1
|
Sakane K, Akiyama M, Jogaiah S, Ito SI, Sasaki K. Pathogenicity chromosome of Fusarium oxysporum f. sp. cepae. Fungal Genet Biol 2024; 170:103860. [PMID: 38114016 DOI: 10.1016/j.fgb.2023.103860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/10/2023] [Accepted: 12/16/2023] [Indexed: 12/21/2023]
Abstract
Fusarium oxysporum f. sp. cepae (Foc) is the causative agent of Fusarium basal rot disease in onions, which leads to catastrophic global crop production losses. Therefore, the interaction of Foc with its host has been actively investigated, and the pathogen-specific (PS) regions of the British strain Foc_FUS2 have been identified. However, it has not been experimentally determined whether the identified PS region plays a role in pathogenicity. To identify the pathogenicity chromosome in the Japanese strain Foc_TA, we initially screened effector candidates, defined as small proteins with a signal peptide that contain two or more cysteines, from genome sequence data. Twenty-one candidate effectors were identified, five of which were expressed during infection. Of the expressed effector candidates, four were located on the 4-Mb-sized chromosome in Foc_TA. To clarify the relationship between pathogenicity and the 4-Mb-sized chromosome in Foc_TA, nine putative 4-Mb-sized chromosome loss strains were generated by treatment with benomyl (a mitotic inhibitor drug). A pathogenicity test with putative 4-Mb-sized chromosome loss strains showed that these strains were impaired in their pathogenicity toward onions. Genome analysis of three putative 4-Mb-sized chromosome loss strains revealed that two strains lost a 4-Mb-sized chromosome in common, and another strain maintained a 0.9-Mb region of the 4-Mb-sized chromosome. Our findings show that the 4-Mb-sized chromosome is the pathogenicity chromosome in Foc_TA, and the 3.1-Mb region within the 4-Mb-sized chromosome is required for full pathogenicity toward onion.
Collapse
Affiliation(s)
- Kosei Sakane
- The United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8553, Japan
| | - Mitsunori Akiyama
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Kasaragod 671316, India
| | - Shin-Ichi Ito
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunori Sasaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
2
|
Maxson ME, Das L, Goldberg MF, Porcelli SA, Chan J, Jacobs WR. Mycobacterium tuberculosis Central Metabolism Is Key Regulator of Macrophage Pyroptosis and Host Immunity. Pathogens 2023; 12:1109. [PMID: 37764917 PMCID: PMC10535942 DOI: 10.3390/pathogens12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysregulation in Mycobacterium tuberculosis results in increased macrophage apoptosis or pyroptosis. However, mechanistic links between Mycobacterium virulence and bacterial metabolic plasticity remain ill defined. In this study, we screened random transposon insertions of M. bovis BCG to identify mutants that induce pyroptotic death of the infected macrophage. Analysis of the transposon insertion sites identified a panel of fdr (functioning death repressor) genes, which were shown in some cases to encode functions central to Mycobacterium metabolism. In-depth studies of one fdr gene, fdr8 (BCG3787/Rv3727), demonstrated its important role in the maintenance of M. tuberculosis and M. bovis BCG redox balance in reductive stress conditions in the host. Our studies expand the subset of known Mycobacterium genes linking bacterial metabolic plasticity to virulence and also reveal that the broad induction of pyroptosis by an intracellular bacterial pathogen is linked to enhanced cellular immunity in vivo.
Collapse
Affiliation(s)
- Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Lahari Das
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | | | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | - John Chan
- Department of Medicine, New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA;
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| |
Collapse
|
3
|
Balaji S. The transferred translocases: An old wine in a new bottle. Biotechnol Appl Biochem 2021; 69:1587-1610. [PMID: 34324237 DOI: 10.1002/bab.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
The role of translocases was underappreciated and was not included as a separate class in the enzyme commission until August 2018. The recent research interests in proteomics of orphan enzymes, ionomics, and metallomics along with high-throughput sequencing technologies generated overwhelming data and revamped this enzyme into a separate class. This offers a great opportunity to understand the role of new or orphan enzymes in general and specifically translocases. The enzymes belonging to translocases regulate/permeate the transfer of ions or molecules across the membranes. These enzyme entries were previously associated with other enzyme classes, which are now transferred to a new enzyme class 7 (EC 7). The entries that are reclassified are important to extend the enzyme list, and it is the need of the hour. Accordingly, there is an upgradation of entries of this class of enzymes in several databases. This review is a concise compilation of translocases with reference to the number of entries currently available in the databases. This review also focuses on function as well as dysfunction of translocases during normal and disordered states, respectively.
Collapse
Affiliation(s)
- S Balaji
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576 104, India
| |
Collapse
|
4
|
Devane ML, Moriarty E, Weaver L, Cookson A, Gilpin B. Fecal indicator bacteria from environmental sources; strategies for identification to improve water quality monitoring. WATER RESEARCH 2020; 185:116204. [PMID: 32745743 DOI: 10.1016/j.watres.2020.116204] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In tropical to temperate environments, fecal indicator bacteria (FIB), such as enterococci and Escherichia coli, can persist and potentially multiply, far removed from their natural reservoir of the animal gut. FIB isolated from environmental reservoirs such as stream sediments, beach sand and vegetation have been termed "naturalized" FIB. In addition, recent research suggests that the intestines of poikilothermic animals such as fish may be colonized by enterococci and E. coli, and therefore, these animals may contribute to FIB concentrations in the aquatic environment. Naturalized FIB that are derived from fecal inputs into the environment, and subsequently adapted to maintain their population within the non-host environment are termed "naturalized enteric FIB". In contrast, an additional theory suggests that some "naturalized" FIB diverged from enteric FIB many millions of years ago and are now normal inhabitants of the environment where they are referred to as "naturalized non-enteric FIB". In the case of the Escherichia genus, the naturalized non-enteric members are identified as E. coli during routine water quality monitoring. An over-estimation of the health risk could result when these naturalized, non-enteric FIB, (that is, not derived from avian or mammalian fecal contamination), contribute to water quality monitoring results. It has been postulated that these environmental FIB belonging to the genera Escherichia and Enterococcus can be differentiated from enteric FIB by genetic methods because they lack some of the genes required for colonization of the host intestine, and have acquired genes that aid survival in the environment. Advances in molecular tools such as next generation sequencing will aid the identification of genes peculiar or "enriched" in particular habitats to discriminate between enteric and environmental FIB. In this appraisal, we have reviewed the research studying "naturalized" FIB, and discussed the techniques for their differentiation from enteric FIB. This differentiation includes the important distinction between enteric FIB derived from fresh and non-recent fecal inputs, and those truly non-enteric environmental microbes, which are currently identified as FIB during routine water quality monitoring. The inclusion of tools for the identification of naturalized FIB (enteric or environmental) would be a valuable resource for future studies assessing water quality.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand.
| | - Elaine Moriarty
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| | - Adrian Cookson
- AgResearch Ltd., Hopkirk Research Institute, Massey University, Palmerston North, New Zealand; mEpiLab, School of Veterinary Sciences, Massey University, Palmerston North, New Zealand
| | - Brent Gilpin
- Institute of Environmental Science and Research Ltd., 27 Creyke Rd, Ilam, Christchurch, New Zealand
| |
Collapse
|
5
|
Loaiza CD, Duhan N, Lister M, Kaundal R. In silico prediction of host-pathogen protein interactions in melioidosis pathogen Burkholderia pseudomallei and human reveals novel virulence factors and their targets. Brief Bioinform 2020; 22:5842243. [PMID: 32444871 DOI: 10.1093/bib/bbz162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022] Open
Abstract
The aerobic, Gram-negative motile bacillus, Burkholderia pseudomallei is a facultative intracellular bacterium causing melioidosis, a critical disease of public health importance, which is widely endemic in the tropics and subtropical regions of the world. Melioidosis is associated with high case fatality rates in animals and humans; even with treatment, its mortality is 20-50%. It also infects plants and is designated as a biothreat agent. B. pseudomallei is pathogenic due to its ability to invade, resist factors in serum and survive intracellularly. Despite its importance, to date only a few effector proteins have been functionally characterized, and there is not much information regarding the host-pathogen protein-protein interactions (PPI) of this system, which are important to studying infection mechanisms and thereby develop prevention measures. We explored two computational approaches, the homology-based interolog and the domain-based method, to predict genome-scale host-pathogen interactions (HPIs) between two different strains of B. pseudomallei (prototypical, and highly virulent) and human. In total, 76 335 common HPIs (between the two strains) were predicted involving 8264 human and 1753 B. pseudomallei proteins. Among the unique PPIs, 14 131 non-redundant HPIs were found to be unique between the prototypical strain and human, compared to 3043 non-redundant HPIs between the highly virulent strain and human. The protein hubs analysis showed that most B. pseudomallei proteins formed a hub with human dnaK complex proteins associated with tuberculosis, a disease similar in symptoms to melioidosis. In addition, drug-binding and carbohydrate-binding mechanisms were found overrepresented within the host-pathogen network, and metabolic pathways were frequently activated according to the pathway enrichment. Subcellular localization analysis showed that most of the pathogen proteins are targeting human proteins inside cytoplasm and nucleus. We also discovered the host targets of the drug-related pathogen proteins and proteins that form T3SS and T6SS in B. pseudomallei. Additionally, a comparison between the unique PPI patterns present in the prototypical and highly virulent strains was performed. The current study is the first report on developing a genome-scale host-pathogen protein interaction networks between the human and B. pseudomallei, a critical biothreat agent. We have identified novel virulence factors and their interacting partners in the human proteome. These PPIs can be further validated by high-throughput experiments and may give new insights on how B. pseudomallei interacts with its host, which will help medical researchers in developing better prevention measures.
Collapse
Affiliation(s)
- Cristian D Loaiza
- Center for Integrated BioSystems/Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, USA
| | - Naveen Duhan
- Center for Integrated BioSystems/Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, USA
| | - Matthew Lister
- Bioinformatics Facility, Center for Integrated BioSystems, Utah State University, USA
| | - Rakesh Kaundal
- Department of Plants, Soils, and Climate/Center for Integrated BioSystems, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322 USA
| |
Collapse
|
6
|
Kang WT, Vellasamy KM, Rajamani L, Beuerman RW, Vadivelu J. Burkholderia pseudomallei type III secreted protein BipC: role in actin modulation and translocation activities required for the bacterial intracellular lifecycle. PeerJ 2016; 4:e2532. [PMID: 28028452 PMCID: PMC5180589 DOI: 10.7717/peerj.2532] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Melioidosis, an infection caused by the facultative intracellular pathogen Burkholderia pseudomallei, has been classified as an emerging disease with the number of patients steadily increasing at an alarming rate. B. pseudomalleipossess various virulence determinants that allow them to invade the host and evade the host immune response, such as the type III secretion systems (TTSS). The products of this specialized secretion system are particularly important for the B. pseudomallei infection. Lacking in one or more components of the TTSS demonstrated different degrees of defects in the intracellular lifecycle of B. pseudomallei. Further understanding the functional roles of proteins involved in B. pseudomallei TTSS will enable us to dissect the enigma of B. pseudomallei-host cell interaction. In this study, BipC (a translocator), which was previously reported to be involved in the pathogenesis of B. pseudomallei, was further characterized using the bioinformatics and molecular approaches. The bipCgene, coding for a putative invasive protein, was first PCR amplified from B. pseudomallei K96243 genomic DNA and cloned into an expression vector for overexpression in Escherichia coli. The soluble protein was subsequently purified and assayed for actin polymerization and depolymerization. BipC was verified to subvert the host actin dynamics as demonstrated by the capability to polymerize actin in vitro. Homology modeling was also attempted to predict the structure of BipC. Overall, our findings identified that the protein encoded by the bipC gene plays a role as an effector involved in the actin binding activity to facilitate internalization of B. pseudomalleiinto the host cells.
Collapse
Affiliation(s)
- Wen Tyng Kang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| | | | - Roger W Beuerman
- Antimicrobials, Singapore Eye Research Institute (SERI) , Singapore , Singapore
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
7
|
Kang WT, Vellasamy KM, Vadivelu J. Eukaryotic pathways targeted by the type III secretion system effector protein, BipC, involved in the intracellular lifecycle of Burkholderia pseudomallei. Sci Rep 2016; 6:33528. [PMID: 27634329 PMCID: PMC5025855 DOI: 10.1038/srep33528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
Burkholderia pseudomallei, the etiological agent for melioidosis, is known to secrete a type III secretion system (TTSS) protein into the host’s internal milieu. One of the TTSS effector protein, BipC, has been shown to play an important role in the B. pseudomallei pathogenesis. To identify the host response profile that was directly or indirectly regulated by this protein, genome-wide transcriptome approach was used to examine the gene expression profiles of infected mice. The transcriptome analysis of the liver and spleen revealed that a total of approximately 1,000 genes were transcriptionally affected by BipC. Genes involved in bacterial invasion, regulation of actin cytoskeleton, and MAPK signalling pathway were over-expressed and may be specifically regulated by BipC in vivo. These results suggest that BipC mainly targets pathways related to the cellular processes which could modulate the cellular trafficking processes. The host transcriptional response exhibited remarkable differences with and without the presence of the BipC protein. Overall, the detailed picture of this study provides new insights that BipC may have evolved to efficiently manipulate host-cell pathways which is crucial in the intracellular lifecycle of B. pseudomallei.
Collapse
Affiliation(s)
- Wen-Tyng Kang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
9
|
Kamalov AA, Khodyreva LA, Dudareva AA, Nizov AN. Risk factors causing the development of infection and inflammation of the lower urinary tract. VESTNIK DERMATOLOGII I VENEROLOGII 2015. [DOI: 10.25208/0042-4609-2015-91-2-63-67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Persistence as well as high survival rate and resistance of microorganisms belong to the key reasons promoting symptoms of lower urinary tract diseases. They can stay active for a long time and can substantially deteriorate the life quality of patients suffering from chronic infections and inflammations in the wall of the urinary bladder even after the eradication of the pathogen. Recent studies in the field of clinical microbiology reflect serious qualitative and quantitative changes in the infection incidence structure, which is mainly related to changes in the bacterial pathogenicity. Pathogenicity island genes control the synthesis of different adhesins, invasins, hemolysins and toxins (hemolysin, cytotoxic necrotizing factor type 1, etc.) as well as iron ion absorption system, which are essential for the pathogen propagation and activity in tissues. The determination of genetic determinants will provide a new insight into the bacterial evolution process and will help to understand the reason of prompt formation and propagation of virulent strains as well as fast development of the infection and inflammation in the lower urinary tract, which may explain different severity of the pathology and symptoms of the lower urinary tract.
Collapse
|
10
|
Kang WT, Vellasamy KM, Chua EG, Vadivelu J. Functional characterizations of effector protein BipC, a type III secretion system protein, in Burkholderia pseudomallei pathogenesis. J Infect Dis 2014; 211:827-34. [PMID: 25165162 DOI: 10.1093/infdis/jiu492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES The bsa locus of Burkholderia pseudomallei encodes several proteins that are components of the type III secretion system (TTSS). BipC was postulated as one of the TTSS-3 effector proteins, but its role in the pathogenesis of B. pseudomallei infection is not well understood. Thus, the aim of this study was to determine its role(s) in the virulence of B. pseudomallei pathogenesis. METHODS A bipC TTSS-3-deficient strain of B. pseudomallei and complemented strains were generated to assess the role of BipC as a type III translocation apparatus. Human cell lines and a mouse model of melioidosis were used for in vitro and in vivo assays, respectively. RESULTS A significant 2-fold reduction was demonstrated in the percentage of adherence, invasion, intracellular survival, and phagosomal escape of the bipC mutant. Interestingly, microscopic studies have shown that BipC was capable of delayed B. pseudomallei actin-based motility. The virulence of the mutant strain in a murine model of melioidosis demonstrated that the bipC mutant was less virulent, compared with the wild type. CONCLUSION The results suggested that BipC possesses virulence determinants that play significant roles in host cell invasion and immune evasion.
Collapse
Affiliation(s)
- Wen-Tyng Kang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Eng-Guan Chua
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Stephens EL, Molina V, Cole KM, Laws E, Johnson CN. In situ and in vitro impacts of the Deepwater Horizon oil spill on Vibrio parahaemolyticus. MARINE POLLUTION BULLETIN 2013; 75:90-97. [PMID: 23987095 DOI: 10.1016/j.marpolbul.2013.07.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/23/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Most established virulence genes in Vibrio parahaemolyticus (Vp), e.g., thermostable direct hemolysin (tdh), tdh-related hemolysin (trh), and type three secretion system 2 (TTSS2), are on the chromosome 2 pathogenicity island, which also possesses numerous uncharacterized genes. We hypothesized the 2010 Deepwater Horizon (DH) oil spill would cause an increase in populations of Vibrio parahaemolyticus carrying environmental adaptation genes. Vp isolated pre- and post-spill were analyzed for TTSS2 genes, and impacts of DH oil on Vp were examined in vitro. There was no change in TTSS2 in situ, but tdh and V. vulnificus levels were higher post-spill. In vitro exposure of water samples to DH oil produced no changes in Vp densities. Two years post-spill, total Vp remained low; tdh and trh increased. These results indicate the effects of the DH oil spill on potentially pathogenic Vp subpopulations were complex and difficult to discern from other concurrent anthropogenic and natural events.
Collapse
Affiliation(s)
| | - Vanessa Molina
- Louisiana State University, Baton Rouge, LA, United States
| | - Krystal M Cole
- Louisiana State University, Baton Rouge, LA, United States
| | - Edward Laws
- Louisiana State University, Baton Rouge, LA, United States
| | | |
Collapse
|
12
|
Shrivastava S, Reddy CVSK, Mande SS. INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. J Biosci 2011; 35:351-64. [PMID: 20826944 DOI: 10.1007/s12038-010-0040-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genomic islands (GIs) are regions in the genome which are believed to have been acquired via horizontal gene transfer events and are thus likely to be compositionally distinct from the rest of the genome. Majority of the genes located in a GI encode a particular function. Depending on the genes they encode, GIs can be classified into various categories, such as 'metabolic islands', 'symbiotic islands', 'resistance islands', 'pathogenicity islands', etc. The computational process for GI detection is known and many algorithms for the same are available. We present a new method termed as Improved N-mer based Detection of Genomic Islands Using Sequence-clustering (INDeGenIUS) for the identification of GIs. This method was applied to 400 completely sequenced species belonging to proteobacteria. Based on the genes encoded in the identified GIs, the GIs were grouped into 6 categories: metabolic islands, symbiotic islands, resistance islands, secretion islands, pathogenicity islands and motility islands. Several new islands of interest which had previously been missed out by earlier algorithms were picked up as GIs by INDeGenIUS. The present algorithm has potential application in the identification of functionally relevant GIs in the large number of genomes that are being sequenced. Investigation of the predicted GIs in pathogens may lead to identification of potential drug/vaccine candidates.
Collapse
Affiliation(s)
- Sakshi Shrivastava
- Bio-Sciences Division, Innovation Labs, Tata Consultancy Services, 1 Software Units Layout, Hyderabad 500 081, India
| | | | | |
Collapse
|
13
|
Pal M, Erskine PT, Gill RS, Wood SP, Cooper JB. Near-atomic resolution analysis of BipD, a component of the type III secretion system of Burkholderia pseudomallei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:990-3. [PMID: 20823511 PMCID: PMC2935212 DOI: 10.1107/s1744309110026333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 07/03/2010] [Indexed: 05/29/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, possesses a type III protein secretion apparatus that is similar to those found in Salmonella and Shigella. A major function of these secretion systems is to inject virulence-associated proteins into target cells of the host organism. The bipD gene of B. pseudomallei encodes a secreted virulence factor that is similar in sequence and is most likely to be functionally analogous to IpaD from Shigella and SipD from Salmonella. Proteins in this family are thought to act as extracellular chaperones at the tip of the secretion needle to help the hydrophobic translocator proteins enter the target cell membrane, where they form a pore and may also link the translocon pore with the secretion needle. BipD has been crystallized in a monoclinic crystal form that diffracted X-rays to 1.5 A resolution and the structure was refined to an R factor of 16.1% and an Rfree of 19.8% at this resolution. The putative dimer interface that was observed in previous crystal structures was retained and a larger surface area was buried in the new crystal form.
Collapse
Affiliation(s)
- M. Pal
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, England
- Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - P. T. Erskine
- Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - R. S. Gill
- Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - S. P. Wood
- Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| | - J. B. Cooper
- Laboratory for Protein Crystallography, Centre for Amyloidosis and Acute Phase Proteins, UCL Department of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF, England
| |
Collapse
|
14
|
Ge S, Danino V, He Q, Hinton JCD, Granfors K. Microarray analysis of response of Salmonella during infection of HLA-B27- transfected human macrophage-like U937 cells. BMC Genomics 2010; 11:456. [PMID: 20670450 PMCID: PMC3091652 DOI: 10.1186/1471-2164-11-456] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 07/30/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Human leukocyte antigen (HLA)-B27 is strongly associated with the development of reactive arthritis (ReA) in humans after salmonellosis. Human monocytic U937 cells transfected with HLA-B27 are less able to eliminate intracellular Salmonella enterica serovar Enteritidis than those transfected with control HLA antigens (e.g. HLA-A2). To investigate further the mechanisms by which HLA-B27-transfected cells allow increased replication of these bacteria, a DNA-based microarray was used for comparative genomic analysis of S. Enteritidis grown in HLA-B27- or HLA-A2-transfected cells. The microarray consisted of 5080 oligonucleotides from different serovars of Salmonella including S. Enteritidis PT4-specific genes. Bacterial RNA was isolated from the infected HLA-B27- or HLA-A2-transfected cells, reverse-transcribed to cDNA, and hybridized with the oligonucleotides on the microarrays. Some microarray results were confirmed by RT-PCR. RESULTS When gene expression was compared between Salmonella grown in HLA-B27 cells and in HLA-A2 cells, 118 of the 4610 S. Enteritidis-related genes differed in expression at 8 h after infection, but no significant difference was detectable at 2 h after infection. These differentially expressed genes are mainly involved in Salmonella virulence, DNA replication, energy conversion and metabolism, and uptake and metabolism of nutrient substances, etc. The difference suggests HLA-B27-dependent modulation of Salmonella gene expression, resulting in increased Salmonella replication in HLA-B27-positive cells. Among the up-regulated genes were those located in Salmonella pathogenicity island (SPI)-2, which play a central role in intracellular survival and replication of Salmonella. CONCLUSIONS This is the first report to show the regulation of Salmonella gene expression by HLA-B27 during infection of host cells. This regulation probably leads to increased Salmonella survival and replication in HLA-B27-positive cells. SPI-2 genes seem to contribute significantly to the increased replication.
Collapse
Affiliation(s)
- Shichao Ge
- Department of Infectious Disease Surveillance and Control, National Institute for Health and Welfare, Turku, Finland
| | | | | | | | | |
Collapse
|
15
|
Byrne GI. Chlamydia trachomatis strains and virulence: rethinking links to infection prevalence and disease severity. J Infect Dis 2010; 201 Suppl 2:S126-33. [PMID: 20470049 DOI: 10.1086/652398] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An unanswered question concerning prevalence and disease severity of Chlamydia trachomatis genital infection is whether more prevalent strains or strains more likely to cause serious disease complications are causally associated with specific virulence attributes. The major method for distinguishing chlamydial strains is based on differences in the major outer membrane protein (MOMP). A subset of MOMP serovars (D and E serovars) are easily the most prevalent strains identified worldwide, but MOMP serovar and genovar analyses have not yielded consistent strain-dependent virulence distinctions. Expansion of the definitions of chlamydial strains beyond the MOMP paradigm are needed to better understand virulence properties for this pathogen and how these properties reflect disease severity. Substantive genetic and phenotypic differences have emerged for the 2 major C. trachomatis pathobiotypes associated with either trachoma or sexually transmitted diseases, but differences within the sexually transmitted disease group have not yielded reliable disease severity attributes. A number of candidate virulence factors have been identified, including the polymorphic outer membrane autotransporter family of proteins, the putative large cytotoxin, type III secretion effectors, stress response proteins, and proteins or other regulatory factors produced by the cryptic plasmid. Continued work on development of a chlamydial gene transfer system and application of genomic approaches to large collections of clinical isolates will be required to associate key chlamydial virulence factors with prevalence and disease severity in a definitive way.
Collapse
Affiliation(s)
- Gerald I Byrne
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
16
|
Liao S, Sun A, Ojcius DM, Wu S, Zhao J, Yan J. Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol 2009; 9:253. [PMID: 20003186 PMCID: PMC3224694 DOI: 10.1186/1471-2180-9-253] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 12/09/2009] [Indexed: 12/20/2022] Open
Abstract
Background Pathogenic Leptospira species cause leptospirosis, a zoonotic disease of global importance. The spirochete displays active rotative mobility which may contribute to invasion and diffusion of the pathogen in hosts. FliY is a flagellar motor switch protein that controls flagellar motor direction in other microbes, but its role in Leptospira, and paricularly in pathogenicity remains unknown. Results A suicide plasmid for the fliY gene of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai strain Lai that was disrupted by inserting the ampicillin resistance gene (bla) was constructed, and the inactivation of fliY gene in a mutant (fliY-) was confirmed by PCR and Western Blot analysis. The inactivation resulted in the mRNA absence of fliP and fliQ genes which are located downstream of the fliY gene in the same operon. The mutant displayed visibly weakened rotative motion in liquid medium and its migration on semisolid medium was also markedly attenuated compared to the wild-type strain. Compared to the wild-type strain, the mutant showed much lower levels of adhesion to murine macrophages and apoptosis-inducing ability, and its lethality to guinea pigs was also significantly decreased. Conclusion Inactivation of fliY, by the method used in this paper, clearly had polar effects on downstream genes. The phentotypes observed, including lower pathogenicity, could be a consequence of fliY inactivation, but also a consequence of the polar effects.
Collapse
Affiliation(s)
- Sumei Liao
- Department of Medical Microbiology and Parasitology, College of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | | | | | | | | | | |
Collapse
|
17
|
Champion MD, Zeng Q, Nix EB, Nano FE, Keim P, Kodira CD, Borowsky M, Young S, Koehrsen M, Engels R, Pearson M, Howarth C, Larson L, White J, Alvarado L, Forsman M, Bearden SW, Sjöstedt A, Titball R, Michell SL, Birren B, Galagan J. Comparative genomic characterization of Francisella tularensis strains belonging to low and high virulence subspecies. PLoS Pathog 2009; 5:e1000459. [PMID: 19478886 PMCID: PMC2682660 DOI: 10.1371/journal.ppat.1000459] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 04/29/2009] [Indexed: 01/15/2023] Open
Abstract
Tularemia is a geographically widespread, severely debilitating, and occasionally lethal disease in humans. It is caused by infection by a gram-negative bacterium, Francisella tularensis. In order to better understand its potency as an etiological agent as well as its potential as a biological weapon, we have completed draft assemblies and report the first complete genomic characterization of five strains belonging to the following different Francisella subspecies (subsp.): the F. tularensis subsp. tularensis FSC033, F. tularensis subsp. holarctica FSC257 and FSC022, and F. tularensis subsp. novicida GA99-3548 and GA99-3549 strains. Here, we report the sequencing of these strains and comparative genomic analysis with recently available public Francisella sequences, including the rare F. tularensis subsp. mediasiatica FSC147 strain isolate from the Central Asian Region. We report evidence for the occurrence of large-scale rearrangement events in strains of the holarctica subspecies, supporting previous proposals that further phylogenetic subdivisions of the Type B clade are likely. We also find a significant enrichment of disrupted or absent ORFs proximal to predicted breakpoints in the FSC022 strain, including a genetic component of the Type I restriction-modification defense system. Many of the pseudogenes identified are also disrupted in the closely related rarely human pathogenic F. tularensis subsp. mediasiatica FSC147 strain, including modulator of drug activity B (mdaB) (FTT0961), which encodes a known NADPH quinone reductase involved in oxidative stress resistance. We have also identified genes exhibiting sequence similarity to effectors of the Type III (T3SS) and components of the Type IV secretion systems (T4SS). One of the genes, msrA2 (FTT1797c), is disrupted in F. tularensis subsp. mediasiatica and has recently been shown to mediate bacterial pathogen survival in host organisms. Our findings suggest that in addition to the duplication of the Francisella Pathogenicity Island, and acquisition of individual loci, adaptation by gene loss in the more recently emerged tularensis, holarctica, and mediasiatica subspecies occurred and was distinct from evolutionary events that differentiated these subspecies, and the novicida subspecies, from a common ancestor. Our findings are applicable to future studies focused on variations in Francisella subspecies pathogenesis, and of broader interest to studies of genomic pathoadaptation in bacteria.
Collapse
Affiliation(s)
- Mia D Champion
- Microbial Analysis Group, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Barash I, Manulis-Sasson S. Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. ANNUAL REVIEW OF PHYTOPATHOLOGY 2009; 47:133-52. [PMID: 19400643 DOI: 10.1146/annurev-phyto-080508-081803] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pantoea agglomerans, a widespread epiphyte and commensal bacterium, has evolved into an Hrp-dependent and host-specific tumorigenic pathogen by acquiring a plasmid containing a pathogenicity island (PAI). The PAI was evolved on an iteron plasmid of the IncN family, which is distributed among genetically diverse populations of P. agglomerans. The structure of the PAI supports the premise of a recently evolved pathogen. This review offers insight into a unique model for emergence of new bacterial pathogens. It illustrates how horizontal gene transfer was the major driving force in the creation of the PAI, although a pathoadaptive mechanism might also be involved. It describes the crucial function of plant-produced indole-3-acetic acid (IAA) and cytokinines (CK) in gall initiation as opposed to the significant but secondary role of pathogen-secreted phytohormones. It also unveils the role of type III effectors in determination of host specificity and evolution of the pathogen into pathovars. Finally, it describes how interactions between the quorum sensing system, hrp regulatory genes, and bacterially secreted IAA or CKs affect gall formation and epiphytic fitness.
Collapse
Affiliation(s)
- Isaac Barash
- Department of Plant Sciences, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 61390, Israel.
| | | |
Collapse
|
19
|
Barrett BS, Picking WL, Picking WD, Middaugh CR. The response of type three secretion system needle proteins MxiHDelta5, BsaLDelta5, and PrgIDelta5 to temperature and pH. Proteins 2008; 73:632-43. [PMID: 18491382 DOI: 10.1002/prot.22085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The type III secretion system (TTSS) is a specialized supramolecular injectisome composed of 25 or more proteins which form basal and extracellular domains and share gross architectural similarities with bacterial flagella. The extracellular component of the "needle complex" is primarily composed of a single monomeric subunit organized in a helical array surrounding a hollow pore and protrudes from the bacterial membrane. It is through this surface appendage that virulence factors are translocated to the host cell cytoplasm and thereby subvert normal host cell functions. We present here a comprehensive biophysical analysis of the dynamic conformational behavior of the truncated monomeric needle subunit proteins MxiH(Delta5) (Shigella flexneri), BsaL(Delta5) (Burkholderia pseudomallei), and PrgI(Delta5) (Salmonella typhimurium) as well as their thermal stability over a pH range of 3-8. Circular dichroism spectroscopy indicates the secondary structure is largely alpha helical in all three proteins, and surprisingly thermally labile with transition midpoints in the range of 35-50 degrees C over the pH range of 3-8. Additionally, at the concentrations examined, the very broad thermal transitions were >90% reversible. Second derivative UV absorbance spectroscopy data indicates some disruption of the protein's tertiary structure occurs at temperatures in the range of 29-46 degrees C. The difference in the pH of maximal stability for each of the proteins and the variation for each protein with respect to both secondary and tertiary structural elements is striking. It appears, that at physiological temperatures all three proteins experience intermediate non-native molten globule like states in which they display significant secondary structure in the absence of extensive tertiary interactions. Because of the size difference between the inner pore of the needle and the fully folded needle proteins, it seems clear that the needle subunits must be secreted in a partially or completely unfolded state to reach the distal tip of the needle for assembly. It is proposed that the formation of these intermediate states in the physiological temperature range may play a role in passage through the pore and needle assembly.
Collapse
Affiliation(s)
- Brooke S Barrett
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
20
|
Karimpour-Fard A, Detweiler CS, Erickson KD, Hunter L, Gill RT. Cross-species cluster co-conservation: a new method for generating protein interaction networks. Genome Biol 2008; 8:R185. [PMID: 17803817 PMCID: PMC2375023 DOI: 10.1186/gb-2007-8-9-r185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/30/2007] [Accepted: 09/05/2007] [Indexed: 01/26/2023] Open
Abstract
Cluster Co-Conservation (CCC) has been extended to a method for developing protein interaction networks based on co-conservation between protein pairs across multiple species, Cross-Species Cluster Co-Conservation (CS-CCC). Co-conservation (phylogenetic profiles) is a well-established method for predicting functional relationships between proteins. Several publicly available databases use this method and additional clustering strategies to develop networks of protein interactions (cluster co-conservation (CCC)). CCC has previously been limited to interactions within a single target species. We have extended CCC to develop protein interaction networks based on co-conservation between protein pairs across multiple species, cross-species cluster co-conservation.
Collapse
Affiliation(s)
- Anis Karimpour-Fard
- Center for Computational Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | - Lawrence Hunter
- Center for Computational Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan T Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
21
|
Barash I, Manulis-Sasson S. Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends Microbiol 2007; 15:538-45. [DOI: 10.1016/j.tim.2007.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/03/2007] [Accepted: 10/15/2007] [Indexed: 11/25/2022]
|
22
|
Papastathopoulou A, Bezirtzoglou E, Legakis NJ. Bacterioides fragilis: production and sensitivity to bacteriocins. Anaerobe 2007; 3:203-6. [PMID: 16887591 DOI: 10.1006/anae.1997.0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1996] [Accepted: 05/22/1997] [Indexed: 11/22/2022]
Abstract
Bacteriocin production and sensitivity to bacteriocins have been successfully applied as an epidemiological tool in several species of bacteria. However, little work has been carried out on the bacteriocins produced by Bacteroides fragilis, which is the most frequently isolated anaerobe species from clinical specimens. Thirty two clinical isolates of B. fragilis grown anaerobically on a 0.22 microm membrane filter spotted on an agar plate, were tested for bacteriocin production and used in a screen for bacteriocin sensitivity. Sensitivity to at least one bacteriocin was found in 94% of the strains, 62.5% were sensitive to two bacteriocins, whereas 34.4% were sensitive to three or more and finally one strain was found sensitive to 17 bacteriocins. Of the strains studied, 94% inhibited at least one strain, 66% inhibited two strains, and 30% inhibited at least three strains or more. Finally, one strain was extremely active by inhibiting the growth of 17 strains. Bacteriocin types are characterised by geographic variation, and their epidemiological investigation by a simple method could be promoted.
Collapse
Affiliation(s)
- A Papastathopoulou
- Microbiology Laboratory, Agia Sophia Children's Hospital, Goudi Athens, Greece
| | | | | |
Collapse
|
23
|
Peters J, Wilson DP, Myers G, Timms P, Bavoil PM. Type III secretion à la Chlamydia. Trends Microbiol 2007; 15:241-51. [PMID: 17482820 DOI: 10.1016/j.tim.2007.04.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 03/07/2007] [Accepted: 04/23/2007] [Indexed: 01/08/2023]
Abstract
Type III secretion (T3S) is a mechanism that is central to the biology of the Chlamydiaceae and many other pathogens whose virulence depends on the translocation of toxic effector proteins to cytosolic targets within infected eukaryotic cells. Biomathematical simulations, using a previously described model of contact-dependent, T3S-mediated chlamydial growth and late differentiation, suggest that chlamydiae contained in small non-fusogenic inclusions will persist. Here, we further discuss the model in the context of in vitro-persistent, stress-induced aberrantly enlarged forms and of recent studies using small molecule inhibitors of T3S. A general mechanism is emerging whereby both early- and mid-cycle T3S-mediated activities and late T3S inactivation upon detachment of chlamydiae from the inclusion membrane are crucial for chlamydial intracellular development.
Collapse
Affiliation(s)
- Jan Peters
- Department of Biomedical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
24
|
Hakalehto E, Pesola J, Heitto L, Närvänen A, Heitto A. Aerobic and anaerobic growth modes and expression of type 1 fimbriae in Salmonella. ACTA ACUST UNITED AC 2007; 14:61-9. [PMID: 17434297 DOI: 10.1016/j.pathophys.2007.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to clarify the growth rates of facultatively anaerobic Salmonella enterica serovar Enteritidis strain in aerobic and anaerobic conditions and the expression of type 1 fimbriae in relation to the growth phases. The cultivation was carried out in a Portable Microbe Enrichment Unit (PMEU) where in same conditions one can grow the cells in parallel by modifying, e.g. aerobiosis only. The results obtained show that although the anaerobic metabolism is generally believed to be a slower producer of biomass or metabolites, in these circumstances S. enterica serovar Enteritidis strain gave comparable growth rates in anaerobiosis with nitrogenation as in aerobic cultures with constant aeration. Fimbrial antigens were produced in the beginning of logarithmic phase of the growth cycle both in the aerobic and anaerobic conditions. The fimbria remained in the presence of oxygen. This capability is possibly used for the intrusion of oxygen containing tissues of host body by the invading pathogens. In conclusion S. enterica serovar Enteritidis strain suspensions grow equally well in constant nitrogenation and aeration, and fimbria were produced in both conditions, during the early logarithmic phase but they prevailed in the presence of aeration.
Collapse
Affiliation(s)
- Elias Hakalehto
- Department of Chemistry, University of Kuopio, P.O.B. 1627, FI-70211 Kuopio, Finland; Finnoflag Ltd., P.O.B. 262, FI-70101 Kuopio, Finland
| | | | | | | | | |
Collapse
|
25
|
Chen C, Tang J, Dong W, Wang C, Feng Y, Wang J, Zheng F, Pan X, Liu D, Li M, Song Y, Zhu X, Sun H, Feng T, Guo Z, Ju A, Ge J, Dong Y, Sun W, Jiang Y, Wang J, Yan J, Yang H, Wang X, Gao GF, Yang R, Wang J, Yu J. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One 2007; 2:e315. [PMID: 17375201 PMCID: PMC1820848 DOI: 10.1371/journal.pone.0000315] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 02/19/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen, causing more than 200 cases of severe human infection worldwide, with the hallmarks of meningitis, septicemia, arthritis, etc. Very recently, SS2 has been recognized as an etiological agent for streptococcal toxic shock syndrome (STSS), which was originally associated with Streptococcus pyogenes (GAS) in Streptococci. However, the molecular mechanisms underlying STSS are poorly understood. METHODS AND FINDINGS To elucidate the genetic determinants of STSS caused by SS2, whole genome sequencing of 3 different Chinese SS2 strains was undertaken. Comparative genomics accompanied by several lines of experiments, including experimental animal infection, PCR assay, and expression analysis, were utilized to further dissect a candidate pathogenicity island (PAI). Here we show, for the first time, a novel molecular insight into Chinese isolates of highly invasive SS2, which caused two large-scale human STSS outbreaks in China. A candidate PAI of approximately 89 kb in length, which is designated 89K and specific for Chinese SS2 virulent isolates, was investigated at the genomic level. It shares the universal properties of PAIs such as distinct GC content, consistent with its pivotal role in STSS and high virulence. CONCLUSIONS To our knowledge, this is the first PAI candidate from S. suis worldwide. Our finding thus sheds light on STSS triggered by SS2 at the genomic level, facilitates further understanding of its pathogenesis and points to directions of development on some effective strategies to combat highly pathogenic SS2 infections.
Collapse
Affiliation(s)
- Chen Chen
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Jiaqi Tang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Wei Dong
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Changjun Wang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Youjun Feng
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Molecular Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate University, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Feng Zheng
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Xiuzhen Pan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Di Liu
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Molecular Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Yajun Song
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Xinxing Zhu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Haibo Sun
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Tao Feng
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Zhaobiao Guo
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Aiping Ju
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Junchao Ge
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Yaqing Dong
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Wen Sun
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| | - Yongqiang Jiang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jun Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
- The Institute of Human Genetics, University of Aarhus, Aarhus, Denmark
| | - Jinghua Yan
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Molecular Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huanming Yang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Xiaoning Wang
- School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, China
| | - George F. Gao
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
- China-Japan Joint Laboratory of Molecular Immunology and Molecular Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruifu Yang
- Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Jian Wang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| | - Jun Yu
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China
- James D. Watson Institute of Genome Sciences of Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Erskine PT, Knight MJ, Ruaux A, Mikolajek H, Wong Fat Sang N, Withers J, Gill R, Wood SP, Wood M, Fox GC, Cooper JB. High resolution structure of BipD: an invasion protein associated with the type III secretion system of Burkholderia pseudomallei. J Mol Biol 2006; 363:125-36. [PMID: 16950399 DOI: 10.1016/j.jmb.2006.07.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/26/2006] [Accepted: 07/27/2006] [Indexed: 11/25/2022]
Abstract
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.
Collapse
Affiliation(s)
- P T Erskine
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Slonim N, Elemento O, Tavazoie S. Ab initio genotype-phenotype association reveals intrinsic modularity in genetic networks. Mol Syst Biol 2006; 2:2006.0005. [PMID: 16732191 PMCID: PMC1681479 DOI: 10.1038/msb4100047] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 12/05/2005] [Indexed: 01/01/2023] Open
Abstract
Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene-phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines.
Collapse
Affiliation(s)
- Noam Slonim
- Department of Physics, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Olivier Elemento
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Saeed Tavazoie
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Washington Street, Carl Icahn, Room 245, Princeton, NJ 08544, USA. Tel.:+1 609 258 0331; Fax: +1 609 258 3565; E-mail:
| |
Collapse
|
28
|
Ku YW, McDonough SP, Palaniappan RUM, Chang CF, Chang YF. Novel attenuated Salmonella enterica serovar Choleraesuis strains as live vaccine candidates generated by signature-tagged mutagenesis. Infect Immun 2006; 73:8194-203. [PMID: 16299315 PMCID: PMC1307036 DOI: 10.1128/iai.73.12.8194-8203.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis is a host-adapted pathogen that causes swine paratyphoid. Signature-tagged mutagenesis (STM) was used to understand the pathogenicity of S. enterica serovar Choleraesuis in its natural host and also to develop novel attenuated live vaccine candidates against this disease. A library of 960 signature-tagged mutants of S. enterica serovar Choleraesuis was constructed and screened for attenuation in pigs. Thirty-three mutants were identified by the STM screening, and these mutants were further screened for attenuation by in vivo and in vitro competitive growth. Of these, 20 mutants targeting the outer membrane, type III secretion, transporter, lipopolysaccharide biosynthesis, and other unknown proteins were confirmed for attenuation. Five highly attenuated mutants (SC2D2 [ssaV], SC4A9 [gifsy-1], SC6F9 [dgoT], SC12B12 [ssaJ], and SC10B1[spiA]) were selected and evaluated for safety and protective efficacy in pigs by comparison with a commercially available vaccine strain. STM-attenuated live vaccine strains SC4A9 (gifsy-1) and SC2D2 (ssaV) were superior to commercially available live vaccine because they provided both safety and a protective immune response against challenge in pigs.
Collapse
Affiliation(s)
- Yu-We Ku
- College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
29
|
Chapter 8 Adhesins and receptors for colonization by different pathotypes of Escherichia coli in calves and young pigs. MICROBIAL ECOLOGY IN GROWING ANIMALS 2005. [PMCID: PMC7148974 DOI: 10.1016/s1877-1823(09)70041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter provides an overview of the virulence factors and their genetic regulators in Escherichia coli. The most important adhesins and their receptors playing a role in the pathogenesis of different pathotypes of enteric E. coli are also described. The main pathotypes involved in enteric colibacillosis of pigs and calves are the enterotoxigenic E. coli (ETEC), verotoxigenic E. coli (VTEC), enteropathogenic E. coli (EPEC), and necrotoxigenic E. coli (NTEC). Adhesion and colonization are the first (but not the only) functional prerequisites for a mucosal bacterium to be pathogenic. The adhesins represent surface proteins, governed by specific operons and constructed in ways according to the particular adhesin. Besides their structure, the adhesins can also be grouped according to their receptors present on the intestinal mucosal epithelium and on the urinary epithelium. Apart from direct practical applications, there are further significant scientific developments and applications expected in the area of neonatal biology and comparative human pathobacteriology.
Collapse
|
30
|
Rezzonico F, Défago G, Moënne-Loccoz Y. Comparison of ATPase-encoding type III secretion system hrcN genes in biocontrol fluorescent Pseudomonads and in phytopathogenic proteobacteria. Appl Environ Microbiol 2004; 70:5119-31. [PMID: 15345390 PMCID: PMC520869 DOI: 10.1128/aem.70.9.5119-5131.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Type III protein secretion systems play a key role in the virulence of many pathogenic proteobacteria, but they also occur in nonpathogenic, plant-associated bacteria. Certain type III protein secretion genes (e.g., hrcC) have been found in Pseudomonas sp. strain SBW25 (and other biocontrol pseudomonads), but other type III protein secretion genes, such as the ATPase-encoding gene hrcN, have not been found. Using both colony hybridization and a PCR approach, we show here that hrcN is nevertheless present in many biocontrol fluorescent pseudomonads. The phylogeny of biocontrol Pseudomonas strains based on partial hrcN sequences was largely congruent with the phylogenies derived from analyses of rrs (encoding 16S rRNA) and, to a lesser extent, biocontrol genes, such as phlD (for 2,4-diacetylphloroglucinol production) and hcnBC (for HCN production). Most biocontrol pseudomonads clustered separately from phytopathogenic proteobacteria, including pathogenic pseudomonads, in the hrcN tree. The exception was strain KD, which clustered with phytopathogenic pseudomonads, such as Pseudomonas syringae, suggesting that hrcN was acquired from the latter species. Indeed, strain KD (unlike strain SBW25) displayed the same organization of the hrpJ operon, which contains hrcN, as P. syringae. These results indicate that the occurrence of hrcN in most biocontrol pseudomonads is not the result of recent horizontal gene transfer from phytopathogenic bacteria, although such transfer might have occurred for a minority of biocontrol strains.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Phytopathology Group, Institute of Plant Sciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | |
Collapse
|
31
|
Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D, Raphael B, Mickelson J. Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol 2004; 186:3296-303. [PMID: 15150214 PMCID: PMC415756 DOI: 10.1128/jb.186.11.3296-3303.2004] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni, a gram-negative motile bacterium, secretes a set of proteins termed the Campylobacter invasion antigens (Cia proteins). The purpose of this study was to determine whether the flagellar apparatus serves as the export apparatus for the Cia proteins. Mutations were generated in five genes encoding three structural components of the flagella, the flagellar basal body (flgB and flgC), hook (flgE2), and filament (flaA and flaB) genes, as well as in genes whose products are essential for flagellar protein export (flhB and fliI). While mutations that affected filament assembly were found to be nonmotile (Mot-) and did not secrete Cia proteins (S-), a flaA (flaB+) filament mutant was found to be nonmotile but Cia protein secretion competent (Mot-, S+). Complementation of a flaA flaB double mutant with a shuttle plasmid harboring either the flaA or flaB gene restored Cia protein secretion, suggesting that Cia export requires at least one of the two filament proteins. Infection of INT 407 human intestinal cells with the C. jejuni mutants revealed that maximal invasion of the epithelial cells required motile bacteria that are secretion competent. Collectively, these data suggest that the C. jejuni Cia proteins are secreted from the flagellar export apparatus.
Collapse
Affiliation(s)
- Michael E Konkel
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Guttman DS. Plants as models for the study of human pathogenesis. Biotechnol Adv 2004; 22:363-82. [PMID: 15063457 DOI: 10.1016/j.biotechadv.2003.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Accepted: 11/20/2003] [Indexed: 12/29/2022]
Abstract
There are many common disease mechanisms used by bacterial pathogens of plants and humans. They use common means of attachment, secretion and genetic regulation. They share many virulence factors, such as extracellular polysaccharides and some type III secreted effectors. Plant and human innate immune systems also share many similarities. Many of these shared bacterial virulence mechanisms are homologous, but even more appear to have independently converged on a common function. This combination of homologous and analogous systems reveals conserved and critical steps in the disease process. Given these similarities, and the many experimental advantages of plant biology, including ease of replication, stringent genetic and reproductive control, and high throughput with low cost, it is proposed that plants would make excellent models for the study of human pathogenesis.
Collapse
Affiliation(s)
- David S Guttman
- Department of Botany, University of Toronto, 25 Willcocks St., Toronto, ON, Canada M5S 3B2.
| |
Collapse
|
33
|
TLR4 signaling is essential for survival in acute lung injury induced by virulent Pseudomonas aeruginosa secreting type III secretory toxins. Respir Res 2004; 5:1. [PMID: 15040820 PMCID: PMC389879 DOI: 10.1186/1465-9921-5-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2003] [Accepted: 02/12/2004] [Indexed: 02/06/2023] Open
Abstract
Background The relative contributions of the cytotoxic phenotype of P. aeruginosa expressing type III secretory toxins and an immunocompromised condition lacking normal Toll-like receptor 4 (TLR4) signaling in the pathogenesis of acute lung injury and sepsis were evaluated in a mouse model for Pseudomonas aeruginosa pneumonia. By using lipopolysaccharide-resistant C3H/HeJ mice missing normal TLR4 signaling due to a mutation on the tlr4 gene, we evaluated how TLR4 signaling modulates the pneumonia caused by cytotoxic P. aeruginosa expressing type III secretory toxins. Methods We infected C3H/HeJ or C3H/FeJ mice with three different doses of either a cytotoxic P. aeruginosa strain (wild type PA103) or its non-cytotoxic isogenic mutant missing the type III secretory toxins (PA103ΔUT). Survival of the infected mice was evaluated, and the severity of acute lung injury quantified by measuring alveolar epithelial permeability as an index of acute epithelial injury and the water to dry weight ratios of lung homogenates as an index of lung edema. Bacteriological analysis and cytokine assays were performed in the infected mice. Results Development of acute lung injury and sepsis was observed in all mouse strains when the cytotoxic P. aeruginosa strain but not the non-cytotoxic strain was instilled in the airspaces of the mice. Only C3H/HeJ mice had severe bacteremia and high mortality when a low dose of the cytotoxic P. aeruginosa strain was instilled in their lungs. Conclusion The cytotoxic phenotype of P. aeruginosa is the critical factor causing acute lung injury and sepsis in infected hosts. When the P. aeruginosa is a cytotoxic strain, the TLR4 signaling system is essential to clear the batcteria to prevent lethal lung injury and bacteremia.
Collapse
|
34
|
Warabi K, Zimmerman WT, Shen J, Gauthier A, Robertson M, Finlay BB, Soest RV, Andersen RJ. Pachymoside A A novel glycolipid isolated from the marine sponge Pachymatisma johnstonia. CAN J CHEM 2004. [DOI: 10.1139/v03-183] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crude extracts of the North Sea marine sponge Pachymatisma johnstonia showed promising activity in a new assay for inhibitors of bacterial type III secretion. Bioassay-guided fractionation resulted in the isolation of the pachymosides, a new family of sponge glycolipids. A major part of the structural diversity in this family of glycolipids involves increasing degrees of acetylation and differing positions of acetylation on a common pachymoside glycolipid template. All of the metabolites with these variations in acetylation pattern were converted into the same peracetylpachymoside methyl ester (2) for purification and spectroscopic analysis. Pachymoside A (1) is the component of the mixture that has natural acetylation at the eight galactose hydroxyls and at the C-6 hydroxyls of glucose-B and glucose-D. Chemical degradation and transformation in conjunction with extensive analysis of 800 MHz NMR data was used to elucidate the structure of pachymoside A (1). Key words: Pachymatisma johnstonia, marine sponge, pachymoside, glycolipid.
Collapse
|
35
|
Abstract
Bacteria belonging to the genus Xanthomonas are important pathogens of many plants, and their virulence appears to be due primarily to secreted and surface compounds that could increase host nutrient loss, or avoid or suppress unfavorable conditions in the host. Type II and III secretory pathways are essential for virulence. Some individual extracellular enzymes (type II-secretion dependent) affect final bacterial population levels, whereas some avirulence gene products (type III-secretion dependent) affect virulence by altering host metabolism. Avr proteins, probably secreted via a pilus, can also be recognized by host resistance gene products. Virulence is also associated with bacterial surface polysaccharides, which may help to avoid host defense responses, and regulatory gene systems, which can control virulence gene expression.
Collapse
Affiliation(s)
- J W Chan
- Department of Environmental Biology, University of Guelph, Guelph, Ont. N1G 2W1, Canada
| | | |
Collapse
|
36
|
Oliveira MJ, Van Damme J, Lauwaet T, De Corte V, De Bruyne G, Verschraegen G, Vaneechoutte M, Goethals M, Ahmadian MR, Müller O, Vandekerckhove J, Mareel M, Leroy A. Beta-casein-derived peptides, produced by bacteria, stimulate cancer cell invasion and motility. EMBO J 2004; 22:6161-73. [PMID: 14609961 PMCID: PMC275444 DOI: 10.1093/emboj/cdg586] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In colon cancer, enteric bacteria and dietary factors are major determinants of the microenvironment but their effect on cellular invasion is not known. We therefore incubated human HCT-8/E11 colon cancer cells with bacteria or bacterial conditioned medium on top of collagen type I gels. Listeria monocytogenes stimulate cellular invasion through the formation of a soluble motility-promoting factor, identified as a 13mer beta-casein-derived peptide (HKEMPFPKYPVEP). The peptide is formed through the combined action of Mpl, a Listeria thermolysin-like metalloprotease, and a collagen-associated trypsin-like serine protease. The 13mer peptide was also formed by tumour biopsies isolated from colon cancer patients and incubated with a beta-casein source. The pro- invasive 13mer peptide-signalling pathway implicates activation of Cdc42 and inactivation of RhoA, linked to each other through the serine/threonine p21- activated kinase 1. Since both changes are necessary but not sufficient, another pathway might branch upstream of Cdc42 at phosphatidylinositol 3-kinase. Delta opioid receptor (deltaOR) is a candidate receptor for the 13mer peptide since naloxone, an deltaOR antagonist, blocks both deltaOR serine phosphorylation and 13mer peptide-mediated invasion.
Collapse
Affiliation(s)
- Maria José Oliveira
- Laboratory of Experimental Cancerology, Gent University Hospital, De Pintelaan 185, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Manulis S, Barash I. Pantoea agglomerans pvs. gypsophilae and betae, recently evolved pathogens? MOLECULAR PLANT PATHOLOGY 2003; 4:307-14. [PMID: 20569391 DOI: 10.1046/j.1364-3703.2003.00178.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
UNLABELLED SUMMARY Pantoea agglomerans pvs. gypsophilae and betae TAXONOMY Bacteria; Proteobacteria; gamma subdivision; order Enterobacteriales; family Enterobacteriaceae; species Pantoea agglomerans. Microbiological properties: Gram-negative, non-capsulated, non-spore-forming, predominately motile rode. Disease symptoms: Gall formation at wound sites, mainly in the crown region of the stem. The host range of P. agglomerans pv. gypsophilae is restricted to Gypsophila paniculata, whereas P. agglomerans pv. betae is pathogenic on Beta vulgaris and gypsophila. Disease control: Pathogenic-free transplants and sanitation. No resistant cultivars are available. Major virulence determinants: Pathogenicity plasmid (pPATH), hrp cluster, type III virulence effectors, phytohormones.
Collapse
Affiliation(s)
- Shulamit Manulis
- Department of Plant Pathology, ARO, The Volcani Center, Bet Dagan 50250, Israel
| | | |
Collapse
|
38
|
Iwobi A, Heesemann J, Garcia E, Igwe E, Noelting C, Rakin A. Novel virulence-associated type II secretion system unique to high-pathogenicity Yersinia enterocolitica. Infect Immun 2003; 71:1872-9. [PMID: 12654803 PMCID: PMC152056 DOI: 10.1128/iai.71.4.1872-1879.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Yersinia enterocolitica strains comprise an important group of bacterial enteropathogens that cause a broad range of gastrointestinal syndromes. Three groups are distinguishable within this bacterial species, namely, the nonpathogenic group (biotype 1A strains), the low-pathogenicity, non-mouse-lethal group (biotypes 2 to 5), and the high-pathogenicity, mouse-lethal group (biotype 1B). To date, the presence of the high-pathogenicity island (HPI), a chromosomal locus that encodes the yersiniabactin system (involved in iron uptake), defines essentially the difference between low-pathogenicity and high-pathogenicity Y. enterocolitica strains, with the low-pathogenicity strains lacking the HPI. Using the powerful tool of representational difference analysis between the nonpathogenic 1A strain, NF-O, and its high-pathogenicity 1B counterpart, WA-314, we have identified a novel type II secretion gene cluster (yts1C-S) occurring exclusively in the high-pathogenicity group. The encoded secreton, designated Yts1 (for Yersinia type II secretion 1) was shown to be important for virulence in mice. A close examination of the almost completed genome sequence of another high-pathogenicity representative, Y. enterocolitica 8081, revealed a second putative type II secretion cluster uniformly distributed among all Y. enterocolitica isolates. This putative species-specific cluster (designated yts2) differed significantly from yts1, while resembling more closely the putative type II cluster present on the genome of Y. pestis. The Yts1 secreton thus appears to have been additionally acquired by the high-pathogenicity assemblage for a virulence-associated function.
Collapse
Affiliation(s)
- A Iwobi
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Pettenkoferstrasse 9a, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Stuber K, Frey J, Burnens AP, Kuhnert P. Detection of type III secretion genes as a general indicator of bacterial virulence. Mol Cell Probes 2003; 17:25-32. [PMID: 12628591 DOI: 10.1016/s0890-8508(02)00108-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Type III secretion systems of Gram-negative bacteria are specific export machineries for virulence factors which allow their translocation to eukaryotic cells. Since they correlate with bacterial pathogenicity, their presence is used as a general indicator of bacterial virulence. By comparing the genetic relationship of the major type III secretion systems we found the family of genes encoding the inner-membrane channel proteins represented by the Yersinia enterocolitica lcrD (synonym yscV) and its homologous genes from other species an ideal component for establishing a general detection approach for type III secretion systems. Based on the genes of the lcrD family we developed gene probes for Gram-negative human, animal and plant pathogens. The probes comprise lcrD from Y. enterocolitica, sepA from enteropathogenic Escherichia coli, invA from Salmonella typhimurium, mxiA from Shigella sonnei, as well as hrcV from Erwinia amylovora. In addition we included as a control probe the flhA gene from E. coli K-12 to validate our approach. FlhA is part of the flagellar export apparatus which shows a high degree of similarity with type III secretions systems, but is not involved in pathogenicity. The probes were evaluated by screening a series of pathogenic as well as non-pathogenic bacteria. The probes detected type III secretion in pathogens where such systems were either known or were expected to be present, whereas no positive hybridization signals could be found in non-pathogenic Gram-negative bacteria. Gram-positive bacteria were devoid of known type III secretion systems. No interference due to the genetic similarity between the type III secretion system and the flagellar export apparatus was observed. However, potential type III secretion systems could be detected in bacteria where no such systems have been described yet. The presented approach provides therefore a useful tool for the assessment of the virulence potential of bacterial isolates of human, animal and plant origin. Moreover, it is a powerful means for a first safety assessment of poorly characterized strains intended to be used in biotechnological applications.
Collapse
Affiliation(s)
- Katja Stuber
- Institute of Veterinary Bacteriology, University of Bern, Langgassstrasse 122, Bern CH-3012, Switzerland
| | | | | | | |
Collapse
|
40
|
Linington RG, Robertson M, Gauthier A, Finlay BB, van Soest R, Andersen RJ. Caminoside A, an antimicrobial glycolipid isolated from the marine sponge Caminus sphaeroconia. Org Lett 2002; 4:4089-92. [PMID: 12423093 DOI: 10.1021/ol0268337] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Extracts of the marine sponge Caminus sphaeroconia showed potent activity in a screen for bacterial type III secretion inhibitors. Bioassay guided fractionation of the extract led to the isolation of the novel antimicrobial glycolipid caminoside A (1). The structure of caminoside A was elucidated by analysis of spectroscopic data and chemical degradation.[structure: see text]
Collapse
Affiliation(s)
- Roger G Linington
- Department of Chemistry, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Guo M, Manulis S, Mor H, Barash I. The presence of diverse IS elements and an avrPphD homologue that acts as a virulence factor on the pathogenicity plasmid of Erwinia herbicola pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:709-716. [PMID: 12118887 DOI: 10.1094/mpmi.2002.15.7.709] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The pathogenicity of Erwinia herbicola pv. gypsophilae (Ehg) and Erwinia herbicola pv. betae (Ehb) is dependent on a native plasmid (pPATH(Ehg) or pPATH(Ehb)) that harbors the hrp gene cluster, genes encoding type III effectors, phytohormones, biosynthetic genes, and several copies of IS1327. Sequence analysis of the hrp-flanking region in pPATH(Ehg) (cosmid pLA150) revealed a cluster of four additional IS elements designated as ISEhel, ISEhe2, ISEhe3, and ISEhe4. Two copies of another IS element (ISEhe5) were identified on the upstream region of the indole-3-acetic acid operon located on the same cosmid. Based on homology of amino acids and genetic organization, ISEhe1 belongs to the IS630 family, ISEhe2 to the IS5 family, ISEhe3 and ISEhe4 to different groups of the IS3 family, and ISEhe5 to the IS1 family. With the exception of ISEhe4, one to three copies of all the other IS elements were identified only in pathogenic strains of Erwinia herbicola pv. gypsophilae and Erwinia herbicola pv. betae whereas ISEhe4 was present in both pathogenic and nonpathogenic strains. An open reading frame that exhibited high identity (89% in amino acids) to AvrPphD of Pseudomonas syringae pv. phaseolicola was present within the cluster of IS elements. An insertional mutation in the AvrPphDEh, reduced gall size in gypsophila by approximately 85%. In addition, remnants of known genes from four different bacteria were detected on the same cosmid.
Collapse
Affiliation(s)
- Ming Guo
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Israel
| | | | | | | |
Collapse
|
42
|
|
43
|
Pathogenicity Islands of Shigella. Curr Top Microbiol Immunol 2002. [DOI: 10.1007/978-3-662-09217-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Salvatore P, Pagliarulo C, Colicchio R, Zecca P, Cantalupo G, Tredici M, Lavitola A, Bucci C, Bruni CB, Alifano P. Identification, characterization, and variable expression of a naturally occurring inhibitor protein of IS1106 transposase in clinical isolates of Neisseria meningitidis. Infect Immun 2001; 69:7425-36. [PMID: 11705917 PMCID: PMC98831 DOI: 10.1128/iai.69.12.7425-7436.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Transposition plays a role in the epidemiology and pathogenesis of Neisseria meningitidis. Insertion sequences are involved in reversible capsulation and insertional inactivation of virulence genes encoding outer membrane proteins. In this study, we have investigated and identified one way in which transposon IS1106 controls its own activity. We have characterized a naturally occurring protein (Tip) that inhibits the transposase. The inhibitor protein is a truncated version of the IS1106 transposase lacking the NH(2)-terminal DNA binding sequence, and it regulates transposition by competing with the transposase for binding to the outside ends of IS1106, as shown by gel shift and in vitro transposition assays. IS1106Tip mRNA is variably expressed among serogroup B meningococcal clinical isolates, and it is absent in most collection strains belonging to hypervirulent lineages.
Collapse
Affiliation(s)
- P Salvatore
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano," Università di Napoli "Federico II," Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Braunstein M, Brown AM, Kurtz S, Jacobs WR. Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 2001; 183:6979-90. [PMID: 11717254 PMCID: PMC95544 DOI: 10.1128/jb.183.24.6979-6990.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2001] [Accepted: 09/18/2001] [Indexed: 01/04/2023] Open
Abstract
The proper extracytoplasmic localization of proteins is an important aspect of mycobacterial physiology and the pathogenesis of Mycobacterium tuberculosis. The protein export systems of mycobacteria have remained unexplored. The Sec-dependent protein export pathway has been well characterized in Escherichia coli and is responsible for transport across the cytoplasmic membrane of proteins containing signal sequences at their amino termini. SecA is a central component of this pathway, and it is highly conserved throughout bacteria. Here we report on an unusual property of mycobacterial protein export--the presence of two homologues of SecA (SecA1 and SecA2). Using an allelic-exchange strategy in Mycobacterium smegmatis, we demonstrate that secA1 is an essential gene. In contrast, secA2 can be deleted and is the first example of a nonessential secA homologue. The essential nature of secA1, which is consistent with the conserved Sec pathway, leads us to believe that secA1 represents the equivalent of E. coli secA. The results of a phenotypic analysis of a Delta secA2 mutant of M. smegmatis are presented here and also indicate a role for SecA2 in protein export. Based on our study, it appears that SecA2 can assist SecA1 in the export of some proteins via the Sec pathway. However, SecA2 is not the functional equivalent of SecA1. This finding, in combination with the fact that SecA2 is highly conserved throughout mycobacteria, suggests a second role for SecA2. The possibility exists that another role for SecA2 is to export a specific subset of proteins.
Collapse
Affiliation(s)
- M Braunstein
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
46
|
|
47
|
Dorman CJ, McKenna S, Beloin C. Regulation of virulence gene expression in Shigella flexneri, a facultative intracellular pathogen. Int J Med Microbiol 2001; 291:89-96. [PMID: 11437343 DOI: 10.1078/1438-4221-00105] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shigella flexneri and its close relatives are facultative intracellular pathogens of humans and are the etiological agents of bacillary dysentery. These bacteria secrete proteins that enable them to enter human epithelial cells via an elaborate and fascinating cell biology. This behaviour depends on a complicated regulon of virulence genes, whose expression is controlled in response to a multiplicity of environmental signals. This review describes and attempts to interpret these gene control mechanisms.
Collapse
Affiliation(s)
- C J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin, Trinity College, Republic of Ireland.
| | | | | |
Collapse
|
48
|
Fauconnier A, Veithen A, Gueirard P, Antoine R, Wacheul L, Locht C, Bollen A, Godfroid E. Characterization of the type III secretion locus of Bordetella pertussis. Int J Med Microbiol 2001; 290:693-705. [PMID: 11310448 DOI: 10.1016/s1438-4221(01)80009-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multiple sequence comparisons of proteins of the LcrD/FlbF family allowed the design of primers that specifically amplify sequences coding for type III secretion components. Amplification of Bordetella pertussis DNA with these primers yielded a fragment that was further used as a probe for screening a genomic library. The nucleotide sequence of a positive clone revealed a 2100-bp gene, called bcrD, which specifies a 75-kDa polypeptide homologous to the Yersinia LcrD protein. Chromosome walking allowed the characterization of a 35-kb DNA segment that contains the entire locus and flanking housekeeping genes. The B. pertussis type III secretion locus consists of more than 30 open reading frames (ORFs), most of which are identical to annotated genes of Bordetella spp and share similarities with known type III secretion genes of related bacteria. In order to assess the function of this locus, we engineered a bcrD null mutant. However, none of the tested phenotypes, such as protein secretion, cellular invasion, cytotoxicity or mouse lung colonization, differentiated the mutant from its parental strain. Studies of bcrD and bscN expressions indicated that, under our experimental conditions, these genes are not expressed in vitro. Restriction analyses on pulsed-field gel electrophoresis allowed the type III locus mapping at coordinate position 1,590 kb on the Tohama I strain chromosome.
Collapse
Affiliation(s)
- A Fauconnier
- Service de Génétique Appliquée, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Han Y, Liu X, Benny U, Kistler HC, VanEtten HD. Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 25:305-14. [PMID: 11208022 DOI: 10.1046/j.1365-313x.2001.00969.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three genes that contribute to the ability of the fungus Nectria haematococca to cause disease on pea plants have been identified. These pea pathogenicity (PEP) genes are within 25 kb of each other and are located on a supernumerary chromosome. Altogether, the PEP gene cluster contains six transcriptional units that are expressed during infection of pea tissue. The biochemical function of only one of the genes is known with certainty. This gene, PDA1, encodes a specific cytochrome P450 that confers resistance to pisatin, an antibiotic produced by pea plants. The three new PEP genes, in addition to PDA1, can independently increase the ability of the fungus to cause lesions on pea when added to an isolate lacking the supernumerary chromosome. Based on predicted amino acid sequences, functions for two of these three genes are hypothesized. The deduced amino acid sequence of another transcribed portion of the PEP cluster, as well as four other open reading frames in the cluster, have a high degree of similarity to known fungal transposases. Several of the features of the PEP cluster -- a cluster of pathogenicity genes, the presence of transposable elements, and differences in codon usage and GC content from other portions of the genome -- are shared by pathogenicity islands in pathogenic bacteria of plants and animals.
Collapse
Affiliation(s)
- Y Han
- Graduate Program in Plant Molecular and Cellular Biology, Plant Pathology Department, University of Florida, Gainesville, FL 32611-0680, USA
| | | | | | | | | |
Collapse
|
50
|
Park S, Worobo RW, Durst RA. Escherichia coli O157:H7 as an emerging foodborne pathogen: a literature review. Crit Rev Biotechnol 2001; 21:27-48. [PMID: 11307844 DOI: 10.1080/20013891081674] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S Park
- Department of Food Science and Technology, Cornell University, Geneva, NY 14456-0462, USA
| | | | | |
Collapse
|