1
|
Kondethimmanahalli C, Ganta RR. Ehrlichia chaffeensis proteomic profiling reveals distinct expression patterns of infectious and replicating forms. Front Cell Infect Microbiol 2025; 15:1463479. [PMID: 40330017 PMCID: PMC12053472 DOI: 10.3389/fcimb.2025.1463479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/13/2025] [Indexed: 05/08/2025] Open
Abstract
Ehrlichia chaffeensis is a tick-transmitted rickettsial pathogen responsible for causing human monocytic ehrlichiosis (HME). The pathogen's developmental cycle includes infectious dense-core cells (DCs) and non-infectious replicating cells (RCs). Defining the proteins crucial for the two growth forms is of fundamental importance in understanding the infection and replication process, which also aids in identifying novel therapeutic targets against HME and other related rickettsial diseases. E. chaffeensis organisms cultivated in a macrophage cell line were purified as DC and RC fractions and subjected to comprehensive quantitative proteome analysis. From triplicate sample analysis, we identified 195 proteins as commonly expressed in both the DC and RC forms, while an additional 189 proteins were recognized as exclusively expressed in the RC form. Equal numbers of commonly expressed proteins in the RC and DC forms and having substantially more proteins exclusively expressed in the metabolically active RC form may reflect specific functional priorities of E. chaffeensis supporting its replication within a phagosome. The high abundance of metabolic processes and transport proteins in the RC compared to the DC form may reflect its higher metabolic requirements and interactions with a host cell supporting its intraphagosomal replication. This study provides comprehensive proteome data for E. chaffeensis which will be valuable for a better understanding of protein expression dynamics during its infectious and replicating stages.
Collapse
Affiliation(s)
- Chandramouli Kondethimmanahalli
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Madesh S, McGill J, Jaworski DC, Ferm J, Ferm D, Liu H, Fitzwater S, Nair A, Hove P, Alizadeh K, Knox C, Thackrah A, Ganta RR. Prolonged immune response to tick-borne Ehrlichia chaffeensis infection using a genetically modified live vaccine. Vaccine 2025; 48:126730. [PMID: 39826432 PMCID: PMC11839323 DOI: 10.1016/j.vaccine.2025.126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/15/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Ehrlichia chaffeensis, a tick transmitted rickettsial bacterium, causes monocytic ehrlichiosis in humans and dogs. Earlier, we demonstrated that dogs immunized with a mutant strain of E. chaffeensis having a functional disruption in the gene encoding the phage head-to-tail connector protein serves as a modified live vaccine (MLAV) capable of inducing immunity against intravenous and tick-transmitted infection challenges within one month of vaccination. In this follow-up investigation, we assessed the duration of MLAV-induced immunity for one-year period against tick-transmission infection challenge. Dogs vaccinated with the MLAV were subsequently exposed to wild-type E. chaffeensis via tick transmission at 4-, 8-, and 12-months post-vaccination. Unvaccinated controls showed higher infection rates during the one-month assessment following infection. In contrast, MLAV-immunized dogs rapidly cleared infections and exhibited significantly fewer systemic bacterial infections compared to unvaccinated controls. Robust E. chaffeensis-specific IgG and CD4 T-cell responses persisted throughout the assessment period. Our findings underscore the efficacy of MLAV in providing natural hosts with protection against E. chaffeensis infection for up to one year following infected tick exposure.
Collapse
Affiliation(s)
- Swetha Madesh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Jodi McGill
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IO 50011, United States of America
| | - Deborah C Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Jonathan Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Dominica Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America
| | - Shawna Fitzwater
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Arathy Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Paidashe Hove
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Kimia Alizadeh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Cheyenne Knox
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Ashley Thackrah
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America; Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States of America.
| |
Collapse
|
3
|
Madesh S, McGill J, Jaworski DC, Ferm J, Liu H, Fitzwater S, Hove P, Ferm D, Nair A, Knox CA, Alizadeh K, Thackrah A, Ganta RR. Long-Term Protective Immunity against Ehrlichia chaffeensis Infection Induced by a Genetically Modified Live Vaccine. Vaccines (Basel) 2024; 12:903. [PMID: 39204029 PMCID: PMC11360114 DOI: 10.3390/vaccines12080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Human monocytic ehrlichiosis, an emerging tick-borne disease, is caused by Ehrlichia chaffeensis. Infections with the pathogen are also common in the canine host. Our previous studies demonstrated that functional disruption within the E. chaffeensis phage head-to-tail connector protein gene results in bacterial attenuation, creating a modified live attenuated vaccine (MLAV). The MLAV confers protective immunity against intravenous and tick transmission challenges one month following vaccination. In this study, we evaluated the duration of MLAV protection. Dogs vaccinated with the MLAV were challenged with wild-type E. chaffeensis via intravenous infection at 4-, 8-, and 12-months post-vaccination. Immunized dogs rapidly cleared the wild-type pathogen infection and tested positive for bacteremia less frequently than unvaccinated controls. While immune responses varied among dogs, vaccinees consistently mounted IgG and CD4+ T-cell responses specific to E. chaffeensis throughout the assessment period. Our findings demonstrate that MLAV-mediated immune protection persists for at least one year against wild-type bacterial infection, marking a major advancement in combating this serious tick-borne disease. The data presented here serve as the foundation for further studies, elucidating the molecular mechanisms underlying virulence and vaccine development and aiding in preventing the diseases caused by E. chaffeensis and other tick-borne rickettsial pathogens.
Collapse
Affiliation(s)
- Swetha Madesh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jodi McGill
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Jonathan Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Shawna Fitzwater
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Paidashe Hove
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Dominica Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Arathy Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Cheyenne A. Knox
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Kimia Alizadeh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Ashley Thackrah
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Mahmoud HYAH, Shahat MS, Fereig RM, Ali AO, Emeish WFA, Soliman AM, Khalifa FA, Tanaka T. Molecular detection and characterization of Anaplasma marginale and Babesia canis vogeli infecting dogs in Luxor, Egypt. Sci Rep 2024; 14:16888. [PMID: 39043715 PMCID: PMC11266501 DOI: 10.1038/s41598-024-67009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
Tick-borne diseases in animals are increasing rapidly worldwide, but there is insufficient information about tick-borne diseases infecting dogs in southern Egypt. Thus, in the current study, we detected the presence of Anaplasma marginale (A. marginale) and Babesia canis vogeli (B. canis vogeli) in the blood of dogs. The results revealed that 4/100 (4%) were positive, and a higher infection rate was found in males (75%), than females (25%). The phylogenetic analysis for the major surface protein 4 (msp4) gene in this study was compared with amplicons separate from other reported isolates with alignment by identity 100% with cattle and camels from Egypt, and the phylogenetic analysis for the B. canis vogeli small subunit ribosomal RNA (SSU rRNA) gene in this study identified identity by 99.89% with dogs from Egypt. This report is considered the first report in southern Egypt about A. marginale in dogs based on the sequence analysis of the msp4 gene, providing new data for the classification and identification of A. marginale in dogs compared to A. marginale isolated from other animals in southern Egypt.
Collapse
Affiliation(s)
- Hassan Y A H Mahmoud
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| | - Moshera S Shahat
- Division of Internal Medicine, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ragab M Fereig
- Division of Internal Medicine, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Alsagher O Ali
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Walaa F A Emeish
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Ahmed M Soliman
- Biotechnology Department, Animal Health Research Institute, Agricultural Research Center, Dokki, 12618, Giza, Egypt
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Fatma A Khalifa
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
- Laboratory of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| |
Collapse
|
5
|
Li M, Yang N, Li X, Duan N, Qin S, Wang M, Zhou Y, Jin Y, Wu W, Jin S, Cheng Z. Host Cells Upregulate Phosphate Transporter PIT1 to Inhibit Ehrlichia chaffeensis Intracellular Growth. Int J Mol Sci 2024; 25:7895. [PMID: 39063137 PMCID: PMC11276888 DOI: 10.3390/ijms25147895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Ehrlichia chaffeensis infects and proliferates inside monocytes or macrophages and causes human monocytic ehrlichiosis (HME), an emerging life-threatening tick-borne zoonosis. After internalization, E. chaffeensis resides in specialized membrane-bound inclusions, E. chaffeensis-containing vesicles (ECVs), to evade from host cell innate immune responses and obtain nutrients. However, mechanisms exploited by host cells to inhibit E. chaffeensis growth in ECVs are still largely unknown. Here we demonstrate that host cells recognize E. chaffeensis Ech_1067, a penicillin-binding protein, and then upregulate the expression of PIT1, which is a phosphate transporter and transports phosphate from ECVs to the cytosol to inhibit bacterial growth. We found that host cells upregulate the PIT1 expression upon E. chaffeensis infection using transcriptome sequencing, qRT-PCR and Western blotting, and PIT1 is localized on the ECV membrane in infected THP-1 cells using confocal microscopy. Silence of PIT1 using shRNA enhances E. chaffeensis intracellular growth. Finally, we found that E. chaffeensis Ech_1067 induces the upregulation of PIT1 expression through the MyD88-NF-κB pathway using recombinant protein for stimulation and siRNA for silence. Our findings deepen the understanding of the innate immune responses of host cells to inhibit bacterial intracellular growth and facilitate the development of new therapeutics for HME.
Collapse
Affiliation(s)
- Meifang Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaoxiao Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Duan
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shanhua Qin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengyao Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuhong Zhou
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300071, China; (M.L.); (N.Y.); (X.L.); (N.D.); (S.Q.); (M.W.); (Y.Z.); (Y.J.); (W.W.); (S.J.)
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Pustijanac E, Buršić M, Millotti G, Paliaga P, Iveša N, Cvek M. Tick-Borne Bacterial Diseases in Europe: Threats to public health. Eur J Clin Microbiol Infect Dis 2024; 43:1261-1295. [PMID: 38676855 DOI: 10.1007/s10096-024-04836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Tick-borne diseases, caused by bacterial pathogens, pose a growing threat to public health in Europe. This paper provides an overview of the historical context of the discovery of the most impactful pathogens transmitted by ticks, including Borrelia burgdorferi sensu lato, Rickettsia spp., Anaplasma spp., Francisella spp., Ehrlichia spp., and Neoehrlichia mikurensis. Understanding the historical context of their discovery provides insight into the evolution of our understanding of these pathogens. METHODS AND RESULTS Systematic investigation of the prevalence and transmission dynamics of these bacterial pathogens is provided, highlighting the intricate relationships among ticks, host organisms, and the environment. Epidemiology is explored, providing an in-depth analysis of clinical features associated with infections. Diagnostic methodologies undergo critical examination, with a spotlight on technological advancements that enhance detection capabilities. Additionally, the paper discusses available treatment options, addressing existing therapeutic strategies and considering future aspects. CONCLUSIONS By integrating various pieces of information on these bacterial species, the paper aims to provide a comprehensive resource for researchers and healthcare professionals addressing the impact of bacterial tick-borne diseases in Europe. This review underscores the importance of understanding the complex details influencing bacterial prevalence and transmission dynamics to better combat these emerging public health threats.
Collapse
Affiliation(s)
- Emina Pustijanac
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia.
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Gioconda Millotti
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Paolo Paliaga
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Neven Iveša
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Maja Cvek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000, Rijeka, Croatia
- Teaching Institute of Public Health of the Region of Istria, Nazorova 23, 52100, Pula, Croatia
| |
Collapse
|
7
|
Vinayaraj EV, Thakur CK, Negi P, Sreenath K, Upadhyay P, Verma N, Das BK, Kabra SK, Wig N, Chaudhry R. Epidemiological, clinical, and laboratory characteristics of human granulocytic anaplasmosis in North India. J Clin Microbiol 2024; 62:e0104823. [PMID: 38329335 PMCID: PMC10935655 DOI: 10.1128/jcm.01048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
Human granulocytic anaplasmosis (HGA) is an emerging, rickettsial tick-borne disease caused by Anaplasma phagocytophilum. Sero-epidemiological data demonstrate that this pathogen has a worldwide distribution. The diagnosis of HGA requires a high index of clinical suspicion, even in endemic areas. In recent years, HGA has increasingly been reported from Asia and described in China, Japan, and Korea. We serologically and molecularly screened 467 patients with clinical suspicion of Anaplasmosis. The present study describes the epidemiology, clinical, and laboratory details of 6 confirmed and 43 probable cases of human granulocytic anaplasmosis. One of the HGA patients developed secondary invasive opportunistic Aspergillus fumigatus and Acinetobacter baumanii infection during the illness, which resulted in a fatal infection. The HGA patients without severe complications had excellent treatment responses to doxycycline. The emergence of this newly recognized tick-borne zoonotic HGA in North India is a significant concern for public health and is likely underdiagnosed, underreported, and untreated. Hence, it is also essential to establish a well-coordinated system for actively conducting tick surveillance, especially in the forested areas of the country.IMPORTANCEThe results of the present study show the clinical and laboratory evidence of autochthonous cases of Anaplasma phagocytophilum in North India. The results suggest the possibility of underdiagnosis of HGA in this geographical area. One of the HGA patients developed secondary invasive opportunistic Aspergillus fumigatus and Acinetobacter baumanii infection during the illness, which resulted in a fatal infection.
Collapse
Affiliation(s)
- E. V. Vinayaraj
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandan Kumar Thakur
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Preeti Negi
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - K. Sreenath
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Upadhyay
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Nishant Verma
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - S. K. Kabra
- Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
9
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Makgabo SM, Brayton KA, Oosthuizen MC, Collins NE. Unravelling the diversity of Anaplasma species circulating in selected African wildlife hosts by targeted 16S microbiome analysis. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100198. [PMID: 37675244 PMCID: PMC10477809 DOI: 10.1016/j.crmicr.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
Organisms in the genus Anaplasma are obligate intracellular alphaproteobacteria. Bovine anaplasmosis, predominantly caused by Anaplasma marginale, is the most prevalent tick-borne disease (TBD) of cattle worldwide. Other Anaplasma species are known to cause disease; these include A. ovis, A. platys in dogs, A. capra in goats and humans, and A. phagocytophilum in humans. The rapid advancement of next-generation sequencing technologies has led to the discovery of many novel sequences ascribed to the genus Anaplasma, with over 20 putative new species being proposed since the last formal organization of the genus. Most 16S rRNA gene surveys for Anaplasma were conducted on cattle and to a lesser extent on rodents, dogs, and ticks. Little is known about the occurrence, diversity, or impact of Anaplasma species circulating in wildlife species. Therefore, we conducted a 16S rRNA gene survey with the goal of identifying Anaplasma species in a variety of wildlife species in the Kruger National Park and neighbouring game reserves, using an unbiased 16S rRNA gene microbiome approach. An Anaplasma/Ehrlichia-group specific quantitative real-time PCR (qPCR) assay revealed the presence of Anaplasma and/or Ehrlichia species in 70.0% (21/30) of African buffalo, 86.7% (26/30) of impala, 36.7% (11/30) of greater kudu, 3.2% (1/31) of African wild dog, 40.6% (13/32) of Burchell's zebra, 43.3% (13/30) of warthog, 22.6% (7/31) of spotted hyena, 40.0% (12/30) of leopard, 17.6% (6/34) of lion, 16.7% (5/30) of African elephant and 8.6% (3/35) of white rhinoceros samples. Microbiome sequencing data from the qPCR positive samples revealed four 16S rRNA sequences identical to previously published Anaplasma sequences, as well as nine novel Anaplasma 16S genotypes. Our results reveal a greater diversity of putative Anaplasma species circulating in wildlife than currently classified within the genus. Our findings highlight a potential expansion of the Anaplasma host range and the need for more genetic information from other important genes or genome sequencing of putative novel species for correct classification and further assessment of their occurrence in wildlife, livestock and companion animals.
Collapse
Affiliation(s)
- S. Marcus Makgabo
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa (UNISA), Florida Campus, Roodepoort, 1709, South Africa
| | - Kelly A. Brayton
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Marinda C. Oosthuizen
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Nicola E. Collins
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| |
Collapse
|
11
|
Efficacy and Immune Correlates of OMP-1B and VirB2-4 Vaccines for Protection of Dogs from Tick Transmission of Ehrlichia chaffeensis. mBio 2022; 13:e0214022. [PMID: 36342170 PMCID: PMC9765013 DOI: 10.1128/mbio.02140-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ehrlichia chaffeensis, an obligatory intracellular bacterium, causes human monocytic ehrlichiosis, an emerging disease transmitted by the Lone Star tick, Amblyomma americanum. Here, we investigated the vaccine potential of OMP-1B and VirB2-4. Among the highly expressed and immunodominant E. chaffeensis porin P28s/OMP-1s, OMP-1B is predominantly expressed by E. chaffeensis in A. americanum ticks, whereas VirB2-4 is a pilus protein of the type IV secretion system essential for E. chaffeensis infection of host cells. Immunization with recombinant OMP-1B (rOMP-1B) or recombinant VirB2-4 (rVirB2-4) protected mice from E. chaffeensis infection as effectively as Entry-triggering protein of Ehrlichia immunization. Dogs vaccinated with a nanoparticle vaccine composed of rOMP-1B or rVirB2-4 and an immunostimulating complex developed high antibody titers against the respective antigen. Upon challenge with E. chaffeensis-infected A. americanum ticks, E. chaffeensis was undetectable in the blood of rOMP-1B or rVirB2-4 immunized dogs on day 3 or 6 post-tick attachment and for the duration of the experiment, whereas dogs sham-vaccinated with the complex alone were persistently infected for the duration of the experiment. E. chaffeensis exponentially replicates in blood-feeding ticks to facilitate transmission. Previously infected ticks removed from OMP-1B-immunized dogs showed significantly lower bacterial load relative to ticks removed from sham-immunized dogs, suggesting in-tick neutralization. Peripheral blood leukocytes from rVirB2-4-vaccinated dogs secreted significantly elevated amounts of interferon-γ soon after tick attachment by ELISpot assay and reverse transcription-quantitative PCR, suggesting interferon-γ-mediated Ehrlichia inhibition. Thus, Ehrlichia surface-exposed proteins OMP-1B and VirB2-4 represent new potential vaccine candidates for blocking tick-borne ehrlichial transmission. IMPORTANCE Ehrlichia are tick-borne pathogens that cause a potentially fatal illness-ehrlichiosis-in animals and humans worldwide. Currently, no vaccine is available for ehrlichiosis, and treatment options are limited. Ticks are biological vectors of Ehrlichia, i.e., Ehrlichia exponentially replicates in blood-sucking ticks before infecting animals. Ticks also inoculate immunomodulatory substances into animals. Thus, it is important to study effects of candidate vaccines on Ehrlichia infection in both animals and ticks and the immune responses of animals shortly after infected tick challenge. Here, we investigated the efficacy of vaccination with functionality-defined two surface-exposed outer membrane proteins of Ehrlichia chaffeensis, OMP-1B and VirB2-4, in a mouse infection model and then in a dog-tick transmission model. Our results begin to fill gaps in our understanding of Ehrlichia-derived protective antigens against tick-transmission and immune correlates and mechanisms that could help future development of vaccines for immunization of humans and animals to counter tick-transmitted ehrlichiosis.
Collapse
|
12
|
Nkosi NF, Oosthuizen MC, Quan M. Development and validation of a TaqMan® probe- based real-time PCR assay for detection of Ehrlichia canis. Ticks Tick Borne Dis 2022; 13:102055. [PMID: 36270114 DOI: 10.1016/j.ttbdis.2022.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 10/31/2022]
Abstract
Ehrlichiosis is a potentially fatal zoonotic tick-borne disease, caused by a pleomorphic Gram-negative bacterium. It occurs worldwide and affects humans, domestic and wild animals. Dogs infected with Ehrlichia canis develop canine monocytic ehrlichiosis (CME), a significant infectious disease of canines. TaqMan® based real-time PCR assays to detect Ehrlichia spp. affecting dogs were developed and a real-time PCR assay specific for E. canis validated. The efficiency of the assay was 93% and the 95% limit of detection was 33 E. canis plasmid copies/µl of blood (95% confidence interval: 23 - 58). The assay was specific for E. canis when tested against other haemoparasites. Consistent repeatability was observed, with an inter-run standard deviation (SD) range between 0.33 and 1.29 and an intra-run SD range between 0.04 and 1.14. Field samples were tested in parallel by both the E. canis real-time PCR assay and a reverse line blot hybridization assay. The results were in agreement for the two assays, with an exception of two out of 121 samples. Bayesian latent class analysis was used to calculate a diagnostic sensitivity of the E. canis real-time PCR assay of 90% and a specificity of 92%. This assay is a sensitive and reliable molecular detection method for E. canis and will be a useful tool for early diagnosis and timely treatment for this haemoparasite.
Collapse
Affiliation(s)
- Nokuzola F Nkosi
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Marinda C Oosthuizen
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Melvyn Quan
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa.
| |
Collapse
|
13
|
Hove P, Madesh S, Nair A, Jaworski D, Liu H, Ferm J, Kleinhenz MD, Highland MA, Curtis AK, Coetzee JF, Noh SM, Wang Y, Genda D, Ganta RR. Targeted mutagenesis in Anaplasma marginale to define virulence and vaccine development against bovine anaplasmosis. PLoS Pathog 2022; 18:e1010540. [PMID: 35576225 PMCID: PMC9135337 DOI: 10.1371/journal.ppat.1010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Tick-borne Anaplasma species are obligate, intracellular, bacterial pathogens that cause important diseases globally in people, agricultural animals, and dogs. Targeted mutagenesis methods are yet to be developed to define genes essential for these pathogens. In addition, vaccines conferring protection against diseases caused by Anaplasma species are not available. Here, we describe a targeted mutagenesis method for deletion of the phage head-to-tail connector protein (phtcp) gene in Anaplasma marginale. The mutant did not cause disease and exhibited attenuated growth in its natural host (cattle). We then assessed its ability to confer protection against wild-type A. marginale infection challenge. Additionally, we compared vaccine protection with the mutant to that of whole cell A. marginale inactivated antigens as a vaccine (WCAV) candidate. Upon infection challenge, non-vaccinated control cattle developed severe disease, with an average 57% drop in packed cell volume (PCV) between days 26-31 post infection, an 11% peak in erythrocytic infection, and apparent anisocytosis. Conversely, following challenge, all animals receiving the live mutant did not develop clinical signs or anemia, or erythrocyte infection. In contrast, the WCAV vaccinees developed similar disease as the non-vaccinees following A. marginale infection, though the peak erythrocyte infection reduced to 6% and the PCV dropped 43%. This is the first study describing targeted mutagenesis and its application in determining in vivo virulence and vaccine development for an Anaplasma species pathogen. This study will pave the way for similar research in related Anaplasma pathogens impacting multiple hosts.
Collapse
Affiliation(s)
- Paidashe Hove
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
- Department of Pathobiology, School of Veterinary Medicine, St. George’s University, West Indies, Grenada
| | - Swetha Madesh
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Arathy Nair
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Deborah Jaworski
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Jonathan Ferm
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Michael D. Kleinhenz
- Department of Clinical Sciences, Kansas State University, Manhattan, Kansas, United States of America
| | - Margaret A. Highland
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Andrew K. Curtis
- Department of Anatomy and Physiology and, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Johann F. Coetzee
- Department of Anatomy and Physiology and, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Susan M. Noh
- Animal Diseases Research Unit, USDA-ARS, 3003 ADBF, Pullman, Washington, United States of America
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Dominica Genda
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases (CEVBD), Department of Diagnostic Medicine/Pathobiology, Manhattan, Kansas, United States of America
| |
Collapse
|
14
|
Bandaranayaka KO, Kularatne SAM, Rajapakse RPVJ, Abeysundara UB, Rajapaksha RMMA, Rajakaruna RS. Human Otoacariasis in Two Climatically Diverse Districts in Sri Lanka: Seasonality, Risk Factors, and Case Notes. Acta Parasitol 2021; 66:1326-1340. [PMID: 33993424 DOI: 10.1007/s11686-021-00372-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Otoacariasis is a parasitic otopathy reported in many parts of the world. This study presents the seasonal pattern, risk factors, and case notes on human otoacariasis in two climatically different districts: Anuradhapura and Kandy in the Dry and Wet/Intermediate zone of Sri Lanka, respectively. METHODS Ticks removed from the ear canal of patients were collected. Risk factors of otoacarisis were determined by a case/control follow-up study. RESULTS Nymphal Dermacentor auratus (90.8%) was the main tick species associated otoacariasis. In the Kandy District, infestation was year-round, while in the Anuradhapura District, it was seasonal with a peak in December-February. Children < 10 years were a risk group in both districts. Females were a risk group in the Kandy District. Engagement in outdoor activities was a risk factor in both districts. In addition, the presence of wildlife and domesticated animals were risk factors in the Kandy and Anuradhapura districts, respectively. The treatment protocols in the two hospitals were different. An infant with otoacariasis from the Anuradhapura District developed rickettsia. CONCLUSIONS Although the tick species was the same, seasonality, risk groups, and risk factors in the two districts were different which could be due to the establishment and persistence of tick populations influenced by biotic and abiotic factors.
Collapse
Affiliation(s)
- K O Bandaranayaka
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S A M Kularatne
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - R P V J Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | | | - R S Rajakaruna
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka.
- Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
15
|
PREVALENCE AND RISK FACTORS OF ANAPLASMA INFECTIONS IN EASTERN MOOSE (ALCES ALCES AMERICANA) AND WINTER TICKS (DERMACENTOR ALBIPICTUS) IN MAINE, USA. J Wildl Dis 2021; 57:844-855. [PMID: 34424993 DOI: 10.7589/jwd-d-21-00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Eastern moose (Alces alces americana) are heavily parasitized by winter ticks (Dermacentor albipictus), the dominant cause of increased calf mortality in the northeastern US. Although much work has focused on the direct negative effects of winter tick on moose, it remains unknown whether diseases transmitted by ticks may also affect moose health or pose a risk to other species. We explored the role that moose and winter ticks play in transmission of the tick-borne bacterial pathogens, Anaplasma spp., which cause mild to severe illness in humans and domestic animals. Our objectives were to 1) estimate the prevalence of Anaplasma spp. in moose and winter ticks; 2) determine the phylogenetic placement of these strains with respect to those found in other hosts and vectors; and 3) explore risk factors of Anaplasma infection in moose. A total of 157 moose (142 calves, 15 adults) were captured in western (n=83) and northern (n=74) Maine in 2017 and 2018. We screened for Anaplasma spp. in moose whole blood samples using a genus-specific PCR assay targeting the 16S rRNA gene. Over half (54%) of the moose were infected with Anaplasma bacteria, with a greater proportion of moose harboring Anaplasma-infections in the western (67%) versus northern study areas (38%). Male moose exhibited a higher prevalence than did females (63% vs. 47%). In contrast, Anaplasma spp. prevalence in winter ticks was low (<1%). Sequencing and phylogenetic analysis revealed that the single Anaplasma strain in moose was highly divergent from the strain in winter ticks and most closely related to an uncharacterized North American cervid strain. We conclude that winter ticks are unlikely to play a significant role in Anaplasma transmission to moose; however, high infection prevalence warrants further investigation into the impacts of Anaplasma spp. infection on moose health.
Collapse
|
16
|
Beard CB, Eisen L, Eisen RJ. The Rise of Ticks and Tickborne Diseases in the United States-Introduction. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1487-1489. [PMID: 33939806 PMCID: PMC9620473 DOI: 10.1093/jme/tjab064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 05/14/2023]
Affiliation(s)
- Charles B. Beard
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Lars Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| | - Rebecca J. Eisen
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA
| |
Collapse
|
17
|
Molecular Detection of Ehrlichia canis in the Pet-Dog Population in R. N. Macedonia. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Canine monocytic ehrlichiosis (CME) is a widespread, tick-borne, canine disease, caused by an obligate intracellular bacterium, Ehrlichia canis. The main vector, a brown-dog tick, Rhipicephalus sanguineus, is widely distributed, especially in areas with tropic, subtropic, or Mediterranean climates (Central and South America, Eastern and Western Asia, Africa, Australia and Southern Europe). The study performed in 2012, by Stefanovska et al., determined a seroprevalence of 18.7% of E. canis among the Macedonian dog population. Up to date, the presence of E. canis, using molecular diagnostic methods, has not been investigated in Macedonia. Therefore, this study aimed to confirm the presence of E. canis, in the pet-dog population on the territory of the city of Skopje, North Macedonia, using a highly sensitive multiplex Real-Time PCR method (qPCR). Whole blood samples from 80 dogs of different breeds and ages, with clinical symptoms of CME and positive serology result for the presence of antibodies against E.canis, were collected for analyses. Out of 80 dogs, 36 (45%) were found as positive. The present work reports the first molecular detection of E. canis in pet dogs on the territory of the city of Skopje, Macedonia.
Collapse
|
18
|
Zambrano ML, Paddock CD, Karpathy SE. Multi-Locus Sequence Typing of Ehrlichia chaffeensis Reveals Extensive Genotypic Variation across the United States. Am J Trop Med Hyg 2021; 104:1297-1304. [PMID: 33646973 DOI: 10.4269/ajtmh.20-1363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022] Open
Abstract
Ehrlichia chaffeensis causes human monocytic ehrlichiosis, and its principal vector is the Amblyomma americanum tick. The most frequently identified cases of ehrlichiosis come from the southeastern and south central states of the United States. In this study, a molecular typing system was developed that allows for the genetic differentiation of E. chaffeensis isolates. This multi-locus typing system included sequencing and analyzing intergenic regions ECH0033-ECH0035 and ECH0217-ECH0218, plus, variable genes variable length PCR target, 28-kDa, 120-kDa, and hemE. We examined a total of 31 unique isolates from humans and white-tailed deer, and eight DNA samples extracted from infected A. americanum collected from multiple states. This is the largest evaluation of E. chaffeensis isolates and their genotypes. Our findings show that when sequences of all six loci were concatenated and compared, the 39 samples could be separated into 23 genotypes and further grouped into six phylogenetic clades. The data in this study show no clear pattern between the geographic alignment with the genetic differentiation between the strains. As a result, this poses a challenge to understanding the spread of E. chaffeensis in the United States. Interestingly, our findings indicate that multiple strains from distant geographic origins share the same mutations, which suggests that the strains are being moved from one site to another by their hosts or vectors. In addition, we are seeing a northward shift in the lone star tick distribution in the United States. Last, some data also suggest minimal genetic mutations have occurred over time among strains that are within geographical proximity.
Collapse
|
19
|
Green RS, Izac JR, Naimi WA, O'Bier N, Breitschwerdt EB, Marconi RT, Carlyon JA. Ehrlichia chaffeensis EplA Interaction With Host Cell Protein Disulfide Isomerase Promotes Infection. Front Cell Infect Microbiol 2020; 10:500. [PMID: 33072622 PMCID: PMC7538545 DOI: 10.3389/fcimb.2020.00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that invades monocytes to cause the emerging and potentially severe disease, monocytic ehrlichiosis. Ehrlichial invasion of host cells, a process that is essential for the bacterium's survival and pathogenesis, is incompletely understood. In this study, we identified ECH_0377, henceforth designated as EplA (E. chaffeensis PDI ligand A) as an E. chaffeensis adhesin that interacts with host cell protein disulfide isomerase (PDI) to mediate bacterial entry into host cells. EplA is an outer membrane protein that E. chaffeensis expresses during growth in THP-1 monocytic cells. Canine sera confirmed to be positive for exposure to Ehrlichia spp. recognized recombinant EplA, indicating that it is expressed during infection in vivo. EplA antiserum inhibited the bacterium's ability to infect monocytic cells. The EplA-PDI interaction was confirmed via co-immunoprecipitation. Treating host cell surfaces with antibodies that inhibit PDI and/or thioredoxin-1 thiol reductase activity impaired E. chaffeensis infection. Chemical reduction of host cell surfaces, but not bacterial surfaces with tris(2-carboxyethyl)phosphine (TCEP) restored ehrlichial infectivity in the presence of the PDI-neutralizing antibody. Antisera specific for EplA C-terminal residues 95-104 (EplA95−104) or outer membrane protein A amino acids 53-68 (OmpA53−68) reduced E. chaffeensis infection of THP-1 cells. Notably, TCEP rescued ehrlichial infectivity of bacteria that had been treated with anti-EplA95−104, but not anti-EcOmpA53−68. These results demonstrate that EplA contributes to E. chaffeensis infection of monocytic cells by engaging PDI and exploiting the enzyme's reduction of host cell surface disulfide bonds in an EplA C-terminus-dependent manner and identify EplA95−104 and EcOmpA53−68 as novel ehrlichial receptor binding domains.
Collapse
Affiliation(s)
- Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jerilyn R Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Waheeda A Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Nathaniel O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Edward B Breitschwerdt
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| |
Collapse
|
20
|
Bekebrede H, Lin M, Teymournejad O, Rikihisa Y. Discovery of in vivo Virulence Genes of Obligatory Intracellular Bacteria by Random Mutagenesis. Front Cell Infect Microbiol 2020; 10:2. [PMID: 32117791 PMCID: PMC7010607 DOI: 10.3389/fcimb.2020.00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/06/2020] [Indexed: 11/13/2022] Open
Abstract
Ehrlichia spp. are emerging tick-borne obligatory intracellular bacteria that cause febrile and sometimes fatal diseases with abnormal blood cell counts and signs of hepatitis. Ehrlichia HF strain provides an excellent mouse disease model of fatal human ehrlichiosis. We recently obtained and established stable culture of Ehrlichia HF strain in DH82 canine macrophage cell line, and obtained its whole genome sequence and annotation. To identify genes required for in vivo virulence of Ehrlichia, we constructed random insertional HF strain mutants by using Himar1 transposon-based mutagenesis procedure. Of total 158 insertional mutants isolated via antibiotic selection in DH82 cells, 74 insertions were in the coding regions of 55 distinct protein-coding genes, including TRP120 and multi-copy genes, such as p28/omp-1, virB2, and virB6. Among 84 insertions mapped within the non-coding regions, seven are located in the putative promoter region since they were within 50 bp upstream of the seven distinct genes. Using limited dilution methods, nine stable clonal mutants that had no apparent defect for multiplication in DH82 cells, were obtained. Mouse virulence of seven mutant clones was similar to that of wild-type HF strain, whereas two mutant clones showed significantly retarded growth in blood, livers, and spleens, and the mice inoculated with them lived longer than mice inoculated with wild-type. The two clones contained mutations in genes encoding a conserved hypothetical protein and a staphylococcal superantigen-like domain protein, respectively, and both genes are conserved among Ehrlichia spp., but lack homology to other bacterial genes. Inflammatory cytokine mRNA levels in the liver of mice infected with the two mutants were significantly diminished than those infected with HF strain wild-type, except IL-1β and IL-12 p40 in one clone. Thus, we identified two Ehrlichia virulence genes responsible for in vivo infection, but not for infection and growth in macrophages.
Collapse
Affiliation(s)
| | | | | | - Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Abstract
Increases in tick-borne disease prevalence and transmission are important public health issues. Efforts to control these emerging diseases are frustrated by the struggle to control tick populations and to detect and treat infections caused by the pathogens that they transmit. This review covers tick-borne infectious diseases of nonrickettsial bacterial, parasitic, and viral origins. While tick surveillance and tracking inform our understanding of the importance of the spread and ecology of ticks and help identify areas of risk for disease transmission, the vectors are not the focus of this document. Here, we emphasize the most significant pathogens that infect humans as well as the epidemiology, clinical features, diagnosis, and treatment of diseases that they cause. Although detection via molecular or immunological methods has improved, tick-borne diseases continue to remain underdiagnosed, making the scope of the problem difficult to assess. Our current understanding of the incidence of tick-borne diseases is discussed in this review. An awareness of the diseases that can be transmitted by ticks in specific locations is key to detection and selection of appropriate treatment. As tick-transmitted pathogens are discovered and emerge in new geographic regions, our ability to detect, describe, and understand the growing public health threat must also grow to meet the challenge.
Collapse
|
22
|
Matei IA, Estrada-Peña A, Cutler SJ, Vayssier-Taussat M, Varela-Castro L, Potkonjak A, Zeller H, Mihalca AD. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit Vectors 2019; 12:599. [PMID: 31864403 PMCID: PMC6925858 DOI: 10.1186/s13071-019-3852-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/13/2019] [Indexed: 11/11/2022] Open
Abstract
Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone.
Collapse
Affiliation(s)
- Ioana A Matei
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Agustín Estrada-Peña
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Sally J Cutler
- School of Health, Sport & Bioscience, University of East London, London, UK.
| | - Muriel Vayssier-Taussat
- Department of Animal Health, French National Institute for Agricultural Research, Maisons-Alfort, France
| | - Lucía Varela-Castro
- Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.,Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Bizkaia Science and Technology Park, Derio, Bizkaia, Spain
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
| | - Herve Zeller
- Emerging and Vector-borne Diseases Programme, European Centre for Disease Prevention and Control, Solna, Sweden
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Liu H, Ganta RR. Sequence Determinants Spanning -10 Motif and Spacer Region Implicated in Unique Ehrlichia chaffeensis Sigma 32-Dependent Promoter Activity of dnaK Gene. Front Microbiol 2019; 10:1772. [PMID: 31428069 PMCID: PMC6687850 DOI: 10.3389/fmicb.2019.01772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 11/21/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium that causes human monocytic ehrlichiosis. Studying Ehrlichia gene regulation is challenge, as this and related rickettsiales lack natural plasmids and mutagenesis experiments are of a limited scope. E. chaffeensis contains only two sigma factors, σ32 and σ70. We previously developed Escherichia coli surrogate system to study transcriptional regulation from RNA polymerase (RNAP) containing Ehrlichia σ32 or σ70. We reported that RNAP binding motifs of E. chaffeensis genes recognized by σ32 or σ70 share extensive homology and that transcription may be initiated by either one of the sigma factors, although transcriptional efficiencies differ. In the current study, we investigated mapping the E. chaffeensis dnaK gene promoter using the pathogen σ32 expressed in E. coli lacking its native σ32. The E. coli surrogate system and our previously described in vitro transcription system aided in defining the unique −10 motif and spacer sequence of the dnaK promoter. We also mapped σ32 amino acids/domains engaged in its promoter regulation in E. chaffeensis. The data reported in this study demonstrate that the −10 and −35 motifs and spacer sequence located between the two motifs of dnaK promoter are critical for the RNAP function. Further, we mapped the importance of all six nucleotide positions of the −10 motif and identified critical determinants within it. In addition, we reported that the lack of C-rich sequence upstream to the −10 motif is unique in driving the pathogen-specific transcription by its σ32 from dnaK gene promoter. This is the first study in defining an E. chaffeensis σ32-dependent promoter and it offers insights about how this and other related rickettsial pathogens regulate stress response genes.
Collapse
Affiliation(s)
- Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
24
|
Kondethimmanahalli C, Liu H, Ganta RR. Proteome Analysis Revealed Changes in Protein Expression Patterns Caused by Mutations in Ehrlichia chaffeensis. Front Cell Infect Microbiol 2019; 9:58. [PMID: 30937288 PMCID: PMC6431617 DOI: 10.3389/fcimb.2019.00058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 01/31/2023] Open
Abstract
The tick-borne rickettsial pathogen, Ehrlichia chaffeensis, causes monocytic ehrlichiosis in people and other vertebrate hosts. Mutational analysis in E. chaffeensis genome aids in better understanding of its infection and persistence in host cells and in the development of attenuated vaccines. Our recent RNA deep sequencing study revealed that three genomic mutations caused global changes in the gene expression patterns, which in turn affect the ability of pathogen's survival in a host and the host's ability to induce protection against the pathogen. In this follow-up study, we document the impact of mutations on the pathogen's global protein expression and the influence of protein abundance on a mutant's attenuation and protection of vertebrate host against infection. iTRAQ labeling and mass spectrometry analysis of E. chaffeensis wildtype and mutants identified 564 proteins covering about 63% of the genome. Mutation in ECH_0379 gene encoding for an antiporter protein, causing attenuated growth in vertebrate hosts, led to overexpression of p28 outer membrane proteins, molecular chaperons, and metabolic enzymes, while a mutation downstream to the ECH_0490 gene that caused minimal impact on the pathogen's in vivo growth resulted in major changes in the expression of outer membrane proteins, transcriptional regulators and T4SS proteins. ECH_0660 gene mutation, causing the pathogen's rapid clearance and offering protection against wild type infection challenge in a vertebrate host, had a minimal impact on proteome similar to our prior observations from transcriptome analysis. While the global proteome data revealed fewer translated proteins compared to the transcripts identified from RNA deep sequencing analysis, there is a great deal of correlation noted between the global proteome and transcriptome analysis. Further, global proteome analysis, including the assessment of 2D resolved total and immunoproteomes revealed greater variations in the highly immunogenic p28-Omp proteins.
Collapse
Affiliation(s)
- Chandramouli Kondethimmanahalli
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Huitao Liu
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
25
|
McGill JL, Wang Y, Ganta CK, Boorgula GDY, Ganta RR. Antigen-Specific CD4 +CD8 + Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol 2018; 9:1585. [PMID: 30050533 PMCID: PMC6050357 DOI: 10.3389/fimmu.2018.01585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium belonging to the order, Rickettsiales and is a frequent cause of severe and fatal tick-borne infection in people in North America. The reservoir host for E. chaffeensis is the white-tailed deer, while humans and dogs are regarded as common incidental hosts. In dogs, we and others have shown that E. chaffeensis establishes a chronic infection that persists for several weeks to months, while promoting the development of Th1 and Th17 cellular responses and pathogen-specific humoral immunity. We demonstrate here that vaccination with a live, attenuated clone of E. chaffeensis bearing a targeted mutation in the Ech_0230 gene neither promotes the development of long-lived cellular or humoral immunity, nor confers protection against secondary wild-type E. chaffeensis challenge. In dogs, a population of mature CD4+CD8+ double-positive (DP) T cells exists in the periphery that shares similarities with the DP T cell populations that have been described in humans and swine. Little is known about the function of these cells, particularly in the context of infectious diseases. Here, we demonstrate that canine DP T cells expand significantly in response to E. chaffeensis infection. Using in vitro antigen recall assays, we further demonstrate that canine DP T cells undergo clonal expansion, produce IFNγ and IL-17, and upregulate expression of granzyme B and granulysin. Together, our results demonstrate that DP T cells accumulate in the host during E. chaffeensis infection, and suggest that alternative lymphocyte populations may participate in the immune response to tick-borne infections in the incidental host.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chanran K. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Gunavanthi D. Y. Boorgula
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
26
|
Geiger J, Morton BA, Vasconcelos EJR, Tngrian M, Kachani M, Barrón EA, Gavidia CM, Gilman RH, Angulo NP, Lerner R, Scott T, Mirrashed NH, Oakley B, Diniz PPVP. Molecular Characterization of Tandem Repeat Protein 36 Gene of Ehrlichia canis Detected in Naturally Infected Dogs from Peru. Am J Trop Med Hyg 2018; 99:297-302. [PMID: 29943707 DOI: 10.4269/ajtmh.17-0776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Ehrlichia spp. are emerging infectious pathogens, especially in the Americas. Although Ehrlichia canis is primarily a parasite of dogs, polymerase chain reaction-confirmed human infections have been reported from Mexico, Venezuela, and Costa Rica. This study reports the presence of E. canis DNA in 13.7% of 205 dogs from urban areas in Peru and of those, five were analyzed for phylogenetic variation using the Tandem Repeat Protein 36 (TRP36) gene. The use of the TRP36 gene for such analysis was validated against 16S rRNA and heat shock protein genes using Shannon's entropy bioinformatic approach. When compared with other E. canis strains previously reported, three unique and novel E. canis strains were detected. In addition, the TRP36 amino acid tandem repeat sequences of the Peruvian strains share close similarity to an E. canis strain detected from four human blood bank samples in Costa Rica. This study reports for the first time domestic dogs infected with E. canis strains closely related to a zoonotic strain, which may be of public health concern as dogs can be chronically infected with this pathogen.
Collapse
Affiliation(s)
- Joseph Geiger
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California
| | - Bridget A Morton
- Affiliated Veterinary Specialists, Orange Park, Florida.,College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | | | - Maryam Tngrian
- College of Agriculture, California State Polytechnic University, Pomona, Pomona, California
| | - Malika Kachani
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Eduardo A Barrón
- Laboratorio de Medicina Veterinaria Preventiva, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Cesar M Gavidia
- Laboratorio de Medicina Veterinaria Preventiva, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Robert H Gilman
- Asociación Benéfica Proyectos en Informática, Salud, Medicina y Agricultura, Lima, Peru.,Laboratorio de Investigación de Enfermedades Infecciosas, Departamento de Microbiología, Universidad Peruana Cayetano Heredia, Lima, Peru.,Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Noelia P Angulo
- Laboratorio de Medicina Veterinaria Preventiva, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Richard Lerner
- Pan American Zoonotic Research and Prevention (PAZ), Framingham, Massachusetts
| | - Tamerin Scott
- Los Angeles County Department of Public Health, Los Angeles, California
| | - N Hannah Mirrashed
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Brian Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| | - Pedro Paulo V P Diniz
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California
| |
Collapse
|
27
|
Protein and DNA synthesis demonstrated in cell-free Ehrlichia chaffeensis organisms in axenic medium. Sci Rep 2018; 8:9293. [PMID: 29915240 PMCID: PMC6006305 DOI: 10.1038/s41598-018-27574-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/30/2018] [Indexed: 01/23/2023] Open
Abstract
Ehrlichia chaffeensis, a tick-transmitted rickettsial bacterium, is the causative agent of human monocytic ehrlichiosis. Biochemical characterization of this and other related Rickettsiales remains a major challenge, as they require a host cell for their replication. We investigated the use of an axenic medium for E. chaffeensis growth, assessed by protein and DNA synthesis, in the absence of a host cell. E. chaffeensis organisms harvested from in vitro cultures grown in a vertebrate cell line were fractionated into infectious dense-core cells (DC) and the non-infectious replicating form, known as reticulate cells (RC) by renografin density gradient centrifugation and incubated in the axenic medium containing amino acids, nucleotides, and different energy sources. Bacterial protein and DNA synthesis were observed in RCs in response to glucose-6-phosphate, although adenosine triphosphate, alpha-ketoglutarate or sodium acetate supported protein synthesis. The biosynthetic activity could not be detected in DCs in the axenic medium. While the data demonstrate de novo protein and DNA synthesis under axenic conditions for E. chaffeensis RCs, additional modifications are required in order to establish conditions that support bacterial replication, and transition to DCs.
Collapse
|
28
|
A genetic system for targeted mutations to disrupt and restore genes in the obligate bacterium, Ehrlichia chaffeensis. Sci Rep 2017; 7:15801. [PMID: 29150636 PMCID: PMC5693922 DOI: 10.1038/s41598-017-16023-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
Obligate intracellular bacteria (obligates) belonging to Rickettsiales and Chlamydiales cause diseases in hundreds of millions of people worldwide and in many animal species. Lack of an efficient system for targeted mutagenesis in obligates remains a major impediment in understanding microbial pathogenesis. Challenges in creating targeted mutations may be attributed to essential nature of majority of the genes and intracellular replication dependence. Despite success in generating random mutations, a method that works well in creating mutations in specific genes of interest followed by complementation remains problematic for obligates and is a highly sought-after goal. We describe protocols to generate stable targeted mutations by allelic exchange in Ehrlichia chaffeensis, an obligate intracellular tick-borne bacterium responsible for human monocytic ehrlichiosis. Targeted mutations in E. chaffeensis were created to disrupt two genes, and also to restore one gene by another allelic exchange mutation leading to the restoration of transcription and protein expression from the inactivated gene and the recovered organisms also express mCherry, which distinguishes from the wild type. We expect that the methods developed are broadly applicable to other obligates, particularly to rickettsial pathogens, to routinely perform targeted mutations to enable studies focused on protein structure-function analyses, host-pathogen interactions and in developing vaccines.
Collapse
|
29
|
Parallelisms and Contrasts in the Diverse Ecologies of the Anaplasma phagocytophilum and Borrelia burgdorferi Complexes of Bacteria in the Far Western United States. Vet Sci 2016; 3:vetsci3040026. [PMID: 29056734 PMCID: PMC5606591 DOI: 10.3390/vetsci3040026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/03/2016] [Accepted: 09/14/2016] [Indexed: 11/17/2022] Open
Abstract
Anaplasma phagocytophilum and Borrelia burgdorferi are two tick-borne bacteria that cause disease in people and animals. For each of these bacteria, there is a complex of closely related genospecies and/or strains that are genetically distinct and have been shown through both observational and experimental studies to have different host tropisms. In this review we compare the known ecologies of these two bacterial complexes in the far western USA and find remarkable similarities, which will help us understand evolutionary histories and coadaptation among vertebrate host, tick vector, and bacteria. For both complexes, sensu stricto genospecies (those that infect humans) share a similar geographic range, are vectored mainly by ticks in the Ixodes ricinus-complex, utilize mainly white-footed mice (Peromyscus leucopus) as a reservoir in the eastern USA and tree squirrels in the far west, and tend to be generalists, infecting a wider variety of vertebrate host species. Other sensu lato genospecies within each complex are generally more specialized, occurring often in local enzootic cycles within a narrow range of vertebrate hosts and specialized vector species. We suggest that these similar ecologies may have arisen through utilization of a generalist tick species as a vector, resulting in a potentially more virulent generalist pathogen that spills over into humans, vs. utilization of a specialized tick vector on a particular vertebrate host species, promoting microbe specialization. Such tight host-vector-pathogen coupling could also facilitate high enzootic prevalence and the evolution of host immune-tolerance and bacterial avirulence.
Collapse
|
30
|
Jasik KP, Okła H, Słodki J, Rozwadowska B, Słodki A, Rupik W. Congenital Tick Borne Diseases: Is This An Alternative Route of Transmission of Tick-Borne Pathogens In Mammals? Vector Borne Zoonotic Dis 2016; 15:637-44. [PMID: 26565770 DOI: 10.1089/vbz.2015.1815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Tick-borne diseases (TBDs) have become a popular topic in many medical journals. Besides the obvious participation of ticks in the transmission of pathogens that cause TBD, little is written about alternative methods of their spread. An important role is played in this process by mammals, which serve as reservoirs. Transplacental transfer also plays important role in the spread of some TBD etiological agents. Reservoir species take part in the spread of pathogens, a phenomenon that has extreme importance in synanthropic environments. Animals that accompany humans and animals migrating from wild lands to urban areas increase the probability of pathogen infections by ticks This article provides an overview of TBDs, such as tick-borne encephalitis virus (TBEV), and TBDs caused by spirochetes, α-proteobacteria, γ-proteobacteria, and Apicomplexa, with particular attention to reports about their potential to cross the maternal placenta. For each disease, the method of propagation, symptoms of acute and chronic phase, and complications of their course in adults, children, and animals are described in detail. Additional information about transplacental transfer of these pathogens, effects of congenital diseases caused by them, and the possible effects of maternal infection to the fetus are also discussed. The problem of vertical transmission of pathogens presents a new challenge for medicine. Transfer of pathogens through the placenta may lead not only to propagation of diseases in the population, but also constitute a direct threat to health and fetal development. For this reason, the problem of vertical transmission requires more attention and an estimation of the impact of placental transfer for each of listed pathogens.
Collapse
Affiliation(s)
- Krzysztof P Jasik
- 1 Department of Skin Structural Studies, Medical University of Silesia in Katowice , School of Pharmacy with Division of Laboratory Medicine in Sosnowiec, Sosnowiec, Poland
| | - Hubert Okła
- 1 Department of Skin Structural Studies, Medical University of Silesia in Katowice , School of Pharmacy with Division of Laboratory Medicine in Sosnowiec, Sosnowiec, Poland .,2 University of Silesia in Katowice, Faculty of Computer Science and Material Science, Institute of Material Science , Katowice, Poland
| | - Jan Słodki
- 1 Department of Skin Structural Studies, Medical University of Silesia in Katowice , School of Pharmacy with Division of Laboratory Medicine in Sosnowiec, Sosnowiec, Poland
| | - Beata Rozwadowska
- 1 Department of Skin Structural Studies, Medical University of Silesia in Katowice , School of Pharmacy with Division of Laboratory Medicine in Sosnowiec, Sosnowiec, Poland .,3 Provincial Sanitary and Epidemiological Station in Katowice , Katowice, Poland
| | - Aleksandra Słodki
- 1 Department of Skin Structural Studies, Medical University of Silesia in Katowice , School of Pharmacy with Division of Laboratory Medicine in Sosnowiec, Sosnowiec, Poland
| | - Weronika Rupik
- 4 Department of Animal Histology and Embryology, University of Silesia in Katowice , Faculty of Biology and Environmental Protection, Katowice, Poland
| |
Collapse
|
31
|
Liu H, Jakkula LUMR, Von Ohlen T, Ganta RR. Sequence determinants spanning -35 motif and AT-rich spacer region impacting Ehrlichia chaffeensis Sigma 70-dependent promoter activity of two differentially expressed p28 outer membrane protein genes. DNA Res 2016; 23:495-505. [PMID: 27402867 PMCID: PMC5066175 DOI: 10.1093/dnares/dsw034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/07/2016] [Indexed: 11/12/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular tick-borne bacterium which causes the disease, human monocytic ehrlichiosis. Ehrlichia chaffeensis contains only two sigma factors, σ32 and σ70. It is difficult to study E. chaffeensis gene regulation due to lack of a transformation system. We developed an Escherichia coli-based transcription system to study E. chaffeensis transcriptional regulation. An E. coli strain with its σ70 repressed with trp promoter is used to express E. chaffeensis σ70. The E. coli system and our previously established in vitro transcription system were used to map transcriptional differences of two Ehrlichia genes encoding p28-outer membrane proteins 14 and 19. We mapped the -10 and -35 motifs and the AT rich spacers located between the two motifs by performing detailed mutational analysis. Mutations within the -35 motif of the genes impacted transcription differently, while -10 motif deletions had no impact. The AT-rich spacers also contributed to transcriptional differences. We further demonstrated that the domain 4.2 of E. chaffeensis σ70 is important for regulating promoter activity and the deletion of region 1.1 of E. chaffeensis σ70 causes enhancement of the promoter activity. This is the first study defining the promoters of two closely related E. chaffeensis genes.
Collapse
Affiliation(s)
- Huitao Liu
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Laxmi U M R Jakkula
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Tonia Von Ohlen
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, Center of Excellence for Vector-Borne Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
32
|
Abstract
Ehrlichia chaffeensis is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. E. chaffeensis has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of E. chaffeensis blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the Ehrlichia-host interface. E. chaffeensis strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that Ehrlichia species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in Ehrlichia.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
33
|
McGill JL, Nair ADS, Cheng C, Rusk RA, Jaworski DC, Ganta RR. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 2016; 11:e0148229. [PMID: 26841025 PMCID: PMC4739596 DOI: 10.1371/journal.pone.0148229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.
Collapse
Affiliation(s)
- Jodi L. McGill
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Arathy D. S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Rachel A. Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
34
|
von Wissmann B, Hautmann W, Sing A, Hizo-Teufel C, Fingerle V. Assessing the risk of human granulocytic anaplasmosis and lyme borreliosis after a tick bite in Bavaria, Germany. Int J Med Microbiol 2015; 305:736-41. [DOI: 10.1016/j.ijmm.2015.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Cheng C, Nair ADS, Jaworski DC, Ganta RR. Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities. PLoS One 2015; 10:e0132657. [PMID: 26186429 PMCID: PMC4505860 DOI: 10.1371/journal.pone.0132657] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022] Open
Abstract
Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen’s reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis.
Collapse
Affiliation(s)
- Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Arathy D. S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
- Department of Entomology and Plant Pathology, Oklahoma State University, Noble Research Center, Stillwater, OK 74074, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States of America
- * E-mail:
| |
Collapse
|
36
|
Brown SM, Lehman PM, Kern RA, Henning JD. Detection of Borrelia burgdorferi and Anaplasma phagocytophilum in the black-legged tick, Ixodes scapularis, within southwestern Pennsylvania. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2015; 40:180-183. [PMID: 26047199 DOI: 10.1111/jvec.12148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Prevalence studies of Borrelia burgdorferi and Anaplasma phagocytophilum have been rare for ticks from southwestern Pennsylvania. We collected 325 Ixodes scapularis ticks between 2011 and 2012 from four counties in southwestern Pennsylvania. We tested for the presence of Borrelia burgdorferi and Anaplasma phagocytophilum using PCR. Of the ticks collected from Pennsylvania, B. burgdorferi (causative agent of Lyme disease) was present in 114/325 (35%) and Anaplasma phagocytophilum (causative agent of Human Granulocytic Anaplasmosis) was present in 48/325 (15%) as determined by PCR analysis.
Collapse
Affiliation(s)
- Scott M Brown
- University of Pittsburgh at Johnstown, Johnstown, PA, U.S.A., 15904
| | - Preston M Lehman
- University of Pittsburgh at Johnstown, Johnstown, PA, U.S.A., 15904
| | - Ryan A Kern
- University of Pittsburgh at Johnstown, Johnstown, PA, U.S.A., 15904
| | - Jill D Henning
- University of Pittsburgh at Johnstown, Johnstown, PA, U.S.A., 15904.
| |
Collapse
|
37
|
Attenuated Mutants of Ehrlichia chaffeensis Induce Protection against Wild-Type Infection Challenge in the Reservoir Host and in an Incidental Host. Infect Immun 2015; 83:2827-35. [PMID: 25916990 DOI: 10.1128/iai.00487-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 04/24/2015] [Indexed: 02/05/2023] Open
Abstract
Ehrlichia chaffeensis, a tick-borne rickettsial organism, causes the disease human monocytic ehrlichiosis. The pathogen also causes disease in several other vertebrates, including dogs and deer. In this study, we assessed two clonally purified E. chaffeensis mutants with insertions within the genes Ech_0379 and Ech_0660 as vaccine candidates in deer and dogs. Infection with the Ech_0379 mutant and challenge with wild-type E. chaffeensis 1 month following inoculation with the mutant resulted in the reduced presence of the organism in blood compared to the presence of wild-type infection in both deer and dogs. The Ech_0660 mutant infection resulted in its rapid clearance from the bloodstream. The wild-type infection challenge following Ech_0660 mutant inoculation also caused the pathogen's clearance from blood and tissue samples as assessed at the end of the study. The Ech_0379 mutant-infected and -challenged animals also remained positive for the organism in tissue samples in deer but not in dogs. This is the first study that documents that insertion mutations in E. chaffeensis that cause attenuated growth confer protection against wild-type infection challenge. This study is important in developing vaccines to protect animals and people against Ehrlichia species infections.
Collapse
|
38
|
Ehrlichia chaffeensis infection in the reservoir host (white-tailed deer) and in an incidental host (dog) is impacted by its prior growth in macrophage and tick cell environments. PLoS One 2014; 9:e109056. [PMID: 25303515 PMCID: PMC4193820 DOI: 10.1371/journal.pone.0109056] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022] Open
Abstract
Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.
Collapse
|
39
|
Greiman SE, Tkach VV, Pulis E, Fayton TJ, Curran SS. Large scale screening of digeneans for Neorickettsia endosymbionts using real-time PCR reveals new Neorickettsia genotypes, host associations and geographic records. PLoS One 2014; 9:e98453. [PMID: 24911315 PMCID: PMC4049572 DOI: 10.1371/journal.pone.0098453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/02/2014] [Indexed: 11/20/2022] Open
Abstract
Digeneans are endoparasitic flatworms with complex life cycles including one or two intermediate hosts (first of which is always a mollusk) and a vertebrate definitive host. Digeneans may harbor intracellular endosymbiotic bacteria belonging to the genus Neorickettsia (order Rickettsiales, family Anaplasmataceae). Some Neorickettsia are able to invade cells of the digenean's vertebrate host and are known to cause diseases of wildlife and humans. In this study we report the results of screening 771 digenean samples for Neorickettsia collected from various vertebrates in terrestrial, freshwater, brackish, and marine habitats in the United States, China and Australia. Neorickettsia were detected using a newly designed real-time PCR protocol targeting a 152 bp fragment of the heat shock protein coding gene, GroEL, and verified with nested PCR and sequencing of a 1371 bp long region of 16S rRNA. Eight isolates of Neorickettsia have been obtained. Sequence comparison and phylogenetic analysis demonstrated that 7 of these isolates, provisionally named Neorickettsia sp. 1-7 (obtained from allocreadiid Crepidostomum affine, haploporids Saccocoelioides beauforti and Saccocoelioides lizae, faustulid Bacciger sprenti, deropegid Deropegus aspina, a lecithodendriid, and a pleurogenid) represent new genotypes and one (obtained from Metagonimoides oregonensis) was identical to a published sequence of Neorickettsia known as SF agent. All digenean species reported in this study represent new host records. Three of the 6 digenean families (Haploporidae, Pleurogenidae, and Faustulidae) are also reported for the first time as hosts of Neorickettsia. We have detected Neorickettsia in digeneans from China and Australia for the first time based on PCR and sequencing evidence. Our findings suggest that further surveys from broader geographic regions and wider selection of digenean taxa are likely to reveal new Neorickettsia lineages as well as new digenean host associations.
Collapse
Affiliation(s)
- Stephen E. Greiman
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Vasyl V. Tkach
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Eric Pulis
- Department of Coastal Sciences, The University of Southern Mississippi, Ocean Springs, Mississippi, United States of America
| | - Thomas J. Fayton
- Department of Coastal Sciences, The University of Southern Mississippi, Ocean Springs, Mississippi, United States of America
| | - Stephen S. Curran
- Department of Coastal Sciences, The University of Southern Mississippi, Ocean Springs, Mississippi, United States of America
| |
Collapse
|
40
|
Nordberg M, Forsberg P, Berglund J, Bjöersdorff A, Ernerudh J, Garpmo U, Haglund M, Nilsson K, Eliasson I. Aetiology of Tick-Borne Infections in an Adult Swedish Population—Are Co-Infections with Multiple Agents Common? ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojcd.2014.41007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Transcription of Ehrlichia chaffeensis genes is accomplished by RNA polymerase holoenzyme containing either sigma 32 or sigma 70. PLoS One 2013; 8:e81780. [PMID: 24278458 PMCID: PMC3836757 DOI: 10.1371/journal.pone.0081780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
Bacterial gene transcription is initiated by RNA polymerase containing a sigma factor. To understand gene regulation in Ehrlichia chaffeensis, an important tick-transmitted rickettsiae responsible for human monocytic ehrlichiosis, we initiated studies evaluating the transcriptional machinery of several genes of this organism. We mapped the transcription start sites of 10 genes and evaluated promoters of five genes (groE, dnaK, hup, p28-Omp14 and p28-Omp19 genes). We report here that the RNA polymerase binding elements of E. chaffeensis gene promoters are highly homologous for its only two transcription regulators, sigma 32 and sigma 70, and that gene expression is accomplished by either of the transcription regulators. RNA analysis revealed that although transcripts for both sigma 32 and sigma 70 are upregulated during the early replicative stage, their expression patterns remained similar for the entire replication cycle. We further present evidence demonstrating that the organism’s -35 motifs are essential to transcription initiations. The data suggest that E. chaffeensis gene regulation has evolved to support the organism’s growth, possibly to facilitate its intraphagosomal growth. Considering the limited availability of genetic tools, this study offers a novel alternative in defining gene regulation in E. chaffeensis and other related intracellular pathogens.
Collapse
|
42
|
Greiman SE, Tkach VV, Vaughan JA. Transmission rates of the bacterial endosymbiont, Neorickettsia risticii, during the asexual reproduction phase of its digenean host, Plagiorchis elegans, within naturally infected lymnaeid snails. Parasit Vectors 2013; 6:303. [PMID: 24383453 PMCID: PMC3924192 DOI: 10.1186/1756-3305-6-303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neorickettsia are obligate intracellular bacterial endosymbionts of digenean parasites present in all lifestages of digeneans. Quantitative information on the transmission of neorickettsial endosymbionts throughout the complex life cycles of digeneans is lacking. This study quantified the transmission of Neorickettsia during the asexual reproductive phase of a digenean parasite, Plagiorchis elegans, developing within naturally parasitized lymnaeid pond snails. METHODS Lymnaea stagnalis snails were collected from 3 ponds in Nelson County, North Dakota and screened for the presence of digenean cercariae. Cercariae were identified to species by PCR and sequencing of the 28S rRNA gene. Neorickettsia infections were initially detected using nested PCR and sequencing of a partial 16S rRNA gene of pooled cercariae shed from each parasitized snail. Fifty to 100 single cercariae or sporocysts were isolated from each of six parasitized snails and tested for the presence of Neorickettsia using nested PCR to estimate the efficiency at which Neorickettsia were transmitted to cercariae during asexual development of the digenean. RESULTS A total of 616 L. stagnalis were collected and 240 (39%) shed digenean cercariae. Of these, 18 (8%) were Neorickettsia-positive. Six Neorickettsia infections were selected to determine the transmission efficiency of Neorickettsia from mother to daughter sporocyst and from daughter sporocyst to cercaria. The prevalence of neorickettsiae in cercariae varied from 11 to 91%. The prevalence of neorickettsiae in sporocysts from one snail was 100%. CONCLUSION Prevalence of Neorickettsia infection in cercariae of Plagiorchis elegans was variable and never reached 100%. Reasons for this are speculative, however, the low prevalence of Neorickettsia observed in some of our samples (11 to 52%) differs from the high prevalence of other, related bacterial endosymbionts, e.g. Wolbachia in Wolbachia-dependent filariid nematodes, where the prevalence among progeny is universally 100%. This suggests that, unlike the Wolbachia-filaria relationship, the Neorickettsia-digenean relationship is not obligatory mutualism. Our study represents the first quantitative estimate of the Neorickettsia transmission through the asexual phase of the digenean life cycle.
Collapse
Affiliation(s)
- Stephen E Greiman
- Department of Biology, University of North Dakota, 10 Cornell St,, Grand Forks, North Dakota 58202, USA.
| | | | | |
Collapse
|
43
|
Ionita M, Mitrea IL, Pfister K, Hamel D, Silaghi C. Molecular evidence for bacterial and protozoan pathogens in hard ticks from Romania. Vet Parasitol 2013; 196:71-6. [DOI: 10.1016/j.vetpar.2013.01.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|
44
|
Aggregate-reactivation activity of the molecular chaperone ClpB from Ehrlichia chaffeensis. PLoS One 2013; 8:e62454. [PMID: 23667479 PMCID: PMC3646808 DOI: 10.1371/journal.pone.0062454] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/20/2013] [Indexed: 11/23/2022] Open
Abstract
Rickettsiale diseases, including human monocytic ehrlichiosis caused by Ehrlichia chaffeensis, are the second leading cause of the tick-borne infections in the USA and a growing health concern. Little is known about how E. chaffeensis survives the host-induced stress in vertebrate and tick hosts. A molecular chaperone ClpB from several microorganisms has been reported to reactivate aggregated proteins in cooperation with the co-chaperones DnaK/DnaJ/GrpE (KJE). In this study, we performed the first biochemical characterization of ClpB from E. chaffeensis. The transcript of E. chaffeensis ClpB (EhClpB) is strongly upregulated after infection of cultured macrophages and its level remains high during the Ehrlichia replicative stage. EhClpB forms ATP-dependent oligomers and catalyzes the ATP hydrolysis, similar to E. coli ClpB (EcClpB), but its ATPase activity is insensitive to the EcClpB activators, casein and poly-lysine. EhClpB in the presence of E. coli KJE efficiently reactivates the aggregated glucose-6-phosphate dehydrogenase (G6PDH) and firefly luciferase. Unlike EcClpB, which requires the co-chaperones for aggregate reactivation, EhClpB reactivates G6PDH even in the absence of KJE. Moreover, EhClpB is functionally distinct from EcClpB as evidenced by its failure to rescue a temperature-sensitive phenotype of the clpB-null E. coli. The clpB expression pattern during the E. chaffeensis infection progression correlates with the pathogen’s replicating stage inside host cells and suggests an essential role of the disaggregase activity of ClpB in the pathogen’s response to the host-induced stress. This study sets the stage for assessing the importance of the chaperone activity of ClpB for E. chaffeensis growth within the mammalian and tick hosts.
Collapse
|
45
|
Cheng C, Nair ADS, Indukuri VV, Gong S, Felsheim RF, Jaworski D, Munderloh UG, Ganta RR. Targeted and random mutagenesis of Ehrlichia chaffeensis for the identification of genes required for in vivo infection. PLoS Pathog 2013; 9:e1003171. [PMID: 23459099 PMCID: PMC3573109 DOI: 10.1371/journal.ppat.1003171] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022] Open
Abstract
Ehrlichia chaffeensis is a tick transmitted pathogen responsible for the disease human monocytic ehrlichiosis. Research to elucidate gene function in rickettsial pathogens is limited by the lack of genetic manipulation methods. Mutational analysis was performed, targeting to specific and random insertion sites within the bacterium's genome. Targeted mutagenesis at six genomic locations by homologous recombination and mobile group II intron-based methods led to the consistent identification of mutants in two genes and in one intergenic site; the mutants persisted in culture for 8 days. Three independent experiments using Himar1 transposon mutagenesis of E. chaffeensis resulted in the identification of multiple mutants; these mutants grew continuously in macrophage and tick cell lines. Nine mutations were confirmed by sequence analysis. Six insertions were located within non-coding regions and three were present in the coding regions of three transcriptionally active genes. The intragenic mutations prevented transcription of all three genes. Transposon mutants containing a pool of five different insertions were assessed for their ability to infect deer and subsequent acquisition by Amblyomma americanum ticks, the natural reservoir and vector, respectively. Three of the five mutants with insertions into non-coding regions grew well in deer. Transposition into a differentially expressed hypothetical gene, Ech_0379, and at 18 nucleotides downstream to Ech_0230 gene coding sequence resulted in the inhibition of growth in deer, which is further evidenced by their failed acquisition by ticks. Similarly, a mutation into the coding region of ECH_0660 gene inhibited the in vivo growth in deer. This is the first study evaluating targeted and random mutagenesis in E. chaffeensis, and the first to report the generation of stable mutants in this obligate intracellular bacterium. We further demonstrate that in vitro mutagenesis coupled with in vivo infection assessment is a successful strategy in identifying genomic regions required for the pathogen's in vivo growth. The tick-transmitted bacterium, Ehrlichia chaffeensis, causes human monocytic ehrlichiosis, an acute febrile illness that can progress to a fatal outcome. This and other related pathogens have evolved to establish infections in vertebrate and tick hosts for completing their lifecycle. Our recent studies suggest that the pathogen's differential gene expression during growth in ticks and mammals is a major contributor for its dual host adaptation. However, the importance of the pathogen phenotype differences is best understood if we have methods to knock down protein expression from one or more genes. Creating mutations in obligate intracellular pathogens remain a challenge due to their limited survival in the extracellular environment. Here, we present evidence for multiple insertion mutations in the E. chaffeensis genome. Three of the nine mutations in the genome inhibiting gene expression prevented infection of deer, the natural host for the pathogen. This is the first study demonstrating the feasibility of creating mutations in an Ehrlichia species; and directly linking specific regions of the genome to in vivo infection. Methods described here allow for studies to define genes important for infectivity and ability to cause disease, and are equally important for initiating similar studies in other related emerging zoonotic pathogens.
Collapse
Affiliation(s)
- Chuanmin Cheng
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Arathy D. S. Nair
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Vijaya V. Indukuri
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Shanzhong Gong
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Roderick F. Felsheim
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Deborah Jaworski
- Department of Entomology and Plant Pathology, Oklahoma State University, Noble Research Center, Stillwater, Oklahoma, United States of America
| | - Ulrike G. Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Roman R. Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
46
|
New genetic lineages, host associations and circulation pathways of Neorickettsia endosymbionts of digeneans. Acta Parasitol 2012; 57:285-92. [PMID: 22875676 DOI: 10.2478/s11686-012-0043-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2012] [Indexed: 11/21/2022]
Abstract
Neorickettsia is a genus of intracellular bacteria endosymbiotic in digeneans that may also invade cells of vertebrates and are known to cause diseases of wildlife and humans. Herein, we report results of screening for Neorickettsia of an extensive collection of DNA extracts from adult and larval digeneans obtained from various vertebrates and mollusks in the United States. Seven isolates of Neorickettsia were detected by PCR and sequenced targeting a 527 bp long region of 16S rRNA. Sequence comparison and phylogenetic analysis demonstrated that four isolates matched published sequences of Neorickettsia risticii. Three other isolates, provisionally named "catfish agents 1 and 2" (obtained from Megalogonia ictaluri and Phyllodistomum lacustri, both parasitic in catfishes) and Neorickettsia sp. (obtained from cercariae of Diplostomum sp.), differed from previously known genotypes of Neorickettsia and are likely candidates for new species. All 7 isolates of Neorickettsia were obtained from digenean species and genera that were not previously reported as hosts of these bacteria. Members of four digenean families (Dicrocoeliidae, Heronimidae, Macroderoididae and Gorgoderidae) are reported as hosts of Neorickettsia for the first time. Our study reveals several new pathways of Neorickettsia circulation in nature. We have found for the first time a Neorickettsia from a digenean (dicrocoeliid Conspicuum icteridorum) with an entirely terrestrial life cycle. We found N. risticii in digeneans (Alloglossidium corti and Heronimus mollis) with entirely aquatic life cycles. Previously, this Neorickettsia species was known only from digeneans with aquatic/terrestrial life cycles. Our results suggest that our current knowledge of the diversity, host associations and circulation of neorickettsiae is far from satisfactory.
Collapse
|
47
|
Thomas R, Birtles R, Radford A, Woldehiwet Z. Recurrent Bacteraemia in Sheep Infected Persistently with Anaplasma phagocytophilum. J Comp Pathol 2012; 147:360-7. [DOI: 10.1016/j.jcpa.2012.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/26/2012] [Accepted: 02/13/2012] [Indexed: 11/16/2022]
|
48
|
Clark KL. Anaplasma phagocytophilum in small mammals and ticks in northeast Florida. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2012; 37:262-8. [PMID: 22548563 DOI: 10.1111/j.1948-7134.2012.00226.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Human anaplasmosis is an emerging tick-borne disease in the United States, but few studies of the causative agent, Anaplasma phagocytophilum, have been conducted in southeastern states. The aim of this study was to determine if A. phagocytophilum is present in small mammals and ticks in northeast Florida. Polymerase chain reaction assays designed to amplify portions of the major surface protein 2 gene (p44), 16S rDNA, and groESL operons were used to test rodent blood and tick DNA samples for the presence of A. phagocytophilum. Positive samples were confirmed by DNA sequence analysis. Anaplasma phagocytophilum DNA was detected in less than 5% of cotton mice and 45% of cotton rats from two sites in northeast Florida. Anaplasma phagocytophilum DNA was also confirmed in 1.3% of host-seeking adult Ixodes scapularis tested and 2.7% of host-seeking adult Amblyomma americanum. This report describes the first DNA sequence data confirming strains of A. phagocytophilum in rodents and ticks in Florida. The DNA sequences of the msp2, 16S rDNA, and groESL gene fragments obtained in this study were highly similar to reference strains of human pathogenic strains of A. phagocytophilum. These findings suggest that A. phagocytophilum is present and established among some small mammal species in northeast Florida. Although the infection prevalence was low in the total number of ticks tested, the presence of A. phagocytophilum in two human biting tick species, one of which is a known competent vector, suggests that humans in this region may be at risk of granulocytic anaplasmosis caused by this pathogen.
Collapse
Affiliation(s)
- Kerry L Clark
- Department of Public Health, University of North Florida, Jacksonville, FL 32224, USA.
| |
Collapse
|
49
|
Dedonder SE, Cheng C, Willard LH, Boyle DL, Ganta RR. Transmission electron microscopy reveals distinct macrophage- and tick cell-specific morphological stages of Ehrlichia chaffeensis. PLoS One 2012; 7:e36749. [PMID: 22615806 PMCID: PMC3352939 DOI: 10.1371/journal.pone.0036749] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/11/2012] [Indexed: 11/18/2022] Open
Abstract
Background Ehrlichia chaffeensis is an emerging tick-borne rickettsial pathogen responsible for human monocytic ehrlichiosis. Despite the induction of an active host immune response, the pathogen has evolved to persist in its vertebrate and tick hosts. Understanding how the organism progresses in tick and vertebrate host cells is critical in identifying effective strategies to block the pathogen transmission. Our recent molecular and proteomic studies revealed differences in numerous expressed proteins of the organism during its growth in different host environments. Methodology/Principal Findings Transmission electron microscopy analysis was performed to assess morphological changes in the bacterium within macrophages and tick cells. The stages of pathogen progression observed included the attachment of the organism to the host cells, its engulfment and replication within a morulae by binary fission and release of the organisms from infected host cells by complete host cell lysis or by exocytosis. E. chaffeensis grown in tick cells was highly pleomorphic and appears to replicate by both binary fission and filamentous type cell divisions. The presence of Ehrlichia-like inclusions was also observed within the nucleus of both macrophages and tick cells. This observation was confirmed by confocal microscopy and immunoblot analysis. Conclusions/Significance Morphological differences in the pathogen’s progression, replication, and processing within macrophages and tick cells provide further evidence that E. chaffeensis employs unique host-cell specific strategies in support of adaptation to vertebrate and tick cell environments.
Collapse
Affiliation(s)
- Sarah E Dedonder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | | | | | | | | |
Collapse
|
50
|
Dark MJ, Lundgren AM, Barbet AF. Determining the repertoire of immunodominant proteins via whole-genome amplification of intracellular pathogens. PLoS One 2012; 7:e36456. [PMID: 22558468 PMCID: PMC3340345 DOI: 10.1371/journal.pone.0036456] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/07/2012] [Indexed: 11/18/2022] Open
Abstract
Culturing many obligate intracellular bacteria is difficult or impossible. However, these organisms have numerous adaptations allowing for infection persistence and immune system evasion, making them some of the most interesting to study. Recent advancements in genome sequencing, pyrosequencing and Phi29 amplification, have allowed for examination of whole-genome sequences of intracellular bacteria without culture. We have applied both techniques to the model obligate intracellular pathogen Anaplasma marginale and the human pathogen Anaplasma phagocytophilum, in order to examine the ability of phi29 amplification to determine the sequence of genes allowing for immune system evasion and long-term persistence in the host. When compared to traditional pyrosequencing, phi29-mediated genome amplification had similar genome coverage, with no additional gaps in coverage. Additionally, all msp2 functional pseudogenes from two strains of A. marginale were detected and extracted from the phi29-amplified genomes, highlighting its utility in determining the full complement of genes involved in immune evasion.
Collapse
Affiliation(s)
- Michael J Dark
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|