1
|
Cheng LW, Byadgi OV, Tsai CE, Wang PC, Chen SC. Pathogenicity and Genomic Characterization of a Novel Genospecies, Bacillus shihchuchen, of the Bacillus cereus Group Isolated from Chinese Softshell Turtle ( Pelodiscus sinensis). Int J Mol Sci 2023; 24:ijms24119636. [PMID: 37298593 DOI: 10.3390/ijms24119636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
The Chinese softshell turtle (CST; Pelodiscus sinensis) is a freshwater aquaculture species of substantial economic importance that is commercially farmed across Asia, particularly in Taiwan. Although diseases caused by the Bacillus cereus group (Bcg) pose a major threat to commercial CST farming systems, information regarding its pathogenicity and genome remains limited. Here, we investigated the pathogenicity of Bcg strains isolated in a previous study and performed whole-genome sequencing. Pathogenicity analysis indicated that QF108-045 isolated from CSTs caused the highest mortality rate, and whole-genome sequencing revealed that it was an independent group distinct from other known Bcg genospecies. The average nucleotide identity compared to other known Bcg genospecies was below 95%, suggesting that QF108-045 belongs to a new genospecies, which we named Bacillus shihchuchen. Furthermore, genes annotation revealed the presence of anthrax toxins, such as edema factor and protective antigen, in QF108-045. Therefore, the biovar anthracis was assigned, and the full name of QF108-045 was Bacillus shihchuchen biovar anthracis. In addition to possessing multiple drug-resistant genes, QF108-045 demonstrated resistance to various types of antibiotics, including penicillins (amoxicillin and ampicillin), cephalosporins (ceftifour, cephalexin, and cephazolin), and polypeptides, such as vancomycin.
Collapse
Affiliation(s)
- Li-Wu Cheng
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Omkar Vijay Byadgi
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chin-En Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Southern Taiwan Fish Diseases Research Centre, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Degree Program of Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Fish Vaccine and Diseases, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
2
|
Comas I, Cancino-Muñoz I, Mariner-Llicer C, Goig GA, Ruiz-Hueso P, Francés-Cuesta C, García-González N, González-Candelas F. Use of next generation sequencing technologies for the diagnosis and epidemiology of infectious diseases. Enferm Infecc Microbiol Clin 2021; 38 Suppl 1:32-38. [PMID: 32111363 DOI: 10.1016/j.eimc.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time, next generation sequencing technologies provide access to genomic information at a price and scale that allow their implementation in routine clinical practice and epidemiology. While there are still many obstacles to their implementation, there are also multiple examples of their major advantages compared with previous methods. Their main advantage is that a single determination allows epidemiological information on the causative microorganism to be obtained simultaneously, as well as its resistance profile, although these advantages vary according to the pathogen under study. This review discusses several examples of the clinical and epidemiological use of next generation sequencing applied to complete genomes and microbiomes and reflects on its future in clinical practice.
Collapse
Affiliation(s)
- Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España; CIBER en Epidemiología y Salud Pública, Valencia, España.
| | | | | | - Galo A Goig
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, España
| | - Paula Ruiz-Hueso
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Carlos Francés-Cuesta
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Neris García-González
- Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| | - Fernando González-Candelas
- CIBER en Epidemiología y Salud Pública, Valencia, España; Unidad Mixta "Infección y Salud Pública" FISABIO-Universitat de València, Instituto de Biología Integrativa de Sistemas, I2SysBio (CSIC-UV), Valencia, España
| |
Collapse
|
3
|
Novel Strategy for Rapidly and Safely Distinguishing Bacillus anthracis and Bacillus cereus by Use of Peptide Mass Fingerprints Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2020; 59:JCM.02358-20. [PMID: 33115846 DOI: 10.1128/jcm.02358-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to construct a rapid, high-throughput, and biosafety-compatible screening method for Bacillus anthracis and Bacillus cereus based on matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). MALDI-TOF MS coupled to ClinProTools was used to discover MALDI-TOF MS biomarker peaks and generate a classification model based on a genetic algorithm (GA) to differentiate between different Bacillus anthracis and Bacillus cereus isolates. Thirty Bacillus anthracis and 19 Bacillus cereus strains were used to construct and analyze the model, and 40 Bacillus strains were used for validation. For the GA screening model, the cross-validation values, which reflect the ability of the model to handle variability among the test spectra, and the recognition capability values, which reflect the model's ability to correctly identify its component spectra, were all 100%. This model contained 10 biomarker peaks (m/z 3,339.9, 3,396.3, 3,682.4, 5,476.7, 6,610.6, 6,680.1, 7,365.3, 7,792.4, 9,475.8, and 10,934.1) used to correctly identify 28 Bacillus anthracis and 12 Bacillus cereus isolates from 40 Bacillus isolates, with a sensitivity and specificity of 100%. With the obvious advantages of being rapid, highly accurate, and highly sensitive and having a low cost and high throughput, MALDI-TOF MS ClinProTools is a powerful and reliable tool for screening Bacillus anthracis and Bacillus cereus strains.
Collapse
|
4
|
Roonie A, Majumder S, Kingston JJ, Parida M. Molecular characterization of B. anthracis isolates from the anthrax outbreak among cattle in Karnataka, India. BMC Microbiol 2020; 20:232. [PMID: 32736522 PMCID: PMC7394690 DOI: 10.1186/s12866-020-01917-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/21/2020] [Indexed: 12/02/2022] Open
Abstract
Background Anthrax, a zoonotic disease is caused by the Gram positive bacterium Bacillus anthracis. During January 2013, an anthrax outbreak among cattle was reported in Gundlupet Taluk, neighboring Bandipur National Park and tiger reserve, India. The present study aims at the molecular identification and characterization of 12 B. anthracis isolates from this outbreak by 16S rRNA gene sequencing, screening B. anthracis specific prophages and chromosomal markers, protective antigen (pag) gene and canonical single nucleotide polymorphism (canSNP) analysis to subtype the isolates into one of the twelve globally identified clonal sub-lineages of B. anthracis. Results These isolates had identical 16S rDNA nucleotide sequences with B. anthracis specific dual peaks showing mixed base pair R (G/A) at position 1139 with visual inspection while the automated basecaller software indicated a G. Alternatively the nucleotide A at 1146 position was indicative of the 16S rDNA type 7. Multiple sequence alignment with additional 170 (16S rDNA) sequences of B. cereus sensu lato group from GenBank database revealed 28 new 16S types in addition to eleven 16S types reported earlier. The twelve B. anthracis isolates were found to harbor the four B. anthracis specific prophages (lambdaBa01, lambdaBa02, lambdaBa03, and lambdaBa04) along with its four specific loci markers (dhp 61.183, dhp 77.002, dhp 73.019, and dhp 73.017). The pag gene sequencing identified the isolates as protective antigen (PA) genotype I with phenylalanine-proline-alanine phenotype (FPA phenotype). However, sequence clustering with additional 34 pag sequences from GenBank revealed two additional missense mutations at nucleotide positions 196 bp and 869 bp of the 2294 bp pag sequence among the 5 B. cereus strains with pXO1 like plasmids. The canSNP analysis showed that the isolates belong to A.Br.Aust94 sub-lineage that is distributed geographically in countries of Asia, Africa, Europe and Australia. Conclusions The analysis of 16S rDNA sequences reiterated the earlier findings that visual inspection of electropherogram for position 1139 having nucleotide R could be used for B. anthracis identification and not the consensus sequence from base caller. The canSNP results indicated that the anthrax outbreak among cattle was caused by B. anthracis of A.Br.Aust94 sub-lineage.
Collapse
Affiliation(s)
- Akanxa Roonie
- Microbiology Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore, Karnataka, 570011, India
| | - Saugata Majumder
- Microbiology Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore, Karnataka, 570011, India
| | - Joseph J Kingston
- Microbiology Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore, Karnataka, 570011, India.
| | - Manmohan Parida
- Microbiology Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore, Karnataka, 570011, India
| |
Collapse
|
5
|
Muller J, Mohammad I, Warner S, Paskin R, Constable F, Fegan M. Genetic Diversity of Australian Bacillus anthracis Isolates Revealed by Multiple-Locus Variable-Number Tandem Repeat Analysis. Microorganisms 2020; 8:microorganisms8060886. [PMID: 32545283 PMCID: PMC7355618 DOI: 10.3390/microorganisms8060886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
Outbreaks of anthrax occur sporadically in Australia and most commonly in the "anthrax belt", a region which extends from southern Queensland through the centre of New South Wales and into northern Victoria. Little is known about the epidemiological links between Bacillus anthracis isolates taken from different outbreaks and the diversity of strains within Australia. We used multiple-locus variable-number tandem repeat analysis employing 25 markers (MLVA25) to genotype 99 B. anthracis isolates from an archival collection of Australian isolates. MLVA25 genotyping revealed eight unique genotypes which clustered within the previously defined A3 genotype of B. anthracis. Genotyping of B. anthracis strains from outbreaks of disease in Victoria identified the presence of multiple genotypes associated with these outbreaks. The geographical distribution of genotypes within Australia suggests that a single genotype was introduced into the eastern states of Australia, followed by the spread and localised differentiation of the pathogen (MLVA25 genotypes MG1-MG6) throughout the anthrax belt. In contrast, unexplained occurrences of disease in areas outside of this anthrax belt which are associated with different genotypes, (MLVA25 genotypes MG7 and MG8) indicate separate introductions of B. anthracis into Australia.
Collapse
Affiliation(s)
- Janine Muller
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
- Correspondence:
| | - Ilhan Mohammad
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Simone Warner
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Victoria 3085, Australia;
| | - Roger Paskin
- OMNI Animal Health Consultancy, 6/35 McLaren Street, Mount Barker, South Australia 5251, Australia;
| | - Fiona Constable
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| | - Mark Fegan
- Agriculture Victoria, Department of Jobs Precincts and Regions, Agribio, La Trobe University, 5 Ring Road, Bundoora, Victoria 3083, Australia; (I.M.); (F.C.); (M.F.)
| |
Collapse
|
6
|
Pillai SP, Prentice KW, Ramage JG, DePalma L, Sarwar J, Parameswaran N, Bell M, Plummer A, Santos A, Singh A, Pillai CA, Thirunavvukarasu N, Manickam G, Avila JR, Sharma SK, Hoffmaster A, Anderson K, Morse SA, Venkateswaran KV, Hodge DR. Rapid Presumptive Identification of Bacillus anthracis Isolates Using the Tetracore RedLine Alert™ Test. Health Secur 2020; 17:334-343. [PMID: 31433282 DOI: 10.1089/hs.2019.0038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A comprehensive laboratory evaluation of the Tetracore RedLine Alert test, a lateral flow immunoassay (LFA) for the rapid presumptive identification of Bacillus anthracis, was conducted at 2 different test sites. The study evaluated the sensitivity of this assay using 16 diverse strains of B. anthracis grown on sheep blood agar (SBA) plates. In addition, 83 clinically relevant microorganisms were tested to assess the specificity of the RedLine Alert test. The results indicated that the RedLine Alert test for the presumptive identification of B. anthracis is highly robust, specific, and sensitive. RedLine Alert is a rapid test that has applicability for use in a clinical setting for ruling-in or ruling-out nonhemolytic colonies of Bacillus spp. grown on SBA medium as presumptive isolates of B. anthracis.
Collapse
Affiliation(s)
- Segaran P Pillai
- Segaran P. Pillai, PhD, is Director, Office of Laboratory Science and Safety, FDA Office of the Commissioner, Department of Health and Human Services, Silver Spring, MD
| | - Kristin W Prentice
- Kristin W. Prentice, MS, is an Associate, and Lindsay DePalma, MS, is a Staff Life Scientist; both at Booz Allen Hamilton, Rockville, MD
| | - Jason G Ramage
- Jason G. Ramage, MS, MBA, PMP, is Assistant Vice Chancellor for Research and Innovation and Director of Research Compliance, University of Arkansas, Fayetteville, AR
| | - Lindsay DePalma
- Kristin W. Prentice, MS, is an Associate, and Lindsay DePalma, MS, is a Staff Life Scientist; both at Booz Allen Hamilton, Rockville, MD
| | - Jawad Sarwar
- Jawad Sarwar, MS, is a Senior Research Scientist, and Nishanth Parameswaran is a Research Scientist; both at Omni Array Biotechnology, Rockville, MD
| | - Nishanth Parameswaran
- Jawad Sarwar, MS, is a Senior Research Scientist, and Nishanth Parameswaran is a Research Scientist; both at Omni Array Biotechnology, Rockville, MD
| | - Melissa Bell
- Melissa Bell, MS, is a Microbiologist, and Alex Hoffmaster, PhD, is Chief, Bacterial Special Pathogens Branch; both in the National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrea Plummer
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - Alan Santos
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - Ajay Singh
- Ajay Singh, PhD, is a Research Scientist, Laulima Government Solutions, Contractor Support to USAMRICD Neurobiological Toxicology Branch, Analytical Toxicology Division, Aberdeen Proving Ground, MD
| | - Christine A Pillai
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Nagarajan Thirunavvukarasu
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Gowri Manickam
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Julie R Avila
- Julie R. Avila, MS, is a Scientific Associate, Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| | - Shashi K Sharma
- Christine A. Pillai, Nagarajan Thirunavvukarasu, PhD, and Gowri Manickam, PhD, are ORISE Fellow Research Scientists, and Shashi K. Sharma, PhD, is a Research Microbiologist; all with the FDA Center for Food Safety and Applied Nutrition, Molecular Methods Development Branch, Division of Microbiology, Office of Regulatory Science, College Park, MD
| | - Alex Hoffmaster
- Melissa Bell, MS, is a Microbiologist, and Alex Hoffmaster, PhD, is Chief, Bacterial Special Pathogens Branch; both in the National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA
| | - Kevin Anderson
- Kevin Anderson, PhD, and David R. Hodge, PhD, are Program Managers, Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| | - Stephen A Morse
- Stephen A. Morse, MSPH, PhD, is a Senior Advisor, CDC Division of Select Agents and Toxins, and is currently with IHRC, Inc., Atlanta, GA
| | - Kodumudi Venkat Venkateswaran
- Andrea Plummer and Alan Santos are Microbiologists, and Kodumudi Venkat Venkateswaran, PhD, is Chief Scientist; all at Tetracore, Inc., Rockville, MD
| | - David R Hodge
- Kevin Anderson, PhD, and David R. Hodge, PhD, are Program Managers, Science and Technology Directorate, US Department of Homeland Security, Washington, DC
| |
Collapse
|
7
|
Carroll LM, Wiedmann M, Kovac J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. mBio 2020; 11:e00034-20. [PMID: 32098810 PMCID: PMC7042689 DOI: 10.1128/mbio.00034-20] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
The Bacillus cereus group comprises numerous closely related species, including bioterrorism agent B. anthracis, foodborne pathogen B. cereus, and biopesticide B. thuringiensis Differentiating organisms capable of causing illness or death from those used in industry is essential for risk assessment and outbreak preparedness. However, current species definitions facilitate species-phenotype incongruences, particularly when horizontally acquired genes are responsible for a phenotype. Using all publicly available B. cereus group genomes (n = 2,231), we show that current species definitions lead to overlapping genomospecies clusters, in which 66.2% of genomes belong to multiple genomospecies at a conventional 95 average nucleotide identity (ANI) genomospecies threshold. A genomospecies threshold of ≈92.5 ANI is shown to reflect a natural gap in genome similarity for the B. cereus group, and medoid genomes identified at this threshold are shown to yield resolvable genomospecies clusters with minimal overlap (six of 2,231 genomes assigned to multiple genomospecies; 0.269%). We thus propose a nomenclatural framework for the B. cereus group which accounts for (i) genomospecies using resolvable genomospecies clusters obtained at ≈92.5 ANI, (ii) established lineages of medical importance using a formal collection of subspecies names, and (iii) heterogeneity of clinically and industrially important phenotypes using a formalized and extended collection of biovar terms. We anticipate that the proposed nomenclature will remain interpretable to clinicians, without sacrificing genomic species definitions, which can in turn aid in pathogen surveillance; early detection of emerging, high-risk genotypes; and outbreak preparedness.IMPORTANCE Historical species definitions for many prokaryotes, including pathogens, have relied on phenotypic characteristics that are inconsistent with genome evolution. This scenario forces microbiologists and clinicians to face a tradeoff between taxonomic rigor and clinical interpretability. Using the Bacillus cereus group as a model, a conceptual framework for the taxonomic delineation of prokaryotes which reconciles genomic definitions of species with clinically and industrially relevant phenotypes is presented. The nomenclatural framework outlined here serves as a model for genomics-based bacterial taxonomy that moves beyond arbitrarily set genomospecies thresholds while maintaining congruence with phenotypes and historically important species names.
Collapse
Affiliation(s)
- Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
8
|
Vidic J, Chaix C, Manzano M, Heyndrickx M. Food Sensing: Detection of Bacillus cereus Spores in Dairy Products. BIOSENSORS 2020; 10:E15. [PMID: 32106440 PMCID: PMC7146628 DOI: 10.3390/bios10030015] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/14/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Milk is a source of essential nutrients for infants and adults, and its production has increased worldwide over the past years. Despite developments in the dairy industry, premature spoilage of milk due to the contamination by Bacillus cereus continues to be a problem and causes considerable economic losses. B. cereus is ubiquitously present in nature and can contaminate milk through a variety of means from the farm to the processing plant, during transport or distribution. There is a need to detect and quantify spores directly in food samples, because B. cereus might be present in food only in the sporulated form. Traditional microbiological detection methods used in dairy industries to detect spores show limits of time (they are time consuming), efficiency and sensitivity. The low level of B. cereus spores in milk implies that highly sensitive detection methods should be applied for dairy products screening for spore contamination. This review describes the advantages and disadvantages of classical microbiological methods used to detect B. cereus spores in milk and milk products, related to novel methods based on molecular biology, biosensors and nanotechnology.
Collapse
Affiliation(s)
- Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Carole Chaix
- Institut des Sciences Analytiques, UMR 5280 CNRS, Université de Lyon, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France;
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, via Sondrio 2/A, 33100 Udine, Italy;
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium;
- Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
9
|
Zhang E, Zhang H, He J, Li W, Wei J. Genetic diversity of Bacillus anthracis Ames lineage strains in China. BMC Infect Dis 2020; 20:140. [PMID: 32059712 PMCID: PMC7023782 DOI: 10.1186/s12879-020-4867-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anthrax is an endemic disease that persists in the rural regions of China. The global genetic population structure of B.anthracis has also been defined by the canonical single-nucleotide polymorphisms (canSNP) and multiple-locus variable-number tandem repeat analysis (MLVA). Five canSNP lineages were found in China, and the A.Br.Ames lineage has been the second predominant group in recent years in China. The objective of this study was to reveal genetic diversity of the Ames lineage strains by MLVA. METHODS Two molecular typing methods, canSNP and MLVA with 15markers were used to study the genetic relationship among the Ames lineage strains. The outbreak information associated with these strains was also collected and investigated. RESULTS From 2007 to 2018, a total of 21 human anthrax infection outbreaks (68 patients) associated with B. anthracis Ames lineage strains were reported in China. Ames lineage strain-associated human anthrax is mainly distributed in the northern part of China, including the provinces of Inner Mongolia, Liaoning, Gansu, and Xinjiang. In the study, a total of 30 Ames lineage strains were included and 10 MLVA15 genotypes were identified. These strains were mainly found in northeast China, Inner Mongolia and Liaoning. In recent years, the Ames lineage strains were isolated in the two provinces every year. The 18 Ames lineage strains isolated from Inner Mongolia were divided into eight MLVA15 genotypes. From 2010 to 2015, there were continuous reports of outbreaks in Keyouzhongqi County, Inner Mongolia, and the strains that were isolated annually in succession belonged to the MLVA15-30 genotype. CONCLUSIONS The Ames lineage strains are widely distributed in northern China. Their genetic diversity can be illustrated by the results of the MLVA. The genetic characteristics of the Ames lineage strains from outbreaks in different provinces varied. In some areas, human anthrax outbreaks occurred annually in succession, and these related strains grouped together. These observations indicate that the local environment was persistently contaminated with B. anthracis spores, vaccination of livestock should become the fundamental control measure in the areas.
Collapse
Affiliation(s)
- Enmin Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Huijuan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Jinrong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Jianchun Wei
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China.
| |
Collapse
|
10
|
Abstract
Deliberate dissemination of a biological agent via several different routes presents the latest challenge to global public health security. Novel pathogens and transmission methods can easily be exploited to cause disease outbreaks. Advancements in molecular biology that make it possible to genetically modify, edit, or disrupt the genome of pathogens increase the disease risk of an accidental or intentional release of pathogens with pandemic potential. The occurrence of a disease at more than an endemic level may stimulate an investigation to determine the source of the disease, who has the disease, when it occurred, and how it spreads. When intentional release of pathogens is suspected, investigators have the additional task of attributing the outbreak not only to a pathogen but also to a human source. The deliberate nature of such dissemination may be obvious. However, some forms of bioterrorism may be more covert, requiring molecular methods to uncover. The field of microbial forensics emerged following the anthrax attack in the United States in 2001 to extend epidemiologic principles to aid in the investigation of bioterrorism incidents. Microbial forensics combines epidemiology with genomic and microbiologic methods, to identify, characterize, and ascribe the cause of an incident resulting from the intentional or unintentional release of a harmful pathogen. Unlike routine epidemiologic investigations, microbial forensic investigations are undertaken when there is a potential crime due to the release of a pathogen with disease-causing potential. The investigation is conducted to attribute cause to a source based on indisputable evidence and is used to support criminal charges against the perpetrator(s). However, because bioterrorism may be unannounced, the initial investigation will start the same as to any public health incident of concern. This chapter discusses how epidemiology integrated with laboratory science can be used to identify the source of diseases caused by microorganisms or toxins—especially for attribution purposes.
Collapse
|
11
|
Kumar M, Seema K, Prasad A, Sharma AK, Sherwal BL. Molecular confirmation of the circulating Bacillus anthracis during outbreak of anthrax in different villages of Simdega District, Jharkhand. Indian J Med Microbiol 2019; 37:116-119. [PMID: 31424022 DOI: 10.4103/ijmm.ijmm_19_111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims and Objectives Molecular confirmation of the circulating Bacillus anthracis during outbreak of anthrax in different villages of Simdega district, Jharkhand, India. Materials and Methods Blood samples with swabs from skin lesions (eschar) were collected from the suspected cases of Anthrax from October 2014 to June 2016 from Simdega district, Jharkhand. All the swabs were inoculated on polymyxin lysozyme EDTA thallous acetate media, nutrient agar media as well as 5% sheep blood agar media. Gamma-phage lysis was done. DNA extraction was done using a QIAamp DNA Mini Kit (QIAGEN, Valencia, CA, USA) and subjected to polymerase chain reaction (PCR) using anthrax-specific primers. Results On Gram and acid fast staining, purple rods and pink-coloured anthrax spores were detected. Capsular and M'Fadyean staining was done. Gamma-phage lysed B. anthracis culture. Of 39 suspected cases, 8 were culture and PCR positive and showed gamma-phage lysis. 3 deaths were reported. Discussion and Conclusion The conventional and real-time PCR methods are suitable for both the clinical and the epidemiological practice.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Microbiology, RIMS, Ranchi, Jharkhand, India
| | - Kumari Seema
- Department of Microbiology, RIMS, Ranchi, Jharkhand, India
| | - Amber Prasad
- Department of Microbiology, RIMS, Ranchi, Jharkhand, India
| | | | | |
Collapse
|
12
|
Pisarenko SV, Eremenko EI, Ryazanova AG, Kovalev DA, Buravtseva NP, Aksenova LY, Evchenko AY, Semenova OV, Bobrisheva OV, Kuznetsova IV, Golovinskaya TM, Tchmerenko DK, Kulichenko AN, Morozov VY. Genotyping and phylogenetic location of one clinical isolate of Bacillus anthracis isolated from a human in Russia. BMC Microbiol 2019; 19:165. [PMID: 31315564 PMCID: PMC6637652 DOI: 10.1186/s12866-019-1542-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/11/2019] [Indexed: 12/05/2022] Open
Abstract
Background Anthrax is a zoonotic disease caused by the Gram-positive bacterium Bacillus anthracis. In Russia, there are more than 35 thousand anthrax stationary unfavourable sites. At the same time, there is very little published information about the isolates of B. anthracis from the territory of Russia. In this study, we report the use of whole genome sequencing (WGS) and bioinformatics analysis to characterize B. anthracis 81/1 strain isolated in Russia in 1969 from a person during an outbreak of the disease in the Stavropol region. Results We used 232 B. anthracis genomes, which are currently available in the GenBank database, to determine the place of the Russian isolate in the global phylogeny of B. anthracis. The studied strain was characterized by PCR-based genetic methods, such as Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA), canonical single nucleotide polymorphisms (canSNP), as well as the method of full-genomic analysis of nucleotide polymorphisms (wgSNP). The results indicate that the Russian B. anthracis 81/1 strain belongs to Trans-Eurasion (TEA) group, the most representative in the world. Conclusions In this study, the full genomic sequence of virulent B. anthracis strain from Russia was characterized for the first time. As a result of complex phylogenetic analysis, the place of this isolate was determined in the global phylogenetic structure of the B. anthracis population, expanding our knowledge of anthrax phylogeography in Russia. Electronic supplementary material The online version of this article (10.1186/s12866-019-1542-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergey V Pisarenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia.
| | - Eugene I Eremenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Alla G Ryazanova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Dmitry A Kovalev
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Nina P Buravtseva
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Lyudmila Yu Aksenova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Anna Yu Evchenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Olga V Semenova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Olga V Bobrisheva
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Irina V Kuznetsova
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Tatyana M Golovinskaya
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Dmitriy K Tchmerenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Alexander N Kulichenko
- Stavropol Research Anti-Plague Institute, 13-15 Sovetskaya Str, Stavropol, 355035, Russia
| | - Vitaliy Yu Morozov
- Stavropol State Agrarian University, Stavropol, 355017, Russian Federation
| |
Collapse
|
13
|
Whole-genome sequencing of Neisseria gonorrhoeae in a forensic transmission case. Forensic Sci Int Genet 2019; 42:141-146. [PMID: 31319352 DOI: 10.1016/j.fsigen.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 11/21/2022]
Abstract
Molecular epidemiology and phylogenetic analyses are frequently used in the investigation of viral transmission cases in forensic contexts. Here, we present the methods and results of the analysis of a bacterial transmission episode in an alleged child abuse case using complete genome sequences obtained by high-throughput sequencing (HTS) methods. We obtained genomes of Neisseria gonorrhoeae from the victim, the suspect, and 29 unrelated controls. The analysis of the genomes revealed that the victim and suspect isolates had identical sequences in both the bacterial chromosome and the single plasmid present in them. One of the local controls was very similar (differing in only 2 SNPs) to the case sequences, but the remaining controls were very divergent. Additional cases of identity and very high similarity among controls were observed occasionally, pointing at recent transmission cases. These results were more discriminative than the previous molecular epidemiology analyses performed at the hospital's Microbiology Service, as Multi-Locus Sequence Typing (MLST) could not distinguish between the suspect/victim and the controls isolates, and Pulse Field Gel Electrophoresis (PFGE) was not able to distinguish between the suspect/victim and one of the local controls. These results lead us to conclude that complete bacterial genome sequences obtained with HTS technologies may be a valuable tool for establishing recent transmission cases and, although more studies are needed, they have a great potential for being used in forensic analyses.
Collapse
|
14
|
Eremenko EI, Ryazanova AG, Pisarenko SV, Aksenova LY, Semenova OV, Koteneva EA, Tsygankova OI, Kovalev DA, Golovinskaya TM, Chmerenko DK, Kulichenko AN. Comparative Analysis of Genotyping Methods for Bacillus anthracis. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541901006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Zhang H, Zhang E, He J, Li W, Wei J. Genetic characteristics of Bacillus anthracis isolated from northwestern China from 1990 to 2016. PLoS Negl Trop Dis 2018; 12:e0006908. [PMID: 30418972 PMCID: PMC6258423 DOI: 10.1371/journal.pntd.0006908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/26/2018] [Accepted: 10/08/2018] [Indexed: 11/19/2022] Open
Abstract
Anthrax is a global re-emerging zoonotic disease and is an endemic disease in China, especially in rural regions. In this study, the general characteristics of human anthrax outbreaks that occurred in areas of northwestern China over the past decade have been described. Meanwhile, the genetic characteristics of Bacillus anthracis isolated from these areas from 1990 to 2016 were analyzed by means of canonical single-nucleotide polymorphism (canSNP) analysis and multilocus variable-number tandem repeat analysis (MLVA) with 15 markers. Five sublineages/subgroups, namely, A.Br.001/002, A.Br.Vollum, A.Br.Aust94, A.Br.Ames and A.Br.008/009, were detected by using 13 canSNP sites. All of the sublineages were found in Xinjiang province, while one sublineage was found in Shaanxi, two in Gansu, three in Qinghai and four in Inner Mongolia. However, the geographical distribution of the B. anthracis populations exhibited different canSNP characteristics from those of the strains isolated before 1990 in China. In contrast to previous data, the A.Br.Ames subgroup was also observed to be scattered from Inner Mongolia to other provinces. All 106 strains were assigned to 36 MLVA15 genotypes, and 21 of these types were first observed in this study. The strains collected from anthrax outbreaks in recent decade were classified as subgroups A.Br.001/002 and A.Br.Ames and identified as genotypes MLVA15-28, MLVA15-30, MLVA15-31, MLVA15-38, MLVA15-CHN3, and MLVA15-CHN18. By canSNP analysis and MLVA, we found that the diversification of MLVA genotypes and the geographical distribution of B. anthracis populations is gradually becoming balanced across northwestern China. This study also provides preliminary survey results regarding the population diversity of B. anthracis in China, which will help promote the prevention and control of this important disease. In this study, the general characteristics of human anthrax outbreaks that occurred in northwestern China over the past decade were described. Meanwhile, the genetic characteristics of Bacillus anthracis isolated from these areas from 1990 to 2016 were analyzed with the canSNP and MLVA15 methods. Our results showed a diversity of MLVA genotypes. We also observed gradual balancing of the geographical distribution of B. anthracis population in northwestern China according to the canSNP analysis. In particular, the A.Br.Ames subgroup now seems to be scattered from Inner Mongolia to other provinces, in contrast to the data before 1990. This study also provides preliminary survey results on the population diversity of B. anthracis in China, which will help to promote the prevention and control of this important disease.
Collapse
Affiliation(s)
- Huijuan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Enmin Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Jinrong He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Jianchun Wei
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
- * E-mail:
| |
Collapse
|
16
|
Minogue TD, Koehler JW, Stefan CP, Conrad TA. Next-Generation Sequencing for Biodefense: Biothreat Detection, Forensics, and the Clinic. Clin Chem 2018; 65:383-392. [PMID: 30352865 DOI: 10.1373/clinchem.2016.266536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/22/2018] [Indexed: 11/06/2022]
Abstract
BACKGROUND Next-generation sequencing (NGS) is revolutionizing a variety of molecular biology fields including bioforensics, biosurveillance, and infectious disease diagnostics. For pathogen detection, the ability to sequence all nucleic acids in a sample allows near limitless multiplexability, free from a priori knowledge regarding an etiologic agent as is typically required for targeted molecular assays such as real-time PCR. Furthermore, sequencing capabilities can generate in depth genomic information, allowing detailed molecular epidemiological studies and bioforensics analysis, which is critical for source agent identification in a biothreat outbreak. However, lack of analytical specificity, inherent to NGS, presents challenges for regulated applications such as clinical diagnostics and molecular attribution. CONTENT Here, we discuss NGS applications in the context of preparedness and biothreat readiness. Specifically, we investigate current and future applications of NGS technologies to affect the fields of biosurveillance, bioforensics, and clinical diagnostics with specific focus on biodefense. SUMMARY Overall, there are many advantages to the implementation of NGS for preparedness and readiness against biowarfare agents, from forensics to diagnostics. However, appropriate caveats must be associated with any technology. This includes NGS. While NGS is not the panacea replacing all molecular techniques, it will greatly enhance the ability to detect, characterize, and diagnose biowarfare agents, thus providing an excellent addition to the biodefense toolbox of biosurveillance, bioforensics, and biothreat diagnosis.
Collapse
Affiliation(s)
- Timothy D Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD.
| | - Jeffrey W Koehler
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Christopher P Stefan
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Turner A Conrad
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| |
Collapse
|
17
|
Investigation and source-tracing of an anthrax outbreak in Gansu Province, China. PLoS One 2018; 13:e0203267. [PMID: 30161194 PMCID: PMC6117022 DOI: 10.1371/journal.pone.0203267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/18/2018] [Indexed: 11/19/2022] Open
Abstract
Anthrax is an endemic disease in China. Cases are reported every year, especially in the northwestern areas. In August 2016, an outbreak of 21 cutaneous anthrax cases was reported in Min County, Gansu Province, China. In this study, the general characteristics of the anthrax outbreak are described. Two molecular typing methods, canonical single-nucleotide polymorphism (canSNP) and multiple-locus variable-number tandem repeat analysis with 15 markers (MLVA15), were used to investigate the possible source of transmission and to identify the genetic relationship among the strains/samples isolated in this outbreak as well as previous isolates. In this outbreak, all patients were infected through contact with diseased livestock or contaminated animal products. Livestock had been introduced into the local area shortly before the outbreak from Gannan Prefecture (in Gansu Province), Sichuan and Qinghai Provinces. In the molecular typing analysis, there were two canSNP subgroups found in Gansu, A.Br.001/002 and A.Br.Ames, and five MLVA15 genotypes were observed. The strains collected from the anthrax outbreak in Min County in 2016 belonged to the A.Br.001/002 canSNP subgroup and the MLVA15-28 and MLVA15-30 genotype. Strains previously isolated from Sichuan, Inner Mongolia and Maqu County (in Gannan Prefecture, Gansu Province) were clustered with these outbreak-related strains/samples according to the MLVA15-30 genotype. The MLVA15-28 genotype was found in strains isolated from Gansu and Xinjiang in previous studies. Combining the epidemiological investigation and molecular typing results, we conclude that the patients in this outbreak were infected by a local pathogen present in the adjoining area of Gansu, Sichuan and Qinghai Provinces.
Collapse
|
18
|
Pilo P, Frey J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. INFECTION GENETICS AND EVOLUTION 2018; 64:115-125. [PMID: 29935338 DOI: 10.1016/j.meegid.2018.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
Bacillus anthracis, the etiological agent of anthrax, procures its particular virulence by a capsule and two AB type toxins: the lethal factor LF and the edema factor EF. These toxins primarily disable immune cells. Both toxins are translocated to the host cell by the adhesin-internalin subunit called protective antigen PA. PA enables LF to reach intra-luminal vesicles, where it remains active for long periods. Subsequently, LF translocates to non-infected cells, leading to inefficient late therapy of anthrax. B. anthracis undergoes slow evolution because it alternates between vegetative and long spore phases. Full genome sequence analysis of a large number of worldwide strains resulted in a robust evolutionary reconstruction of this bacterium, showing that B. anthracis is split in three main clades: A, B and C. Clade A efficiently disseminated worldwide underpinned by human activities including heavy intercontinental trade of goat and sheep hair. Subclade A.Br.WNA, which is widespread in the Northern American continent, is estimated to have split from clade A reaching the Northern American continent in the late Pleistocene epoch via the former Bering Land Bridge and further spread from Northwest southwards. An alternative hypothesis is that subclade A.Br.WNA. evolved from clade A.Br.TEA tracing it back to strains from Northern France that were assumingly dispatched by European explorers that settled along the St. Lawrence River. Clade B established mostly in Europe along the alpine axis where it evolved in association with local cattle breeds and hence displays specific geographic subclusters. Sequencing technologies are also used for forensic applications to trace unintended or criminal acts of release of B. anthracis. Under natural conditions, B. anthracis generally affects domesticated and wild ruminants in arid ecosystems. The more recently discovered B. cereus biovar anthracis spreads in tropical forests, where it threatens particularly endangered primate populations.
Collapse
Affiliation(s)
- Paola Pilo
- Institute of Veterinary Bacteriology, Vetsuisse, University of Bern, Bern, Switzerland.
| | - Joachim Frey
- Dean's Office, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
19
|
Sensitive and Specific Recombinase Polymerase Amplification Assays for Fast Screening, Detection, and Identification of Bacillus anthracis in a Field Setting. Appl Environ Microbiol 2018; 84:AEM.00506-18. [PMID: 29602786 PMCID: PMC5960963 DOI: 10.1128/aem.00506-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023] Open
Abstract
Four isothermal recombinase polymerase amplification (RPA) assays were developed for fast in-field identification of Bacillus anthracis The RPA assays targeted three specific sequences (i.e., the BA_5345 chromosomal marker, the lethal factor lef [from pXO1], and the capsule-biosynthesis-related capA [from pXO2]) and a conserved sequence in the adenylate cyclase gene (adk) for the Bacillus cereus group. B. anthracis-specific RPA assays were tested first with purified genomic DNAs (n = 60), including 11 representatives of B. anthracis, and then with soil (n = 8) and white powder (n = 8) samples spiked with inactivated B. anthracis spores and/or other biological agents. The RPA assays were also tested in another laboratory facility, which blindly provided DNA and lysate samples (n = 30, including 20 B. anthracis strains). RPA assays displayed 100% specificity and sensitivity. The hands-off turnaround times at 42°C ranged from 5 to 6 min for 102 genomic copies. The analytical sensitivity of each RPA assay was ∼10 molecules per reaction. In addition, the BA_5345 and adk RPA assays were assessed under field conditions with a series of surface swabs (n = 13, including 11 swabs contaminated with B. thuringiensis spores) that were blindly brought to the field laboratory by a chemical, biological, radiological, and nuclear (CBRN) sampling team. None of the 13 samples, except the control, tested positive for B. anthracis, and all samples that had been harvested from spore-contaminated surfaces tested positive with the adk RPA assay. All three B. anthracis-specific RPA assays proved suitable for rapid and reliable identification of B. anthracis and therefore could easily be used by first responders under field conditions to quickly discriminate between a deliberate release of B. anthracis spores and a hoax attack involving white powder.IMPORTANCE In recent decades, particularly following the 11 September 2001 and Amerithrax attacks, the world has experienced attempts to sow panic and chaos in society through thousands of white-powder copycats using household powders to mimic real bioterrorism attacks. In such circumstances, field-deployable detection methods are particularly needed to screen samples collected from the scene. The aim is to test the samples directly using a fast and reliable assay for detection of the presence of B. anthracis While this would not preclude further confirmatory tests from being performed in reference laboratories, it would bring useful, timely, and relevant information to local crisis managers and help them make appropriate decisions without having to wait for quantitative PCR results (with turnaround times of a few hours) or phenotypic identification and sequencing (with turnaround times of a few days). In the current investigation, we developed a set of isothermal RPA assays for the rapid screening and identification of B. anthracis in powders and soil samples, with the purpose of discriminating a deliberate release of B. anthracis spores from a hoax attack involving white powder; this would also apply to dispersion by spraying of aerosolized forms of B. anthracis Further work is now ongoing to confirm the first observations and validate the on-site use of these assays by first responders.
Collapse
|
20
|
Timofeev VS, Bakhteeva IV, Dyatlov IA. Genotyping of Bacillus anthracis and Closely Related Microorganisms. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418010118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Rapid identification of Bacillus anthracis by real-time PCR with dual hybridization probes in environmental swabs. Mol Cell Probes 2017; 37:22-27. [PMID: 29113932 DOI: 10.1016/j.mcp.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/21/2022]
Abstract
In the present study, we report the development of a real-time PCR assay for the identification of Bacillus anthracis, based on the amplification of a unique chromosomal marker, the E4 sequence, with dual hybridization probes. The assay was evaluated using a panel of ten B. anthracis strains, two B. anthracis isolates from human clinical samples, 12 B. anthracis environmental swabs and 40 non- B. anthracis strains. All 12 B. anthracis strains and clinical isolates were correctly detected, and the method did not show cross-reactions with other micro-organisms. Likewise, the E4 sequence was not found in those strains of B. thuringiensis and B. cereus closely related (homology > 90%) to B. anthracis by computer analysis. On the other hand, this molecular assay showed a high analytical sensitivity, 3.5 genome equivalents per reaction at 95% probability. Furthermore, the real-time PCR assay allowed sequence-specific detection of the amplicon (melting peak with a Tm of 63.5 °C ± 0.5 °C) without post-amplification procedures, which offers an additional advantage over other qPCR assays for B. anthracis detection. Finally, the performance of the method was successfully evaluated in 12 environmental samples. In summary, we have developed a rapid and specific method for the molecular identification of Bacillus anthracis in environmental samples.
Collapse
|
22
|
Monfils AK, Powers KE, Marshall CJ, Martine CT, Smith JF, Prather LA. Natural History Collections: Teaching about Biodiversity Across Time, Space, and Digital Platforms. SOUTHEAST NAT 2017. [DOI: 10.1656/058.016.0sp1008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Karen E. Powers
- Biology Department, Box 6931, Radford University, Radford, VA 24142
| | | | | | - James F. Smith
- Department of Biological Sciences Boise State University, 1910 University Drive, Boise, ID, 83725
| | - L. Alan Prather
- Herbarium and Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
23
|
González AA, Rivera-Pérez JI, Toranzos GA. Forensic Approaches to Detect Possible Agents of Bioterror. Microbiol Spectr 2017; 5:10.1128/microbiolspec.emf-0010-2016. [PMID: 28452296 PMCID: PMC11687459 DOI: 10.1128/microbiolspec.emf-0010-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/20/2022] Open
Abstract
Many biological agents have been strategic pathogenic agents throughout history. Some have even changed history as a consequence of early discoveries of their use as weapons of war. Many of these bioagents can be easily isolated from the environment, and some have recently been genetically manipulated to become more pathogenic for biowarfare. However, it is difficult to determine accidental outbreaks of disease from intentional exposures. In this review, we examine how molecular tools have been used in combination with forensic research to resolve cases of unusual outbreaks and trace the source of the biocrime. New technologies are also discussed in terms of their crucial role impacting forensic science. The anthrax event of 2001 serves as an example of the real threat of bioterrorism and the employment of bioagents as weapons against a population. The Amerithrax investigation has given us lessons of the highest resolution possible with new technologies capable of distinguishing isolates at the base-pair level of sensitivity. In addition, we discuss the implications of proper sanitation to avoid waterborne diseases. The use of new methods in forensic science and health-related surveillance will be invaluable in determining the source of any new disease outbreak, and these data will allow for a quick response to any type of public health threat, whether accidental or purposely initiated.
Collapse
Affiliation(s)
- Alfredo A González
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930
| | - Jessica I Rivera-Pérez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930
| | - Gary A Toranzos
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00930
| |
Collapse
|
24
|
Olm MR, Butterfield CN, Copeland A, Boles TC, Thomas BC, Banfield JF. The Source and Evolutionary History of a Microbial Contaminant Identified Through Soil Metagenomic Analysis. mBio 2017; 8:e01969-16. [PMID: 28223457 PMCID: PMC5358914 DOI: 10.1128/mbio.01969-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/25/2017] [Indexed: 12/21/2022] Open
Abstract
In this study, strain-resolved metagenomics was used to solve a mystery. A 6.4-Mbp complete closed genome was recovered from a soil metagenome and found to be astonishingly similar to that of Delftia acidovorans SPH-1, which was isolated in Germany a decade ago. It was suspected that this organism was not native to the soil sample because it lacked the diversity that is characteristic of other soil organisms; this suspicion was confirmed when PCR testing failed to detect the bacterium in the original soil samples. D. acidovorans was also identified in 16 previously published metagenomes from multiple environments, but detailed-scale single nucleotide polymorphism analysis grouped these into five distinct clades. All of the strains indicated as contaminants fell into one clade. Fragment length anomalies were identified in paired reads mapping to the contaminant clade genotypes only. This finding was used to establish that the DNA was present in specific size selection reagents used during sequencing. Ultimately, the source of the contaminant was identified as bacterial biofilms growing in tubing. On the basis of direct measurement of the rate of fixation of mutations across the period of time in which contamination was occurring, we estimated the time of separation of the contaminant strain from the genomically sequenced ancestral population within a factor of 2. This research serves as a case study of high-resolution microbial forensics and strain tracking accomplished through metagenomics-based comparative genomics. The specific case reported here is unusual in that the study was conducted in the background of a soil metagenome and the conclusions were confirmed by independent methods.IMPORTANCE It is often important to determine the source of a microbial strain. Examples include tracking a bacterium linked to a disease epidemic, contaminating the food supply, or used in bioterrorism. Strain identification and tracking are generally approached by using cultivation-based or relatively nonspecific gene fingerprinting methods. Genomic methods have the ability to distinguish strains, but this approach typically has been restricted to isolates or relatively low-complexity communities. We demonstrate that strain-resolved metagenomics can be applied to extremely complex soil samples. We genotypically defined a soil-associated bacterium and identified it as a contaminant. By linking together snapshots of the bacterial genome over time, it was possible to estimate how long the contaminant had been diverging from a likely source population. The results are congruent with the derivation of the bacterium from a strain isolated in Germany and sequenced a decade ago and highlight the utility of metagenomics in strain tracking.
Collapse
Affiliation(s)
| | | | - Alex Copeland
- Joint Genome Institute, Walnut Creek, California, USA
| | | | | | | |
Collapse
|
25
|
Liu DL, Wei JC, Chen QL, Guo XJ, Zhang EM, He L, Liang XD, Ma GZ, Zhou TC, Yin WW, Liu W, Liu K, Shi Y, Ji JJ, Zhang HJ, Ma L, Zhang FX, Zhang ZK, Zhou H, Yu HJ, Kan B, Xu JG, Liu F, Li W. Genetic source tracking of an anthrax outbreak in Shaanxi province, China. Infect Dis Poverty 2017; 6:14. [PMID: 28093076 PMCID: PMC5240257 DOI: 10.1186/s40249-016-0218-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/07/2016] [Indexed: 11/27/2022] Open
Abstract
Background Anthrax is an acute zoonotic infectious disease caused by the bacterium known as Bacillus anthracis. From 26 July to 8 August 2015, an outbreak with 20 suspected cutaneous anthrax cases was reported in Ganquan County, Shaanxi province in China. The genetic source tracking analysis of the anthrax outbreak was performed by molecular epidemiological methods in this study. Methods Three molecular typing methods, namely canonical single nucleotide polymorphisms (canSNP), multiple-locus variable-number tandem repeat analysis (MLVA), and single nucleotide repeat (SNR) analysis, were used to investigate the possible source of transmission and identify the genetic relationship among the strains isolated from human cases and diseased animals during the outbreak. Results Five strains isolated from diseased mules were clustered together with patients’ isolates using canSNP typing and MLVA. The causative B. anthracis lineages in this outbreak belonged to the A.Br.001/002 canSNP subgroup and the MLVA15-31 genotype (the 31 genotype in MLVA15 scheme). Because nine isolates from another four provinces in China were clustered together with outbreak-related strains by the canSNP (A.Br.001/002 subgroup) and MLVA15 method (MLVA15-31 genotype), still another SNR analysis (CL10, CL12, CL33, and CL35) was used to source track the outbreak, and the results suggesting that these patients in the anthrax outbreak were probably infected by the same pathogen clone. Conclusions It was deduced that the anthrax outbreak occurred in Shaanxi province, China in 2015 was a local occurrence. Electronic supplementary material The online version of this article (doi:10.1186/s40249-016-0218-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong-Li Liu
- Shaanxi Provincial Center for Disease Control and Prevention, Shaanxi province, China
| | - Jian-Chun Wei
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China.,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Qiu-Lan Chen
- Division of Infectious Disease, China CDC, Beijing, China
| | - Xue-Jun Guo
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - En-Min Zhang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China.,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Li He
- Yan'an Prefecture Center for Disease Control and Prevention, Yan'an, Shaanxi Province, China
| | - Xu-Dong Liang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China.,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Guo-Zhu Ma
- Shaanxi Provincial Center for Disease Control and Prevention, Shaanxi province, China
| | - Ti-Cao Zhou
- Division of Infectious Disease, China CDC, Beijing, China
| | - Wen-Wu Yin
- Division of Infectious Disease, China CDC, Beijing, China
| | - Wei Liu
- Yan'an Prefecture Center for Disease Control and Prevention, Yan'an, Shaanxi Province, China
| | - Kai Liu
- Division of Infectious Disease, China CDC, Beijing, China
| | - Yi Shi
- Shaanxi Provincial Center for Disease Control and Prevention, Shaanxi province, China
| | - Jian-Jun Ji
- Yan'an Prefecture Center for Disease Control and Prevention, Yan'an, Shaanxi Province, China
| | - Hui-Juan Zhang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China.,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Lin Ma
- Shaanxi Provincial Center for Disease Control and Prevention, Shaanxi province, China
| | - Fa-Xin Zhang
- Yan'an Prefecture Center for Disease Control and Prevention, Yan'an, Shaanxi Province, China
| | - Zhi-Kai Zhang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China.,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Hang Zhou
- Division of Infectious Disease, China CDC, Beijing, China
| | - Hong-Jie Yu
- Division of Infectious Disease, China CDC, Beijing, China
| | - Biao Kan
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China.,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Jian-Guo Xu
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China.,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Feng Liu
- Shaanxi Provincial Center for Disease Control and Prevention, Shaanxi province, China.
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China. .,State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China.
| |
Collapse
|
26
|
Multiplexed Metagenomic Deep Sequencing To Analyze the Composition of High-Priority Pathogen Reagents. mSystems 2016; 1:mSystems00058-16. [PMID: 27822544 PMCID: PMC5069959 DOI: 10.1128/msystems.00058-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/16/2016] [Indexed: 12/17/2022] Open
Abstract
Laboratories studying high-priority pathogens need comprehensive methods to confirm microbial species and strains while also detecting contamination. Metagenomic deep sequencing (MDS) inventories nucleic acids present in laboratory stocks, providing an unbiased assessment of pathogen identity, the extent of genomic variation, and the presence of contaminants. Double-stranded cDNA MDS libraries were constructed from RNA extracted from in vitro-passaged stocks of six viruses (La Crosse virus, Ebola virus, canine distemper virus, measles virus, human respiratory syncytial virus, and vesicular stomatitis virus). Each library was dual indexed and pooled for sequencing. A custom bioinformatics pipeline determined the organisms present in each sample in a blinded fashion. Single nucleotide variant (SNV) analysis identified viral isolates. We confirmed that (i) each sample contained the expected microbe, (ii) dual indexing of the samples minimized false assignments of individual sequences, (iii) multiple viral and bacterial contaminants were present, and (iv) SNV analysis of the viral genomes allowed precise identification of the viral isolates. MDS can be multiplexed to allow simultaneous and unbiased interrogation of mixed microbial cultures and (i) confirm pathogen identity, (ii) characterize the extent of genomic variation, (iii) confirm the cell line used for virus propagation, and (iv) assess for contaminating microbes. These assessments ensure the true composition of these high-priority reagents and generate a comprehensive database of microbial genomes studied in each facility. MDS can serve as an integral part of a pathogen-tracking program which in turn will enhance sample security and increase experimental rigor and precision. IMPORTANCE Both the integrity and reproducibility of experiments using select agents depend in large part on unbiased validation to ensure the correct identity and purity of the species in question. Metagenomic deep sequencing (MDS) provides the required level of validation by allowing for an unbiased and comprehensive assessment of all the microbes in a laboratory stock.
Collapse
|
27
|
Phylogenetic Characteristics of Anthrax Outbreaks in Liaoning Province, China, 2001-2015. PLoS One 2016; 11:e0157496. [PMID: 27299730 PMCID: PMC4907462 DOI: 10.1371/journal.pone.0157496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/30/2016] [Indexed: 11/19/2022] Open
Abstract
Anthrax is a continuous threat in China, especially in rural regions. In July 2015, an anthrax outbreak occurred in Xifeng County, Liaoning Province. A total of 10 cutaneous anthrax cases were reported, with 210 people under medical observation. In this study, the general characteristics of human anthrax outbreak occurred in Liaoning Province were described, and all cases were caused by butchering and contacting sick animal. Meanwhile, the phylogenetic relationship between outbreak-related isolates/samples of the year 2015 and previous Bacillus anthracis strains was analyzed by means of canonical single nucleotide polymorphisms (canSNP), multiple-locus variable-number tandem repeat analysis (MLVA) with 15 markers and single-nucleotide repeats (SNR) analysis. There are two canSNP subgroups found in Liaoning, A.Br.001/002 and A.Br.Ames, and a total of six MLVA 15 genotypes and five SNR genotypes were observed. The strain collected from anthrax outbreak in Xifeng County in 2015 was classified as A.Br.001/002 subgroup and identified as MLVA15-29 genotype, with same SNR profile (CL10: 17, CL12: 15, CL33: 29, and CL35: 13). So we conclude that the same clone of B.anthracis caused the anthrax outbreak in Xifeng County in 2015, and this clone is different to previous isolates. Strengthening public health education in China is one of the most important measures to prevent and control anthrax.
Collapse
|
28
|
Marston CK, Ibrahim H, Lee P, Churchwell G, Gumke M, Stanek D, Gee JE, Boyer AE, Gallegos-Candela M, Barr JR, Li H, Boulay D, Cronin L, Quinn CP, Hoffmaster AR. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar. PLoS One 2016; 11:e0156987. [PMID: 27257909 PMCID: PMC4892579 DOI: 10.1371/journal.pone.0156987] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/23/2016] [Indexed: 11/18/2022] Open
Abstract
Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.
Collapse
Affiliation(s)
- Chung K. Marston
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
- * E-mail:
| | - Hisham Ibrahim
- Villages Regional Hospital, Lady Lake, FL, United States of America
| | - Philip Lee
- Bureau of Public Health Laboratories, Florida Department of Health, Jacksonville, FL, United States of America
| | - George Churchwell
- Bureau of Public Health Laboratories, Florida Department of Health, Jacksonville, FL, United States of America
| | - Megan Gumke
- Bureau of Epidemiology, Florida Department of Health, Tallahassee, FL, United States of America
| | - Danielle Stanek
- Bureau of Epidemiology, Florida Department of Health, Tallahassee, FL, United States of America
| | - Jay E. Gee
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Anne E. Boyer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Maribel Gallegos-Candela
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - John R. Barr
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Han Li
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Darbi Boulay
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Li Cronin
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Conrad P. Quinn
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Alex R. Hoffmaster
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| |
Collapse
|
29
|
D'Amelio E, Gentile B, Lista F, D'Amelio R. Historical evolution of human anthrax from occupational disease to potentially global threat as bioweapon. ENVIRONMENT INTERNATIONAL 2015; 85:133-146. [PMID: 26386727 DOI: 10.1016/j.envint.2015.09.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
PURPOSE Anthrax is caused by Bacillus anthracis, which can naturally infect livestock, wildlife and occupationally exposed humans. However, for its resistance due to spore formation, ease of dissemination, persistence in the environment and high virulence, B. anthracis has been considered the most serious bioterrorism agent for a long time. During the last century anthrax evolved from limited natural disease to potentially global threat if used as bioweapon. Several factors may mitigate the consequences of an anthrax attack, including 1. the capability to promptly recognize and manage the illness and its public health consequences; 2. the limitation of secondary contamination risk through an appropriate decontamination; and 3. the evolution of genotyping methods (for microbes characterization at high resolution level) that can influence the course and/or focus of investigations, impacting the response of the government to an attack. METHODS A PubMed search has been done using the key words “bioterrorism anthrax”. RESULTS Over one thousand papers have been screened and the most significant examined to present a comprehensive literature review in order to discuss the current knowledge and strategies in preparedness for a possible deliberate release of B. anthracis spores and to indicate the most current and complete documents in which to deepen. CONCLUSIONS The comprehensive analysis of the two most relevant unnatural anthrax release events, Sverdlovsk in the former Soviet Union (1979) and the contaminated letters in the USA (2001), shows that inhalational anthrax may easily and cheaply be spread resulting in serious consequences. The damage caused by an anthrax attack can be limited if public health organization, first responders, researchers and investigators will be able to promptly manage anthrax cases and use new technologies for decontamination methods and in forensic microbiology.
Collapse
Affiliation(s)
| | - Bernardina Gentile
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Section, Army Medical Research Center, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Raffaele D'Amelio
- Sapienza University of Rome, Department of Clinical and Molecular Medicine, S. Andrea University Hospital, Via di Grottarossa 1039, 00189 Rome, Italy.
| |
Collapse
|
30
|
Zhou W, Sun Y, Zhu L, Zhou B, Liu J, Ji X, Wang X, Wang N, Gu G, Feng S, Qian J, Guo X. Investigation of Anthrax Cases in North-East China, 2010-2014. PLoS One 2015; 10:e0135777. [PMID: 26308449 PMCID: PMC4550413 DOI: 10.1371/journal.pone.0135777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/24/2015] [Indexed: 12/04/2022] Open
Abstract
We determined the genotypes of seven Bacillus anthracis strains that were recovered from nine anthrax outbreaks in North-East China from 2010 to 2014, and two approved vaccine strains that are currently in use in China. The causes of these cases were partly due to local farmers being unaware of the presence of anthrax, and butchers with open wounds having direct contact with anthrax-contaminated meat products. The genotype of five of the seven recovered strains was A.Br.001/002 sub-lineage, which was concordant with previously published research. The remaining two cases belongs to the A.Br.Ames sub-lineage. Both of these strains displayed an identical SNR pattern, which was the first time that this genotype was identified in North-East China. Strengthening education in remote villages of rural China is an important activity aimed at fostering attempts to prevent and control anthrax. The genotype of the vaccine strain Anthrax Spore Vaccine No.II was A.Br.008/009 and A.Br.001/002 for the vaccine strain Anthrax Spore Vaccine Non-capsulated. Further studies of their characteristics are clearly warranted.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Yang Sun
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Lingwei Zhu
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Bo Zhou
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Jun Liu
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Xue Ji
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Xiaofeng Wang
- Animal Diseases Control and Prevention Centre of Jilin Province, Jilin, China
| | - Nan Wang
- Animal Diseases Control and Prevention Centre of Jilin Province, Jilin, China
| | - Guibo Gu
- Animal Diseases Control and Prevention Centre of Liaoning Province, Liaoning, China
| | - Shuzhang Feng
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Jun Qian
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| | - Xuejun Guo
- Institute of Military Veterinary, AMMS, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin, China
| |
Collapse
|
31
|
Braun P, Grass G, Aceti A, Serrecchia L, Affuso A, Marino L, Grimaldi S, Pagano S, Hanczaruk M, Georgi E, Northoff B, Schöler A, Schloter M, Antwerpen M, Fasanella A. Microevolution of Anthrax from a Young Ancestor (M.A.Y.A.) Suggests a Soil-Borne Life Cycle of Bacillus anthracis. PLoS One 2015; 10:e0135346. [PMID: 26266934 PMCID: PMC4534099 DOI: 10.1371/journal.pone.0135346] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/15/2015] [Indexed: 01/10/2023] Open
Abstract
During an anthrax outbreak at the Pollino National Park (Basilicata, Italy) in 2004, diseased cattle were buried and from these anthrax-foci Bacillus anthracis endospores still diffuse to the surface resulting in local accumulations. Recent data suggest that B. anthracis multiplies in soil outside the animal-host body. This notion is supported by the frequent isolation of B. anthracis from soil lacking one or both virulence plasmids. Such strains represent an evolutionary dead end, as they are likely no longer able to successfully infect new hosts. This loss of virulence plasmids is explained most simply by postulating a soil-borne life cycle of the pathogen. To test this hypothesis we investigated possible microevolution at two natural anthrax foci from the 2004 outbreak. If valid, then genotypes of strains isolated from near the surface at these foci should be on a different evolutionary trajectory from those below residing in deeper-laying horizons close to the carcass. Thus, the genetic diversity of B. anthracis isolates was compared conducting Progressive Hierarchical Resolving Assays using Nucleic Acids (PHRANA) and next generation Whole Genome Sequencing (WGS). PHRANA was not discriminatory enough to resolve the fine genetic relationships between the isolates. Conversely, WGS of nine isolates from near-surface and nine from near-carcass revealed five isolate specific SNPs, four of which were found only in different near-surface isolates. In support of our hypothesis, one surface-isolate lacked plasmid pXO1 and also harbored one of the unique SNPs. Taken together, our results suggest a limited soil-borne life cycle of B. anthracis.
Collapse
Affiliation(s)
- Peter Braun
- Bundeswehr Institute of Microbiology, Munich, Germany
- Technische Universität München, Wissenschaftszentrum Weihenstephan, Chair for Soil Ecology, Freising, Germany
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Angela Aceti
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Luigina Serrecchia
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Alessia Affuso
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Leonardo Marino
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Stefania Grimaldi
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | - Stefania Pagano
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| | | | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Bernd Northoff
- Bundeswehr Institute of Microbiology, Munich, Germany
- Ludwig Maximilians Universität München, Institute for Laboratory Medicine, Munich, Germany
| | - Anne Schöler
- German Research Center for Environmental Health, Research Unit for Environmental Genomics, Neuherberg, Germany
| | - Michael Schloter
- Technische Universität München, Wissenschaftszentrum Weihenstephan, Chair for Soil Ecology, Freising, Germany
- German Research Center for Environmental Health, Research Unit for Environmental Genomics, Neuherberg, Germany
| | | | - Antonio Fasanella
- Istituto Zooprofilattico Sperimentale of Puglia and Basilicata, Anthrax Reference Institute of Italy, Foggia, Italy
| |
Collapse
|
32
|
Gilchrist CA, Turner SD, Riley MF, Petri WA, Hewlett EL. Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev 2015; 28:541-63. [PMID: 25876885 PMCID: PMC4399107 DOI: 10.1128/cmr.00075-13] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In addition to the ever-present concern of medical professionals about epidemics of infectious diseases, the relative ease of access and low cost of obtaining, producing, and disseminating pathogenic organisms or biological toxins mean that bioterrorism activity should also be considered when facing a disease outbreak. Utilization of whole-genome sequencing (WGS) in outbreak analysis facilitates the rapid and accurate identification of virulence factors of the pathogen and can be used to identify the path of disease transmission within a population and provide information on the probable source. Molecular tools such as WGS are being refined and advanced at a rapid pace to provide robust and higher-resolution methods for identifying, comparing, and classifying pathogenic organisms. If these methods of pathogen characterization are properly applied, they will enable an improved public health response whether a disease outbreak was initiated by natural events or by accidental or deliberate human activity. The current application of next-generation sequencing (NGS) technology to microbial WGS and microbial forensics is reviewed.
Collapse
Affiliation(s)
- Carol A Gilchrist
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Stephen D Turner
- Department of Public Health, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret F Riley
- Department of Public Health, School of Medicine, University of Virginia, Charlottesville, Virginia, USA School of Law, University of Virginia, Charlottesville, Virginia, USA Batten School of Leadership and Public Policy, University of Virginia, Charlottesville, Virginia, USA
| | - William A Petri
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Erik L Hewlett
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, Virginia, USA Department of Microbiology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Li S, Ma Q, Chen H, Wang D, Liu Y, Wei X, You L, Yao G, Tian K, Tang G. Genetic characterization of Bacillus anthracis in Guizhou Province, Southwest of China. BMC Microbiol 2015; 15:77. [PMID: 25887647 PMCID: PMC4391296 DOI: 10.1186/s12866-015-0414-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Bacillus (B.) anthracis is the pathogen that causes fatal anthrax. Guizhou Province is an old foci of anthrax in the southwest of China. Human anthrax has also been frequently reported in Guizhou in recent year. However, there is limited information on the genetic background of local B. anthracis isolates in Guizhou Province. Strain-specific detection of this bacterium using molecular approaches has enhanced our knowledge of microbial genetics. In the present study, we employed Multiple Locus Variable Number Tandem Repeats (VNTR) Analysis (MLVA) assay to analyze the genetic characteristics of B. anthracis strains isolated in Guizhou Province and their relationships to worldwide distributed isolates. Results A total of 32 isolates of B. anthracis from soil, human, cattle, dog and water of different anthrax epidemics in Guizhou Province from 2006 to 2011 were confirmed with phage lysis test, penicillin inhibition test and PCR. MLVA-8 discriminated them into 28 unique MLVA types (MT G1 - G28), which were novel MTs compared with the previous reports. Cluster tree based on 32 isolates from Guizhou Province and 76 worldwide distributed isolates (30 MTs) showed they were divided into three clusters, designated A, B and C. All the 32 isolates were distributed in cluster A, which were further grouped into A1, A2, A3 and A4 sub-clusters. 32 isolates from Guizhou Province were closely grouped in each of the sub-clusters, respectively. Minimum Spanning Tree (MST) based on the MLVA data showed that the 28 MLVA profiles of isolates from Guizhou Province and 30 MLVA profiles of worldwide distributed isolates formed three clonal complexes (CCs) and ten singletons. Conclusions 28 novel MTs of B. anthracis from Guizhou were revealed and their relationships to worldwide isolates were showed. The results will provide important information for prevention of anthrax and also enhances our understanding of genetic characteristics of B. anthracis in China.
Collapse
Affiliation(s)
- Shijun Li
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China.
| | - Qing Ma
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Hong Chen
- Guiyang Centre for Animal Disease Control and Prevention, Guiyang, China
| | - Dingming Wang
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Ying Liu
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Xiaoyu Wei
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Lv You
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Guanghai Yao
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Kecheng Tian
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| | - Guangpeng Tang
- Institute of communicable disease control and prevention, Guizhou Provincial Centre for Disease Control and Prevention, 101 Bageyan Road, Guiyang, 550004, Guizhou, People's Republic of China
| |
Collapse
|
34
|
Source tracking of an anthrax outbreak in northeastern China using complete genome analysis and MLVA genotyping. Eur J Clin Microbiol Infect Dis 2014; 34:89-100. [DOI: 10.1007/s10096-014-2195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/22/2014] [Indexed: 11/26/2022]
|
35
|
Budowle B, Connell ND, Bielecka-Oder A, Colwell RR, Corbett CR, Fletcher J, Forsman M, Kadavy DR, Markotic A, Morse SA, Murch RS, Sajantila A, Schmedes SE, Ternus KL, Turner SD, Minot S. Validation of high throughput sequencing and microbial forensics applications. INVESTIGATIVE GENETICS 2014; 5:9. [PMID: 25101166 PMCID: PMC4123828 DOI: 10.1186/2041-2223-5-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/09/2014] [Indexed: 01/29/2023]
Abstract
High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.
Collapse
Affiliation(s)
- Bruce Budowle
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nancy D Connell
- Rutgers New Jersey Medical School, Center for Biodefense, Rutgers University, Newark, New Jersey, USA
| | - Anna Bielecka-Oder
- Department of Epidemiology, The General K. Kaczkowski Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Rita R Colwell
- CosmosID®, 387 Technology Dr, College Park, MD, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Cindi R Corbett
- Bioforensics Assay Development and DiagnosticsSection, Science Technology and Core Services Division, National Microbiology Laboratory, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Jacqueline Fletcher
- National Institute for Microbial Forensics & Food and Agricultural Biosecurity, Oklahoma State University, Stillwater, OK, USA
| | - Mats Forsman
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | | | - Alemka Markotic
- University Hospital for Infectious Diseases “Fran Mihaljevic” and Medical School University of Rijeka, Zagreb, Croatia
| | - Stephen A Morse
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Antti Sajantila
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Forensic Medicine, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Sarah E Schmedes
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | - Stephen D Turner
- Public Health Sciences, Bioinformatics Core Director, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | |
Collapse
|
36
|
Tan Z, Qi X, Gu L, Bao C, Tang F, Zhu Y. Molecular characterization of Bacillus anthracis directly from patients' eschar and beef in an anthrax outbreak in Jiangsu Province, China, 2012. Am J Trop Med Hyg 2014; 91:574-6. [PMID: 25002304 DOI: 10.4269/ajtmh.13-0633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An outbreak of anthrax was reported in Lianyungang, Jiangsu Province, China in 2012. Laboratory confirmation of cases was made by detection of Bacillus anthracis genes rpoB, pagA, and cap using real-time polymerase chain reaction (PCR); source tracking was conducted by multiple locus variable-number tandem-repeat analysis (MLVA) and pagA sequencing using DNA extracted from case specimens and meat from a suspected slaughtered cow. The genotypes were MLVA type 57 and pagA genotype I. Combined with the field epidemiological data, the four cutaneous anthrax cases most likely were caused by butchering of the sick cow. Backward tracing of animal cases identified the region of origin, and some public health measures, such as reactive or preventative animal vaccination for cattle, intersectoral cooperation, ensuring proper pre-slaughter inspection, and educating butchers and villagers about this disease, could be used to prevent B. anthracis infection.
Collapse
Affiliation(s)
- Zhongming Tan
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Xian Qi
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Ling Gu
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Changjun Bao
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Fenyang Tang
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| | - Yefei Zhu
- Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Jiangsu Provincial Centre for Disease Control and Prevention, Nanjing, Jiangsu Province, China
| |
Collapse
|
37
|
Thierry S, Tourterel C, Le Flèche P, Derzelle S, Dekhil N, Mendy C, Colaneri C, Vergnaud G, Madani N. Genotyping of French Bacillus anthracis strains based on 31-loci multi locus VNTR analysis: epidemiology, marker evaluation, and update of the internet genotype database. PLoS One 2014; 9:e95131. [PMID: 24901417 PMCID: PMC4046976 DOI: 10.1371/journal.pone.0095131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
Background Bacillus anthracis is known to have low genetic variability. In spite of this lack of diversity, multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) and single nucleotide polymorphisms (SNPs) including the canonical SNPs assay (canSNP) have proved to be highly effective to differentiate strains. Five different MLVA schemes based on a collection of 31 VNTR loci (MLVA8, MLVA15, MLVA20, MLVA25 and MLVA31) with increased resolving power have been described. Results MLVA31 was applied to characterize the French National Reference Laboratory collection. The total collection of 130 strains is resolved in 35 genotypes. The 119 veterinary and environmental strains collection in France were resolved into 26 genotypes belonging to three canSNP lineages and four MLVA clonal complexes (CCs) with particular geographical clustering. A subset of seven loci (MLVA7) is proposed to constitute a first line assay. The loci are compatible with moderate resolution equipment such as agarose gel electrophoresis and show a good congruence value with MLVA31. The associated MLVA and SNP data was imported together with published genotyping data by taking advantage of major enhancements to the MLVAbank software and web site. Conclusions The present report provides a wide coverage of the genetic diversity of naturally occurring B. anthracis strains in France as can be revealed by MLVA. The data obtained suggests that once such coverage is achieved, it becomes possible to devise optimized first-line MLVA assays comprising a sufficiently low number of loci to be typed either in one multiplex PCR or on agarose gels. Such a selection of seven loci is proposed here, and future similar investigations in additional countries will indicate to which extend the same selection can be used worldwide as a common minimum set. It is hoped that this approach will contribute to an efficient and low-cost routine surveillance of important pathogens for biosecurity such as B. anthracis.
Collapse
Affiliation(s)
- Simon Thierry
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Christophe Tourterel
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
| | - Philippe Le Flèche
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- Division of Analytical Microbiology, DGA CBRN Defence, Vert le Petit, France
| | - Sylviane Derzelle
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Neira Dekhil
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Christiane Mendy
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Cécile Colaneri
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
| | - Gilles Vergnaud
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, Orsay, France
- CNRS, Orsay, France
- DGA/MRIS- Mission pour la Recherche et l'Innovation Scientifique, Bagneux, France
| | - Nora Madani
- University Paris-Est, Anses, Animal Health Laboratory, Bacterial Zoonosis Unit, Maisons-Alfort, France
- * E-mail:
| |
Collapse
|
38
|
Glycoconjugate Vaccines Used for Prevention from Biological Agents: Tandem Mass Spectrometric Analysis. DETECTION OF CHEMICAL, BIOLOGICAL, RADIOLOGICAL AND NUCLEAR AGENTS FOR THE PREVENTION OF TERRORISM 2014. [DOI: 10.1007/978-94-017-9238-7_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Iyengar A, Hadi S. Use of non-human DNA analysis in forensic science: a mini review. MEDICINE, SCIENCE, AND THE LAW 2014; 54:41-50. [PMID: 23929675 DOI: 10.1177/0025802413487522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Analysis of non-human DNA in forensic science, first reported about two decades ago, is now commonplace. Results have been used as evidence in court in a variety of cases ranging from abduction and murder to patent infringement and dog attack. DNA from diverse species, including commonly encountered pets such as dogs and cats, to plants, viruses and bacteria has been used and the sheer potential offered by such analyses has been proven. In this review, using case examples throughout, we detail the considerable literature in this field.
Collapse
Affiliation(s)
- Arati Iyengar
- School of Forensic & Investigative Sciences, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
40
|
Williams JD, Khan AR, Cardinale SC, Butler MM, Bowlin TL, Peet NP. Small molecule inhibitors of anthrax lethal factor toxin. Bioorg Med Chem 2013; 22:419-34. [PMID: 24290062 DOI: 10.1016/j.bmc.2013.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
This manuscript describes the preparation of new small molecule inhibitors of Bacillus anthracis lethal factor. Our starting point was the symmetrical, bis-quinolinyl compound 1 (NSC 12155). Optimization of one half of this molecule led to new LF inhibitors that were desymmetrized to afford more drug-like compounds.
Collapse
Affiliation(s)
- John D Williams
- Microbiotix, Inc., Department of Medicinal Chemistry, One Innovation Drive, Worcester, MA 01605, United States; Microbiotix, Inc., Department of Molecular Biology, One Innovation Drive, Worcester, MA 01605, United States
| | - Atiyya R Khan
- Microbiotix, Inc., Department of Medicinal Chemistry, One Innovation Drive, Worcester, MA 01605, United States; Microbiotix, Inc., Department of Molecular Biology, One Innovation Drive, Worcester, MA 01605, United States
| | - Steven C Cardinale
- Microbiotix, Inc., Department of Medicinal Chemistry, One Innovation Drive, Worcester, MA 01605, United States; Microbiotix, Inc., Department of Molecular Biology, One Innovation Drive, Worcester, MA 01605, United States
| | - Michelle M Butler
- Microbiotix, Inc., Department of Medicinal Chemistry, One Innovation Drive, Worcester, MA 01605, United States; Microbiotix, Inc., Department of Molecular Biology, One Innovation Drive, Worcester, MA 01605, United States
| | - Terry L Bowlin
- Microbiotix, Inc., Department of Medicinal Chemistry, One Innovation Drive, Worcester, MA 01605, United States; Microbiotix, Inc., Department of Molecular Biology, One Innovation Drive, Worcester, MA 01605, United States
| | - Norton P Peet
- Microbiotix, Inc., Department of Medicinal Chemistry, One Innovation Drive, Worcester, MA 01605, United States; Microbiotix, Inc., Department of Molecular Biology, One Innovation Drive, Worcester, MA 01605, United States.
| |
Collapse
|
41
|
Jung KH, Kim SH, Kim SK, Cho SY, Chai JC, Lee YS, Kim JC, Kim SJ, Oh HB, Chai YG. Genetic populations of Bacillus anthracis isolates from Korea. J Vet Sci 2013; 13:385-93. [PMID: 23271180 PMCID: PMC3539124 DOI: 10.4142/jvs.2012.13.4.385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacillus (B.) anthracis is the pathogen that causes fatal anthrax. Strain-specific detection of this bacterium using molecular approaches has enhanced our knowledge of microbial population genetics. In the present study, we employed molecular approaches including multiple-locus variable-number tandem repeat analysis (MLVA) and canonical single-nucleotide polymorphism (canSNP) analysis to perform molecular typing of B. anthracis strains isolated in Korea. According to the MLVA, 17 B. anthracis isolates were classified into A3a, A3b, and B1 clusters. The canSNP analyses subdivided the B. anthracis isolates into two of the three previously recognized major lineages (A and B). B. anthracis isolates from Korea were found to belong to four canSNP sub-groups (B.Br.001/2, A.Br.005/006, A.Br.001/002, and A.Br.Ames). The A.Br.001/002 and A.Br.Ames sub-lineages are closely related genotypes frequently found in central Asia and most isolates were. On the other hand, B. anthracis CH isolates were analyzed that belonged to the B.Br.001/002 sub-group which found in southern Africa, Europe and California (USA). B.Br.001/002 genotype is new lineage of B. anthracis in Korea that was not found before. This discovery will be helpful for the creation of marker systems and might be the result of human activity through the development of agriculture and increased international trade in Korea.
Collapse
Affiliation(s)
- Kyoung Hwa Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan 426-791, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Turabelidze G, Gee JE, Hoffmaster AR, Manian F, Butler C, Byrd D, Schildknecht S, Hauser LC, Duncan M, Ferrett R, Evans D, Talley C. Contaminated ventilator air flow sensor linked to Bacillus cereus colonization of newborns. Emerg Infect Dis 2013; 19:781-3. [PMID: 23647973 PMCID: PMC3647488 DOI: 10.3201/eid1905.12039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated Bacillus cereus–positive tracheal aspirates from infants on ventilators in a neonatal intensive care unit. Multilocus sequence typing determined a genetic match between strains isolated from samples from a case-patient and from the air flow sensor in the ventilator. Changing the sterilization method for sensors to steam autoclaving stopped transmission.
Collapse
Affiliation(s)
- George Turabelidze
- Missouri Department of Health and Senior Services, Jefferson City, Missouri 63103, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Turabelidze G, Gee JE, Hoffmaster AR, Manian F, Butler C, Byrd D, Schildknecht S, Hauser LC, Duncan M, Ferrett R, Evans D, Talley C. Contaminated Ventilator Air Flow Sensor Linked toBacillus cereusColonization of Newborns. Emerg Infect Dis 2013. [DOI: 10.3201/eid1905.120239] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
Abstract
The clinical laboratory diagnosis of cutaneous anthrax is generally established by conventional microbiological methods, such as culture and directly straining smears of clinical specimens. However, these methods rely on recovery of viable Bacillus anthracis cells from swabs of cutaneous lesions and often yield negative results. This study developed a rapid protocol for detection of B. anthracis on clinical swabs. Three types of swabs, flocked-nylon, rayon, and polyester, were evaluated by 3 extraction methods, the swab extraction tube system (SETS), sonication, and vortex. Swabs were spiked with virulent B. anthracis cells, and the methods were compared for their efficiency over time by culture and real-time PCR. Viability testing indicated that the SETS yielded greater recovery of B. anthracis from 1-day-old swabs; however, reduced viability was consistent for the 3 extraction methods after 7 days and nonviability was consistent by 28 days. Real-time PCR analysis showed that the PCR amplification was not impacted by time for any swab extraction method and that the SETS method provided the lowest limit of detection. When evaluated using lesion swabs from cutaneous anthrax outbreaks, the SETS yielded culture-negative, PCR-positive results. This study demonstrated that swab extraction methods differ in their efficiency of recovery of viable B. anthracis cells. Furthermore, the results indicated that culture is not reliable for isolation of B. anthracis from swabs at ≥ 7 days. Thus, we recommend the use of the SETS method with subsequent testing by culture and real-time PCR for diagnosis of cutaneous anthrax from clinical swabs of cutaneous lesions.
Collapse
|
45
|
Complete genome sequence of Bacillus anthracis H9401, an isolate from a Korean patient with anthrax. J Bacteriol 2012; 194:4116-7. [PMID: 22815438 DOI: 10.1128/jb.00159-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacillus anthracis H9401 (NCCP 12889) is an isolate from a Korean patient with gastrointestinal anthrax. The whole genome of H9401 was sequenced. It is a circular chromosome containing 5,480 open reading frames (ORFs) and two plasmids, pXO1 containing 202 ORFs and pXO2 containing 110 ORFs. H9401 shows high pathogenicity and genome sequence similarity to Ames Ancestor.
Collapse
|
46
|
Duarte A, Slutsky M, Hanrahan G, Mello CM, Bazan GC. Supramolecular Electrostatic Nanoassemblies for Bacterial Forensics. Chemistry 2011; 18:756-9. [DOI: 10.1002/chem.201103237] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 11/06/2022]
|
47
|
Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, Langham RJ, Decker RS, Jiang L, Read TD, Phillippy AM, Salzberg SL, Pop M, Van Ert MN, Kenefic LJ, Keim PS, Fraser-Liggett CM, Ravel J. Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation. Proc Natl Acad Sci U S A 2011; 108:5027-32. [PMID: 21383169 PMCID: PMC3064363 DOI: 10.1073/pnas.1016657108] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Before the anthrax letter attacks of 2001, the developing field of microbial forensics relied on microbial genotyping schemes based on a small portion of a genome sequence. Amerithrax, the investigation into the anthrax letter attacks, applied high-resolution whole-genome sequencing and comparative genomics to identify key genetic features of the letters' Bacillus anthracis Ames strain. During systematic microbiological analysis of the spore material from the letters, we identified a number of morphological variants based on phenotypic characteristics and the ability to sporulate. The genomes of these morphological variants were sequenced and compared with that of the B. anthracis Ames ancestor, the progenitor of all B. anthracis Ames strains. Through comparative genomics, we identified four distinct loci with verifiable genetic mutations. Three of the four mutations could be directly linked to sporulation pathways in B. anthracis and more specifically to the regulation of the phosphorylation state of Spo0F, a key regulatory protein in the initiation of the sporulation cascade, thus linking phenotype to genotype. None of these variant genotypes were identified in single-colony environmental B. anthracis Ames isolates associated with the investigation. These genotypes were identified only in B. anthracis morphotypes isolated from the letters, indicating that the variants were not prevalent in the environment, not even the environments associated with the investigation. This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics.
Collapse
Affiliation(s)
- David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Patricia L. Worsham
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011
| | - Terry G. Abshire
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702-5011
| | - Scott T. Stanley
- Washington Field Office, Federal Bureau of Investigation, Washington, DC 20535
| | - Jason D. Bannan
- Federal Bureau of Investigation Laboratory, Quantico, VA 22134-5163
| | - Mark R. Wilson
- Federal Bureau of Investigation Laboratory, Quantico, VA 22134-5163
| | - Richard J. Langham
- Washington Field Office, Federal Bureau of Investigation, Washington, DC 20535
| | - R. Scott Decker
- Washington Field Office, Federal Bureau of Investigation, Washington, DC 20535
| | - Lingxia Jiang
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Timothy D. Read
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Adam M. Phillippy
- Department of Computer Sciences, University of Maryland, College Park, MD 20742
| | - Steven L. Salzberg
- Department of Computer Sciences, University of Maryland, College Park, MD 20742
| | - Mihai Pop
- Department of Computer Sciences, University of Maryland, College Park, MD 20742
| | - Matthew N. Van Ert
- Northern Arizona University, Flagstaff, AZ 86011
- Translational Genomics Research Institute, Flagstaff, AZ 85004; and
| | - Leo J. Kenefic
- Northern Arizona University, Flagstaff, AZ 86011
- Translational Genomics Research Institute, Flagstaff, AZ 85004; and
| | - Paul S. Keim
- Northern Arizona University, Flagstaff, AZ 86011
- Translational Genomics Research Institute, Flagstaff, AZ 85004; and
| | - Claire M. Fraser-Liggett
- Institute for Genome Sciences, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jacques Ravel
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
48
|
Toxicological Effects of Weapons of Mass Destruction and Noxious Agents in Modern Warfare and Terorrism. Arh Hig Rada Toksikol 2010; 61:247-56. [DOI: 10.2478/10004-1254-61-2010-1995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toksikološke posljedice oružja za masovno uništavanje i noksa u suvremenom ratovanju i terorizmuOružja za masovno uništavanje najbolji su primjer uporabe civilizacijskih tehnoloških dostignuća u štetne svrhe i protiv ljudske civilizacije. Unatoč nastojanjima oko kontrole i smanjenja njihove količine, rizik zbog samoga postojanja pa čak i širenja zahtijeva da se o njihovoj uporabi i dalje vodi računa i da se povećaju obrambene mjere - nuklearno-biološko-kemijske obrane (NBKO).Osim suvremenog vojnika koji je u vojnim i mirovnim operacijama diljem svijeta izložen raznim noksama kemijskog, biološkog i radiološkog podrijetla, nezaštićeno i uglavnom slabo educirano civilno stanovništvo može biti izloženo terorističkim napadima.Oružja za masovno uništavanje i nokse kemijskog, biološkog i radiološkog podrijetla uzrokuju razne toksikološke posljedice, a bez obzira na njihovo podrijetlo, imaju zajednički nazivnik djelovanja - poremećaj fiziološkog stanja u organizmu. Poremećaji proizašli nakon izlaganja tim noksama nerijetko se teško determiniraju, dijagnosticiraju i liječe.U ovome su radu s biomedicinskog aspekta obrađene važnije nokse kemijskog, biološkog i radiološkog podrijetla na temelju odabranih primjera iz terorizma i suvremenog ratovanja: polonij-210, osiromašeni uran, salmonela, bedrenica (antraks), genetički modificirane bakterije, polimerno predivo "paučina" i bojni otrovi sarin i iperit.
Collapse
|
49
|
Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media. Appl Environ Microbiol 2010; 76:1902-12. [PMID: 20097814 DOI: 10.1128/aem.02443-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to determine if cellular fatty acid methyl ester (FAME) profiling could be used to distinguish among spore samples from a single species (Bacillus cereus T strain) that were prepared on 10 different medium formulations. To analyze profile differences and identify FAME biomarkers diagnostic for the chemical constituents in each sporulation medium, a variety of statistical techniques were used, including nonmetric multidimensional scaling (nMDS), analysis of similarities (ANOSIM), and discriminant function analysis (DFA). The results showed that one FAME biomarker, oleic acid (18:1 omega9c), was exclusively associated with spores grown on Columbia agar supplemented with sheep blood and was indicative of blood supplements that were present in the sporulation medium. For spores grown in other formulations, multivariate comparisons across several FAME biomarkers were required to discern profile differences. Clustering patterns in nMDS plots and R values from ANOSIM revealed that dissimilarities among FAME profiles were most pronounced when spores grown with disparate sources of complex additives or protein supplements were compared (R > 0.8), although other factors also contributed to FAME differences. DFA indicated that differentiation could be maximized with a targeted subset of FAME variables, and the relative contributions of branched FAME biomarkers to group dissimilarities changed when different media were compared. When taken together, these analyses indicate that B. cereus spore samples grown in different media can be resolved with FAME profiling and that this may be a useful technique for providing intelligence about the production methods of Bacillus organisms in a forensic investigation.
Collapse
|
50
|
Beyer W, Turnbull P. Anthrax in animals. Mol Aspects Med 2009; 30:481-9. [DOI: 10.1016/j.mam.2009.08.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 08/26/2009] [Indexed: 11/26/2022]
|