1
|
Zou DF, Li ZH, Liu YB, Wang CZ. Progress in the study of the effects of electromagnetic radiation on the mood and rhythm. Electromagn Biol Med 2025; 44:212-227. [PMID: 39964745 DOI: 10.1080/15368378.2025.2460971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/27/2025] [Indexed: 04/24/2025]
Abstract
The ever-expanding use of a large number of electrical appliances and mobile communication systems, which outnumber the global population, emit electromagnetic radiation through mobile telephones, power stations, transmission lines, radar, microwave ovens, televisions, refrigerators, therapeutic and other electronic devices. Electromagnetic radiation has been classified by the International Agency for Research on Cancer (IARC) as possibly carcinogenic to humans (Group 2B). A large number of research results show that short-term and long-term exposure to electromagnetic radiation can lead to anxiety, depression, decreased learning ability, memory loss, sleep rhythm disorders and other adverse effects. Sleep rhythm disorders affect many people worldwide and may be associated with psychiatric disorders such as anxiety and depression. In this review, we summarise key experiments related to the effects of electric field exposure on mood and rhythms in animal and cellular studies over the past decade, describe the effects of electromagnetic radiation on emotional behaviors and circadian rhythms in humans and mammals, and explore the relationship between electromagnetic radiation,mood and rhythms as well as its underlying mechanisms of action. Most animal studies suggest that electromagnetic radiation may affect the physiological organization and functioning of the brain, influence neurotransmitters and receptors, interfere with neuronal formation and structure, or alter associated endocrine hormones and free radicals, which may lead to the unfavorable development of psychiatric disorders and sleep rhythm disorders. This summary may provide researchers with better clues and ideas to develop therapeutic solutions with sleep disorders and depressive psychiatric disorders.
Collapse
Affiliation(s)
- Dong-Fang Zou
- College of Life Science, Yangtze University, Jingzhou, China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhi-Hui Li
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying-Bao Liu
- College of Life Science, Yangtze University, Jingzhou, China
| | - Chang-Zhen Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
2
|
Henshaw DL, Philips A. A mechanistic understanding of human magnetoreception validates the phenomenon of electromagnetic hypersensitivity (EHS). Int J Radiat Biol 2024; 101:186-204. [PMID: 39652433 DOI: 10.1080/09553002.2024.2435329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Human electromagnetic hypersensitivity (EHS) or electrosensitivity (ES) symptoms in response to anthropogenic electromagnetic fields (EMFs) at levels below current international safety standards are generally considered to be nocebo effects by conventional medical science. In the wider field of magnetoreception in biology, our understanding of mechanisms and processes of magnetic field (MF) interactions is more advanced. METHODS We consulted a range of publication databases to identify the key advances in understanding of magnetoreception across the wide animal kingdom of life. RESULTS We examined primary MF/EMF sensing and subsequent coupling to the nervous system and the brain. Magnetite particles in our brains and other tissues can transduce MFs/EMFs, including at microwave frequencies. The radical pair mechanism (RPM) is accepted as the main basis of the magnetic compass in birds and other species, acting via cryptochrome protein molecules in the eye. In some cases, extraordinary sensitivity is observed, several thousand times below that of the geomagnetic field. Bird compass disorientation by radio frequency (RF) EMFs is known. CONCLUSIONS Interdisciplinary research has established that all forms of life can respond to MFs. Research shows that human cryptochromes exhibit magnetosensitivity. Most existing provocation studies have failed to confirm EHS as an environmental illness. We attribute this to a fundamental lack of understanding of the mechanisms and processes involved, which have resulted in the design of inappropriate and inadequate tests. We conclude that future research into EHS needs a quantum mechanistic approach on the basis of existing biological knowledge of the magnetosensitivity of living organisms.
Collapse
Affiliation(s)
- Denis L Henshaw
- Atmospheric Chemistry Group, School of Chemistry, University of Bristol, Bristol, UK
| | - Alasdair Philips
- Independent Scientist, Brambling, Beeswing, Dumfries, Scotland, UK
| |
Collapse
|
3
|
Klimek A, Kletkiewicz H, Siejka A, Wyszkowska J, Maliszewska J, Klimiuk M, Jankowska M, Rogalska J. The extremely low-frequency electromagnetic field (50 Hz) can establish a new "set-point" for the activity of the locus coeruleus-noradrenergic (LC-NA) system in rat. Brain Res Bull 2024; 219:111111. [PMID: 39486464 DOI: 10.1016/j.brainresbull.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Exposure of organisms to extremely low-frequency electromagnetic field (ELF-EMF; 50 Hz) has been increasing in recent decades, which is connected with dynamic technological development. ELF-EMF is considered a stress factor and its effects on organisms are still being investigated. We aimed to determine its impact on the locus coeruleus-noradrenergic (LC-NA) system enabling adaptation to stressful conditions. For this purpose, we exposed rats to 50 Hz ELF-EMF of 1 and 7 mT, 1 h/day for 7 days. The procedure was repeated three times to examine the organism's adaptive capabilities. Subsequently, the concentration of adrenaline, noradrenaline and its metabolite MHPG as well as the expression of the β2-adrenergic receptor was assessed. After the end of each exposure, part of the animals were subjected to a behavioural test to assess the influence of repeated ELF-EMF exposure on stress response to subsequent stress factors. Our research proved that mechanisms underlying the effects of ELF-EMF on stress response include the LC-NA system. ELF-EMF of 1 mT induced adaptive changes in the NA-LC system. However, exposure to 7 mT caused increased activity of the stress system which resulted in sensitization to subsequent, heterotypic (different from the one previously acting) stress factor. As ELF-EMF of 7 mT caused a profound decrease in β2-AR level would strongly inhibit the potential for neuroplastic processes in the hippocampus. Moreover, rats exposed to ELF-EMF of 7 mT showed moderately increased anxiety-related behaviour. Disturbances in NA-LC transmission may underlie the development of some neurodegenerative and psychiatric diseases which indicates the possible involvement of ELF-EMF in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Angelika Klimek
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-077, Poland.
| | - Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Agnieszka Siejka
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Joanna Wyszkowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Justyna Maliszewska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Maciej Klimiuk
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Milena Jankowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, 87-100, Poland.
| |
Collapse
|
4
|
Gokce Y, Seker U, Ozoner MP. Safety analysis of different ıntensities of elf-pemf in terms of apoptotic, inflammatory, and transcription factor NF-Κb expression levels in rat liver. HEPATOLOGY FORUM 2024; 5:178-183. [PMID: 39524317 PMCID: PMC11440225 DOI: 10.14744/hf.2024.2024.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/16/2024]
Abstract
Background and Aim The purpose of this research was to ascertain how exposure to extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) at varying intensities affects apoptosis-related protein expression levels and liver morphology in rats. Materials and Methods In this experimental study, 40 Wistar albino rats were randomly divided into 4 groups, with 10 animals in each group: Control, Sham, 1 milli Tesla (1mT), and 5 mT groups. The control group did not expose any application during the experiment. Animals in the sham group were placed into the closed ELF-PEMF exposure environment, but the device was kept closed. The rats in the 1mT and 5mT groups were placed into a closed ELF-PEMF exposure environment, and the magnetic field application was applied 5 days a week for 4 hours a day for 8 weeks. At the end of the study, the animals were sacrificed, and their liver tissues were examined morphologically, and the expression levels of proteins related to apoptosis and inflammation in these tissues were analyzed. Results Our results indicated that ELF-PEMFs did not lead to any exact morphological alterations in the groups. Tissue apoptotic Bax and Caspase 3 expression levels in the 1mT and 5mT groups were similar (p>0.05) to the control group. Additionally, pro-inflammatory TNF-α and transcription factor NF-κB in the 1mT and 5mT groups were similar (p>0.05) to each other and the control group. Conclusion It is feasible to conclude that neither the administration nor the exposure design of this study is changing the immunoexpression of apoptosis-regulating protein expression levels or liver morphology exposed to ELF-PEMF in rats.
Collapse
Affiliation(s)
- Yasin Gokce
- Department of Biophysics, Harran University School of Medicine, Sanliurfa, Turkiye
| | - Ugur Seker
- Department of Histology and Embryology, Mardin Artuklu University School of Medicine, Mardin, Turkiye
| | - Merve Pekince Ozoner
- Department of Veterinary Histology and Embryology, School of Veterinary Medicine, Siirt University, Siirt, Turkiye
| |
Collapse
|
5
|
Woldańska-Okońska M, Koszela K. The Physiological Impact of Melatonin, Its Effect on the Course of Diseases and Their Therapy and the Effect of Magnetic Fields on Melatonin Secretion-Potential Common Pathways of Influence. Biomolecules 2024; 14:929. [PMID: 39199317 PMCID: PMC11353072 DOI: 10.3390/biom14080929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Melatonin is a relic, due to its millions-of-years-old presence in chemical reactions, found in evolutionarily diverse organisms. It has a multidirectional biological function. It controls diurnal rhythms, redox homeostasis, intestinal motor functions, mitochondrial biogenesis and fetal development and has antioxidant effects. It also has analgesic and therapeutic effects. The purpose of this paper is to describe the role of melatonin in vital processes occurring in interaction with the environment, with particular reference to various magnetic fields ubiquitous in the life of animate matter, especially radio frequency/extra low frequency (RF/ELF EMF) and static magnetic fields. The most important part of this article is to describe the potential effects of magnetic fields on melatonin secretion and the resulting possible health effects. Melatonin in some cases positively amplifies the electromagnetic signal, intensifying health effects, such as neurogenesis, analgesic effects or lowering blood pressure. In other cases, it is a stimulus that inhibits the processes of destruction and aggravation of lesions. Sometimes, however, in contrast to the beneficial effects of electromagnetic fields in therapy, they intensify pathogenic effects, as in multiple sclerosis by intensifying the inflammatory process.
Collapse
Affiliation(s)
- Marta Woldańska-Okońska
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University of Lodz, 90-419 Lodz, Poland
| | - Kamil Koszela
- Department of Neuroorthopedics and Neurology Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
6
|
Klimek A, Kletkiewicz H, Siejka A, Wyszkowska J, Maliszewska J, Klimiuk M, Jankowska M, Seckl J, Rogalska J. New View on the Impact of the Low-Frequency Electromagnetic Field (50 Hz) on Stress Responses: Hormesis Effect. Neuroendocrinology 2022; 113:423-441. [PMID: 36323227 PMCID: PMC10906478 DOI: 10.1159/000527878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/26/2022] [Indexed: 03/24/2023]
Abstract
INTRODUCTION Low-frequency electromagnetic field (50 Hz) (EMF) can modify crucial neuronal processes. Existing data indicate that exposure to EMF may represent a mild stressor and contribute to disturbances of the hypothalamic-pituitary-adrenal (HPA) axis. The important regulatory pathways controlling HPA axis activity include two types of corticosteroid receptors: mineralocorticoid receptors (MRs) and glucocorticoid receptors. They are particularly abundant in the hippocampus, a key locus of HPA axis feedback control. The research aimed at determining whether (1) EMF exhibits hormesis, it means bidirectional action depending on EMF intensity (1 or 7 mT) and (2) repeated EMF exposure changes stress response to subsequent stress factors. METHODS The exposure (7 days, 1 h/day) of adult rats to EMF (1 mT and 7 mT) was repeated 3 times. HPA axis hormones and their receptors were analysed after each following exposure. Moreover, the impact of EMF exposure on hormonal and behavioural responses to subsequent stress factor - open-field test was evaluated. RESULTS Our data suggest that exposure to EMF can establish a new "set-point" for HPA axis activity. The direction and dynamics of this process depend on the intensity of EMF and the number of exposures. EMF of 1 mT induced an adaptive stress response, but 7 mT EMF caused sensitization. Consequently, EMF changed the vulnerability of the organism to a subsequent stress factor. We have also shown the increase in MR mRNA abundance in the hippocampus of 1 mT EMF-exposed rats, which can represent the possible neuroprotective response and suggest therapeutic properties of EMFs.
Collapse
Affiliation(s)
- Angelika Klimek
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Agnieszka Siejka
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Joanna Wyszkowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Justyna Maliszewska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Maciej Klimiuk
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Milena Jankowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Jonathan Seckl
- Centre for Cardiovascular Science, QMRI, University of Edinburgh, Edinburgh, UK
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
7
|
Schneider R. Mobile phone induced EMF stress is reversed upon the use of protective devices: results from two experiments testing different boundary conditions. Electromagn Biol Med 2022; 41:429-438. [PMID: 36189775 DOI: 10.1080/15368378.2022.2129380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This work examines (a) the impact of electromagnetic fields (EMF) on heart rate variability (HRV), saliva cortisol, arterial blood oxygenation, and tympanic temperature, and (b) the potential effect of protective devices developed to counter EMF-induced stress. In a pilot study, recordings were taken during a 15-min mobile phone call emitting a high burden of EMF (electric, magnetic, high frequency) after a baseline measurement at rest with very low EMF. In a second visit, this was repeated with participants using three protective devices (insoles, pendant, mobile phone chip). In the main study, four experimental arms were employed, two of which replicated the experimental setup of the pilot study, and two of which examined the effect of only one mobile phone chip in an open-hidden-paradigm. In both experiments, exposure to EMF decreased HRV and increased salivary cortisol. In the protective experimental condition, HRV increased above and cortisol decreased below the level of the baseline measures. All differences were large and specific and not modulated by non-specific effects like placebo effects.
Collapse
|
8
|
Zadeh-Haghighi H, Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J R Soc Interface 2022; 19:20220325. [PMID: 35919980 PMCID: PMC9346374 DOI: 10.1098/rsif.2022.0325] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/14/2022] [Indexed: 04/07/2023] Open
Abstract
Hundreds of studies have found that weak magnetic fields can significantly influence various biological systems. However, the underlying mechanisms behind these phenomena remain elusive. Remarkably, the magnetic energies implicated in these effects are much smaller than thermal energies. Here, we review these observations, and we suggest an explanation based on the radical pair mechanism, which involves the quantum dynamics of the electron and nuclear spins of transient radical molecules. While the radical pair mechanism has been studied in detail in the context of avian magnetoreception, the studies reviewed here show that magnetosensitivity is widespread throughout biology. We review magnetic field effects on various physiological functions, discussing static, hypomagnetic and oscillating magnetic fields, as well as isotope effects. We then review the radical pair mechanism as a potential unifying model for the described magnetic field effects, and we discuss plausible candidate molecules for the radical pairs. We review recent studies proposing that the radical pair mechanism provides explanations for isotope effects in xenon anaesthesia and lithium treatment of hyperactivity, magnetic field effects on the circadian clock, and hypomagnetic field effects on neurogenesis and microtubule assembly. We conclude by discussing future lines of investigation in this exciting new area of quantum biology.
Collapse
Affiliation(s)
- Hadi Zadeh-Haghighi
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Christoph Simon
- Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Institute for Quantum Science and Technology, University of Calgary, Calgary, Alberta, Canada T2N 1N4
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
9
|
Duan Y, Wu X, Gong Z, Guo Q, Kong Y. Pathological impact and medical applications of electromagnetic field on melanoma: A focused review. Front Oncol 2022; 12:857068. [PMID: 35936711 PMCID: PMC9355252 DOI: 10.3389/fonc.2022.857068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Electromagnetic Field (EMF) influences melanoma in various ways. EMF can be classified into extremely low-frequency electromagnetic field, low-frequency magnetic field, static moderate magnetic field, strong electromagnetic field, alternating magnetic field, and magnetic nanoparticles. Each type of EMF influences melanoma development differently, and the detailed influence of each specific type of EMF on melanoma is reviewed. Furthermore, EMF influences melanoma cell polarity and hence affects drug uptake. In this review, the impacts of EMF on the effectiveness of drugs used to treat melanoma are listed according to drug types, with detailed effects according to the types of EMF and specific melanoma cell lines. EMF also impacts clinical therapies of melanoma, including localized magnetic hyperthermia, focalized thermotherapy, proton radiation treatment, nanostructure heating magnetic hyperthermia, radiation therapy, Polycaprolactone-Fe3O4 fiber mat-based bandage, and optune therapy. Above all, EMF has huge potential in melanoma treatment.
Collapse
Affiliation(s)
- Yunxiao Duan
- Astronomy Department, Wellesley College, Wellesley, MA, United States
| | - Xiaowen Wu
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Ziqi Gong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Qian Guo
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
| | - Yan Kong
- Melanoma Department, Beijing Institution for Cancer Research, Beijing, China
- *Correspondence: Yan Kong,
| |
Collapse
|
10
|
Bidirectional Effect of Repeated Exposure to Extremely Low-Frequency Electromagnetic Field (50 Hz) of 1 and 7 mT on Oxidative/Antioxidative Status in Rat's Brain: The Prediction for the Vulnerability to Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1031211. [PMID: 35746959 PMCID: PMC9213150 DOI: 10.1155/2022/1031211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Studies reported evidence for opposite effects of extremely low-frequency electromagnetic field (EMF): harmful, including the oxidative stress induction, and beneficial, such as the activation of antioxidant defense. People's exposure to EMF is often repeated or prolonged, and it is important to consider the cumulative effect of such kind of exposure on the organism. If changes evoked by repeated exposure to EMF are permanent, responsiveness to other stress factors can be modified. The aims of our study were (1) to evaluate changes in the levels of oxidative stress and antioxidant defense markers in the prefrontal cortex of adult rats after repeated exposure to 1 and 7 mT EMF and (2) to assess whether repeated EMF exposure can modify oxidative/antioxidative status in response to other stress factors. Rats were exposed to EMF 1 h/day for 7 days, one, twice, or three times. After each exposure, 8-isoprostanes, protein carbonyl groups, and the total antioxidant capacity were assessed. Part of the animals, after EMF treatment, was exposed to another stress factor—open field. Results showed that repeated exposure changed the oxidative/antioxidative status depending on the intensity of the EMF and the number of exposures. 1 mT EMF created weak changes in the oxidative status in the brain; however, 7 mT EMF moved the balance to a clearly higher level. The changes in the oxidative status after 1 mT EMF were enough to reduce, and after 7 mT EMF to intensify oxidative processes in response to the next stress. We concluded that the organism might adapt to “weak” EMF, while “strong” EMF exceeds the adaptive capacity of the organism and sensitizes it to subsequent stress, and thus may modulate vulnerability to diseases. Our results also provide new insights into the possible therapeutic properties of the magnetic field, as 1 mT EMF appears to have a potentially protective impact on the brain.
Collapse
|
11
|
Tracy SM, Vieira CLZ, Garshick E, Wang VA, Alahmad B, Eid R, Schwartz J, Schiff JE, Vokonas P, Koutrakis P. Associations between solar and geomagnetic activity and peripheral white blood cells in the Normative Aging Study. ENVIRONMENTAL RESEARCH 2022; 204:112066. [PMID: 34537201 PMCID: PMC8678289 DOI: 10.1016/j.envres.2021.112066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
It has been hypothesized that solar and geomagnetic activity can affect the function of the autonomic nervous system (ANS) and melatonin secretion, both of which may influence immune response. We investigated the association between solar geomagnetic activity and white blood cell counts in the Normative Aging Study (NAS) Cohort between 2000 and 2013. Linear mixed effects models with moving day averages ranging from 0 to 28 days were used to evaluate the effects of solar activity measures, interplanetary magnetic field (IMF), and sunspot number (SSN), and a measure of geomagnetic activity, K Index (K), on total white blood cell (WBC), neutrophil, monocytes, lymphocyte, eosinophil, and basophil concentrations. After adjusting for demographic and health-related factors, there were consistently significant associations between IMF, SSN, and Kp index, with reductions in total WBC, neutrophils, and basophil counts. These associations were stronger with longer moving averages. The associations were similar after adjusting for ambient air particulate pollution and particle radioactivity. Our findings suggest that periods of increased solar and geomagnetic activity result in lower WBC, neutrophil, and basophil counts that may contribute to mil mild immune suppression.
Collapse
Affiliation(s)
- Samantha M Tracy
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States.
| | - Carolina L Z Vieira
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
| | - Eric Garshick
- Pulmonary, Allergy, Sleep, and Critical Care Medicine Section, VA Boston Healthcare System, Boston, MA, USA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Veronica A Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
| | - Ryan Eid
- Department of Medicine, Division of Allergy, Asthma and Immunology, University of Virginia Health System, Charlottesville, VA, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
| | - Jessica E Schiff
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Heath, Boston, MA, United States
| |
Collapse
|
12
|
Touitou Y, Selmaoui B, Lambrozo J. Assessment of cortisol secretory pattern in workers chronically exposed to ELF-EMF generated by high voltage transmission lines and substations. ENVIRONMENT INTERNATIONAL 2022; 161:107103. [PMID: 35121496 DOI: 10.1016/j.envint.2022.107103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
We investigated the effects of extremely-low frequency electromagnetic fields (ELF-EMFs; 50 Hz) on the secretion of cortisol in 14 men (mean age = 38.0 ± 0.9 years) working in extra-high voltage (EHV) substations. The workers dwelt in houses that were close to substations and high-voltage lines. Thus, they had long histories (1-20 years) of long-yerm exposure to ELF-EMFs. Magnetic field strength was recorded using Emdex dosimeters worn by the volunteers day and night for seven days; the one-week geometric mean ranged from 0.1 to 2.6 μT. Blood samples were taken hourly from 20:00 to 08:00 the next morning. Cortisol concentrations and patterns were compared to age-matched, unexposed control subjects whose exposure level was ten times lower. The comparison of the control group (n = 15) and the groups exposed to fields of 0.1-0.3 μT (n = 5) and > 0.3 μT (n = 9), respectively, revealed a significant effect of field intensity on the cortisol secretory pattern. This study strongly suggests that chronic exposure to ELF-EMFs alters the peak-time serum cortisol levels. Studies are required on the effect of this disruption in high-risk populations such as children, elderly people, and patients with cancer.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation Ophtalmologique A. de Rothschild, 75019 Paris, France.
| | - Brahim Selmaoui
- Department of Experimental Toxicology, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France and PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Jacques Lambrozo
- Unité de Chronobiologie, Fondation Ophtalmologique A. de Rothschild, 75019 Paris, France
| |
Collapse
|
13
|
Kazemi M, Aliyari H, Tekieh E, Tavakoli H, Golabi S, Sahraei H, Meftahi GH, Salehi M, Saberi M. The Effect of 12 Hz Extremely Low-frequency Electromagnetic Field on Visual Memory of Male Macaque Monkeys. Basic Clin Neurosci 2022; 13:1-14. [PMID: 36589014 PMCID: PMC9790106 DOI: 10.32598/bcn.2021.724.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction Today, humans live in a world surrounded by electromagnetic fields. Numerous studies have been conducted to discover the biological, physiological, and behavioral effects of electromagnetic fields on humans and animals. Given the biological similarities between monkeys and humans, The present research aimed to examine Visual Memory (VM), hormonal, genomic, and anatomic changes, in the male rhesus macaques exposed to an Extremely Low-Frequency Magnetic Field (ELF-MF). Methods Four male rhesus macaques (Macaca mulatta) were used. For the behavioral tests, the animals should be fasting for 17 hours. For the tests such as visual memory, the animal's cooperation was necessary. Using the radiation protocol, we exposed two monkeys to a 12-Hz electromagnetic field with a magnitude of 0.7 μT (electromagnetic radiation) four hours a day for a month. Before and after the exposure, a visual memory test was conducted using a coated device (visible reward) on a movable stand. Ten milliliters of blood was obtained from the femoral artery of each monkey, and half of it was used to examine cortisol serum levels using the MyBioSource kit (made in the USA). The other half of the blood was used to extract lymphocytes for assaying expressions of Glucocorticoid Receptor (GR) genes before and after radiation using the PCR method. Anatomic studies of the amygdala were carried out based on pre- and post-radiation Magnetic Resonance Imaging (MRI). Results Research results indicated that visual memory in male primates increased significantly after exposure to the 12-Hz frequency. Hormonal analysis at the 12-Hz frequency showed a decrease in cortisol serum levels. However, visual memory and serum cortisol levels did not change considerably in male primates in the control group. There was no considerable amygdala volumetric difference after exposure to the 12-Hz frequency. The expression of the GR genes decreased in the 12-Hz group compared to the control group. Conclusion In short, these results indicated that ELF might benefit memory enhancement because exposure to the 12-HZ ELF can enhance visual memory. This outcome may be due to a decrease in plasma cortisol and or expression of GR genes. Moreover, direct amygdala involvement in this regard cannot be recommended. Highlights The effects of Extremely Low-Frequency Electromagnetic Fields (ELF-EMF) of 12 Hz on monkeys were studied.The results showed a reduction in the serum cortisol levels and the expression of GR genes.The amygdala anatomical area changes were not significant in the experimental group.In the experimental group, visual memory (delay of 30- and 60-s evaluation) improved after exposure to a frequency of 12 Hz. Plain Language Summary Extremely low-frequency electromagnetic fields are among the most important factors affecting humans. This study aimed to determine the fields of 12-Hz frequency on the visual memory changes of male monkeys. The importance of research is due to the cognitive similarity of monkeys to humans. The findings of the research can be attributed to humans. Behavioral, hormonal, genetic, and anatomical studies indicated improvement in visual memory (test monkeys versus control monkeys). This study demonstrates the effect of the 12-Hz frequency on the monkey's visual memory. Researchers can study 12-Hz frequency in other cognitive indices.
Collapse
Affiliation(s)
- Masoomeh Kazemi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Aliyari
- Center for Human-Engaged Computing, Kochi University of Technology, Kochi, Japan
| | - Elaheh Tekieh
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hassan Tavakoli
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sahar Golabi
- Department of Medical Physiology, School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Hedayat Sahraei
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Maryam Salehi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Saberi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Malik S, Pati AK, Parganiha A. Short- and long-duration exposures to cell-phone radiofrequency waves produce dichotomous effects on phototactic response and circadian characteristics of locomotor activity rhythm in zebrafish, Danio rerio. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1665942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Shikha Malik
- Chronobiology and Animal Behavior Laboratory, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, India
| | - Atanu Kumar Pati
- Chronobiology and Animal Behavior Laboratory, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, India
- School of Zoology, Gangadhar Meher University, Sambalpur, India
- Center for Translational Chronobiology, Pandit Ravishankar Shukla University, Raipur, India
| | - Arti Parganiha
- Chronobiology and Animal Behavior Laboratory, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pandit Ravishankar Shukla University, Raipur, India
| |
Collapse
|
15
|
A 50 Hz magnetic field affects hemodynamics, ECG and vascular endothelial function in healthy adults: A pilot randomized controlled trial. PLoS One 2021; 16:e0255242. [PMID: 34351946 PMCID: PMC8341886 DOI: 10.1371/journal.pone.0255242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/20/2021] [Indexed: 11/19/2022] Open
Abstract
Application of exposure to 50/60 Hz magnetic fields (MFs) has been conducted in the treatment of muscle pain and fatigue mainly in Japan. However, whether MFs could increase blood flow leading to muscle fatigue recovery has not been sufficiently tested. We investigated the acute effects of a 50 Hz sinusoidal MF at Bmax 180 mT on hemodynamics, electrocardiogram, and vascular endothelial function in healthy young men. Three types of regional exposures to a 50 Hz MF, i.e., forearm, upper arm, or neck exposure to MF were performed. Participants who received three types of real MF exposures had significantly increased ulnar arterial blood flow velocity compared to the sham exposures. Furthermore, after muscle loading exercise, MF exposure recovered hemoglobin oxygenation index values faster and higher than sham exposure from the loading condition. Moreover, participants who received real MF exposure in the neck region had significantly increased parasympathetic high-frequency activity relative to the sham exposure. The MF exposure in the upper arm region significantly increased the brachial artery flow-mediated dilation compared to the sham exposure. Computer simulations of induced in situ electric fields indicated that the order-of-magnitude estimates of the peak values were 100-500 mV/m, depending on the exposure conditions. This study provides the first evidence that a 50 Hz MF can activate parasympathetic activity and thereby lead to increase vasodilation and blood flow via a nitric oxide-dependent mechanism. Trial registration: UMIN Clinical Trial Registry (CTR) UMIN000038834. The authors confirm that all ongoing and related trials for this drug/intervention are registered.
Collapse
|
16
|
Mansoury F, Babaei N, Abdi S, Entezari M, Doosti A. Changes in NOTCH1 gene and its regulatory circRNA, hsa_circ_0005986 expression pattern in human gastric adenocarcinoma and human normal fibroblast cell line following the exposure to extremely low frequency magnetic field. Electromagn Biol Med 2021; 40:375-383. [PMID: 33620018 DOI: 10.1080/15368378.2021.1891092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of an extremely low-frequency magnetic field (ELF-MFs) on the expression levels of NOTCH1 and its regulatory circular RNA (circ-RNA) in gastric cancer has not yet investigated. This study aimed to find the expression changes of NOTCH1 and its regulatory circ-RNA, hsa_circ_0005986, in human gastric adenocarcinoma cell line (AGS) and human normal fibroblast (Hu02) cells fallowing the exposure to discontinuously magnetic flux densities (MFDs) of 0.25, 0.5 ,1 and 2 millitesla (mT) for 18h in comparison to unexposed cells. In addition, the effect of various MFDs on viability of tumor and normal cells was investigated. The cell viability was evaluated by MTT assay. The relative expression of NOTCH1and hsa_circ_0005986 mRNAs was analyzed by quantitative Real-time PCR. The viability of tumor cells was decreased under the exposure of MFs, while the normal cells viability was increased. NOTCH1 was significantly down-regulated in AGS cells and up-regulated in Hu02 cells at all MFDs. The expression changes of NOTCH1 in tumor and normal cells was depended to the MFD of MFs. According to our results, the tumor and normal cells show different behavior at the molecular level in various MFDs in terms of NOTCH1 and hsa_circ_0005986 expression level. Decrease in tumor cell survival following the exposure to ELF-MFs may be the result of decreased in the expression level of NOTCH1 and its Reg-circ-RNA. These magnetic field-reducing effects on cancer cell survival through the change on the expression of genes involved in the proliferation and progression of cancer can be a new key in cancer treatment.
Collapse
Affiliation(s)
- Fereshteh Mansoury
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Nahid Babaei
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
17
|
Klimek A, Rogalska J. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade. Brain Sci 2021; 11:174. [PMID: 33572550 PMCID: PMC7912337 DOI: 10.3390/brainsci11020174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Biological effects of extremely low-frequency magnetic field (ELF-MF) and its consequences on human health have become the subject of important and recurrent public debate. ELF-MF evokes cell/organism responses that are characteristic to a general stress reaction, thus it can be regarded as a stress factor. Exposure to ELF-MF "turns on" different intracellular mechanisms into both directions: compensatory or deleterious ones. ELF-MF can provoke morphological and physiological changes in stress-related systems, mainly nervous, hormonal, and immunological ones. This review summarizes the ELF-MF-mediated changes at various levels of the organism organization. Special attention is placed on the review of literature from the last decade. Most studies on ELF-MF effects concentrate on its negative influence, e.g., impairment of behavior towards depressive and anxiety disorders; however, in the last decade there was an increase in the number of research studies showing stimulating impact of ELF-MF on neuroplasticity and neurorehabilitation. In the face of numerous studies on the ELF-MF action, it is necessary to systematize the knowledge for a better understanding of the phenomenon, in order to reduce the risk associated with the exposure to this factor and to recognize the possibility of using it as a therapeutic agent.
Collapse
Affiliation(s)
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| |
Collapse
|
18
|
What sunspots are whispering about covid-19? Med Hypotheses 2021; 147:110487. [PMID: 33465563 PMCID: PMC8016555 DOI: 10.1016/j.mehy.2021.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 11/23/2022]
Abstract
Several studies point to the antimicrobial effects of ELF electromagnetic fields. Such fields have accompanied life from the very beginning, and it is possible that they played a significant role in its emergence and evolution. However, the literature on the biological effects of ELF electromagnetic fields is controversial, and we still lack an understanding of the complex mechanisms that make such effects, observed in many experiments, possible. The Covid-19 pandemic has shown how fragile we are in the face of powerful processes operating in the biosphere. We believe that understanding the role of ELF electromagnetic fields in regulating the biosphere is important in our fight against Covid-19, and research in this direction should be intensified.
Collapse
|
19
|
Selmaoui B, Touitou Y. Association Between Mobile Phone Radiation Exposure and the Secretion of Melatonin and Cortisol, Two Markers of the Circadian System: A Review. Bioelectromagnetics 2020; 42:5-17. [PMID: 33238059 DOI: 10.1002/bem.22310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/18/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022]
Abstract
The extremely important use of mobile phones in the world, at all ages of life, including children and adolescents, leads to significant exposure of these populations to electromagnetic waves of radiofrequency. The question, therefore, arises as to whether exposure to these radiofrequencies (RFs) could lead to deleterious effects on the body's biological systems and health. In the current article, we review the effects, in laboratory animals and humans, of exposure to RF on two hormones considered as endocrine markers: melatonin, a neurohormone produced by the pineal gland and cortisol, a glucocorticosteroid synthesized by the adrenal glands. These two hormones are also considered as markers of the circadian system. The literature search was performed using PubMed, Medline, Web of Sciences (ISI Web of Knowledge), Google Scholar, and EMF Portal. From this review on RF effects on cortisol and melatonin, it appears that scientific papers in the literature are conflicting, showing effects, no effects, or inconclusive data. This implies the need for additional research on higher numbers of subjects and with protocols perfectly controlled with follow-up studies to better determine whether the chronic effect of RF on the biological functioning and health of users exists (or not). Bioelectromagnetics. 2021;42:5-17. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Brahim Selmaoui
- Department of Experimental Toxicology, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France.,PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Yvan Touitou
- Fondation Ophtalmologique A. de Rothschild, Unité de Chronobiologie, Paris, France
| |
Collapse
|
20
|
Karimi A, Ghadiri Moghaddam F, Valipour M. Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Mol Biol Rep 2020; 47:5621-5633. [DOI: 10.1007/s11033-020-05563-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
21
|
Bagheri Hosseinabadi M, Khanjani N, Atashi A, Norouzi P, Mirbadie SR, Mirzaii M. The effect of vitamin E and C on comet assay indices and apoptosis in power plant workers: A double blind randomized controlled clinical trial. Mutat Res 2020; 850-851:503150. [PMID: 32247559 DOI: 10.1016/j.mrgentox.2020.503150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
Extremely low frequency electromagnetic fields have been classified as a possible human carcinogen by the International Agency for Research on Cancer and this has raised some concern about its health effects on employees extensively exposed to these fields at thermal power plants. In this study, the effect of using vitamin E and C supplements have been examined on employees working at a thermal power plant. In this randomized controlled, double-blind clinical trial, 81 employees from different parts of the thermal power plant were enrolled between July and November 2017, and divided into four groups: Group 1 received vitamin E (400 units/day), Group 2: vitamin C (1000 mg/day), Group 3: vitamin E + C and Group 4: no intervention. DNA damage was measured in peripheral blood lymphocytes using comet assay and apoptosis, using flow cytometry. Based on the results, tail intensity and tail length in the vitamin E group, and all comet assay indices in the vitamin E + C and vitamin C groups (except DNA damage index) significantly decreased after the intervention, while the comet assay indices did not change significantly in the control group. None of the flow cytometry indices including early apoptosis, late apoptosis and necrosis changed after intervention in either group. The use of antioxidant vitamins such as E and C, can increase the activity of the non-enzymatic antioxidant defense system, and protect DNA from damage caused by exposure to extremely low frequency magnetic fields. But, taking these vitamins has no effect on apoptosis. It seems that consumption of vitamin E affected all investigated comet assay indices and can be probably considered as the best intervention.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Atashi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Pirasteh Norouzi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Mehdi Mirzaii
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
22
|
Rauš Balind S, Manojlović-Stojanoski M, Šošić-Jurjević B, Selaković V, Milošević V, Petković B. An Extremely Low Frequency Magnetic Field and Global Cerebral Ischemia Affect Pituitary ACTH and TSH Cells in Gerbils. Bioelectromagnetics 2019; 41:91-103. [PMID: 31828821 DOI: 10.1002/bem.22237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/28/2019] [Indexed: 11/10/2022]
Abstract
The neuroendocrine system can be modulated by a magnetic field and cerebral ischemia as external and internal stressors, respectively. This study deals with the separate or combined effects of an extremely low frequency (ELF) magnetic field (50 Hz, average magnetic field of 0.5 mT) for 7 days and global cerebral ischemia for 10 min on the morpho-functional features of pituitary adrenocorticotrophic (ACTH) and thyrotrophic (TSH) cells in 3-month-old gerbils. To determine the immediate and delayed effects of the applied stressors, measurements were made on the 7th and 14th days after the onset of the experiment. The ELF magnetic field and 10-min global cerebral ischemia, separately and particularly in combination, decreased (P < 0.05) the volume density of ACTH cells, while only in combination were intracellular ACTH content and plasma ACTH concentration increased (P < 0.05) on day 7. The ELF magnetic field elevated serum TSH concentration on day 7 and intracellular TSHβ content on day 14 (P < 0.05). Also, 10-min global cerebral ischemia alone increased serum TSH concentration (P < 0.05), while in combination with the ELF magnetic field it elevated (P < 0.05) intracellular TSHβ content on day 14. In conclusion, an ELF magnetic field and/or 10-min global cerebral ischemia can induce immediate and delayed stimulation of ACTH and TSH synthesis and secretion. Bioelectromagnetics. 2020;41:91-103. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Snežana Rauš Balind
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy (MMA), Medical Faculty MMA, University of Defence, Belgrade, Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Petković
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Touitou Y, Lambrozo J, Mauvieux B, Riedel M. Evaluation in humans of ELF-EMF exposure on chromogranin A, a marker of neuroendocrine tumors and stress. Chronobiol Int 2019; 37:60-67. [PMID: 31682468 DOI: 10.1080/07420528.2019.1683857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Chromogranin A (CgA), which is a major protein in adrenal chromaffin cells and adrenergic neurons, is a clinically relevant endocrine and neuroendocrine tumor marker including pheochromocytomas, neuroblastomas, and related neurogenic tumors. In this study, we looked at the effect in humans of chronic daily exposure to a 50-Hz magnetic field. We examined in 15 men (38.0 ± 0.9 years) the effects of chronic daily exposure to a 50-Hz magnetic field for 1-20 yrs both at home and at work. EMDEX II dosimeters were used to record magnetic field all day long every 30 s. for 1 week. The weekly geometric mean of the individual exposures ranged from 0.1 to 2.6 μT. Blood samples were taken hourly between 20:00 h and 08:00 h. CgA patterns of exposed subjects were compared to age-matched controls. The results of exposed subjects were compared with those for 15 unexposed men who served as controls and whose individual exposure was ten times lower ranging from 0.004 to 0.092 μT. This work shows that in the control group the serum CgA levels exhibited a nighttime peak with a progressive decline of the serum concentrations and a nadir in the morning. Both the profile and the serum concentrations of CgA, a marker of neuroendocrine tumors and stress, did not appear to be impaired in the subjects chronically exposed over a long period (up to 20 yrs) to magnetic fields though a trend toward lower levels were found at the highest exposure (>0.3 μT). This does not rule out, however, that the potential deleterious risk of ELF-EMF on frail populations such as children and the elderly may be greater at low exposure and should hence be documented, at least for their residential exposure.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Jacques Lambrozo
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France
| | - Benoit Mauvieux
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France.,INSERM UMR U1075, Université de Caen, Caen, France
| | - Marc Riedel
- Unité de Chronobiologie, Fondation A. de Rothschild, Paris, France.,EA 2114, Université de Tours, Tours, France
| |
Collapse
|
24
|
Bouché NF, McConway K. Melatonin Levels and Low-Frequency Magnetic Fields in Humans and Rats: New Insights From a Bayesian Logistic Regression. Bioelectromagnetics 2019; 40:539-552. [PMID: 31564068 DOI: 10.1002/bem.22218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022]
Abstract
The present analysis revisits the impact of extremely low-frequency magnetic fields (ELF-MF) on melatonin (MLT) levels in human and rat subjects using both a parametric and non-parametric approach. In this analysis, we use 62 studies from review articles. The parametric approach consists of a Bayesian logistic regression (LR) analysis and the non-parametric approach consists of a Support Vector analysis, both of which are robust against spurious/false results. Both approaches reveal a unique well-ordered pattern, and show that human and rat studies are consistent with each other once the MF strength is restricted to cover the same range (with B ≲ 50 μT). In addition, the data reveal that chronic exposure (longer than ∼22 days) to ELF-MF appears to decrease MLT levels only when the MF strength is below a threshold of ~30 μT ( log B thr [ μ T ] = 1 . 4 - 0 . 4 + 0 . 7 ), i.e., when the man-made ELF-MF intensity is below that of the static geomagnetic field. Studies reporting an association between ELF-MF and changes to MLT levels and the opposite (no association with ELF-MF) can be reconciled under a single framework. Bioelectromagnetics. 2019;40:539-552. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Nicolas F Bouché
- Univ Lyon, Univ Lyon1, ENS de Lyon, CNRS, Centre de Recherche en Astrophysique de Lyon UMR5574, Saint-Genis-Laval, France
| | - Kevin McConway
- Department of Mathematics and Statistics, The Open University, Milton Keys, UK
| |
Collapse
|
25
|
Ohayon MM, Stolc V, Freund FT, Milesi C, Sullivan SS. The potential for impact of man-made super low and extremely low frequency electromagnetic fields on sleep. Sleep Med Rev 2019; 47:28-38. [PMID: 31252334 DOI: 10.1016/j.smrv.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023]
Abstract
An ever-growing number of electromagnetic (EM) emission sources elicits health concerns, particularly stemming from the ubiquitous low to extremely low frequency fields from power lines and appliances, and the radiofrequency fields emitted from telecommunication devices. In this article we review the state of knowledge regarding possible impacts of electromagnetic fields on melatonin secretion and on sleep structure and the electroencephalogram of humans. Most of the studies on the effects of melatonin on humans have been conducted in the presence of EM fields, focusing on the effects of occupational or residential exposures. While some of the earlier studies indicated that EM fields may have a suppressive effect on melatonin, the results cannot be generalized because of the large variability in exposure conditions and other factors that may influence melatonin. For instance, exposure to radiofrequency EM fields on sleep architecture show little or no effect. However, a number of studies show that pulsating radiofrequency electromagnetic fields, such as those emitted from cellular phones, can alter brain physiology, increasing the electroencephalogram power in selective bands when administered immediately prior to or during sleep. Additional research is necessary that would include older populations and evaluate the interactions of EM fields in different frequency ranges to examine their effects on sleep in humans.
Collapse
Affiliation(s)
- Maurice M Ohayon
- Stanford Sleep Epidemiology Research Center, Stanford University, School of Medicine, Palo Alto, CA, 94303, USA.
| | - Victor Stolc
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | | | | | | |
Collapse
|
26
|
Stankevičiūtė M, Jakubowska M, Pažusienė J, Makaras T, Otremba Z, Urban-Malinga B, Fey DP, Greszkiewicz M, Sauliutė G, Baršienė J, Andrulewicz E. Genotoxic and cytotoxic effects of 50 Hz 1 mT electromagnetic field on larval rainbow trout (Oncorhynchus mykiss), Baltic clam (Limecola balthica) and common ragworm (Hediste diversicolor). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 208:109-117. [PMID: 30641415 DOI: 10.1016/j.aquatox.2018.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
The aim of this research was to assess genotoxicity and cytotoxicity responses in aquatic animals exposed to 50 Hz 1 m T electromagnetic field (EMF). Rainbow trout (Oncorhynchus mykiss) at early stages of development were exposed to EMF for 40 days, whereas marine benthic invertebrates - the common ragworm Hediste diversicolor and the Baltic clam Limecola balthica - for 12 days. To define genotoxicity and cytotoxicity responses in selected animals, assays of nuclear abnormalities in peripheral blood erythrocytes of O. mykiss, coelomocytes of H. diversicolor and gill cells of L. balthica were performed. Induction of formation of micronuclei (MN), nuclear buds (NB), nuclear buds on filament cells (NBf) and cells with blebbed nuclei (BL) were assessed as genotoxicity endpoints, and 8-shaped nuclei, fragmented (Fr), apoptotic (Ap) and binucleated (BN) cells as cytotoxicity endpoints. Exposure to EMF affected all studied species but with varying degrees. The strongest responses to EMF treatment were elicited in L. balthica, in which six out of the total eight analyzed geno- and cytotoxicity endpoints were significantly elevated. Significantly induced frequencies of MN were detected in O. mykiss and H. diversicolor cells, NBf and BL only in gill cells of L. balthica, and NB in analyzed tissues of all the test species. As cytotoxicity endpoints, a significant elevation in frequencies of cells with 8-shaped nuclei was found in O. mykiss and L. balthica, while Ap and BN was observed only in L. balthica. EMF exposure did not induce any significant cytotoxic activity in H. diversicolor coelomocytes. The present study is the first to reveal the genotoxic and cytotoxic activity of 1 m T EMF in aquatic animals, and, consequently, the first one to report the adverse effect of this factor on common marine invertebrates and early life stages of fish.
Collapse
Affiliation(s)
| | - Magdalena Jakubowska
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Janina Pažusienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Tomas Makaras
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | | | | | - Dariusz P Fey
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Martyna Greszkiewicz
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Gintarė Sauliutė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | - Janina Baršienė
- Nature Research Centre, Akademijos St. 2, LT-08412, Vilnius, Lithuania
| | | |
Collapse
|
27
|
Farashi S, Sasanpour P, Rafii-Tabar H. Interaction of low frequency external electric fields and pancreatic β-cell: a mathematical modeling approach to identify the influence of excitation parameters. Int J Radiat Biol 2018; 94:1038-1048. [DOI: 10.1080/09553002.2018.1478162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sajjad Farashi
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pezhman Sasanpour
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Computational Nano-Bioelectromagnetics Research Group, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Hashem Rafii-Tabar
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Diaconu A, Nita LE, Chiriac AP, Butnaru M. Investigation of the magnetic field effect upon interpolymeric complexes formation based on bovine serum albumin and poly(aspartic acid). Int J Biol Macromol 2018; 119:974-981. [PMID: 30098364 DOI: 10.1016/j.ijbiomac.2018.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023]
Abstract
The study presents a novel strategy for obtaining highly ordered interpolymeric complexes based on a protein, bovine serum albumin and a synthetic polymer, poly(aspartic acid). In this approach, experimental tests were carried out in the presence of a magnetic field of different intensities, namely 0.11 T and 0.3 T produced by permanent magnets. The influence of the magnetic force on the complexation process and the resulted self-assembled structures were studied by means of FTIR spectroscopy, X-ray diffraction, DLS, SEM microscopy and in vitro assay. The changes in the FTIR spectra acquired after 24 h of exposure were connected with conformational changes in the secondary structure and increased interactions between polymers, particularly when a higher intensity field was used. Due to a large anisotropy of magnetic susceptibility characteristic to both proteins and polypeptides, the magnetic field generated ordered assemblies consisting in globular structures of nanometric dimensions. This assembly strategy using magnets, along with remote manipulation capability can provide a versatile, contact-free, and inexpensive tool to create new, complex materials with tailorable characteristics.
Collapse
Affiliation(s)
- A Diaconu
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, RO-700487 Iasi, Romania
| | - L E Nita
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, RO-700487 Iasi, Romania
| | - A P Chiriac
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, RO-700487 Iasi, Romania.
| | - M Butnaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, RO-700487 Iasi, Romania
| |
Collapse
|
29
|
Li T, Yang Z, Jiang S, Di W, Ma Z, Hu W, Chen F, Reiter RJ, Yang Y. Melatonin: does it have utility in the treatment of haematological neoplasms? Br J Pharmacol 2018; 175:3251-3262. [PMID: 28880375 PMCID: PMC6057911 DOI: 10.1111/bph.13966] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/02/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Melatonin, discovered in 1958 in the bovine pineal tissue, is an indoleamine that modulates circadian rhythms and has a wide variety of other functions. Haematological neoplasms are the leading cause of death in children and adolescents throughout the world. Research has demonstrated that melatonin is a low-toxicity protective molecule against experimental haematological neoplasms, but the mechanisms remain poorly defined. Here, we provide an introduction to haematological neoplasms and melatonin, especially as they relate to the actions of melatonin on haematological carcinogenesis. Secondly, we summarize what is known about the mechanisms of action of melatonin in the haematological system, including its pro-apoptotic, pro-oxidative, anti-proliferative and immunomodulatory actions. Thirdly, we discuss the advantages of melatonin in combination with other drugs against haematological malignancy, as well as its other benefits on the haematological system. Finally, we summarize the findings that are contrary to the suppressive effects of melatonin on cancers of haematological origin. We hope that this information will be helpful in the design of studies related to the therapeutic efficacy of melatonin in haematological neoplasms. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life SciencesNorthwest UniversityXi'anChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Zhi Yang
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Shuai Jiang
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Wencheng Di
- Department of CardiologyAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Zhiqiang Ma
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Wei Hu
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life SciencesNorthwest UniversityXi'anChina
| | - Russel J Reiter
- Department of Cellular and Structural BiologyUT Health Science CenterSan AntonioTXUSA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life SciencesNorthwest UniversityXi'anChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
30
|
Warille AA, Altun G, Elamin AA, Kaplan AA, Mohamed H, Yurt KK, El Elhaj A. Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. J Microsc Ultrastruct 2017; 5:177-184. [PMID: 30023252 PMCID: PMC6025782 DOI: 10.1016/j.jmau.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 11/24/2022] Open
Abstract
This review discusses the effects of various frequencies of electromagnetic fields (EMF) on brain hormones and enzyme activity. In this context, the mechanism underlying the effects of EMF exposure on tissues generally and cellular pathway specifically has been discussed. The cell membrane plays important roles in mediating enzymatic activities as to response and reacts with extracellular environment. Alterations in the calcium signaling pathways in the cell membrane are activated in response to the effects of EMF exposure. Experimental and epidemiological studies have demonstrated that no changes occur in serum prolactin levels in humans following short-term exposure to 900 Mega Hertz (MHz) EMF emitted by mobile phones. The effects of EMF on melatonin and its metabolite, 6-sulfatoxymelatonin, in humans have also been investigated in the clinical studies to show a disturbance in metabolic activity of melatonin. In addition, although 900 MHz EMF effects on NF-κB inflammation, its effects on NF-κB are not clear. Abbreviations: ELF-EMF, extremely low frequency electromagnetic fields; EMF, electromagnetic fields; RF, Radiofrequency; ROS, reactive oxygen species; VGCCs, voltage-gated calcium channels; MAPK, mitogen-activated phosphokinase; NF-κB, nuclear factor kappa B; ERK-1/2, extracellular signal-regulated kinase; GSH-Px, glutathione peroxidase; JNK, Jun N-terminal kinases; SOD, superoxide dismutase; MnSOD, manganese-dependent superoxide dismutase; GLUT1, glucose transporter 1; GSSG-Rd, glutathione reductase MDA malondialdehyde; NO, nitric oxide; LH, luteinizing hormone; FSH, follicle-stimulating hormone.
Collapse
Affiliation(s)
- Aymen A Warille
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Anatomy, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abdalla A Elamin
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Hamza Mohamed
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| | - Abubaker El Elhaj
- Department of Anatomy and Histology, College of Medicine, University of Hail, Hail, Saudi Arabia.,Department of Histology and Embryology, Medical School, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
31
|
Terzibasi-Tozzini E, Martinez-Nicolas A, Lucas-Sánchez A. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle. Semin Cell Dev Biol 2017. [PMID: 28630025 DOI: 10.1016/j.semcdb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology.
Collapse
Affiliation(s)
| | - Antonio Martinez-Nicolas
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
32
|
Uthamacumaran A. A biophysical approach to cancer dynamics: Quantum chaos and energy turbulence. Biosystems 2017; 156-157:1-22. [PMID: 28377182 DOI: 10.1016/j.biosystems.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Cancer is a term used to define a collective set of rapidly evolving cells with immortalized replication, altered epimetabolomes and patterns of longevity. Identifying a common signaling cascade to target all cancers has been a major obstacle in medicine. A quantum dynamic framework has been established to explain mutation theory, biological energy landscapes, cell communication patterns and the cancer interactome under the influence of quantum chaos. Quantum tunneling in mutagenesis, vacuum energy field dynamics, and cytoskeletal networks in tumor morphogenesis have revealed the applicability for description of cancer dynamics, which is discussed with a brief account of endogenous hallucinogens, bioelectromagnetism and water fluctuations. A holistic model of mathematical oncology has been provided to identify key signaling pathways required for the phenotypic reprogramming of cancer through an epigenetic landscape. The paper will also serve as a mathematical guide to understand the cancer interactome by interlinking theoretical and experimental oncology. A multi-dimensional model of quantum evolution by adaptive selection has been established for cancer biology.
Collapse
|
33
|
GSM 900 MHz Microwave Radiation-Induced Alterations of Insulin Level and Histopathological Changes of Liver and Pancreas in Rat. J Biomed Phys Eng 2016; 6:235-242. [PMID: 28144593 PMCID: PMC5219574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND The rapidly increasing use of mobile phones has led to public concerns about possible health effects of these popular communication devices. This study is an attempt to investigate the effects of radiofrequency (RF) radiation produced by GSM mobile phones on the insulin release in rats. METHODS Forty two female adult Sprague Dawley rats were randomly divided into 4 groups. Group1 were exposed to RF radiation 6 hours per day for 7 days. Group 2 received sham exposure (6 hours per day for 7 days). Groups 3 and 4 received RF radiation 3 hours per day for 7 days and sham exposure (3 hours per day), respectively. The specific absorption rate (SAR) of RF was 2.0 W/kg. RESULTS Our results showed that RF radiations emitted from mobile phone could not alter insulin release in rats. However, mild to severe inflammatory changes in the portal spaces of the liver of rats as well as damage in the cells of islet of Langerhans were observed. These changes were linked with the duration of the exposures. CONCLUSION RF exposure can induce inflammatory changes in the liver as well causing damage in the cells of islet of Langerhans.
Collapse
|
34
|
An Investigation on the Effect of Extremely Low Frequency Pulsed Electromagnetic Fields on Human Electrocardiograms (ECGs). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111171. [PMID: 27886102 PMCID: PMC5129380 DOI: 10.3390/ijerph13111171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/23/2022]
Abstract
For this investigation, we studied the effects of extremely low frequency pulse electromagnetic fields (ELF-PEMF) on the human cardiac signal. Electrocardiograms (ECGs) of 22 healthy volunteers before and after a short duration of ELF-PEMF exposure were recorded. The experiment was conducted under single-blind conditions. The root mean square (RMS) value of the recorded data was considered as comparison criteria. We also measured and analysed four important ECG time intervals before and after ELF-PEMF exposure. Results revealed that the RMS value of the ECG recordings from 18 participants (81.8% of the total participants) increased with a mean value of 3.72%. The increase in ECG voltage levels was then verified by a second experimental protocol with a control exposure. In addition to this, we used hyperbolic T-distributions (HTD) in the analysis of ECG signals to verify the change in the RR interval. It was found that there were small shifts in the frequency-domain signal before and after EMF exposure. This shift has an influence on all frequency components of the ECG signals, as all spectrums were shifted. It is shown from this investigation that a short time exposure to ELF-PEMF can affect the properties of ECG signals. Further study is needed to consolidate this finding and discover more on the biological effects of ELF-PEMF on human physiological processes.
Collapse
|
35
|
Seifpanahi-Shabani H, Abbasi M, Salehi I, Yousefpour Z, Zamani A. Long-term Exposure to Extremely Low Frequency Electromagnetic Field and Melatonin Production by Blood Cells. THE INTERNATIONAL JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL MEDICINE 2016; 7:193-4. [PMID: 27393327 PMCID: PMC6818084 DOI: 10.15171/ijoem.2016.807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/01/2016] [Indexed: 11/09/2022]
Affiliation(s)
- H Seifpanahi-Shabani
- Students Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | | | | |
Collapse
|
36
|
Andrianome S, Hugueville L, de Seze R, Hanot-Roy M, Blazy K, Gamez C, Selmaoui B. Disturbed sleep in individuals with idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): Melatonin assessment as a biological marker. Bioelectromagnetics 2016; 37:175-182. [DOI: 10.1002/bem.21965] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/25/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Soafara Andrianome
- Department of Experimental Toxicology; Institut National de l'Environnement Industriel et des Risques INERIS; Verneuil-en-Halatte France
- Peritox Laboratoire de Périnatalité & Risques Toxiques UMR-I-01 Unité mixte INERIS; Université de Picardie Jules Verne; Amiens France
| | - Laurent Hugueville
- Centre National de la Recherche Scientifique, Centre MEG-EEG; CRICM et CENIR, UMR 7225; Paris France
| | - René de Seze
- Department of Experimental Toxicology; Institut National de l'Environnement Industriel et des Risques INERIS; Verneuil-en-Halatte France
- Peritox Laboratoire de Périnatalité & Risques Toxiques UMR-I-01 Unité mixte INERIS; Université de Picardie Jules Verne; Amiens France
| | - Maïté Hanot-Roy
- Department of Experimental Toxicology; Institut National de l'Environnement Industriel et des Risques INERIS; Verneuil-en-Halatte France
- Peritox Laboratoire de Périnatalité & Risques Toxiques UMR-I-01 Unité mixte INERIS; Université de Picardie Jules Verne; Amiens France
| | - Kelly Blazy
- Department of Experimental Toxicology; Institut National de l'Environnement Industriel et des Risques INERIS; Verneuil-en-Halatte France
- Peritox Laboratoire de Périnatalité & Risques Toxiques UMR-I-01 Unité mixte INERIS; Université de Picardie Jules Verne; Amiens France
| | - Christelle Gamez
- Department of Experimental Toxicology; Institut National de l'Environnement Industriel et des Risques INERIS; Verneuil-en-Halatte France
- Peritox Laboratoire de Périnatalité & Risques Toxiques UMR-I-01 Unité mixte INERIS; Université de Picardie Jules Verne; Amiens France
| | - Brahim Selmaoui
- Department of Experimental Toxicology; Institut National de l'Environnement Industriel et des Risques INERIS; Verneuil-en-Halatte France
- Peritox Laboratoire de Périnatalité & Risques Toxiques UMR-I-01 Unité mixte INERIS; Université de Picardie Jules Verne; Amiens France
| |
Collapse
|
37
|
Affiliation(s)
- Alex R. Jones
- School of Chemistry, Photon Science Institute and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Effect of exposure to extremely low frequency magnetic fields on melatonin levels in calves is seasonally dependent. Sci Rep 2015; 5:14206. [PMID: 26381579 PMCID: PMC4585560 DOI: 10.1038/srep14206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/24/2015] [Indexed: 12/04/2022] Open
Abstract
The question of health effects of extremely low frequency (50/60 Hz) magnetic fields (ELFMF) has been widely discussed, but the mechanisms of interaction of these fields with biological systems for intensities relevant to human and animal exposure are still under question. The melatonin (MLT) hypothesis suggests that exposure to ELFMF might decrease MLT production thereby promoting cancerogenesis. So far, most studies of MLT secretion under exposure to ELFMF reported negative or inconsistent results. Here, we measured salivary MLT in 1–2 months old cattle calves exposed to 50 Hz-MF in the hundreds of nT-range. We found an inhibitory effect of the ELFMF upon MLT secretion in winter (in accordance with the MLT hypothesis). In contrast, in summer, MLT concentration was increased by ELFMF exposure (contrary to the MLT hypothesis). The inhibitory effect in winter was much stronger than the positive effect in summer. We hypothesize that this season-dependent effect upon MLT synthesis might by mediated by an effect of ELFMF upon the serotonin metabolism and conclude that future tests of ELFMF effects should also measure serotonin levels and consider association with the seasonal effects (photoperiod or temperature) during the exposure.
Collapse
|
39
|
Effects of electromagnetic fields exposure on plasma hormonal and inflammatory pathway biomarkers in male workers of a power plant. Int Arch Occup Environ Health 2015; 89:33-42. [DOI: 10.1007/s00420-015-1049-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
|
40
|
Lee W, Yang KL. Using medaka embryos as a model system to study biological effects of the electromagnetic fields on development and behavior. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 108:187-194. [PMID: 25084399 DOI: 10.1016/j.ecoenv.2014.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 06/27/2014] [Accepted: 06/28/2014] [Indexed: 06/03/2023]
Abstract
The electromagnetic fields (EMFs) of anthropogenic origin are ubiquitous in our environments. The health hazard of extremely low frequency and radiofrequency EMFs has been investigated for decades, but evidence remains inconclusive, and animal studies are urgently needed to resolve the controversies regarding developmental toxicity of EMFs. Furthermore, as undersea cables and technological devices are increasingly used, the lack of information regarding the health risk of EMFs to aquatic organisms needs to be addressed. Medaka embryos (Oryzias latipes) have been a useful tool to study developmental toxicity in vivo due to their optical transparency. Here we explored the feasibility of using medaka embryos as a model system to study biological effects of EMFs on development. We also used a white preference test to investigate behavioral consequences of the EMF developmental toxicity. Newly fertilized embryos were randomly assigned to four groups that were exposed to an EMF with 3.2kHz at the intensity of 0.12, 15, 25, or 60µT. The group exposed to the background 0.12µT served as the control. The embryos were exposed continually until hatch. They were observed daily, and the images were recorded for analysis of several developmental endpoints. Four days after hatching, the hatchlings were tested with the white preference test for their anxiety-like behavior. The results showed that embryos exposed to all three levels of the EMF developed significantly faster. The endpoints affected included the number of somites, eye width and length, eye pigmentation density, midbrain width, head growth, and the day to hatch. In addition, the group exposed to the EMF at 60µT exhibited significantly higher levels of anxiety-like behavior than the other groups did. In conclusion, the EMF tested in this study accelerated embryonic development and heightened anxiety-like behavior. Our results also demonstrate that the medaka embryo is a sensitive and cost-efficient in vivo model system to study developmental toxicity of EMFs.
Collapse
Affiliation(s)
- Wenjau Lee
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City, Taiwan.
| | - Kun-Lin Yang
- Department of Bioscience Technology, Chang Jung Christian University, No. 1, Changda Rd., Gueiren District, Tainan City, Taiwan
| |
Collapse
|
41
|
Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge. BIOMED RESEARCH INTERNATIONAL 2014; 2014:169459. [PMID: 25136557 PMCID: PMC4130204 DOI: 10.1155/2014/169459] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 01/17/2023]
Abstract
One of the side effects of each electrical device work is the electromagnetic field generated near its workplace. All organisms, including humans, are exposed daily to the influence of different types of this field, characterized by various physical parameters. Therefore, it is important to accurately determine the effects of an electromagnetic field on the physiological and pathological processes occurring in cells, tissues, and organs. Numerous epidemiological and experimental data suggest that the extremely low frequency magnetic field generated by electrical transmission lines and electrically powered devices and the high frequencies electromagnetic radiation emitted by electronic devices have a potentially negative impact on the circadian system. On the other hand, several studies have found no influence of these fields on chronobiological parameters. According to the current state of knowledge, some previously proposed hypotheses, including one concerning the key role of melatonin secretion disruption in pathogenesis of electromagnetic field induced diseases, need to be revised. This paper reviews the data on the effect of electric, magnetic, and electromagnetic fields on melatonin and cortisol rhythms—two major markers of the circadian system as well as on sleep. It also provides the basic information about the nature, classification, parameters, and sources of these fields.
Collapse
|