1
|
Antonello RM, Giacomelli A, Riccardi N. Tularemia for clinicians: An up-to-date review on epidemiology, diagnosis, prevention and treatment. Eur J Intern Med 2025:S0953-6205(25)00099-8. [PMID: 40107886 DOI: 10.1016/j.ejim.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Tularemia, also known as rabbit fever, caused by Francisella tularensis, is re-emerging in the Northern Hemisphere and in particular in Europe in recent years. It is a bacterial zoonotic, arthropod-borne, air-borne, food- and water-borne disease and the multiple routes of infection result in six typical clinical pictures (ulceroglandular, glandular, oculoglandular, oropharyngeal, typhoidal, and pneumonic) along with several other uncommon presentations, potentially affecting any body site. In addition, due to the ease of airborne transmission, F. tularensis is a category A agent for bioterrorism. If not promptly diagnosed and treated, the fatality rate can be as high as 60 %, with the poorest outcomes reported in the pneumonic and typhoidal forms. Gentamicin is the first-line treatment for severe tularemia, while fluoroquinolones and tetracyclines are commonly the drugs of choice in less severe forms. Prevention is based on environmental and animal control strategies, proper signaling of the clinical suspicion to the laboratory staff and postexposure prophylaxis. In consideration of the re-emergence of the disease and the diagnostic and therapeutic challenges it poses, we performed a comprehensive up-to-date review of tularemia epidemiology, clinical presentation, diagnostic tools, treatment and prevention strategies.
Collapse
Affiliation(s)
| | - Andrea Giacomelli
- StopTB Italia ODV, Milan, Italy; Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, Milan, Italy; III Infectious Diseases Unit, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Niccolò Riccardi
- StopTB Italia ODV, Milan, Italy; Infectious Diseases Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Herrero-Cófreces S, Mougeot F, Lambin X, Luque-Larena JJ. Linking Zoonosis Emergence to Farmland Invasion by Fluctuating Herbivores: Common Vole Populations and Tularemia Outbreaks in NW Spain. Front Vet Sci 2021; 8:698454. [PMID: 34458354 PMCID: PMC8397442 DOI: 10.3389/fvets.2021.698454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
The expansion and intensification of agriculture are driving profound changes in ecosystems worldwide, favoring the (re)emergence of many human infectious diseases. Muroid rodents are a key host group for zoonotic infectious pathogens and frequently invade farming environments, promoting disease transmission and spillover. Understanding the role that fluctuating populations of farm dwelling rodents play in the epidemiology of zoonotic diseases is paramount to improve prevention schemes. Here, we review a decade of research on the colonization of farming environments in NW Spain by common voles (Microtus arvalis) and its public health impacts, specifically periodic tularemia outbreaks in humans. The spread of this colonizing rodent was analogous to an invasion process and was putatively triggered by the transformation and irrigation of agricultural habitats that created a novel terrestrial-aquatic interface. This irruptive rodent host is an effective amplifier for the Francisella tularensis bacterium during population outbreaks, and human tularemia episodes are tightly linked in time and space to periodic (cyclic) variations in vole abundance. Beyond the information accumulated to date, several key knowledge gaps about this pathogen-rodent epidemiological link remain unaddressed, namely (i) did colonizing vole introduce or amplified pre-existing F. tularensis? (ii) which features of the “Francisella—Microtus” relationship are crucial for the epidemiology of tularemia? (iii) how virulent and persistent F. tularensis infection is for voles under natural conditions? and (iv) where does the bacterium persist during inter-epizootics? Future research should focus on more integrated, community-based approaches in order to understand the details and dynamics of disease circulation in ecosystems colonized by highly fluctuating hosts.
Collapse
Affiliation(s)
- Silvia Herrero-Cófreces
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| | - François Mougeot
- Grupo de Gestión de Recursos Cinegéticos y Fauna Silvestre, Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Xavier Lambin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Juan José Luque-Larena
- Dpto. Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain.,Instituto Universitario de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid, Palencia, Spain
| |
Collapse
|
3
|
Tularemia Outbreaks in Spain from 2007 to 2020 in Humans and Domestic and Wild Animals. Pathogens 2021; 10:pathogens10070892. [PMID: 34358042 PMCID: PMC8308475 DOI: 10.3390/pathogens10070892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022] Open
Abstract
In this study, tularemia outbreaks associated with humans and several domestic and wild animals (Iberian hares, wild rabbits, voles, mice, grey shrews, sheep, dogs, foxes, wolves, ticks, and river crayfish) are reported in Spain from 2007 to 2020. Special attention was paid to the outbreaks in humans in 2007–2009 and 2014–2015, when the most important waves occurred. Moreover, positive rates of tularemia in lagomorphs were detected in 2007–2010, followed by negative results in 2011–2013, before again returning to positive rates in 2014 and in 2017 and in 2019–2020. Lagomorphs role in spreading Francisella tularensis in the epidemiological chain could not be discarded. F. tularensis is described for the first time infecting the shrew Crocidura russula worldwide, and it is also reported for the first time infecting wild rabbits (Oryctolagus cuniculus) in Spain. Serological positives higher than 0.4% were seen for sheep only from 2007–2009 and again in 2019, while serological rates greater than 1% were revealed in dogs in 2007–2008 and in wild canids in 2016. F. tularensis were detected in ticks in 2009, 2014–2015, 2017, and 2019. Lastly, negative results were achieved for river crayfish and also in environmental water samples from 2007 to 2020.
Collapse
|
4
|
Yeni DK, Büyük F, Ashraf A, Shah MSUD. Tularemia: a re-emerging tick-borne infectious disease. Folia Microbiol (Praha) 2021; 66:1-14. [PMID: 32989563 PMCID: PMC7521936 DOI: 10.1007/s12223-020-00827-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
Tularemia is a bacterial disease of humans, wild, and domestic animals. Francisella tularensis, which is a Gram-negative coccobacillus-shaped bacterium, is the causative agent of tularemia. Recently, an increase in the number of human tularemia cases has been noticed in several countries around the world. It has been reported mostly from North America, several Scandinavian countries, and certain Asian countries. The disease spreads through vectors such as mosquitoes, horseflies, deer flies, and ticks. Humans can acquire the disease through direct contact of sick animals, consumption of infected animals, drinking or direct contact of contaminated water, and inhalation of bacteria-loaded aerosols. Low infectious dose, aerosol route of infection, and its ability to induce fatal disease make it a potential agent of biological warfare. Tularemia leads to several clinical forms, such as glandular, ulceroglandular, oculoglandular, oropharyngeal, respiratory, and typhoidal forms. The disease is diagnosed through the use of culture, serology, or molecular methods. Quinolones, tetracyclines, or aminoglycosides are frequently used in the treatment of tularemia. No licensed vaccine is available in the prophylaxis of tularemia and this is need of the time and high-priority research area. This review mostly focuses on general features, importance, current status, and preventive measures of this disease.
Collapse
Affiliation(s)
- Derya Karataş Yeni
- Veterinary Control Central Research Institute, Bacterial Disease Laboratory, Ankara, Turkey
| | - Fatih Büyük
- Department of Microbiology, Veterinary Faculty, University of Kafkas, Kars, Turkey.
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
5
|
Genetic Traces of the Francisella tularensis Colonization of Spain, 1998-2020. Microorganisms 2020; 8:microorganisms8111784. [PMID: 33202547 PMCID: PMC7696290 DOI: 10.3390/microorganisms8111784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
More than 1000 humans have acquired the febrile disease tularemia in Spain since the first notification of human cases in 1997. We here aimed to study the recent molecular evolution of the causative bacterium Francisella tularensis during disease establishment in Spain. Single-nucleotide polymorphisms (SNPs) and variable-number tandem repeats (VNTRs) were analyzed in whole-genome sequences (WGS) of F. tularensis. Short-read WGS data for 20 F. tularensis strains from humans infected in the periods 2014-2015 and 2018-2020 in Spain were generated. These data were combined with WGS data of 25 Spanish strains from 1998 to 2008 and two reference strains. Capillary electrophoresis data of VNTR genetic regions were generated and compared with the WGS data for the 11 strains from 2014 to 2015. Evolutionary relationships among strains were analyzed by phylogenetic methods. We identified 117 informative SNPs in a 1,577,289-nucleotide WGS alignment of 47 F. tularensis genomes. Forty-five strains from Spain formed a star-like SNP phylogeny with six branches emerging from a basal common node. The most recently evolved genomes formed four additional star-like structures that were derived from four branches of the basal common node. VNTR copy number variation was detected in two out of 10 VNTR regions examined. Genetic clustering of strains by VNTRs agreed with the clustering by SNPs. The SNP data provided higher resolution among strains than the VNTRs data in all but one cases. There was an excellent correlation between VNTR marker sizing by capillary electrophoresis and prediction from WGS data. The genetic data strongly support that tularemia, indeed, emerged recently in Spain. Distinct genetic patterns of local F. tularensis population expansions imply that the pathogen has colonized a previously disease-free geographical area. We also found that genome-wide SNPs provide higher genetic resolution among F. tularensis genomes than the use of VNTRs, and that VNTR copy numbers can be accurately predicted using short-read WGS data.
Collapse
|
6
|
Azaki M, Uda A, Tian D, Nakazato K, Hotta A, Kawai Y, Ishijima K, Kuroda Y, Maeda K, Morikawa S. Effective methods for the inactivation of Francisella tularensis. PLoS One 2019; 14:e0225177. [PMID: 31725770 PMCID: PMC6855423 DOI: 10.1371/journal.pone.0225177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Francisella tularensis (F. tularensis) is highly pathogenic to humans and must be handled under biosafety level 3 conditions. Samples used for the diagnosis and experimental analysis must be completely inactivated, although methods for the inactivation of F. tularensis are limited. In this study, effective methods for the inactivation of F. tularensis SCHU P9 and five other strains were determined by comparisons of colony-forming units between treated and control samples. The results showed that F. tularensis SCHU P9 was denatured by heat treatment (94°C for 3 min and 56°C for 30 min), filtration with a 0.22 μm filter, and the use of various solutions (i.e. >70% ethanol, methanol, acetone, and 4% paraformaldehyde). F. tularensis SCHU P9 remained viable after treatment with 50% ethanol for 1 min, filtration with a 0.45 μm filter, and treatments with detergents (i.e. 1% lithium dodecyl sulfate buffer, 1% Triton X-100 and 1% Nonidet P-40) at 4°C for 24 h. Additionally, F. tularensis SCHU P9 suspended in fetal bovine serum in plastic tubes was highly resistant to ultraviolet radiation compared to suspensions in water and chemically defined medium. The methods for inactivation of F. tularensis SCHU P9 was applicable to the other five strains of F. tularensis. The data presented in this study could be useful for the establishment of guidelines and standard operating procedures (SOP) to inactivate the contaminated samples in not only F. tularensis but also other bacteria.
Collapse
Affiliation(s)
- Mika Azaki
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- * E-mail:
| | - Deyu Tian
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Katsuyoshi Nakazato
- Department of Correlative Study in Physics and Chemistry, Graduate School of Integrated Basic Sciences, Nihon University, Tokyo, Japan
| | - Akitoyo Hotta
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
| | - Yasuhiro Kawai
- Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keita Ishijima
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo Japan
| |
Collapse
|
7
|
Kane SR, Shah SR, Alfaro TM. Rapid viability polymerase chain reaction method for detection of Francisella tularensis. J Microbiol Methods 2019; 166:105738. [PMID: 31626892 DOI: 10.1016/j.mimet.2019.105738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/26/2022]
Abstract
Francisella tularensis, which causes potentially fatal tularemia, has been considered an attractive agent of bioterrorism and biological warfare due to its low infectious dose, reported environmental persistence, and ability to be transmitted to humans via multiple exposure routes. Due to slow growth on even selective culture media, detection of viable F. tularensis from environmental and drinking water samples, usually takes >3 days. Therefore, a rapid viability polymerase chain reaction (RV-PCR) method was developed to detect and identify viable F. tularensis cells in environmental samples. The method uses a change in PCR response during high throughput (48-well) sample incubation in Brain Heart Infusion/Vitox/Fildes/Histidine growth medium to detect viable F. tularensis presence, which is at least two times faster than the current plate culture-based method. Using the method, 101 to 102 live F. tularensis cells were detected in simulated complex sample matrices containing chemical and biological interferences.
Collapse
Affiliation(s)
- Staci R Kane
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Sanjiv R Shah
- National Homeland Security Research Center, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, USA.
| | | |
Collapse
|
8
|
Esmaeili S, Ghasemi A, Naserifar R, Jalilian A, Molaeipoor L, Maurin M, Mostafavi E. Epidemiological survey of tularemia in Ilam Province, west of Iran. BMC Infect Dis 2019; 19:502. [PMID: 31174488 PMCID: PMC6556031 DOI: 10.1186/s12879-019-4121-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background Francisella tularensis is the causative agent of tularemia in humans and a large number of animal species. Considering recent evidence of the circulation of this bacterium in different parts of Iran, especially in the western provinces, the aim of current study was to determine the tularemia seroprevalence in the human population living in Ilam Province. Methods In 2015, 360 serum samples were collected from five groups of people: ranchers (n = 112), farmers (n = 79), butchers and slaughterhouse workers (n = 61), Nature Conservation Officers (n = 34), and referents of medical diagnostic laboratories (n = 74). These samples were tested for the presence of anti- F. tularensis IgG antibodies using the ELISA method. Results According to the ELISA manufacturer cutoffs, we found that 10 (2.78%) and 9 (2.5%) sera, respectively, were positive or borderline for F. tularensis IgG antibodies. The highest tularemia seroprevalence was observed among farmers (7.59%). Conclusions Our results strongly support the circulation of tularemia in Ilam Province. Because no human tularemia case has been reported so far in this province, we recommend specific education programs to increase knowledge of local health care professionals about this important zoonotic disease.
Collapse
Affiliation(s)
- Saber Esmaeili
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran.,National Reference laboratory for diagnosis and research on Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran.,Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Ghasemi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran.,National Reference laboratory for diagnosis and research on Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran.,Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Razi Naserifar
- Department of Parasitology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Jalilian
- Department of Parasitology, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran
| | - Leila Molaeipoor
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran.,Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
| | - Max Maurin
- Centre National de Référence Francisella tularensis, Laboratoire de Bactériologie, Institut de Biologie et de Pathologie, CHU Grenoble Alpes, Grenoble, France.,TIMC-IMAG, CNRS/UGA, UMR5525, Université Grenoble Alpes, Grenoble, France
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, No. 69, Pasteur Ave, Tehran, 1316943551, Iran. .,National Reference laboratory for diagnosis and research on Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran.
| |
Collapse
|
9
|
Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review. Emerg Microbes Infect 2019; 8:1027-1042. [PMID: 31287787 PMCID: PMC6691783 DOI: 10.1080/22221751.2019.1638734] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Francisella tularensis is a Gram-negative, intracellular bacterium causing the zoonosis tularemia. This highly infectious microorganism is considered a potential biological threat agent. Humans are usually infected through direct contact with the animal reservoir and tick bites. However, tularemia cases also occur after contact with a contaminated hydro-telluric environment. Water-borne tularemia outbreaks and sporadic cases have occurred worldwide in the last decades, with specific clinical and epidemiological traits. These infections represent a major public health and military challenge. Human contaminations have occurred through consumption or use of F. tularensis-contaminated water, and various aquatic activities such as swimming, canyoning and fishing. In addition, in Sweden and Finland, mosquitoes are primary vectors of tularemia due to infection of mosquito larvae in contaminated aquatic environments. The mechanisms of F. tularensis survival in water may include the formation of biofilms, interactions with free-living amoebae, and the transition to a 'viable but nonculturable' state, but the relative contribution of these possible mechanisms remains unknown. Many new aquatic species of Francisella have been characterized in recent years. F. tularensis likely shares with these species an ability of long-term survival in the aquatic environment, which has to be considered in terms of tularemia surveillance and control.
Collapse
Affiliation(s)
- Aurélie Hennebique
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| |
Collapse
|
10
|
Janse I, Maas M, Rijks JM, Koene M, van der Plaats RQ, Engelsma M, van der Tas P, Braks M, Stroo A, Notermans DW, de Vries MC, Reubsaet F, Fanoy E, Swaan C, Kik MJ, IJzer J, Jaarsma RI, van Wieren S, de Roda-Husman AM, van Passel M, Roest HJ, van der Giessen J. Environmental surveillance during an outbreak of tularaemia in hares, the Netherlands, 2015. ACTA ACUST UNITED AC 2018; 22:30607. [PMID: 28877846 PMCID: PMC5587900 DOI: 10.2807/1560-7917.es.2017.22.35.30607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Tularaemia, a disease caused by the bacterium Francisella tularensis, is a re-emerging zoonosis in the Netherlands. After sporadic human and hare cases occurred in the period 2011 to 2014, a cluster of F. tularensis-infected hares was recognised in a region in the north of the Netherlands from February to May 2015. No human cases were identified, including after active case finding. Presence of F. tularensis was investigated in potential reservoirs and transmission routes, including common voles, arthropod vectors and surface waters. F. tularensis was not detected in common voles, mosquito larvae or adults, tabanids or ticks. However, the bacterium was detected in water and sediment samples collected in a limited geographical area where infected hares had also been found. These results demonstrate that water monitoring could provide valuable information regarding F. tularensis spread and persistence, and should be used in addition to disease surveillance in wildlife.
Collapse
Affiliation(s)
- Ingmar Janse
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,These authors share first authorship
| | - Miriam Maas
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,These authors share first authorship
| | - Jolianne M Rijks
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Miriam Koene
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Rozemarijn Qj van der Plaats
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marc Engelsma
- Department of Diagnostics and Crisis Organisation, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Peter van der Tas
- GGD Fryslân, Regional Public Health Service of Friesland, Leeuwarden, the Netherlands
| | - Marieta Braks
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Arjan Stroo
- Netherlands Food and Consumer Product Safety Authority, Wageningen, the Netherlands
| | - Daan W Notermans
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maaike C de Vries
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Frans Reubsaet
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ewout Fanoy
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,GGD Utrecht, Regional Public Health Service of Utrecht, Zeist, the Netherlands
| | - Corien Swaan
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marja Jl Kik
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Jooske IJzer
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sip van Wieren
- Resource Ecology Group, Department of Environmental Science, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Ana Maria de Roda-Husman
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mark van Passel
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hendrik-Jan Roest
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Joke van der Giessen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| |
Collapse
|
11
|
A Single Mechanosensitive Channel Protects Francisella tularensis subsp. holarctica from Hypoosmotic Shock and Promotes Survival in the Aquatic Environment. Appl Environ Microbiol 2018; 84:AEM.02203-17. [PMID: 29269496 DOI: 10.1128/aem.02203-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/15/2017] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis subsp. holarctica is found in North America and much of Europe and causes the disease tularemia in humans and animals. An aquatic cycle has been described for this subspecies, which has caused waterborne outbreaks of tularemia in at least 10 countries. In this study, we sought to identify the mechanosensitive channel(s) required for the bacterium to survive the transition from mammalian hosts to freshwater, which is likely essential for the transmission of the bacterium between susceptible hosts. A single 165-amino-acid MscS-type mechanosensitive channel (FtMscS) was found to protect F. tularensis subsp. holarctica from hypoosmotic shock, despite lacking much of the cytoplasmic vestibule domain found in well-characterized MscS proteins from other organisms. The deletion of this channel did not affect virulence within the mammalian host; however, FtMscS was required to survive the transition from the host niche to freshwater. The deletion of FtMscS did not alter the sensitivity of F. tularensis subsp. holarctica to detergents, H2O2, or antibiotics, suggesting that the role of FtMscS is specific to protection from hypoosmotic shock. The deletion of FtMscS also led to a reduced average cell size without altering gross cell morphology. The mechanosensitive channel identified and characterized in this study likely contributes to the transmission of tularemia between hosts by allowing the bacterium to survive the transition from mammalian hosts to freshwater.IMPORTANCE The contamination of freshwater by Francisella tularensis subsp. holarctica has resulted in a number of outbreaks of tularemia. Invariably, the contamination originates from the carcasses or excreta of infected animals and thus involves an abrupt osmotic downshock as the bacteria enter freshwater. How F. tularensis survives this drastic change in osmolarity has not been clear, but here we report that a single mechanosensitive channel protects the bacterium from osmotic downshock. This channel is functional despite lacking much of the cytoplasmic vestibule domain that is present in better-studied organisms such as Escherichia coli; this report builds on previous studies that have suggested that parts of this domain are dispensable for downshock protection. These findings extend our understanding of the aquatic cycle and ecological persistence of F. tularensis, with further implications for mechanosensitive channel biology.
Collapse
|
12
|
|
13
|
Propst CN, Pylypko SL, Blower RJ, Ahmad S, Mansoor M, van Hoek ML. Francisella philomiragia Infection and Lethality in Mammalian Tissue Culture Cell Models, Galleria mellonella, and BALB/c Mice. Front Microbiol 2016; 7:696. [PMID: 27252681 PMCID: PMC4877389 DOI: 10.3389/fmicb.2016.00696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Francisella (F.) philomiragia is a Gram-negative bacterium with a preference for brackish environments that has been implicated in causing bacterial infections in near-drowning victims. The purpose of this study was to characterize the ability of F. philomiragia to infect cultured mammalian cells, a commonly used invertebrate model, and, finally, to characterize the ability of F. philomiragia to infect BALB/c mice via the pulmonary (intranasal) route of infection. This study shows that F. philomiragia infects J774A.1 murine macrophage cells, HepG2 cells and A549 human Type II alveolar epithelial cells. However, replication rates vary depending on strain at 24 h. F. philomiragia infection after 24 h was found to be cytotoxic in human U937 macrophage-like cells and J774A.1 cells. This is in contrast to the findings that F. philomiragia was non-cytotoxic to human hepatocellular carcinoma cells, HepG2 cells and A549 cells. Differential cytotoxicity is a point for further study. Here, it was demonstrated that F. philomiragia grown in host-adapted conditions (BHI, pH 6.8) is sensitive to levofloxacin but shows increased resistance to the human cathelicidin LL-37 and murine cathelicidin mCRAMP when compared to related the Francisella species, F. tularensis subsp. novicida and F. tularensis subsp. LVS. Previous findings that LL-37 is strongly upregulated in A549 cells following F. tularensis subsp. novicida infection suggest that the level of antimicrobial peptide expression is not sufficient in cells to eradicate the intracellular bacteria. Finally, this study demonstrates that F. philomiragia is lethal in two in vivo models; Galleria mellonella via hemocoel injection, with a LD50 of 1.8 × 103, and BALB/c mice by intranasal infection, with a LD50 of 3.45 × 103. In conclusion, F. philomiragia may be a useful model organism to study the genus Francisella, particularly for those researchers with interest in studying microbial ecology or environmental strains of Francisella. Additionally, the Biosafety level 2 status of F. philomiragia makes it an attractive model for virulence and pathogenesis studies.
Collapse
Affiliation(s)
- Crystal N Propst
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Ryan J Blower
- School of Systems Biology, George Mason University, Manassas, VA USA
| | - Saira Ahmad
- School of Systems Biology, George Mason University, Manassas, VA USA
| | | | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VAUSA; National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VAUSA
| |
Collapse
|
14
|
Towards Development of Improved Serodiagnostics for Tularemia by Use of Francisella tularensis Proteome Microarrays. J Clin Microbiol 2016; 54:1755-1765. [PMID: 27098957 DOI: 10.1128/jcm.02784-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Tularemia in humans is caused mainly by two subspecies of the Gram-negative facultative anaerobe Francisella tularensis: F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). The current serological test for tularemia is based on agglutination of whole organisms, and the reactive antigens are not well understood. Previously, we profiled the antibody responses in type A and B tularemia cases in the United States using a proteome microarray of 1,741 different proteins derived from the type A strain Schu S4. Fifteen dominant antigens able to detect antibodies to both types of infection were identified, although these were not validated in a different immunoassay format. Since type A and B subspecies are closely related, we hypothesized that Schu S4 antigens would also have utility for diagnosing type B tularemia caused by strains from other geographic locations. To test this, we probed the Schu S4 array with sera from 241 type B tularemia cases in Spain. Despite there being no type A strains in Spain, we confirmed the responses against some of the same potential serodiagnostic antigens reported previously, as well as determined the responses against additional potential serodiagnostic antigens. Five potential serodiagnostic antigens were evaluated on immunostrips, and two of these (FTT1696/GroEL and FTT0975/conserved hypothetical protein) discriminated between the Spanish tularemia cases and healthy controls. We conclude that antigens from the type A strain Schu S4 are suitable for detection of antibodies from patients with type B F. tularensis infections and that these can be used for the diagnosis of tularemia in a deployable format, such as the immunostrip.
Collapse
|
15
|
Hua F, Zhang P, Zhang F, Zhao Y, Li C, Sun C, Wang X, Yang R, Wang C, Yu A, Zhou L. Development and evaluation of an up-converting phosphor technology-based lateral flow assay for rapid detection of Francisella tularensis. Sci Rep 2015; 5:17178. [PMID: 26608358 PMCID: PMC4660431 DOI: 10.1038/srep17178] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023] Open
Abstract
Francisella tularensis is a potential biowarfare/bioterrorism agent and zoonotic pathogen that causes tularemia; thus, surveillance of F. tularensis and first-level emergency response using point-of-care testing (POCT) are essential. The UPT-LF POCT assay was established to quantitatively detect F. tularensis within 15 min, and the sensitivity of the assay was 10(4) CFU · mL(-1) (100 CFU/test). The linear quantitative range covered five orders of magnitude, and the coefficients of variation were less than 10%. Except Shigella dysenteriae, UPT-LF showed excellent specificity to four strains that are also potential biowarfare/bioterrorism agents and 13 food-borne pathogenic strains. Samples with pH 2-13, high ion strengths (≥ 2 mol · L(-1) solution of KCl and NaCl), high viscosities (≤ 50 mg · mL(-1) PEG20000 or ≥ 20% glycerol), and high concentrations of biomacromolecules (≥ 400 mg · mL(-1) bovine serum albumin or ≥ 80 mg · mL(-1) casein) showed little influence on the assay. For practical utilization, the tolerance limits for seven powders and eight viscera were determined, and operation errors of liquid measurement demonstrated a minor influence on the strip. Ftu-UPT-LF is a candidate POCT method because of its excellent sensitivity, specificity, and stability in complex samples, as well as low operation error.
Collapse
Affiliation(s)
- Fei Hua
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
- Department of Etiology, Taishan Medical University,
Taian
271000, P.R. China
- Clinical Diagnostic Center, 302nd Hospital of the
People’s Liberation Army, Beijing
100039, P.R. China
| | - Pingping Zhang
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
| | - Fuli Zhang
- Radiation Oncology Department, Beijing Military General
Hospital, Beijing
100700, P.R. China
| | - Yong Zhao
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
| | - Chunfeng Li
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
- Department of Clinical Laboratory, Chinese People’s
Liberation Army General Hospital, Beijing
100853, P.R. China
| | - Chongyun Sun
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
- Department of Clinical Laboratory, Chinese People’s
Liberation Army General Hospital, Beijing
100853, P.R. China
| | - Xiaochen Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
- College of Animal Science and Technology, Jilin Agricultural
University, Changchun
130118, P.R. China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
| | - Chengbin Wang
- Department of Clinical Laboratory, Chinese People’s
Liberation Army General Hospital, Beijing
100853, P.R. China
| | - Ailian Yu
- Department of Etiology, Taishan Medical University,
Taian
271000, P.R. China
| | - Lei Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of
Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Beijing
100071, P.R. China
- Beijing Key Laboratory of POCT for Bioemergency and Clinic (No.
BZ0329), Beijing
100071, P.R. China
| |
Collapse
|
16
|
Dobay A, Pilo P, Lindholm AK, Origgi F, Bagheri HC, König B. Dynamics of a Tularemia Outbreak in a Closely Monitored Free-Roaming Population of Wild House Mice. PLoS One 2015; 10:e0141103. [PMID: 26536232 PMCID: PMC4633114 DOI: 10.1371/journal.pone.0141103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 10/04/2015] [Indexed: 11/18/2022] Open
Abstract
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.
Collapse
Affiliation(s)
- Akos Dobay
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Paola Pilo
- Institute for Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna K. Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Origgi
- Institute for Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, Bern, Switzerland
| | - Homayoun C. Bagheri
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Barbara König
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Tezer H, Ozkaya-Parlakay A, Aykan H, Erkocoglu M, Gülhan B, Demir A, Kanik-Yuksek S, Tapisiz A, Polat M, Kara S, Devrim I, Kilic S. Tularemia in children, Turkey, September 2009-November 2012. Emerg Infect Dis 2015; 21:1-7. [PMID: 25529639 PMCID: PMC4285238 DOI: 10.3201/eid2101.131127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tularemia, a zoonotic disease caused by Francisella tularensis, is found throughout most of the Northern Hemisphere. It is not well known and is often misdiagnosed in children. Our aim with this study was to evaluate the diagnosis, treatment, and prognosis for 100 children with tularemia in Turkey. The mean patient age was 10.1 ± 3.5 years (range 3-18 years), and most (63%) patients were male. The most common physical signs and laboratory findings were cervical lymphadenopathy (92%) and elevated erythrocyte sedimentation rate (89%). Treatment response was higher and rate of relapse lower for children 5-10 years of age than for those in other age groups. Associated with treatment failure were female sex, treatment delay of ≥16 days, and use of doxycycline. Tularemia is endemic to Turkey, and the number of cases has been increasing among children as well as adults.
Collapse
|
18
|
Zargar A, Maurin M, Mostafavi E. Tularemia, a re-emerging infectious disease in Iran and neighboring countrie. Epidemiol Health 2015; 37:e2015011. [PMID: 25773439 PMCID: PMC4430760 DOI: 10.4178/epih/e2015011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/22/2015] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Tularemia is a zoonotic disease transmitted by direct contact with infected animals and through arthropod bites, inhalation of contaminated aerosols, ingestion of contaminated meat or water, and skin contact with any infected material. It is widespread throughout the northern hemisphere, including Iran and its neighbors to the north, northeast, and northwest. METHODS In this paper, the epidemiology of tularemia as a re-emerging infectious disease in the world with a focus on Iran and the neighboring countries is reviewed. RESULTS In Iran, positive serological tests were first reported in 1973, in wildlife and domestic livestock in the northwestern and southeastern parts of the country. The first human case was reported in 1980 in the southwest of Iran, and recent studies conducted among at-risk populations in the western, southeastern, and southwestern parts of Iran revealed seroprevalences of 14.4, 6.52, and 6%, respectively. CONCLUSIONS Several factors may explain the absence of reported tularemia cases in Iran since 1980. Tularemia may be underdiagnosed in Iran because Francisella tularensis subspecies holarctica is likely to be the major etiological agent and usually causes mild to moderately severe disease. Furthermore, tularemia is not a disease extensively studied in the medical educational system in Iran, and empirical therapy may be effective in many cases. Finally, it should be noted that laboratories capable of diagnosing tularemia have only been established in the last few years. Since both recent and older studies have consistently found tularemia antibodies in humans and animals, the surveillance of this disease should receive more attention. In particular, it would be worthwhile for clinical researchers to confirm tularemia cases more often by isolating F. tularensis from infected humans and animals.
Collapse
Affiliation(s)
- Afsaneh Zargar
- Department of Epidemiology, Pasteur Institute of Iran, Tehran, Iran.,Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran
| | - Max Maurin
- Centre National de Référence des Francisella, Laboratoire de Bactériologie, Département des Agents Infectieux, Institut de Biologie et Pathologie, Centre Hospitalier Universitaire de Grenoble, Université Joseph Fourier, Grenoble, France.,Laboratoire Adaptation et Pathogénie des Microorganismes, CNRS UMR 5163, Grenoble, France
| | - Ehsan Mostafavi
- Department of Epidemiology, Pasteur Institute of Iran, Tehran, Iran.,Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar-Ahang, Hamadan, Iran
| |
Collapse
|
19
|
Ariza-Miguel J, Johansson A, Fernández-Natal MI, Martínez-Nistal C, Orduña A, Rodríguez-Ferri EF, Hernández M, Rodríguez-Lázaro D. Molecular investigation of tularemia outbreaks, Spain, 1997-2008. Emerg Infect Dis 2014; 20:754-61. [PMID: 24750848 PMCID: PMC4012790 DOI: 10.3201/eid2005.130654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Tularemia outbreaks occurred in northwestern Spain in 1997-1998 and 2007-2008 and affected >1,000 persons. We assessed isolates involved in these outbreaks by using pulsed-field gel electrophoresis with 2 restriction enzymes and multilocus variable number tandem repeat analysis of 16 genomic loci of Francisella tularensis, the cause of this disease. Isolates were divided into 3 pulsotypes by pulsed-field gel electrophoresis and 8 allelic profiles by multilocus variable number tandem repeat analysis. Isolates obtained from the second tularemia outbreak had the same genotypes as isolates obtained from the first outbreak. Both outbreaks were caused by genotypes of genetic subclade B.Br:FTNF002-00, which is widely distributed in countries in central and western Europe. Thus, reemergence of tularemia in Spain was not caused by the reintroduction of exotic strains, but probably by persistence of local reservoirs of infection.
Collapse
|
20
|
Historical distribution and host-vector diversity of Francisella tularensis, the causative agent of tularemia, in Ukraine. Parasit Vectors 2014; 7:453. [PMID: 25318562 PMCID: PMC4200231 DOI: 10.1186/s13071-014-0453-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/20/2014] [Indexed: 11/16/2022] Open
Abstract
Background Francisella tularensis, the causative agent of tularemia, is a zoonotic agent that remains across much of the northern hemisphere, where it exists in enzootic cycles. In Ukraine, tularemia has a long history that suggests a need for sustained surveillance in natural foci. To better characterize the host-vector diversity and spatial distribution of tularemia, we analyzed historical data from field collections carried out from 1941 to 2008. Findings We analyzed the spatial-temporal distribution of bacterial isolates collected from field samples. Isolates were characterized by source and dominant land cover type. To identify environmental persistence and spatial variation in the source of isolation, we used the space-time permutation and multinomial models in SaTScan. A total of 3,086 positive isolates were taken from 1,084 geographic locations. Isolation of F. tularensis was more frequent among arthropods [n = 2,045 (66.3%)] followed by mammals [n = 619 (20.1%)], water [n = 393 (12.7%)], and farm produce [n = 29 (0.94%)], respectively. Four areas of persistent bacterial isolation were identified. Water and farm produce as sources of bacterial isolation were clustered. Conclusions Our findings confirm the presence of long-standing natural foci of F. tularensis in Ukraine. Given the history of tularemia as well as its environmental persistence there exists a possibility of (re)emergence in human populations. Heterogeneity in the distribution of tularemia isolate recovery related to land cover type supports the theory of natural nidality and clusters identify areas to target potential sources of the pathogen and improve surveillance. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0453-2) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Carvalho CL, Lopes de Carvalho I, Zé-Zé L, Núncio MS, Duarte EL. Tularaemia: a challenging zoonosis. Comp Immunol Microbiol Infect Dis 2014; 37:85-96. [PMID: 24480622 PMCID: PMC7124367 DOI: 10.1016/j.cimid.2014.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/28/2013] [Accepted: 01/04/2014] [Indexed: 01/21/2023]
Abstract
In recent years, several emerging zoonotic vector-borne infections with potential impact on human health have been identified in Europe, including tularaemia, caused by Francisella tularensis. This remarkable pathogen, one of the most virulent microorganisms currently known, has been detected in increasingly new settings and in a wide range of wild species, including lagomorphs, rodents, carnivores, fish and invertebrate arthropods. Also, a renewed concern has arisen with regard to F. tularensis: its potential use by bioterrorists. Based on the information published concerning the latest outbreaks, the aim of this paper is to review the main features of the agent, its biology, immunology and epidemiology. Moreover, special focus will be given to zoonotic aspects of the disease, as tularaemia outbreaks in human populations have been frequently associated with disease in animals.
Collapse
Affiliation(s)
- C L Carvalho
- Institute of Mediterranean Agricultural and Environmental Science (ICAAM), School of Science and Technology ECT, University of Évora, Portugal; Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - I Lopes de Carvalho
- Emergency Response and Bio-preparedness Unit, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - L Zé-Zé
- Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - M S Núncio
- Centre for Vectors and Infectious Diseases Research, National Health Institute Doutor Ricardo Jorge, Águas de Moura, Portugal
| | - E L Duarte
- Institute of Mediterranean Agricultural and Environmental Science (ICAAM), School of Science and Technology ECT, University of Évora, Portugal.
| |
Collapse
|
22
|
Abstract
Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation.
Collapse
Affiliation(s)
- Monique L van Hoek
- School of Systems Biology and National Center for Biodefense and Infectious Diseases; George Mason University; Manassas, VA USA
| |
Collapse
|
23
|
Rydén P, Björk R, Schäfer ML, Lundström JO, Petersén B, Lindblom A, Forsman M, Sjöstedt A, Johansson A. Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J Infect Dis 2011; 205:297-304. [PMID: 22124130 PMCID: PMC3244368 DOI: 10.1093/infdis/jir732] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background. We aimed to evaluate the potential association of mosquito prevalence in a boreal forest area with transmission of the bacterial disease tularemia to humans, and model the annual variation of disease using local weather data. Methods. A prediction model for mosquito abundance was built using weather and mosquito catch data. Then a negative binomial regression model based on the predicted mosquito abundance and local weather data was built to predict annual numbers of humans contracting tularemia in Dalarna County, Sweden. Results. Three hundred seventy humans were diagnosed with tularemia between 1981 and 2007, 94% of them during 7 summer outbreaks. Disease transmission was concentrated along rivers in the area. The predicted mosquito abundance was correlated (0.41, P < .05) with the annual number of human cases. The predicted mosquito peaks consistently preceded the median onset time of human tularemia (temporal correlation, 0.76; P < .05). Our final predictive model included 5 environmental variables and identified 6 of the 7 outbreaks. Conclusions. This work suggests that a high prevalence of mosquitoes in late summer is a prerequisite for outbreaks of tularemia in a tularemia-endemic boreal forest area of Sweden and that environmental variables can be used as risk indicators.
Collapse
Affiliation(s)
- Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Computational Life Science Cluster, Umeå University, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Colquhoun DJ, Duodu S. Francisella infections in farmed and wild aquatic organisms. Vet Res 2011; 42:47. [PMID: 21385413 PMCID: PMC3060124 DOI: 10.1186/1297-9716-42-47] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 03/08/2011] [Indexed: 01/08/2023] Open
Abstract
Over the last 10 years or so, infections caused by bacteria belonging to a particular branch of the genus Francisella have become increasingly recognised in farmed fish and molluscs worldwide. While the increasing incidence of diagnoses may in part be due to the development and widespread availability of molecular detection techniques, the domestication of new organisms has undoubtedly instigated emergence of clinical disease in some species. Francisellosis in fish develops in a similar fashion independent of host species and is commonly characterised by the presence of multi-organ granuloma and high morbidity, with varying associated mortality levels. A number of fish species are affected including Atlantic cod, Gadus morhua; tilapia, Oreochromis sp.; Atlantic salmon, Salmo salar; hybrid striped bass, Morone chrysops × M. saxatilis and three-lined grunt, Parapristipoma trilinineatum. The disease is highly infectious and often prevalent in affected stocks. Most, if not all strains isolated from teleost fish belong to either F. noatunensis subsp. orientalis in warm water fish species or Francisella noatunensis subsp. noatunensis in coldwater fish species. The disease is quite readily diagnosed following histological examination and identification of the aetiological bacterium by culture on cysteine rich media or PCR. The available evidence may indicate a degree of host specificity for the various Francisella strains, although this area requires further study. No effective vaccine is currently available. Investigation of the virulence mechanisms and host response shows similarity to those known from Francisella tularensis infection in mammals. However, no evidence exists for zoonotic potential amongst the fish pathogenic Francisella.
Collapse
Affiliation(s)
- Duncan J Colquhoun
- Section for Fish health, National Veterinary Institute, Postbox 750 sentrum, 0106 Oslo, Norway.
| | | |
Collapse
|
25
|
Telford SR, Goethert HK. Toward an understanding of the perpetuation of the agent of tularemia. Front Microbiol 2011; 1:150. [PMID: 21687803 PMCID: PMC3109306 DOI: 10.3389/fmicb.2010.00150] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/29/2010] [Indexed: 11/13/2022] Open
Abstract
The epidemiology of tularemia has influenced, perhaps incorrectly skewed, our views on the ecology of the agent of tularemia. In particular, the central role of lagomorphs needs to be reexamined. Diverse observations, some incidental, and some that are more generally reproducible, have not been synthesized so that the critical elements of the perpetuation of Francisella tularensis can be identified. Developing a quantitative model of the basic reproduction number of F. tularensis may require separate treatments for Type A and Type B given the fundamental differences in their ecology.
Collapse
Affiliation(s)
- Sam R Telford
- Division of Infectious Diseases, Cummings School of Veterinary Medicine, Tufts University North Grafton, MA, USA
| | | |
Collapse
|
26
|
Broman T, Thelaus J, Andersson AC, Bäckman S, Wikström P, Larsson E, Granberg M, Karlsson L, Bäck E, Eliasson H, Mattsson R, Sjöstedt A, Forsman M. Molecular Detection of Persistent Francisella tularensis Subspecies holarctica in Natural Waters. Int J Microbiol 2010; 2011:851946. [PMID: 20885922 PMCID: PMC2946586 DOI: 10.1155/2011/851946] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/09/2010] [Indexed: 11/17/2022] Open
Abstract
Tularemia, caused by the bacterium Francisella tularensis, where F. tularensis subspecies holarctica has long been the cause of endemic disease in parts of northern Sweden. Despite this, our understanding of the natural life-cycle of the organism is still limited. During three years, we collected surface water samples (n = 341) and sediment samples (n = 245) in two areas in Sweden with endemic tularemia. Real-time PCR screening demonstrated the presence of F. tularenis lpnA sequences in 108 (32%) and 48 (20%) of the samples, respectively. The 16S rRNA sequences from those samples all grouped to the species F. tularensis. Analysis of the FtM19InDel region of lpnA-positive samples from selected sampling points confirmed the presence of F. tularensis subspecies holarctica-specific sequences. These sequences were detected in water sampled during both outbreak and nonoutbreak years. Our results indicate that diverse F. tularensis-like organisms, including F. tularensis subsp. holarctica, persist in natural waters and sediments in the investigated areas with endemic tularemia.
Collapse
Affiliation(s)
- T. Broman
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - J. Thelaus
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - A.-C. Andersson
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - S. Bäckman
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - P. Wikström
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - E. Larsson
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - M. Granberg
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - L. Karlsson
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| | - E. Bäck
- Department of Infectious Diseases, Örebro University Hospital, 701 85 Örebro, Sweden
| | - H. Eliasson
- Department of Infectious Diseases, Örebro University Hospital, 701 85 Örebro, Sweden
| | - R. Mattsson
- National Veterinary Institute, 751 89 Uppsala, Sweden
| | - A. Sjöstedt
- Department of Clinical Microbiology, Umeå University, 901 87 Umeå, Sweden
| | - M. Forsman
- Department of CBRN Defence and Security, Swedish Defence Research Agency, 901 82 Umeå, Sweden
| |
Collapse
|
27
|
Contributions of Francisella tularensis subsp. novicida chitinases and Sec secretion system to biofilm formation on chitin. Appl Environ Microbiol 2009; 76:596-608. [PMID: 19948864 DOI: 10.1128/aem.02037-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Francisella tularensis, the zoonotic cause of tularemia, can infect numerous mammals and other eukaryotes. Although studying F. tularensis pathogenesis is essential to comprehending disease, mammalian infection is just one step in the ecology of Francisella species. F. tularensis has been isolated from aquatic environments and arthropod vectors, environments in which chitin could serve as a potential carbon source and as a surface for attachment and growth. We show that F. tularensis subsp. novicida forms biofilms during the colonization of chitin surfaces. The ability of F. tularensis to persist using chitin as a sole carbon source is dependent on chitinases, since mutants lacking chiA or chiB are attenuated for chitin colonization and biofilm formation in the absence of exogenous sugar. A genetic screen for biofilm mutants identified the Sec translocon export pathway and 14 secreted proteins. We show that these genes are important for initial attachment during biofilm formation. We generated defined deletion mutants by targeting two chaperone genes (secB1 and secB2) involved in Sec-dependent secretion and four genes that encode putative secreted proteins. All of the mutants were deficient in attachment to polystyrene and chitin surfaces and for biofilm formation compared to wild-type F. novicida. In contrast, mutations in the Sec translocon and secreted factors did not affect virulence. Our data suggest that biofilm formation by F. tularensis promotes persistence on chitin surfaces. Further study of the interaction of F. tularensis with the chitin microenvironment may provide insight into the environmental survival and transmission mechanisms of this pathogen.
Collapse
|
28
|
Water-borne outbreak of oropharyngeal and glandular tularemia in Georgia: investigation and follow-up. Infection 2009; 37:514-21. [PMID: 19826763 DOI: 10.1007/s15010-009-8193-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND In November 2006, an outbreak of waterborne tularemia occurred in an eastern region in the Republic of Georgia. Outbreak investigation revealed 26 cases: 21 oropharyngeal and 5 glandular tularemia cases. METHODS The presentation of the index case triggered an outbreak investigation involving the collection of clinical/ epidemiological data, application of tularine skin test, and laboratory confirmation of the possible cases using the tube agglutination test and polymerase chain reaction (PCR) testing. Serology results were verified by enzyme-linked immunosorbent assay (ELISA) and Western blot. A case- control study along with follow-up was conducted 4 months after the index case presentation. RESULTS Exudative pharyngitis, predominantly laterocervical adenitis, fever, and headache were the most prevalent clinical signs/symptoms observed. Depressed mood, concentration difficulties, and sleep disturbance were also detected. Bubo aspirates tested by PCR were positive in 4/4 cases and pharyngeal swabs also tested by PCR were positive in 2/3 cases. Francisella tularensis was isolated from the water samples. Comparison of the cases and controls did not reveal any statistically significant risk factors. A follow-up investigation revealed cases with protracted symptoms of fatigue, headache, and sleep disturbance. Additionally, 8/26 cases still had cervical adenopathy of prominent size. A delay in diagnosis was associated with persistent lymphadenopathy on follow-up examination (p = 0.05). CONCLUSION We observed unique features of persistent neuropsychiatric symptoms and lymphadenopathy 5 months after tularemia infection which were associated with delayed diagnosis and the lack of prompt response to therapy. This outbreak of oropharyngeal tularemia emphasizes the importance of a rapid diagnostic and investigative response to tularemia. This type of response can prevent ongoing exposure, as well as provide expeditious treatment to mitigate persistent symptoms.
Collapse
|
29
|
Sinclair JR, Newton A, Hinshaw K, Fraser G, Ross P, Chernak E, Johnson C, Warren N. Tularemia in a park, Philadelphia, Pennsylvania. Emerg Infect Dis 2008; 14:1482-3. [PMID: 18760026 PMCID: PMC2603123 DOI: 10.3201/eid1409.071690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Splettstoesser WD, Mätz-Rensing K, Seibold E, Tomaso H, Al Dahouk S, Grunow R, Essbauer S, Buckendahl A, Finke EJ, Neubauer H. Re-emergence of Francisella tularensis in Germany: fatal tularaemia in a colony of semi-free-living marmosets (Callithrix jacchus). Epidemiol Infect 2007; 135:1256-65. [PMID: 17306050 PMCID: PMC2870702 DOI: 10.1017/s0950268807008035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2006] [Indexed: 11/07/2022] Open
Abstract
Francisella tularensis was identified as the cause of a die-off which occurred among a colony of semi-free-living common marmosets (Callithrix jacchus). During the outbreak 5 out of 62 animals died of tularaemia in a research facility located in the district of Goettingen, Germany. All animals had been born at the facility suggesting an endemic infection. A total of five culture isolates were recovered and characterized as F. tularensis holarctica, biovar I. These cultures represent the first isolates obtained in the Federal Republic of Germany for more than 45 years. The outbreak area shows several geographical and ecological characteristics known to favour long-term presence of F. tularensis. Persistence of the pathogen in the remote region along the former German-German border, continuous re-introduction from eastern European countries after destruction of the 'Iron curtain' or introduction through migrating birds are testable hypotheses which could explain the emergence of tularaemia in this particular region.
Collapse
Affiliation(s)
- W D Splettstoesser
- Bundeswehr Institute of Microbiology, National Reference Laboratory for Tularaemia, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lopes de Carvalho I, Escudero R, García-Amil C, Falcão H, Anda P, Núncio MS. Francisella tularensis, Portugal. Emerg Infect Dis 2007; 13:666-7. [PMID: 17561575 PMCID: PMC2725955 DOI: 10.3201/eid1304.060714] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | | | - Helena Falcão
- Organização dos Produtores Pecuários do Mogadouro, Mogadouro, Portugal
| | - Pedro Anda
- Instituto de Salud Carlos III, Majadahonda, Spain
| | | |
Collapse
|
32
|
Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL. Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci U S A 2006; 104:299-304. [PMID: 17182744 PMCID: PMC1713168 DOI: 10.1073/pnas.0608255104] [Citation(s) in RCA: 367] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe.
Collapse
Affiliation(s)
- Eoin L. Brodie
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Todd Z. DeSantis
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jordan P. Moberg Parker
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ingrid X. Zubietta
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Yvette M. Piceno
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Gary L. Andersen
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Rasmussen JW, Cello J, Gil H, Forestal CA, Furie MB, Thanassi DG, Benach JL. Mac-1+ cells are the predominant subset in the early hepatic lesions of mice infected with Francisella tularensis. Infect Immun 2006; 74:6590-8. [PMID: 17000726 PMCID: PMC1698106 DOI: 10.1128/iai.00868-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cell composition of early hepatic lesions of experimental murine tularemia has not been characterized with specific markers. The appearance of multiple granulomatous-necrotic lesions in the liver correlates with a marked increase in the levels of serum alanine transferase and lactate dehydrogenase. Francisella tularensis, detected by specific antibodies, can be first noted by day 1 and becomes associated with the lesions by 5 days postinoculation. These lesions become necrotic, with some evidence of in situ apoptosis. The lesions do not contain B, T, or NK cells. Rather, the lesions are largely composed of two subpopulations of Mac-1(+) cells that are associated with the bacteria. Gr-1(+) Mac-1(+) immature myeloid cells and major histocompatibility complex class II-positive (MHC-II(+)) Mac-1(+) macrophages were the most abundant cell phenotypes found in the granuloma and are likely major contributors in controlling the infection in its early stages. Our findings have shown that there is an early development of hepatic lesions where F. tularensis colocalizes with both Gr-1(+) Mac-1(+) and MHC-II(+) Mac-1(+) cells.
Collapse
Affiliation(s)
- John W Rasmussen
- Center for Infectious Diseases, 5120 Centers for Molecular Medicine, Stony Brook, NY 11794-5120, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Barns SM, Grow CC, Okinaka RT, Keim P, Kuske CR. Detection of diverse new Francisella-like bacteria in environmental samples. Appl Environ Microbiol 2005; 71:5494-500. [PMID: 16151142 PMCID: PMC1214603 DOI: 10.1128/aem.71.9.5494-5500.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 04/04/2005] [Indexed: 11/20/2022] Open
Abstract
Following detection of putative Francisella species in aerosol samples from Houston, Texas, we surveyed soil and water samples from the area for the agent of tularemia, Francisella tularensis, and related species. The initial survey used 16S rRNA gene primers to detect Francisella species and related organisms by PCR amplification of DNA extracts from environmental samples. This analysis indicated that sequences related to Francisella were present in one water and seven soil samples. This is the first report of the detection of Francisella-related species in soil samples by DNA-based methods. Cloning and sequencing of PCR products indicated the presence of a wide variety of Francisella-related species. Sequences from two soil samples were 99.9% similar to previously reported sequences from F. tularensis isolates and may represent new subspecies. Additional analyses with primer sets developed for detection and differentiation of F. tularensis subspecies support the finding of very close relatives to known F. tularensis strains in some samples. While the pathogenicity of these organisms is unknown, they have the potential to be detected in F. tularensis-specific assays. Similarly, a potential new subspecies of Francisella philomiragia was identified. The majority of sequences obtained, while more similar to those of Francisella than to any other genus, were phylogenetically distinct from known species and formed several new clades potentially representing new species or genera. The results of this study revise our understanding of the diversity and distribution of Francisella and have implications for tularemia epidemiology and our ability to detect bioterrorist activities.
Collapse
Affiliation(s)
- Susan M Barns
- Los Alamos National Laboratory, Bioscience Division, Mail Stop M888, Los Alamos, NM 87545, USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
Tularemia with peritonitis developed in a 50-year-old man soon after diagnosis of stomach cancer with metastasis. The ascites grew Francisella tularensis subsp. holarctica, which was identified by sequencing analysis of the 16S rDNA. The infection resolved with antimicrobial treatment. Antibodies detected 4 weeks after onset disappeared after chemotherapy-associated lymphopenia.
Collapse
Affiliation(s)
- Xiang Y Han
- University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
36
|
Versage JL, Severin DDM, Chu MC, Petersen JM. Development of a multitarget real-time TaqMan PCR assay for enhanced detection of Francisella tularensis in complex specimens. J Clin Microbiol 2004; 41:5492-9. [PMID: 14662930 PMCID: PMC309004 DOI: 10.1128/jcm.41.12.5492-5499.2003] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tularemia is the zoonotic disease caused by the gram-negative coccobacillus Francisella tularensis. Its wide distribution in the environment poses a challenge for understanding the transmission, ecology, and epidemiology of the disease. F. tularensis is also considered a potential biological weapon due to its extreme infectivity. We have developed a multitarget real-time TaqMan PCR assay capable of rapidly and accurately detecting F. tularensis in complex specimens. Targeted regions included the ISFtu2 element and the 23kDa, fopA, and tul4 genes. Analysis of the four TaqMan assays demonstrated that three (ISFtu2, 23kDa, and tul4) performed within our established criterion of a detection limit of one organism. The combined use of the three assays was highly specific, displaying no cross-reactivity with the non-Francisella bacteria tested and capable of differentially diagnosing both F. tularensis and Francisella philomiragia. When the multitarget TaqMan assay (ISFtu2, 23kDa, and tul4) was compared to culturing, using environmentally contaminated specimens, the TaqMan PCR assay was significantly more sensitive than culturing (P </= 0.05). The sensitive and specific nature of this rapid multitarget TaqMan assay provides a valuable new tool that with future evaluations can be used for analyzing clinical specimens, field samples during bioterrorism threat assessment, and samples from outbreaks and for improving our understanding of the ecology and environmental prevalence of F. tularensis.
Collapse
Affiliation(s)
- Jessica L Versage
- Bacterial Zoonoses Branch, Division of Vector-Borne Infectious Diseases, National Center for Infectious Disease, Centers for Disease Control and Prevention, Ft. Collins, Colorado 80522, USA
| | | | | | | |
Collapse
|
37
|
Haristoy X, Lozniewski A, Tram C, Simeon D, Bevanger L, Lion C. Francisella tularensis bacteremia. J Clin Microbiol 2003; 41:2774-6. [PMID: 12791928 PMCID: PMC156490 DOI: 10.1128/jcm.41.6.2774-2776.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteremia caused by Francisella tularensis is rare and has been reported mainly in the United States and infrequently in Europe. We report herein the first case of bacteremic F. tularensis pneumonia in an immunocompetent individual in southern Europe.
Collapse
Affiliation(s)
- X Haristoy
- Laboratoire de Bactériologie, Centre Hospitalier et Universitaire, Nancy, France
| | | | | | | | | | | |
Collapse
|
38
|
García Del Blanco N, Dobson ME, Vela AI, De La Puente VA, Gutiérrez CB, Hadfield TL, Kuhnert P, Frey J, Domínguez L, Rodríguez Ferri EF. Genotyping of Francisella tularensis strains by pulsed-field gel electrophoresis, amplified fragment length polymorphism fingerprinting, and 16S rRNA gene sequencing. J Clin Microbiol 2002; 40:2964-72. [PMID: 12149360 PMCID: PMC120682 DOI: 10.1128/jcm.40.8.2964-2972.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.
Collapse
Affiliation(s)
- N García Del Blanco
- Section of Microbiology and Immunology, Department of Animal Health, Faculty of Veterinary Medicine, León, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|