be captured better by underlying psychological mechanisms, namely resilient mindset and loneliness.
Collapse
Affiliation(s)
- Gökmen Arslan
- Department of Psychological Counseling and Guidance, Mehmet Akif Ersoy University, Burdur, Turkey
- Centre for Wellbeing Science, University of Melbourne, Australia
| | - Muhammet Coşkun
- Department of Psychology, Middle East Technical University, Turkey
| |
Collapse
|
7
|
du Prel JB, Koscec Bjelajac A, Franić Z, Henftling L, Brborović H, Schernhammer E, McElvenny DM, Merisalu E, Pranjic N, Guseva Canu I, Godderis L. The Relationship Between Work-Related Stress and Depression: A Scoping Review. Public Health Rev 2024; 45:1606968. [PMID: 38751606 PMCID: PMC11094281 DOI: 10.3389/phrs.2024.1606968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Objectives Work-related stress is highly prevalent. Recent systematic reviews concluded on a significant association between common work-related stress measures and depression. Our scoping review aims to explore whether work-related psychosocial stress is generally associated with depression or depressiveness, the extent and methodology of the primary research undertaken on this topic and to elucidate inconsistencies or gaps in knowledge. Methods We searched for literature in Pubmed, PsycInfo and Web of Science including full reports in seven languages published between 1999 and 2022 and applied the PRISMA statement for scoping reviews criteria. Results Of 463 primarily identified articles, 125 were retained after abstract and full-text screening. The majority report significant associations between work-related stress and depression. Cross-sectional studies are most prevalent. Sufficient evidence exists only for job strain and effort-reward imbalance. Most studies are from Asia, North America and Europe. The health sector is the most studied. Several research gaps such as the lack of interventional studies were identified. Conclusion The consistency of most studies on the significant association between work-related stress and depression is remarkable. More studies are needed to improve evidence and to close research gaps.
Collapse
Affiliation(s)
- Jean-Baptist du Prel
- Department of Occupational Health Science, University of Wuppertal, Wuppertal, Germany
| | | | - Zrinka Franić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Lorena Henftling
- Department of Occupational Health Science, University of Wuppertal, Wuppertal, Germany
| | - Hana Brborović
- University of Zagreb, School of Medicine, Andrija Štampar School of Public Health, Zagreb, Croatia
| | - Eva Schernhammer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
| | - Damien M. McElvenny
- Research Group, Institute of Occupational Medicine, Edinburgh, United Kingdom
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, United Kingdom
| | - Eda Merisalu
- Estonian University of Life Sciences, Tartu, Estonia
| | - Nurka Pranjic
- Department of Occupational Medicine, Faculty of Medicine, University of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Unisanté, University of Lausanne, Lausanne, Switzerland
| | - Lode Godderis
- Department of Primary Care and Public Health, University of Leuven, Leuven, Belgium
- IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| |
Collapse
|
8
|
Buhusi M, Brown CK, Buhusi CV. NrCAM-deficient mice exposed to chronic stress exhibit disrupted latent inhibition, a hallmark of schizophrenia. Front Behav Neurosci 2024; 18:1373556. [PMID: 38601326 PMCID: PMC11004452 DOI: 10.3389/fnbeh.2024.1373556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
The neuronal cell adhesion molecule (NrCAM) is widely expressed and has important physiological functions in the nervous system across the lifespan, from axonal growth and guidance to spine and synaptic pruning, to organization of proteins at the nodes of Ranvier. NrCAM lies at the core of a functional protein network where multiple targets (including NrCAM itself) have been associated with schizophrenia. Here we investigated the effects of chronic unpredictable stress on latent inhibition, a measure of selective attention and learning which shows alterations in schizophrenia, in NrCAM knockout (KO) mice and their wild-type littermate controls (WT). Under baseline experimental conditions both NrCAM KO and WT mice expressed robust latent inhibition (p = 0.001). However, following chronic unpredictable stress, WT mice (p = 0.002), but not NrCAM KO mice (F < 1), expressed latent inhibition. Analyses of neuronal activation (c-Fos positive counts) in key brain regions relevant to latent inhibition indicated four types of effects: a single hit by genotype in IL cortex (p = 0.0001), a single hit by stress in Acb-shell (p = 0.031), a dual hit stress x genotype in mOFC (p = 0.008), vOFC (p = 0.020), and Acb-core (p = 0.032), and no effect in PrL cortex (p > 0.141). These results indicating a pattern of differential effects of genotype and stress support a complex stress × genotype interaction model and a role for NrCAM in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | | | - Catalin V. Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
9
|
Beucke JC, Diez I, Sepulcre J, Mundorf A, Kaufmann C, Orr SP, Pitman RK, Shin LM. A late-life neurogenetic signature of exposure to combat stress - A monozygotic discordant twin study. J Psychiatr Res 2024; 171:230-237. [PMID: 38316103 PMCID: PMC11113072 DOI: 10.1016/j.jpsychires.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
Animal models suggest that experiencing high-stress levels induces changes in amygdalar circuitry and gene expression. In humans, combat exposure has been shown to alter amygdalar responsivity and connectivity, but abnormalities have been indicated to normalize at least partially upon the termination of stress exposure. In contrast, other evidence suggests that combat exposure continues to exert influence on exposed individuals well beyond deployment and homecoming, as indicated by longitudinal psychosocial evidence from veterans, and observation of greater health decline in veterans late in life. Accordingly, the experience of combat stress early in life may affect amygdalar responsivity late in life, a possibility requiring careful consideration of the confounding effects of aging, genetic factors, and symptoms of post-traumatic stress disorder. Here, we investigated amygdalar responsivity in a unique sample of 16 male monozygotic (MZ) twin pairs in their sixties, where one but not the other sibling had been exposed to combat stress in early adulthood. Forty years after combat experience, a generally blunted amygdalar response was observed in combat-exposed veterans compared to their non-exposed twin siblings. Spatial associations between these phenotypical changes and patterns of gene expression in the brain were found for genes involved in the synaptic organization and chromatin structure. Protein-protein interactions among the set of identified genes pointed to histone modification mechanisms. We conclude that exposure to combat stress early in life continues to impact brain function beyond the termination of acute stress and appears to exert prolonged effects on amygdalar function later in life via neurogenetic mechanisms.
Collapse
Affiliation(s)
- Jan C Beucke
- Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ibai Diez
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Annakarina Mundorf
- Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Scott P Orr
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Roger K Pitman
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Lisa M Shin
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Tufts University, Medford, MA, USA
| |
Collapse
|
10
|
Rossi C, Amato A, Alesi M, Alioto A, Schiera G, Drid P, Messina G, Pagliaro A, Di Liegro I, Proia P. Hormonal and psychological influences on performance anxiety in adolescent female volleyball players: a multi-approach study. PeerJ 2024; 12:e16617. [PMID: 38390388 PMCID: PMC10883150 DOI: 10.7717/peerj.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/15/2023] [Indexed: 02/24/2024] Open
Abstract
Background The neuroendocrine system has important implications for affiliation behavior among humans and can be used to assess the correlation between social relationships, stress, and health. This can be influenced by social closeness; this aspect is the closeness towards another individual or a group of individuals such as a sports team. Sports performance anxiety is considered an unpleasant emotional reaction composed of physiological, cognitive, affective, and behavioral components. This motivates us to learn about the process that can influence the outcome of competition. Hormones and genetics would seem to influence outcome and performance. In this regard, many studies have focused on the exercise response as a function of ovarian hormones and it has been observed that progesterone is a hormone that plays a key role in reducing anxiety, and thus stress, in humans and other animals. On the other hand, high cortisol concentrations are known to contribute to increased anxiety levels. However, the salivary alpha-amylase (sAA) enzyme has been suggested as marker of acute stress than cortisol. Genetics also seem to influence anxiety and stress management as in the case of brain-derived neurotrophic factor (BDNF) and striatal dopamine transporter (DAT). Therefore, the study aims to investigate social closeness, as a measure of sports team cohesion that can influence athletes' performance results, and its ability to influence the secretion of hormones, such as progesterone and cortisol, that affect the management of sports anxiety while also taking into account genetic background during a volleyball match. Methods Twenty-six female volleyball players who volunteered participated in this study (mean ± SD: age, 12.07 ± 0.7 years), and played in the final of the provincial volleyball championship in Palermo. All girls were during the ovarian cycle, in detail between the follicular and early ovulatory phases. Results The results showed a significant decrease in salivary cortisol only in the winning group (p < 0.039). In fact, whilst in the latter the pre-match level was 7.7 ng/ml and then decreased to 4.5 ng/ml after the match, in the losers group change was not statistically significant (7.8 ng/ml vs 6.6 ng/ml pre- and post-match). As to the sAA concentration, the winning team showed a statistically significant variation between pre- and post-match than the losers (166.01 ± 250 U/ml vs 291.59 ± 241 U/ml) (p = 0.01). Conclusion Analyzing the results of the SAS-2 psychological test it is highlighted that, on average, the loser group was more anxious than the winning group, and this contributed to the final result. In conclusion, there is strong evidence supporting the state of the art that many factors can affect performance anxiety and thus the performance itself.
Collapse
Affiliation(s)
- Carlo Rossi
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
- Research and Innovation, Centro Medico di Fisioterapia “Villa Sarina”, Trapani, Italy
| | - Alessandra Amato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Catania, Italy
| | - Marianna Alesi
- Department of Psychology, Educational Sciences and Human Movement, University of Palermo, Palermo, Italy
| | - Anna Alioto
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Patrik Drid
- Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Giulia Messina
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Andrea Pagliaro
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Szalanczy AM, Fitzpatrick M, Beeson A, Bui T, Dyson C, Eller S, Landry J, Scott C, Grzybowski M, Klotz J, Geurts AM, Weiner JL, Redei EE, Solberg Woods LC. Chronic stress from adolescence to adulthood increases adiposity and anxiety in rats with decreased expression of Krtcap3. Front Genet 2024; 14:1247232. [PMID: 38323241 PMCID: PMC10844407 DOI: 10.3389/fgene.2023.1247232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/21/2023] [Indexed: 02/08/2024] Open
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as a novel adiposity gene, but subsequently found that its impact on adiposity may depend on environmental stress. To more thoroughly understand the connection between Krtcap3, adiposity, and stress, we exposed wild-type (WT) and Krtcap3 knock-out (KO) rats to chronic stress then measured adiposity and behavioral outcomes. We found that KO rats displayed lower basal stress than WT rats under control conditions and exhibited metabolic and behavioral responses to chronic stress exposure. Specifically, stress-exposed KO rats gained more weight, consumed more food when socially isolated, and displayed more anxiety-like behaviors relative to control KO rats. Meanwhile, there were minimal differences between control and stressed WT rats. At study conclusion stress-exposed KO rats had increased corticosterone (CORT) relative to control KO rats with no differences between WT rats. In addition, KO rats, independent of prior stress exposure, had an increased CORT response to removal of their cage-mate (psychosocial stress), which was only seen in WT rats when exposed to chronic stress. Finally, we found differences in expression of the glucocorticoid receptor, Nr3c1, in the pituitary and colon between control and stress-exposed KO rats that were not present in WT rats. These data support that Krtcap3 expression affects stress response, potentially via interactions with Nr3c1, with downstream effects on adiposity and behavior. Future work is necessary to more thoroughly understand the role of Krtcap3 in the stress response.
Collapse
Affiliation(s)
- Alexandria M. Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Mackenzie Fitzpatrick
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Angela Beeson
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Trangdai Bui
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Dyson
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Seth Eller
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Julia Landry
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Christina Scott
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jeff L. Weiner
- Department of Physiology and Pharmacology, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| | - Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah C. Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC, United States
| |
Collapse
|
12
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in environmental stress over COVID-19 pandemic likely contributed to failure to replicate adiposity phenotype associated with Krtcap3. Physiol Genomics 2023; 55:452-467. [PMID: 37458463 PMCID: PMC10642928 DOI: 10.1152/physiolgenomics.00019.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/25/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023] Open
Abstract
We previously identified keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole body Krtcap3 knockout (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lockdown orders and was completed during the pandemic in a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study-by-genotype interaction where WT had significantly higher CORT relative to KO in study 1, with no differences in study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.NEW & NOTEWORTHY Obesity is linked to both genetics and environmental factors such as stress. Krtcap3 has previously been identified as a gene associated with adiposity, and our work here demonstrates that environmental stress may influence the role of Krtcap3 on both food intake and adiposity. Obesity is strongly influenced by stress in humans, so the identification of novel genes that link stress and obesity will greatly advance our understanding of the disease.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, North Carolina, United States
| |
Collapse
|
13
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Szalanczy AM, Giorgio G, Goff E, Seshie O, Grzybowski M, Klotz J, Geurts AM, Redei EE, Solberg Woods LC. Changes in Environmental Stress over COVID-19 Pandemic Likely Contributed to Failure to Replicate Adiposity Phenotype Associated with Krtcap3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532439. [PMID: 36993361 PMCID: PMC10055176 DOI: 10.1101/2023.03.15.532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We previously identified Keratinocyte-associated protein 3, Krtcap3, as an obesity-related gene in female rats where a whole-body Krtcap3 knock-out (KO) led to increased adiposity compared to wild-type (WT) controls when fed a high-fat diet (HFD). We sought to replicate this work to better understand the function of Krtcap3 but were unable to reproduce the adiposity phenotype. In the current work, WT female rats ate more compared to WT in the prior study, with corresponding increases in body weight and fat mass, while there were no changes in these measures in KO females between the studies. The prior study was conducted before the COVID-19 pandemic, while the current study started after initial lock-down orders and was completed during the pandemic with a generally less stressful environment. We hypothesize that the environmental changes impacted stress levels and may explain the failure to replicate our results. Analysis of corticosterone (CORT) at euthanasia showed a significant study by genotype interaction where WT had significantly higher CORT relative to KO in Study 1, with no differences in Study 2. These data suggest that decreasing Krtcap3 expression may alter the environmental stress response to influence adiposity. We also found that KO rats in both studies, but not WT, experienced a dramatic increase in CORT after their cage mate was removed, suggesting a separate connection to social behavioral stress. Future work is necessary to confirm and elucidate the finer mechanisms of these relationships, but these data indicate the possibility of Krtcap3 as a novel stress gene.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Gina Giorgio
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Emily Goff
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Osborne Seshie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason Klotz
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston Salem, NC USA
| |
Collapse
|
15
|
Patt E, Singhania A, Roberts AE, Morton SU. The Genetics of Neurodevelopment in Congenital Heart Disease. Can J Cardiol 2023; 39:97-114. [PMID: 36183910 DOI: 10.1016/j.cjca.2022.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 02/07/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth anomaly, affecting almost 1% of infants. Neurodevelopmental delay is the most common extracardiac feature in people with CHD. Many factors may contribute to neurodevelopmental risk, including genetic factors, CHD physiology, and the prenatal/postnatal environment. Damaging variants are most highly enriched among individuals with extracardiac anomalies or neurodevelopmental delay in addition to CHD, indicating that genetic factors have an impact beyond cardiac tissues in people with CHD. Potential sources of genetic risk include large deletions or duplications that affect multiple genes, such as 22q11 deletion syndrome, single genes that alter both heart and brain development, such as CHD7, and common variants that affect neurodevelopmental resiliency, such as APOE. Increased use of genome-sequencing technologies in studies of neurodevelopmental outcomes in people with CHD will improve our ability to detect relevant genes and variants. Ultimately, such knowledge can lead to improved and more timely intervention of learning support for affected children.
Collapse
Affiliation(s)
- Eli Patt
- Harvard Medical School, Boston, Massachusetts, USA
| | - Asmita Singhania
- School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Amy E Roberts
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
16
|
Durosaro SO, Iyasere OS, Ilori BM, Oyeniran VJ, Ozoje MO. Molecular regulation, breed differences and genes involved in stress control in farm animals. Domest Anim Endocrinol 2023; 82:106769. [PMID: 36244194 DOI: 10.1016/j.domaniend.2022.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Stress is a state of disturbed homeostasis evoking a multiplicity of somatic and mental adaptive reactions resulting from any of the 5 freedoms of animals being violated. Many environmental forces disrupt homeostasis in farm animals, such as extreme temperatures, poor nutrition, noise, hunger, and thirst. During stressful situations, neuronal circuits in the limbic system and prefrontal cortex are activated, which lead to the release of adrenalin and noradrenalin. The hormones released during stress are needed for adaptation to acute stress and are regulated by many genes. This review examined molecular regulation, breed differences, and genes involved in stress control in farm animals. Major molecular regulation of stress, such as oxidative, cytosolic heat shock, unfolded protein, and hypoxic responses, were discussed. The responses of various poultry, ruminant, and pig breeds to different stress types were also discussed. Gene expressions and polymorphisms in the neuroendocrine and neurotransmitter pathways were also elucidated. The information obtained from this review will help farmers mitigate stress in farm animals through appropriate breed and gene-assisted selection. Also, information obtained from this review will add to the field of stress genetics since stress is a serious welfare issue in farm animals.
Collapse
Affiliation(s)
- S O Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - B M Ilori
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - V J Oyeniran
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - M O Ozoje
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
17
|
Owora AH. Maternal major depression disorder misclassification errors: Remedies for valid individual- and population-level inference. Brain Behav 2022; 12:e2614. [PMID: 35587518 PMCID: PMC9226807 DOI: 10.1002/brb3.2614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/10/2022] Open
Abstract
Individual and population level inference about risk and burden of MDD, particularly maternal MDD, is often made using case-finding tools that are imperfect and prone to misclassification error (i.e. false positives and negatives). These errors or biases are rarely accounted for and lead to inappropriate clinical decisions, inefficient allocation of scarce resources, and poor planning of maternal MDD prevention and treatment interventions. The argument that the use of existing maternal MDD case-finding instruments results in misclassification errors is not new; in fact, it has been argued for decades, but by and large its implications and particularly how to correct for these errors for valid inference is unexplored. Correction of the estimates of maternal MDD prevalence, case-finding tool sensitivity and specificity is possible and should be done to inform valid individual and population-level inferences.
Collapse
Affiliation(s)
- Arthur H Owora
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
18
|
Akbari M, Eghtedarian R, Hussen BM, Eslami S, Taheri M, Ghafouri-Fard S. Angiotensin I converting enzyme gene polymorphisms and risk of psychiatric disorders. BMC Psychiatry 2022; 22:351. [PMID: 35606706 PMCID: PMC9128292 DOI: 10.1186/s12888-022-04007-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/17/2022] [Indexed: 03/06/2023] Open
Abstract
Angiotensin-converting enzyme (ACE) as an important enzyme in the renin-angiotensin system facilitates biogenesis of the functionally active product angiotensin II from angiotensin I. ACE gene contains a number of functional polymorphisms which modulate activity of the encoded protein. In the current case-control study, we appraised the association between the rs4359 and rs1799752 polymorphisms and risk of bipolar disorder (type I and type II; BPDI and BPDII), schizophrenia (SCZ) and obsessive-compulsive disorder (OCD). The rs4359 was associated with risk of OCD, BPDI and BPDII in co-dominant and dominant models. The rs1799752 was associated with all assessed psychiatric conditions in four inheritance models except for BPDII whose association was not significant in recessive model. The I allele of rs1799752 was associated with OCD (adjusted FDR q-Value = 4.04E-04), SCZ (adjusted FDR q-Value = 6.00E-06), BPDI (adjusted FDR q-Value = 8.40E-03) and BPDII (adjusted FDR q-Value = 6.00E-06). The effective T allele of rs4359 showed a significant association with disease risk for BPDII group. The estimated haplotypes of these polymorphisms have been distributed differently among patients and controls. Taken together, ACE polymorphisms can be regarded as risk factors for a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Mohammadarian Akbari
- grid.411600.2Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhane Eghtedarian
- grid.411600.2Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- grid.412012.40000 0004 0417 5553Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Solat Eslami
- grid.411705.60000 0001 0166 0922Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran ,grid.411705.60000 0001 0166 0922Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taheri
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Dyakin VV, Dyakina-Fagnano NV, Mcintire LB, Uversky VN. Fundamental Clock of Biological Aging: Convergence of Molecular, Neurodegenerative, Cognitive and Psychiatric Pathways: Non-Equilibrium Thermodynamics Meet Psychology. Int J Mol Sci 2021; 23:ijms23010285. [PMID: 35008708 PMCID: PMC8745688 DOI: 10.3390/ijms23010285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
In humans, age-associated degrading changes, widely observed in molecular and cellular processes underly the time-dependent decline in spatial navigation, time perception, cognitive and psychological abilities, and memory. Cross-talk of biological, cognitive, and psychological clocks provides an integrative contribution to healthy and advanced aging. At the molecular level, genome, proteome, and lipidome instability are widely recognized as the primary causal factors in aging. We narrow attention to the roles of protein aging linked to prevalent amino acids chirality, enzymatic and spontaneous (non-enzymatic) post-translational modifications (PTMs SP), and non-equilibrium phase transitions. The homochirality of protein synthesis, resulting in the steady-state non-equilibrium condition of protein structure, makes them prone to multiple types of enzymatic and spontaneous PTMs, including racemization and isomerization. Spontaneous racemization leads to the loss of the balanced prevalent chirality. Advanced biological aging related to irreversible PTMs SP has been associated with the nontrivial interplay between somatic (molecular aging) and mental (psychological aging) health conditions. Through stress response systems (SRS), the environmental and psychological stressors contribute to the age-associated “collapse” of protein homochirality. The role of prevalent protein chirality and entropy of protein folding in biological aging is mainly overlooked. In a more generalized context, the time-dependent shift from enzymatic to the non-enzymatic transformation of biochirality might represent an important and yet underappreciated hallmark of aging. We provide the experimental arguments in support of the racemization theory of aging.
Collapse
Affiliation(s)
- Victor V. Dyakin
- The Nathan S. Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Bldg, 35, Bld. 35. Rom 201-C, Orangeburg, NY 10962, USA
- Correspondence: ; Tel.: +1-845-548-96-94; Fax: +1-845-398-5510
| | - Nuka V. Dyakina-Fagnano
- Child, Adolescent and Young Adult Psychiatry, 36 Franklin Turnpike, Waldwick, NJ 07463, USA;
| | - Laura B. Mcintire
- Department of Pathology and Cell Biology, Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA;
| |
Collapse
|
20
|
Domarkienė I, Ambrozaitytė L, Bukauskas L, Rančelis T, Sütterlin S, Knox BJ, Maennel K, Maennel O, Parish K, Lugo RG, Brilingaitė A. CyberGenomics: Application of Behavioral Genetics in Cybersecurity. Behav Sci (Basel) 2021; 11:bs11110152. [PMID: 34821613 PMCID: PMC8614761 DOI: 10.3390/bs11110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022] Open
Abstract
Cybersecurity (CS) is a contemporary field for research and applied study of a range of aspects from across multiple disciplines. A cybersecurity expert has an in-depth knowledge of technology but is often also recognized for the ability to view technology in a non-standard way. This paper explores how CS specialists are both a combination of professional computing-based skills and genetically encoded traits. Almost every human behavioral trait is a result of many genome variants in action altogether with environmental factors. The review focuses on contextualizing the behavior genetics aspects in the application of cybersecurity. It reconsiders methods that help to identify aspects of human behavior from the genetic information. And stress is an illustrative factor to start the discussion within the community on what methodology should be used in an ethical way to approach those questions. CS positions are considered stressful due to the complexity of the domain and the social impact it can have in cases of failure. An individual risk profile could be created combining known genome variants linked to a trait of particular behavior using a special biostatistical approach such as a polygenic score. These revised advancements bring challenging possibilities in the applications of human behavior genetics and CS.
Collapse
Affiliation(s)
- Ingrida Domarkienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (L.A.); (T.R.)
- Correspondence: ; Tel.: +370-(5)-2501788
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (L.A.); (T.R.)
| | - Linas Bukauskas
- Cybersecurity Laboratory, Institute of Computer Science, Vilnius University, LT-08303 Vilnius, Lithuania; (L.B.); (A.B.)
| | - Tautvydas Rančelis
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (L.A.); (T.R.)
| | - Stefan Sütterlin
- Faculty of Health, Welfare and Organisation, Østfold University College, NO-1757 Halden, Norway; (S.S.); (B.J.K.); (R.G.L.)
- Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, EE-19086 Tallinn, Estonia; (K.M.); (O.M.)
| | - Benjamin James Knox
- Faculty of Health, Welfare and Organisation, Østfold University College, NO-1757 Halden, Norway; (S.S.); (B.J.K.); (R.G.L.)
- Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, EE-19086 Tallinn, Estonia; (K.M.); (O.M.)
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology (NTNU), NO-2802 Gjøvik, Norway;
| | - Kaie Maennel
- Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, EE-19086 Tallinn, Estonia; (K.M.); (O.M.)
| | - Olaf Maennel
- Centre for Digital Forensics and Cyber Security, Tallinn University of Technology, EE-19086 Tallinn, Estonia; (K.M.); (O.M.)
| | - Karen Parish
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology (NTNU), NO-2802 Gjøvik, Norway;
| | - Ricardo Gregorio Lugo
- Faculty of Health, Welfare and Organisation, Østfold University College, NO-1757 Halden, Norway; (S.S.); (B.J.K.); (R.G.L.)
- Center for Cyber and Information Security, Norwegian University of Science and Technology (NTNU), NO-2802 Gjøvik, Norway
| | - Agnė Brilingaitė
- Cybersecurity Laboratory, Institute of Computer Science, Vilnius University, LT-08303 Vilnius, Lithuania; (L.B.); (A.B.)
| |
Collapse
|
21
|
Morton SU, Maleyeff L, Wypij D, Yun HJ, Rollins CK, Watson CG, Newburger JW, Bellinger DC, Roberts AE, Rivkin MJ, Grant PE, Im K. Abnormal Right-Hemispheric Sulcal Patterns Correlate with Executive Function in Adolescents with Tetralogy of Fallot. Cereb Cortex 2021; 31:4670-4680. [PMID: 34009260 PMCID: PMC8408447 DOI: 10.1093/cercor/bhab114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022] Open
Abstract
Neurodevelopmental disabilities are the most common noncardiac conditions in patients with congenital heart disease (CHD). Executive function skills have been frequently observed to be decreased among children and adults with CHD compared with peers, but a neuroanatomical basis for the association is yet to be identified. In this study, we quantified sulcal pattern features from brain magnetic resonance imaging data obtained during adolescence among 41 participants with tetralogy of Fallot (ToF) and 49 control participants using a graph-based pattern analysis technique. Among patients with ToF, right-hemispheric sulcal pattern similarity to the control group was decreased (0.7514 vs. 0.7553, P = 0.01) and positively correlated with neuropsychological testing values including executive function (r = 0.48, P < 0.001). Together these findings suggest that sulcal pattern analysis may be a useful marker of neurodevelopmental risk in patients with CHD. Further studies may elucidate the mechanisms leading to different alterations in sulcal patterning.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lara Maleyeff
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Wypij
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David C Bellinger
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Amy E Roberts
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Michael J Rivkin
- Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Stroke and Cerebrovascular Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - P Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Kiho Im
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
22
|
Richter-Levin G, Sandi C. Title: "Labels Matter: Is it stress or is it Trauma?". Transl Psychiatry 2021; 11:385. [PMID: 34247187 PMCID: PMC8272714 DOI: 10.1038/s41398-021-01514-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
In neuroscience, the term 'Stress' has a negative connotation because of its potential to trigger or exacerbate psychopathologies. Yet in the face of exposure to stress, the more common reaction to stress is resilience, indicating that resilience is the rule and stress-related pathology the exception. This is critical because neural mechanisms associated with stress-related psychopathology are expected to differ significantly from those associated with resilience.Research labels and terminology affect research directions, conclusions drawn from the results, and the way we think about a topic, while choice of labels is often influenced by biases and hidden assumptions. It is therefore important to adopt a terminology that differentiates between stress conditions, leading to different outcomes.Here, we propose to conceptually associate the term 'stress'/'stressful experience' with 'stress resilience', while restricting the use of the term 'trauma' only in reference to exposures that lead to pathology. We acknowledge that there are as yet no ideal ways for addressing the murkiness of the border between stressful and traumatic experiences. Yet ignoring these differences hampers our ability to elucidate the mechanisms of trauma-related pathologies on the one hand, and of stress resilience on the other. Accordingly, we discuss how to translate such conceptual terminology into research practice.
Collapse
Affiliation(s)
- Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel.
- Psychology Department, University of Haifa, Haifa, Israel.
- The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel.
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
23
|
Mehlman MJ, Parasidis E. Predictive Genetic Testing by the U.S. Military: Legal and Ethical Issues. Mil Med 2021; 186:726-732. [PMID: 33511993 DOI: 10.1093/milmed/usab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Precision medicine is a significant component of the military medical vanguard. One area of growing interest involves predictive genetic testing (PGT)-which can be used for both medical evaluation and operational planning. Predictive genetic testing is likely to play an increasingly important role in the military, in terms of both medically related testing to predict the risk of disease or injury and testing for non-medical traits that may be relevant to military performance. MATERIALS AND METHODS This article describes predictive tests that currently are in use by the military or that might be of interest to the military. The article also explores the risks and benefits associated with PGTs, describes the ambiguities in the current laws and directives governing the military use of PGT, and proposes a set of guidelines for the use of PGTs by the military. RESULTS There is no publicly available law or DoD policy that prevents the military from conducting PGT before or after accession. Currently, the only genetic testing routinely employed by the U.S. military is for medical purposes. In addition to non-routine genetic testing to diagnose genetic diseases and conditions, the military also uses targeted testing for predictive purposes. As additional predictive genetic tests are developed and become widely used, the military can be expected to employ those that are of relevance. Predictive military genetic testing of active duty service members could reduce their risk of illness and injury, improve their physical and mental fitness, enhance the health and well-being of the unit, make mission accomplishment more certain and efficient, and reduce medical and other costs for the military and veterans. Moreover, individuals with genetic variants that might enhance the likelihood of successfully completing a military mission could be preferred for certain positions or assignments, such as special operations. At the same time, there are risks that genetic information may be used for improper purposes or may stigmatize service members. CONCLUSIONS Predictive genetic testing is likely to play an increasingly important role in the military, in terms of both medically related testing to predict the risk of disease or injury and testing for non-medical traits that may be relevant to military performance. In instances where PGT meets standard scientific measures of validity and utility, test results can be used to promote the health and welfare of individual service members, units, and military missions. In cases where PGT does not rise to the level of meeting standard scientific criteria, officials should proceed cautiously in incorporating the information into clinical care and military decision-making. There needs to be an appropriate method of collectively calculating risks and benefits. Moreover, although military directives prohibit "unlawful discrimination," this term has received no elaboration in any publicly available military pronouncements. This lacuna should be rectified to provide proper guidance to service members, medical personnel, and the public. Although the promise of PGT may compel military officials to consider ways to maximize the use of test results, the risk of undermining military goals with unverified uses also should be considered appropriately.
Collapse
Affiliation(s)
- Maxwell J Mehlman
- Arthur E. Petersilge Professor of Law, Distinguished University Professor, and Director of the Law-Medicine Center, Case Western Reserve University School of Law, Cleveland, OH 44106, USA.,Department of Bioethics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Efthimios Parasidis
- Professor of Law and Public Health, Moritz College of Law and the College of Public Health, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Häusl AS, Brix LM, Hartmann J, Pöhlmann ML, Lopez JP, Menegaz D, Brivio E, Engelhardt C, Roeh S, Bajaj T, Rudolph L, Stoffel R, Hafner K, Goss HM, Reul JMHM, Deussing JM, Eder M, Ressler KJ, Gassen NC, Chen A, Schmidt MV. The co-chaperone Fkbp5 shapes the acute stress response in the paraventricular nucleus of the hypothalamus of male mice. Mol Psychiatry 2021; 26:3060-3076. [PMID: 33649453 PMCID: PMC8505251 DOI: 10.1038/s41380-021-01044-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/31/2023]
Abstract
Disturbed activation or regulation of the stress response through the hypothalamic-pituitary-adrenal (HPA) axis is a fundamental component of multiple stress-related diseases, including psychiatric, metabolic, and immune disorders. The FK506 binding protein 51 (FKBP5) is a negative regulator of the glucocorticoid receptor (GR), the main driver of HPA axis regulation, and FKBP5 polymorphisms have been repeatedly linked to stress-related disorders in humans. However, the specific role of Fkbp5 in the paraventricular nucleus of the hypothalamus (PVN) in shaping HPA axis (re)activity remains to be elucidated. We here demonstrate that the deletion of Fkbp5 in Sim1+ neurons dampens the acute stress response and increases GR sensitivity. In contrast, Fkbp5 overexpression in the PVN results in a chronic HPA axis over-activation, and a PVN-specific rescue of Fkbp5 expression in full Fkbp5 KO mice normalizes the HPA axis phenotype. Single-cell RNA sequencing revealed the cell-type-specific expression pattern of Fkbp5 in the PVN and showed that Fkbp5 expression is specifically upregulated in Crh+ neurons after stress. Finally, Crh-specific Fkbp5 overexpression alters Crh neuron activity, but only partially recapitulates the PVN-specific Fkbp5 overexpression phenotype. Together, the data establish the central and cell-type-specific importance of Fkbp5 in the PVN in shaping HPA axis regulation and the acute stress response.
Collapse
Affiliation(s)
- Alexander S Häusl
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Lea M Brix
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Jakob Hartmann
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Max L Pöhlmann
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Juan-Pablo Lopez
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Danusa Menegaz
- Electrophysiology Core Unit, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elena Brivio
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Clara Engelhardt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Simone Roeh
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Thomas Bajaj
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Lisa Rudolph
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Rainer Stoffel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Hannah M Goss
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Johannes M H M Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Electrophysiology Core Unit, Max Planck Institute of Psychiatry, Munich, Germany
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
25
|
Hamm JD, Klatzkin RR, Herzog M, Tamura S, Brunstrom JM, Kissileff HR. Recalled and momentary virtual portions created of snacks predict actual intake under laboratory stress condition. Physiol Behav 2021; 238:113479. [PMID: 34058220 DOI: 10.1016/j.physbeh.2021.113479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Virtual portion tasks have been used to predict food intake in healthy individuals, severity of illness in individuals with anorexia nervosa, and weight loss in bariatric surgery patients. Whether portion creation in response to a recalled interpersonal stress ("recalled stress portions") could be used as a proxy for ad lib intake, after a stressor, remains untested, and the mechanism supporting this relationship is unclear. The present study's goals were: 1) to validate virtual portion tasks as proxies for actual food intake in a stressful context and 2) to test a causal pathway in which these virtual stress portions predict ad lib intake after stress. We proposed that this relationship is mediated by virtual portions created the moment after laboratory stress or rest manipulation (momentary portions), and before the participant actually ate food. At screening, 29 healthy undergraduate white women created virtual portions of eight snacks (apples, olives, potato chips, pretzels, caramel popcorn, milk chocolate) that they typically eat and also portions they recall eating in response to a stressful interpersonal situation. In addition, after a Trier Social Stress Test, or a rest period, on separate days in counterbalanced order, participants created 'momentary' virtual portions of the same snacks presented during screening, and then were given potato chips, mini golden Oreos, and M&Ms to eat. Recalled stress (b = 0.07 ± 0.02, p = 0.003), and momentary stress (b = 0.12 ± 0.02, p = 0.00001), portions of milk chocolate accounted for 29% and 51%, respectively, of the variance in ad lib stress intake of M&Ms. Typical (b = 0.15 ± 0.07, p = 0.03), and momentary rest (b = 0.21 ± 0.06, p = 0.002), portions of chips accounted for 16% and 31%, respectively, of the variance in ad lib rest intake of chips. The causal pathway from recalled stress portion to ad lib stress snack intake was completely mediated by momentary stress portion for milk chocolate and M&Ms (β = 0.04 ± 0.02, z = 2.4, p = 0.0154). These findings illustrate the planning and recall components of eating in response to stress, but not necessarily under rest conditions. This recalled stress virtual portion paradigm has clinical and research value in that it can detect those who overconsume in response to stress.
Collapse
Affiliation(s)
- Jeon D Hamm
- Institute of Human Nutrition, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, Department of Medicine, Mount Sinai Morningside Hospital, New York, NY, USA.
| | | | - Musya Herzog
- Division of Endocrinology, Department of Medicine, Mount Sinai Morningside Hospital, New York, NY, USA; Department of Clinical Psychology, Teacher's College, Columbia University, New York, NY, USA
| | - Shoran Tamura
- Department of Medicine, New York Obesity Nutrition Research Center & Division of Endocrinology, Columbia University, New York, NY, USA
| | | | - Harry R Kissileff
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Endocrinology, Department of Medicine, Mount Sinai Morningside Hospital, New York, NY, USA.
| |
Collapse
|
26
|
Kraft P, Kraft B. Explaining socioeconomic disparities in health behaviours: A review of biopsychological pathways involving stress and inflammation. Neurosci Biobehav Rev 2021; 127:689-708. [PMID: 34048858 DOI: 10.1016/j.neubiorev.2021.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/12/2021] [Accepted: 05/20/2021] [Indexed: 01/29/2023]
Abstract
The purpose of this article was to explore how individuals' position in a socioeconomic hierarchy is related to health behaviours that are related to socioeconomic disparities in health. We identified research which shows that: (a) low socioeconomic status (SES) is associated with living in harsh environments, (b) harsh environments are related to increased levels of stress and inflammation, (c) stress and inflammation impact neural systems involved in self-control by sensitising the impulsive system and desensitising the reflective system, (d) the effects are inflated valuations of small immediate rewards and deflated valuations of larger delayed rewards, (e) these effects are observed as increased delay discounting, and (f) delay discounting is positively associated with practicing more unhealthy behaviours. The results are discussed within an adaptive evolutionary framework which lays out how the stress response system, and its interaction with the immune system and brain systems for decision-making and behaviours, provides the biopsychological mechanisms and regulatory shifts that make widespread conditional adaptability possible. Consequences for policy work, interventions, and future research are discussed.
Collapse
Affiliation(s)
- Pål Kraft
- Department of Psychology, University of Oslo, P.O. Box 1094, Blindern, 0317, Oslo, Norway; Department of Psychology, Bjørknes University College, Lovisenberggata 13, 0456, Oslo, Norway.
| | - Brage Kraft
- Division of Psychiatry, Diakonhjemmet Hospital, P. O. Box 23 Vinderen, 0319, Oslo, Norway.
| |
Collapse
|
27
|
Owalla TJ, Ssebajjwe WJ, Muhanguzi D, Womersley JS, Kinyanda E, Kalungi A. Association of Stress, Glucocorticoid Receptor, and FK506 Binding Protein Gene Polymorphisms With Internalizing Disorders Among HIV-Infected Children and Adolescents From Kampala and Masaka Districts-Uganda. Front Pediatr 2021; 9:666426. [PMID: 34765574 PMCID: PMC8576357 DOI: 10.3389/fped.2021.666426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Children and adolescents living with human immunodeficiency virus (CA-HIV) suffer a considerable burden of internalizing disorders (IDs; depressive and anxiety disorders). Environmental and genetic factors have been reported to influence the vulnerability to IDs in western settings; however, their role among African populations remains inadequately explored. We investigated the individual and interactive effects of stress and single-nucleotide polymorphisms within the FK506 binding protein 5 (rs1360780) and glucocorticoid receptor (rs10482605) genes on ID status in a cohort of CA-HIV in Uganda. We genotyped rs10482605 (309 cases and 315 controls) and rs1360780 (350 cases and 335 controls) among CA-HIV with and without IDs using Kompetitive Allele-Specific PCR. Socio-demographic variables, as well as allele and genotype distributions, were compared between cases and controls using chi-square tests. Genotypes were assessed for Hardy-Weinberg equilibrium. Composite indices of recent and chronic stress classes were also generated. A hierarchical cluster analysis was used to generate cutoff points within each of the indices of recent and chronic stress. Logistic regression was used to assess the association between IDs and each of recent stress, chronic stress, and the investigated genotypes. The interaction effect of chronic/recent stress on the association between each of the polymorphisms and IDs was determined using a likelihood ratio test. We observed no significant association between IDs and rs1360780 and rs10482605 polymorphisms within the FKBP5 and glucocorticoid receptor genes, respectively (P > 0.050). Severe recent stress increased the vulnerability to IDs among CA-HIV (P = 0.001). We did not observe any gene-environment effect on vulnerability to IDs in this population. These findings support the currently held opinion that polymorphisms at single genetic loci only contribute a very small effect to the genetic vulnerability to IDs.
Collapse
Affiliation(s)
- Tonny Jimmy Owalla
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Med Biotech Laboratories, Kampala, Uganda
| | - Wilber Joseph Ssebajjwe
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Dennis Muhanguzi
- Department of Bio-Molecular Resources and Bio-Laboratory Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Jacqueline Samantha Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.,South African Medical Research Council, Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eugene Kinyanda
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Allan Kalungi
- Mental Health Unit, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Immunology and Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
28
|
Gatta E, Saudagar V, Auta J, Grayson DR, Guidotti A. Epigenetic landscape of stress surfeit disorders: Key role for DNA methylation dynamics. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:127-183. [PMID: 33461662 PMCID: PMC7942223 DOI: 10.1016/bs.irn.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic exposure to stress throughout lifespan alters brain structure and function, inducing a maladaptive response to environmental stimuli, that can contribute to the development of a pathological phenotype. Studies have shown that hypothalamic-pituitary-adrenal (HPA) axis dysfunction is associated with various neuropsychiatric disorders, including major depressive, alcohol use and post-traumatic stress disorders. Downstream actors of the HPA axis, glucocorticoids are critical mediators of the stress response and exert their function through specific receptors, i.e., the glucocorticoid receptor (GR), highly expressed in stress/reward-integrative pathways. GRs are ligand-activated transcription factors that recruit epigenetic actors to regulate gene expression via DNA methylation, altering chromatin structure and thus shaping the response to stress. The dynamic interplay between stress response and epigenetic modifiers suggest DNA methylation plays a key role in the development of stress surfeit disorders.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Vikram Saudagar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
29
|
Morton SU, Maleyeff L, Wypij D, Yun HJ, Newburger JW, Bellinger DC, Roberts AE, Rivkin MJ, Seidman JG, Seidman CE, Grant PE, Im K. Abnormal Left-Hemispheric Sulcal Patterns Correlate with Neurodevelopmental Outcomes in Subjects with Single Ventricular Congenital Heart Disease. Cereb Cortex 2020; 30:476-487. [PMID: 31216004 PMCID: PMC7306172 DOI: 10.1093/cercor/bhz101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022] Open
Abstract
Neurodevelopmental abnormalities are the most common noncardiac complications in patients with congenital heart disease (CHD). Prenatal brain abnormalities may be due to reduced oxygenation, genetic factors, or less commonly, teratogens. Understanding the contribution of these factors is essential to improve outcomes. Because primary sulcal patterns are prenatally determined and under strong genetic control, we hypothesized that they are influenced by genetic variants in CHD. In this study, we reveal significant alterations in sulcal patterns among subjects with single ventricle CHD (n = 115, 14.7 ± 2.9 years [mean ± standard deviation]) compared with controls (n = 45, 15.5 ± 2.4 years) using a graph-based pattern-analysis technique. Among patients with CHD, the left hemisphere demonstrated decreased sulcal pattern similarity to controls in the left temporal and parietal lobes, as well as the bilateral frontal lobes. Temporal and parietal lobes demonstrated an abnormally asymmetric left-right pattern of sulcal basin area in CHD subjects. Sulcal pattern similarity to control was positively correlated with working memory, processing speed, and executive function. Exome analysis identified damaging de novo variants only in CHD subjects with more atypical sulcal patterns. Together, these findings suggest that sulcal pattern analysis may be useful in characterizing genetically influenced, atypical early brain development and neurodevelopmental risk in subjects with CHD.
Collapse
Affiliation(s)
- Sarah U Morton
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lara Maleyeff
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Wypij
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jane W Newburger
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David C Bellinger
- Department of Neurology
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Amy E Roberts
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Michael J Rivkin
- Department of Neurology
- Department of Psychiatry, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology
- Stroke and Cerebrovascular Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - P Ellen Grant
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Radiology
| | - Kiho Im
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
30
|
An introductory guide to conducting the Trier Social Stress Test. Neurosci Biobehav Rev 2019; 107:686-695. [DOI: 10.1016/j.neubiorev.2019.09.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 11/19/2022]
|
31
|
Wickrama KAS, O'Neal CW, Neppl TK. Midlife Family Economic Hardship and Later Life Cardiometabolic Health: The Protective Role of Marital Integration. THE GERONTOLOGIST 2019; 59:892-901. [PMID: 29846563 DOI: 10.1093/geront/gny047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The current study assesses the unique influences of family economic hardship (FEH) in early and late midlife on husbands' and wives' body mass index (BMI) and the influence of BMI on the onset of cardiometabolic (CM) disease in later adulthood. The protective role of marital integration is also considered in relation to the stress-response link between FEH and BMI. RESEARCH DESIGN AND METHODS Analyses were performed using structural equation modeling with prospective data from 257 husbands and wives in enduring marriages over a period of 25 years beginning when they were approximately 40 years old. A multigroup analysis tested the moderating role of marital integration. RESULTS The distal influence of FEH in early midlife on BMI in later adulthood remained statistically significant even after controlling for proximal FEH. Proximal FEH in later midlife was influential for wives', but not husbands', BMI. BMI in later midlife was related to the onset of CM disease in their later life. Moderation analysis showed that FEH and subsequent BMI were associated for couples with below average levels of behavioral integration but not for couples with above average levels of integration. DISCUSSION AND IMPLICATIONS Taken together, these findings suggest a family-health process stemming from early FEH and operating cumulatively over the life course. FEH in early midlife is a persistent determinant of physiological dysregulation as reflected by BMI. Findings identify BMI as a modifiable leverage point for the long-term reduction of CM disease risk and highlight the role of spouses as a buffer against the detrimental stress-health association.
Collapse
Affiliation(s)
- Kandauda A S Wickrama
- Department of Human Development and Family Science, The University of Georgia, Athens
| | | | - Tricia K Neppl
- Department of Human Development and Family Studies, Iowa State University, Ames
| |
Collapse
|
32
|
Interactions between FKBP5 variation and environmental stressors in adolescent Major Depression. Psychoneuroendocrinology 2019; 106:28-37. [PMID: 30953930 DOI: 10.1016/j.psyneuen.2019.03.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Major Depression (MD) results from a complex interplay between environmental stressors and biological factors. Previous studies in adults have shown that adverse life events interact with genetic variation in FKBP5, a gene implicated in the stress-response system, to predict depressive symptoms and MD. This is the first study to investigate interactions between FKBP5 variants and a range of environmental stressors in adolescents with a clinical diagnosis of MD. METHOD 148 male and female adolescents with MD and 143 typically developing (TD) controls (13-18 years) were included in the present study. For self-reported environmental stressors, subjective severity was assessed to allow a classification of these factors as mild, moderate and severe. Sociodemographic stressors were assessed via parental-report. RESULTS With a heightened number of sociodemographic, moderate and total number of stressors, participants carrying at least one copy of the FKBP5 CATT haplotype or at least one minor allele of various FKBP5 SNPs had the highest risk for being in the MD group. No genetic main effects were found. Sociodemographic stressors as well as self-reported mild, moderate, and severe stressors were more common in depressed than in TD adolescents. CONCLUSION This is the first study to show interactions between genetic variation in FKBP5 and environmental stressors in a sample of clinically depressed adolescents. The current study provides important starting-points for preventive efforts and highlights the need for a fine-grained analysis of different forms and severities of environmental stressors and their interplay with genetic variation for understanding the complex etiology of (youth) MD.
Collapse
|
33
|
Zhao F, Yue Y, Jiang H, Yuan Y. Shared genetic risk factors for depression and stroke. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:55-70. [PMID: 30898617 DOI: 10.1016/j.pnpbp.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The comorbidity of major depressive disorder (MDD) and stroke are common in clinic. There is a growing body of evidence suggesting a bi-directional relationship between stroke and depression. However, the mechanisms underlying the relationship between MDD and stroke are poorly investigated. Considering that both MDD and stroke can be heritable and are influenced by multiple risk genes, shared genetic risk factors between MDD and stroke may exist. OBJECTIVE The objective is to review the existing evidence for common genetic risk factors for both MDD and stroke and to outline the possible pathophysiological mechanisms mediating this association. METHODS A systematic review and meta-analysis was performed. Gene association studies regarding stroke and depression were searched in the database PubMed, CNKI, and Chinese Biomedical Literature Database before December 2018. Statistical analysis was performed using the software Revman 5.3. RESULTS Genetic polymorphisms of 4 genes, methylenetetrahydrofolate reductase (MTHFR) and apolipoprotein E (ApoE) have been demonstrated to associate with the increased risk for both MDD and stroke, while the association between identified polymorphisms in angiotensin converting enzyme (ACE) and serum paraoxonase (PON1) with depression is still under debate, for the existing studies are insufficient in sample size. These results suggest the possible pathophysiological mechanisms that are common to these two disorders, including immune-inflammatory imbalance, increased oxidative and nitrative stress, dysregulation of lipoprotein and lipid metabolism, and changes of cerebrovascular morphology and function. Other associated genes with few or conflicting results have also been included, and a few studies have investigated the effects of the described polymorphisms on MDD and stroke comorbidity, such as post stroke depression. CONCLUSION These findings suggest that shared genetic pathways may contribute to the comorbidity of MDD and stroke. Studies to evaluate the shared genetic variations between MDD and stroke may provide insights into the molecular mechanisms that trigger disease progression.
Collapse
Affiliation(s)
- Fuying Zhao
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China.
| |
Collapse
|
34
|
Killikelly C, Lorenz L, Bauer S, Mahat-Shamir M, Ben-Ezra M, Maercker A. Prolonged grief disorder: Its co-occurrence with adjustment disorder and post-traumatic stress disorder in a bereaved Israeli general-population sample. J Affect Disord 2019; 249:307-314. [PMID: 30797123 DOI: 10.1016/j.jad.2019.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Prolonged grief disorder (PGD) is a new disorder included in the WHO International Classification of Diseases 11th version (ICD-11). This study is the first to use these new ICD-11 PGD guidelines to examine prevalence rates, predictors of PGD and disorder co-occurrence with other stress-related disorders in a survey of 544 bereaved Israelis. METHODS Descriptive statistics, correlation, linear regression and mediation analysis examined the validity of the ICD-11 diagnostic algorithm. RESULTS Prevalence of PGD in the Israeli population sample is low (2%). The prevalence rate of post-traumatic stress disorder (PTSD) was 7.2% and for adjustment disorder (AjD) was 17.8%. A significant positive correlation found between scores on these measures indicates concurrent validity. Mediation analysis found that symptoms of PGD were predicted by serious life events, and significantly mediated by symptoms of PTSD and AjD. A regression analysis found significant predictors of PGD symptom severity, including socio-demographic and person-specific predictors. LIMITATIONS This study did not assess the index-death of the grief questionnaire. No conclusions could be made regarding the relationship between the type of loss and grief severity. Furthermore, the time since loss (time criterion) was not assessed. CONCLUSIONS This study is the first to examine prevalence rates of ICD-11 PGD in a population-based survey. The mediation relationship between serious life events, AjD, PTSD and PGD supports a vulnerability model of stress related disorders whereby the number of stressful life events may predict symptoms of stress related disorders.
Collapse
Affiliation(s)
- Clare Killikelly
- University of Zürich, Department of Psychology, Division Psychopathology and Clinical Intervention, CH-8050 Zürich, Switzerland.
| | - Louisa Lorenz
- University of Zürich, Department of Psychology, Division Psychopathology and Clinical Intervention, CH-8050 Zürich, Switzerland; Klinik im Hasel, Stationäre Therapie, Gontenschwil, Switzerland
| | - Susanna Bauer
- University of Zürich, Department of Psychology, Division Psychopathology and Clinical Intervention, CH-8050 Zürich, Switzerland
| | | | | | - Andreas Maercker
- University of Zürich, Department of Psychology, Division Psychopathology and Clinical Intervention, CH-8050 Zürich, Switzerland
| |
Collapse
|
35
|
Abstract
Characterized by the switch of manic and depressive phases, bipolar disorder was described as early as the fifth century BC. Nevertheless up to date, the underlying neurobiology is still largely unclear, assuming a multifactor genesis with both biological-genetic and psychosocial factors. Significant process has been achieved in recent years in researching the causes of bipolar disorder with modern molecular biological (e.g., genetic and epigenetic studies) and imaging techniques (e.g., positron emission tomography (PET) and functional magnetic resonance imaging (fMRI)). In this chapter we will first summarize our recent knowledge on the etiology of bipolar disorder. We then discuss how several factors observed to contribute to bipolar disorder in human patients can be manipulated to generate rodent models for bipolar disorder. Finally, we will give an overview on behavioral test that can be used to assess bipolar-disorder-like behavior in rodents.
Collapse
Affiliation(s)
- Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, Bochum, Germany.
| | - Georg Juckel
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University, Bochum, Germany
| |
Collapse
|
36
|
Fischer S, Gardini ES, Haas F, Cleare AJ. Polymorphisms in genes related to the hypothalamic-pituitary-adrenal axis and antidepressant response - Systematic review. Neurosci Biobehav Rev 2018; 96:182-196. [PMID: 30465786 DOI: 10.1016/j.neubiorev.2018.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/10/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Around 50% of depressed patients do not respond to antidepressants. Evidence from familial studies suggests a genetic component to this. This study investigated whether patients with polymorphisms in genes related to the hypothalamic-pituitary-adrenal (HPA) axis were less likely to respond to antidepressants. METHOD EMBASE, MEDLINE, PsycINFO, and the Cochrane Library were searched. Inclusionary criteria were: 1) patients with depression, 2) study of HPA axis-related candidate genes, 3) at least four weeks of antidepressants, and 4) assessment of depressive symptoms dividing patients into non-responders and responders. RESULTS Nineteen studies were identified. Non-responders and responders did not differ in single nucleotide polymorphisms (SNPs) in genes encoding arginine vasopressin. Findings were equivocal regarding genes encoding the FK506 binding protein 5 and glucocorticoid and mineralocorticoid receptors. Specific SNPs and haplotypes within genes related to corticotropin-releasing hormone (CRHBP, CRHR1) and melanocortins (POMC) predicted non-responder status. CONCLUSIONS Replication studies and additional investigations exploring gene x environment and drug x environment interactions are necessary before pharmacological treatments may be adjusted based on a patient's genetic profile.
Collapse
Affiliation(s)
- Susanne Fischer
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom; University of Zurich, Institute of Psychology, Clinical Psychology and Psychotherapy, Zurich, Switzerland.
| | - Elena S Gardini
- University of Zurich, Institute of Psychology, Clinical Psychology and Psychotherapy, Zurich, Switzerland; University of Zurich, University Research Priority Program (URPP) Dynamics of Healthy Aging, Zurich, Switzerland
| | - Florence Haas
- University of Zurich, Institute of Psychology, Clinical Psychology and Psychotherapy, Zurich, Switzerland
| | - Anthony J Cleare
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Centre for Affective Disorders, London, United Kingdom; South London and Maudsley NHS Foundation Trust, Denmark Hill, Camberwell, London, SE5 8AZ, United Kingdom
| |
Collapse
|
37
|
Saavedra JM, Armando I. Angiotensin II AT2 Receptors Contribute to Regulate the Sympathoadrenal and Hormonal Reaction to Stress Stimuli. Cell Mol Neurobiol 2018; 38:85-108. [PMID: 28884431 PMCID: PMC6668356 DOI: 10.1007/s10571-017-0533-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/01/2017] [Indexed: 12/14/2022]
Abstract
Angiotensin II, through AT1 receptor stimulation, mediates multiple cardiovascular, metabolic, and behavioral functions including the response to stressors. Conversely, the function of Angiotensin II AT2 receptors has not been totally clarified. In adult rodents, AT2 receptor distribution is very limited but it is particularly high in the adrenal medulla. Recent results strongly indicate that AT2 receptors contribute to the regulation of the response to stress stimuli. This occurs in association with AT1 receptors, both receptor types reciprocally influencing their expression and therefore their function. AT2 receptors appear to influence the response to many types of stressors and in all components of the hypothalamic-pituitary-adrenal axis. The molecular mechanisms involved in AT2 receptor activation, the complex interactions with AT1 receptors, and additional factors participating in the control of AT2 receptor regulation and activity in response to stressors are only partially understood. Further research is necessary to close this knowledge gap and to clarify whether AT2 receptor activation may carry the potential of a major translational advance.
Collapse
Affiliation(s)
- J M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, 3900 Reservoir Road, Bldg. D, Room 287, Washington, DC, 20007, USA.
| | - I Armando
- The George Washington University School of Medicine and Health Sciences, Ross Hall Suite 738 2300 Eye Street, Washington, DC, USA
| |
Collapse
|
38
|
Tucker-Drob EM, Grotzinger A, Briley DA, Engelhardt LE, Mann FD, Patterson M, Kirschbaum C, Adam EK, Church JA, Tackett JL, Harden KP. Genetic influences on hormonal markers of chronic hypothalamic-pituitary-adrenal function in human hair. Psychol Med 2017; 47:1389-1401. [PMID: 28100283 PMCID: PMC5517361 DOI: 10.1017/s0033291716003068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Cortisol is the primary output of the hypothalamic-pituitary-adrenal (HPA) axis and is central to the biological stress response, with wide-ranging effects on psychiatric health. Despite well-studied biological pathways of glucocorticoid function, little attention has been paid to the role of genetic variation. Conventional salivary, urinary and serum measures are strongly influenced by diurnal variation and transient reactivity. Recently developed technology can be used to measure cortisol accumulation over several months in hair, thus indexing chronic HPA function. METHOD In a socio-economically diverse sample of 1070 twins/multiples (ages 7.80-19.47 years) from the Texas Twin Project, we estimated effects of sex, age and socio-economic status (SES) on hair concentrations of cortisol and its inactive metabolite, cortisone, along with their interactions with genetic and environmental factors. This is the first genetic study of hair neuroendocrine concentrations and the largest twin study of neuroendocrine concentrations in any tissue type. RESULTS Glucocorticoid concentrations increased with age for females, but not males. Genetic factors accounted for approximately half of the variation in cortisol and cortisone. Shared environmental effects dissipated over adolescence. Higher SES was related to shallower increases in cortisol with age. SES was unrelated to cortisone, and did not significantly moderate genetic effects on either cortisol or cortisone. CONCLUSIONS Genetic factors account for sizable proportions of glucocorticoid variation across the entire age range examined, whereas shared environmental influences are modest, and only apparent at earlier ages. Chronic glucocorticoid output appears to be more consistently related to biological sex, age and genotype than to experiential factors that cluster within nuclear families.
Collapse
Affiliation(s)
- Elliot M. Tucker-Drob
- Department of Psychology, University of Texas at Austin, USA
- Population Research Center, University of Texas at Austin, USA
| | | | - Daniel A. Briley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | | | - Frank D. Mann
- Department of Psychology, University of Texas at Austin, USA
| | - Megan Patterson
- Department of Psychology, University of Texas at Austin, USA
| | - Clemens Kirschbaum
- Deparment of Biological Psychology, Technische Universität Dresden, Germany
| | - Emma K. Adam
- Deparment of Human Development and Social Policy, Northwestern University, Evanston, IL USA
| | | | | | - K. Paige Harden
- Department of Psychology, University of Texas at Austin, USA
- Population Research Center, University of Texas at Austin, USA
| |
Collapse
|
39
|
Vandenbroucke L, Spilt J, Verschueren K, Baeyens D. Keeping the Spirits Up: The Effect of Teachers' and Parents' Emotional Support on Children's Working Memory Performance. Front Psychol 2017; 8:512. [PMID: 28421026 PMCID: PMC5378781 DOI: 10.3389/fpsyg.2017.00512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/20/2017] [Indexed: 11/21/2022] Open
Abstract
Working memory, used to temporarily store and mentally manipulate information, is important for children’s learning. It is therefore valuable to understand which (contextual) factors promote or hinder working memory performance. Recent research shows positive associations between positive parent–child and teacher–student interactions and working memory performance and development. However, no study has yet experimentally investigated how parents and teachers affect working memory performance. Based on attachment theory, the current study investigated the role of parent and teacher emotional support in promoting working memory performance by buffering the negative effect of social stress. Questionnaires and an experimental session were completed by 170 children from grade 1 to 2 (Mage = 7 years 6 months, SD = 7 months). Questionnaires were used to assess children’s perceptions of the teacher–student and parent–child relationship. During an experimental session, working memory was measured with the Corsi task backward (Milner, 1971) in a pre- and post-test design. In-between the tests stress was induced in the children using the Cyberball paradigm (Williams et al., 2000). Emotional support was manipulated (between-subjects) through an audio message (either a weather report, a supportive message of a stranger, a supportive message of a parent, or a supportive message of a teacher). Results of repeated measures ANOVA showed no clear effect of the stress induction. Nevertheless, an effect of parent and teacher support was found and depended on the quality of the parent–child relationship. When children had a positive relationship with their parent, support of parents and teachers had little effect on working memory performance. When children had a negative relationship with their parent, a supportive message of that parent decreased working memory performance, while a supportive message from the teacher increased performance. In sum, the current study suggests that parents and teachers can support working memory performance by being supportive for the child. Teacher support is most effective when the child has a negative relationship with the parent. These insights can give direction to specific measures aimed at preventing and resolving working memory problems and related issues.
Collapse
Affiliation(s)
- Loren Vandenbroucke
- Parenting and Special Education Unit, Faculty of Psychology and Educational Sciences, KU LeuvenLeuven, Belgium
| | - Jantine Spilt
- School Psychology and Child and Adolescent Development, Faculty of Psychology and Educational Sciences, KU LeuvenLeuven, Belgium
| | - Karine Verschueren
- School Psychology and Child and Adolescent Development, Faculty of Psychology and Educational Sciences, KU LeuvenLeuven, Belgium
| | - Dieter Baeyens
- Parenting and Special Education Unit, Faculty of Psychology and Educational Sciences, KU LeuvenLeuven, Belgium
| |
Collapse
|
40
|
Isaksson J, Comasco E, Åslund C, Rehn M, Tuvblad C, Andershed H, Nilsson KW. Associations between the FKBP5 haplotype, exposure to violence and anxiety in females. Psychoneuroendocrinology 2016; 72:196-204. [PMID: 27448712 DOI: 10.1016/j.psyneuen.2016.07.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 01/30/2023]
Abstract
The gene that encodes the FK506-binding protein 5 (FKBP5) is regarded as a candidate for investigating how negative life events interact with a genetic predisposition to stress-related disorders, such as depression and anxiety. Given the role of FKBP5 as an important regulator of stress responses, we aimed to investigate if single-nucleotide polymorphisms (SNPs) in FKBP5-in the presence/absence of exposure to violence-are associated with symptoms of depression and anxiety. Data from two community-based samples of adolescents (n=1705) and young adults (n=1800) regarding ratings on depression, anxiety, exposure to violence and FKBP5 genotype were collected. A risk haplogenotype including the minor alleles of seven common SNPs in the FKBP5 (rs3800373, rs9296158, rs7748266, rs1360780, rs9394309, rs9470080 and rs4713916) conferred higher ratings on anxiety among females, but not males, in the presence of violence. Exposure to violence and female sex were associated with higher ratings on both depression and anxiety, with the exception of ratings on depression among young adults, on which sex had no effect. Ratings on depression were not associated with the haplogenotype. These findings may correspond to differences in the regulation of the HPA axis and with the higher vulnerability to anxiety in females.
Collapse
Affiliation(s)
- Johan Isaksson
- Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden; Department of Women's and Children's Health, Pediatric Neuropsychiatry Unit, Center for Neurodevelopmental Disorders at Karolinska Institutet (KIND), Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Erika Comasco
- Department of Neuroscience, Uppsala University, 751 85 Uppsala, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Västmanland County Hospital Västerås, Uppsala University, 721 89 Västerås, Sweden
| | - Mattias Rehn
- Centre for Clinical Research, Västmanland County Hospital Västerås, Uppsala University, 721 89 Västerås, Sweden
| | - Catherine Tuvblad
- Department of Psychology, University of Southern California, CA 90089-1061, USA; School of Law, Psychology and Social Work, Örebro University, 701 82 Örebro, Sweden
| | - Henrik Andershed
- School of Law, Psychology and Social Work, Örebro University, 701 82 Örebro, Sweden
| | - Kent W Nilsson
- Centre for Clinical Research, Västmanland County Hospital Västerås, Uppsala University, 721 89 Västerås, Sweden
| |
Collapse
|
41
|
Canetti D, Kimhi S, Hanoun R, Rocha GA, Galea S, Morgan CA. How Personality Affects Vulnerability among Israelis and Palestinians following the 2009 Gaza Conflict. PLoS One 2016; 11:e0156278. [PMID: 27391240 PMCID: PMC4938394 DOI: 10.1371/journal.pone.0156278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/11/2016] [Indexed: 12/25/2022] Open
Abstract
Can the onset of PTSD symptoms and depression be predicted by personality factors and thought control strategies? A logical explanation for the different mental health outcomes of individuals exposed to trauma would seem to be personality factors and thought control strategies. Trauma exposure is necessary but not sufficient for the development of PTSD. To this end, we assess the role of personality traits and coping styles in PTSD vulnerability among Israeli and Palestinian students amid conflict. We also determine whether gender and exposure level to trauma impact the likelihood of the onset of PTSD symptoms. Five questionnaires assess previous trauma, PTSD symptoms, demographics, personality factors and thought control strategies, which are analyzed using path analysis. Findings show that the importance of personality factors and thought control strategies in predicting vulnerability increases in the face of political violence: the higher stress, the more important the roles of personality and thought control strategies. Thought control strategies associated with introverted and less emotionally stable personality-types correlate positively with higher levels of PTSD symptoms and depression, particularly among Palestinians. By extension, because mental health is key to reducing violence in the region, PTSD reduction in conflict zones warrants rethinking.
Collapse
Affiliation(s)
- Daphna Canetti
- School of Political Science, University of Haifa, Haifa, Israel
| | - Shaul Kimhi
- Department of Psychology, Tel-Hai College, Tel-Hai, Israel
| | - Rasmiyah Hanoun
- Faculty of Educational Science, An-Najah National University, Nablus, Palestine
| | - Gabriel A. Rocha
- Carolinas Biofeedback Clinic, Charlotte, North Carolina, United States of America, and Doctors Making Housecalls, Durham, North Carolina, United States of America
| | - Sandro Galea
- School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Charles A. Morgan
- National Security Program, University of New Haven, New Haven, Connecticut, United States of America, and School of Medicine, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
42
|
Dean C, Hillard CJ, Seagard JL, Hopp FA, Hogan QH. Components of the cannabinoid system in the dorsal periaqueductal gray are related to resting heart rate. Am J Physiol Regul Integr Comp Physiol 2016; 311:R254-62. [PMID: 27280429 DOI: 10.1152/ajpregu.00154.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/05/2016] [Indexed: 11/22/2022]
Abstract
The present study was undertaken to examine whether variations in endocannabinoid signaling in the dorsal periaqueductal gray (dPAG) are associated with baseline autonomic nerve activity, heart rate, and blood pressure. Blood pressure was recorded telemetrically in rats, and heart rate and power spectral analysis of heart rate variability were determined. Natural variations from animal to animal provided a range of baseline values for analysis. Transcript levels of endocannabinoid signaling components in the dPAG were analyzed, and endocannabinoid content and catabolic enzyme activity were measured. Higher baseline heart rate was associated with increased anandamide content and with decreased activity of the anandamide-hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), and it was negatively correlated with transcript levels of both FAAH and monoacylglycerol lipase (MAGL), a catabolic enzyme for 2-arachidonoylglycerol (2-AG). Autonomic tone and heart rate, but not blood pressure, were correlated to levels of FAAH mRNA. In accordance with these data, exogenous anandamide in the dPAG of anesthetized rats increased heart rate. These data indicate that in the dPAG, anandamide, a FAAH-regulated lipid, contributes to regulation of baseline heart rate through influences on autonomic outflow.
Collapse
Affiliation(s)
- Caron Dean
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Cecilia J Hillard
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Jeanne L Seagard
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Francis A Hopp
- Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
43
|
A genome-wide association study to identify chromosomal regions influencing ovine cortisol response. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Premorbid obesity and metabolic disturbances as promising clinical targets for the prevention and early screening of bipolar disorder. Med Hypotheses 2015; 84:285-93. [DOI: 10.1016/j.mehy.2015.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/11/2015] [Indexed: 12/12/2022]
|
45
|
Hui L, Wu JQ, Ye MJ, Zheng K, He JC, Zhang X, Liu JH, Tian HJ, Gong BH, Chen DC, Lv MH, Soares JC, Zhang XY. Association of angiotensin-converting enzyme gene polymorphism with schizophrenia and depressive symptom severity in a Chinese population. Hum Psychopharmacol 2015; 30:100-7. [PMID: 25694211 DOI: 10.1002/hup.2460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/06/2014] [Accepted: 12/05/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Depressive symptoms are frequently observed in schizophrenia patients. Angiotensin-converting enzyme (ACE), a key enzyme of renin-angiotensin system, can catalyze the degradation of neuropeptides and modulate dopaminergic and serotonergic neurotransmission. Previous studies have revealed the association of the ACE gene insertion/deletion polymorphism with depressive disorder and its treatment response but not with the depressive symptoms in schizophrenia. OBJECTIVE The aim of this study is to examine whether this polymorphism was associated with susceptibility to schizophrenia and with its psychopathological symptoms, especially depressive symptoms in a Han Chinese population. METHODS This polymorphism was genotyped in 382 chronic patients and 538 healthy controls. Psychopathology was characterised using the positive and negative syndrome scale. RESULTS The allelic and genotypic frequencies of this polymorphism significantly differed between patients and controls (both p < 0.001). A significant difference in the positive and negative syndrome scale depressive symptom score was observed among the three genotypes (p < 0.03), with higher score in patients with insertion/insertion (I/I) than with deletion/deletion (D/D) genotypes (p < 0.05). Furthermore, there was a significant linear correlation between the number of I alleles and the depressive symptom score (p < 0.05). CONCLUSIONS The ACE gene insertion/deletion polymorphism may play a role in susceptibility to schizophrenia and also in its depressive symptom severity in a Han Chinese population.
Collapse
Affiliation(s)
- Li Hui
- Institute of Kangning Mental Health, Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Houtepen LC, Boks MPM, Kahn RS, Joëls M, Vinkers CH. Antipsychotic use is associated with a blunted cortisol stress response: a study in euthymic bipolar disorder patients and their unaffected siblings. Eur Neuropsychopharmacol 2015; 25:77-84. [PMID: 25453485 DOI: 10.1016/j.euroneuro.2014.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/09/2014] [Accepted: 10/13/2014] [Indexed: 11/30/2022]
Abstract
There is ample evidence that the acute stress response is altered in schizophrenia and bipolar disorder. However, it is not clear whether such changes are related to the illness, a genetic vulnerability, or is the result of medication that is used in the majority of these patients. Therefore, we investigated determinants of the acute endocrine and autonomic stress response in healthy controls (n=48), euthymic BD1 patients (n=49) and unaffected siblings of BD1 patients (n=27). All participants completed a validated psychosocial stress task, the Trier Social Stress Test for Groups (TSST-G). Saliva levels of alpha-amylase and cortisol were measured before, during, and after exposure to stress. Compared to controls, we found a significantly blunted cortisol stress response in BD1 patients. Conversely, BD1 patients displayed exaggerated alpha-amylase levels in response to stress. Antipsychotic use was a significant contributing factor to the blunted cortisol stress response in BD1 patients. Unaffected BD1 siblings displayed similar stress-induced cortisol and alpha-amylase levels as controls, suggesting that familial risk for BD1 did not have a large effect on the functionality of the stress system. In conclusion, this study shows that euthymic BD1 patients have a substantially blunted endocrine stress response but an exaggerated autonomic stress response and that the endocrine stress response differences can be largely contributed to antipsychotic use rather than constitute a specific BD1 phenotype or vulnerability.
Collapse
Affiliation(s)
- L C Houtepen
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.
| | - M P M Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - R S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - M Joëls
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - C H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| |
Collapse
|
47
|
Galvez JF, Bauer IE, Sanches M, Wu HE, Hamilton JE, Mwangi B, Kapczinski FP, Zunta-Soares G, Soares JC. Shared clinical associations between obesity and impulsivity in rapid cycling bipolar disorder: a systematic review. J Affect Disord 2014; 168:306-13. [PMID: 25086289 DOI: 10.1016/j.jad.2014.05.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 05/23/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Obesity seems to show a two-way relationship with bipolar disorder (BD), representing not only a possible vulnerability factor but also a consequence of chronic mood dysregulation associated with an overall poor prognosis. Increased impulsivity has been described across all stages and phases of BD as being also associated with a worse prognosis. Although obesity and impulsivity are common features among rapid cycling bipolar disorder (RC-BD) patients, there is a lack of understanding about the clinical implications of these conditions combined in BD. METHODS To explore and integrate available evidence on shared clinical associations between obesity and impulsivity in RC-BD a systematic search of the literature in the electronic database of the National Library of Medicine (PubMed) has been conducted. RESULTS One hundred and fourteen articles were included in our systematic review. Among RC-BD patients, substance abuse disorders (SUDs), anxiety disorders (ADs), predominantly depressive polarity, chronic exposure to antidepressants, psychotic symptoms, suicidality, and comorbid medical conditions are strongly associated with both obesity and impulsivity. LIMITATIONS Heterogeneity of published data, inconsistent measurements of both obesity and impulsivity in RC-BD and an absence of control for RC-BD in epidemiological surveys. Consequently, their combined impact on the severity of RC-BD is yet to be recognized and remains to be poorly understood. CONCLUSION In RC-BD patients the co-occurrence of obesity and impulsivity is associated with an unfavorable course of illness, specific shared clinical correlates, negative psychosocial impact, and overall worse prognosis. There is a need to examine obesity and impulsivity as modulating factors and markers of severity in RC-BD.
Collapse
Affiliation(s)
- Juan F Galvez
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA; Department of Psychiatry, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia.
| | - Isabelle E Bauer
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.
| | - Marsal Sanches
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.
| | - Hanjing E Wu
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.
| | - Jane E Hamilton
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.
| | - Flavio P Kapczinski
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA; Molecular Psychiatry Laboratory, UT Center of Excellence on Mood Disorders, Houston, TX, USA; Harris County Psychiatric Center (HCPC), University of Texas Health Science Center, Houston, TX, USA.
| | - Giovana Zunta-Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA.
| | - Jair C Soares
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center, Houston, TX, USA; Harris County Psychiatric Center (HCPC), University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
48
|
Bruenig D, White MJ, Young RM, Voisey J. Subclinical psychotic experiences in healthy young adults: associations with stress and genetic predisposition. Genet Test Mol Biomarkers 2014; 18:683-9. [PMID: 25184405 DOI: 10.1089/gtmb.2014.0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stress has been identified as a common trigger for psychosis. Dopamine pathways are suggested to be affected by chronic and severe stress and to play an important role in psychosis. This pilot study investigates the potential relationship of stress and psychosis in subclinical psychotic experiences. It was hypothesized that single-nucleotide polymorphisms (SNPs) previously found to be associated with psychiatric disorders would be associated with both stress and subclinical psychotic experiences. University students (N=182) were genotyped for 17 SNPs across 11 genes. Higher stress reporting was associated with rs4680 COMT, rs13211507 HLA region, and rs13107325 SLC39A8. Reports of higher subclinical psychotic experiences were associated with DRD2 SNPs rs17601612 and rs658986 and an AKT1 SNP rs2494732. Replication studies are recommended to further pursue this line of research for identification of markers of psychosis for early diagnosis and intervention.
Collapse
Affiliation(s)
- Dagmar Bruenig
- Institute of Health and Biomedical Innovation, Queensland University of Technology , Kelvin Grove, Australia
| | | | | | | |
Collapse
|
49
|
Macolino CM, Daiutolo BV, Albertson BK, Elliott MB. Mechanical allodynia induced by traumatic brain injury is independent of restraint stress. J Neurosci Methods 2014; 226:139-146. [PMID: 24486873 DOI: 10.1016/j.jneumeth.2014.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/20/2013] [Accepted: 01/13/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND This study identifies the relationship between a test for post-traumatic headache and a marker for acute stress in rodent models of traumatic brain injury. NEW METHOD C57BL/6 mice and Sprague Dawley rats were divided into Controlled Cortical Impact (CCI) injury, craniotomy (CR), and incision groups. Periorbital and paw allodynia were evaluated using the von Frey test prior to injury and up to four weeks post-operatively. Serum corticosterone was evaluated in groups with and without mild restraint. RESULTS Periorbital and forepaw thresholds, but not hindpaw thresholds, were reduced in CCI and CR mice compared to incision (p<0.0001 and p<0.01). In contrast to mice, reduced periorbital and forepaw periorbital thresholds were found in CCI rats but not CR rats compared to incision (p<0.0001). Right periorbital thresholds were reduced compared to left thresholds for both rat and mouse at one week (p<0.01), but there were no side differences for forepaw thresholds. Hindpaw thresholds did not change from baseline values for any groups of mice or rats. In mice serum corticosterone levels were increased at one, two and four weeks post-CCI and CR, while the levels for rats were not different from incision (p<0.0001). Corticosterone levels were not different in mice subjected to restraint compared to no restraint. COMPARISON WITH EXISTING METHODS This study presents novel data for allodynia in a rat model of TBI, and differences among mouse and rat species. CONCLUSIONS Mechanical allodynia occurs independent of evoked restraint stress, while hypothalamic pituitary adrenal axis activity is dependent on head trauma and species.
Collapse
Affiliation(s)
- Christine M Macolino
- Department of Neurological Surgery, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Brittany V Daiutolo
- Department of Neurological Surgery, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Brad K Albertson
- Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | - Melanie B Elliott
- Department of Neuroscience, Jefferson Hospital for Neuroscience Chairs Office 900 Walnut Street, Philadelphia, PA 19107, USA.
| |
Collapse
|
50
|
Winham SJ, Biernacka JM. Gene-environment interactions in genome-wide association studies: current approaches and new directions. J Child Psychol Psychiatry 2013; 54:1120-34. [PMID: 23808649 PMCID: PMC3829379 DOI: 10.1111/jcpp.12114] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Complex psychiatric traits have long been thought to be the result of a combination of genetic and environmental factors, and gene-environment interactions are thought to play a crucial role in behavioral phenotypes and the susceptibility and progression of psychiatric disorders. Candidate gene studies to investigate hypothesized gene-environment interactions are now fairly common in human genetic research, and with the shift toward genome-wide association studies, genome-wide gene-environment interaction studies are beginning to emerge. METHODS We summarize the basic ideas behind gene-environment interaction, and provide an overview of possible study designs and traditional analysis methods in the context of genome-wide analysis. We then discuss novel approaches beyond the traditional strategy of analyzing the interaction between the environmental factor and each polymorphism individually. RESULTS Two-step filtering approaches that reduce the number of polymorphisms tested for interactions can substantially increase the power of genome-wide gene-environment studies. New analytical methods including data-mining approaches, and gene-level and pathway-level analyses, also have the capacity to improve our understanding of how complex genetic and environmental factors interact to influence psychologic and psychiatric traits. Such methods, however, have not yet been utilized much in behavioral and mental health research. CONCLUSIONS Although methods to investigate gene-environment interactions are available, there is a need for further development and extension of these methods to identify gene-environment interactions in the context of genome-wide association studies. These novel approaches need to be applied in studies of psychology and psychiatry.
Collapse
Affiliation(s)
- Stacey J Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905
| | - Joanna M. Biernacka
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester MN 55905,Department of Psychiatry and Psychology, Mayo Clinic, Rochester MN 55905
| |
Collapse
|