1
|
Grant HE, Roy S, Williams R, Tutill H, Ferns B, Cane PA, Carswell JW, Ssemwanga D, Kaleebu P, Breuer J, Leigh Brown AJ. A large population sample of African HIV genomes from the 1980s reveals a reduction in subtype D over time associated with propensity for CXCR4 tropism. Retrovirology 2022; 19:28. [PMID: 36514107 PMCID: PMC9746199 DOI: 10.1186/s12977-022-00612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism.
Collapse
Affiliation(s)
- Heather E Grant
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, UK
| | - Rachel Williams
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena Tutill
- Division of Infection and Immunity, University College London, London, UK
| | - Bridget Ferns
- Department of Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Deogratius Ssemwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
2
|
Grant HE, Hodcroft EB, Ssemwanga D, Kitayimbwa JM, Yebra G, Esquivel Gomez LR, Frampton D, Gall A, Kellam P, de Oliveira T, Bbosa N, Nsubuga RN, Kibengo F, Kwan TH, Lycett S, Kao R, Robertson DL, Ratmann O, Fraser C, Pillay D, Kaleebu P, Leigh Brown AJ. Pervasive and non-random recombination in near full-length HIV genomes from Uganda. Virus Evol 2020; 6:veaa004. [PMID: 32395255 PMCID: PMC7204518 DOI: 10.1093/ve/veaa004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recombination is an important feature of HIV evolution, occurring both within and between the major branches of diversity (subtypes). The Ugandan epidemic is primarily composed of two subtypes, A1 and D, that have been co-circulating for 50 years, frequently recombining in dually infected patients. Here, we investigate the frequency of recombinants in this population and the location of breakpoints along the genome. As part of the PANGEA-HIV consortium, 1,472 consensus genome sequences over 5 kb have been obtained from 1,857 samples collected by the MRC/UVRI & LSHTM Research unit in Uganda, 465 (31.6 per cent) of which were near full-length sequences (>8 kb). Using the subtyping tool SCUEAL, we find that of the near full-length dataset, 233 (50.1 per cent) genomes contained only one subtype, 30.8 per cent A1 (n = 143), 17.6 per cent D (n = 82), and 1.7 per cent C (n = 8), while 49.9 per cent (n = 232) contained more than one subtype (including A1/D (n = 164), A1/C (n = 13), C/D (n = 9); A1/C/D (n = 13), and 33 complex types). K-means clustering of the recombinant A1/D genomes revealed a section of envelope (C2gp120-TMgp41) is often inherited intact, whilst a generalized linear model was used to demonstrate significantly fewer breakpoints in the gag-pol and envelope C2-TM regions compared with accessory gene regions. Despite similar recombination patterns in many recombinants, no clearly supported circulating recombinant form (CRF) was found, there was limited evidence of the transmission of breakpoints, and the vast majority (153/164; 93 per cent) of the A1/D recombinants appear to be unique recombinant forms. Thus, recombination is pervasive with clear biases in breakpoint location, but CRFs are not a significant feature, characteristic of a complex, and diverse epidemic.
Collapse
Affiliation(s)
- Heather E Grant
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Emma B Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Deogratius Ssemwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Gonzalo Yebra
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Dan Frampton
- Division of Infection and Immunity, University College London, London, UK
| | - Astrid Gall
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Paul Kellam
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Tulio de Oliveira
- Nelson R. Mandela School of Medicine, Africa Health Research Institute, Durban, South Africa
| | - Nicholas Bbosa
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Rebecca N Nsubuga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Freddie Kibengo
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Tsz Ho Kwan
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rowland Kao
- The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, UK
| | - Christophe Fraser
- Nuffield Department of Medicine, Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Deenan Pillay
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Nelson R. Mandela School of Medicine, Africa Health Research Institute, Durban, South Africa
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | | |
Collapse
|
3
|
Distinct rates and patterns of spread of the major HIV-1 subtypes in Central and East Africa. PLoS Pathog 2019; 15:e1007976. [PMID: 31809523 PMCID: PMC6897401 DOI: 10.1371/journal.ppat.1007976] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/11/2019] [Indexed: 12/21/2022] Open
Abstract
Since the ignition of the HIV-1 group M pandemic in the beginning of the 20th century, group M lineages have spread heterogeneously throughout the world. Subtype C spread rapidly through sub-Saharan Africa and is currently the dominant HIV lineage worldwide. Yet the epidemiological and evolutionary circumstances that contributed to its epidemiological expansion remain poorly understood. Here, we analyse 346 novel pol sequences from the DRC to compare the evolutionary dynamics of the main HIV-1 lineages, subtypes A1, C and D. Our results place the origins of subtype C in the 1950s in Mbuji-Mayi, the mining city of southern DRC, while subtypes A1 and D emerged in the capital city of Kinshasa, and subtypes H and J in the less accessible port city of Matadi. Following a 15-year period of local transmission in southern DRC, we find that subtype C spread at least three-fold faster than other subtypes circulating in Central and East Africa. In conclusion, our results shed light on the origins of HIV-1 main lineages and suggest that socio-historical rather than evolutionary factors may have determined the epidemiological fate of subtype C in sub-Saharan Africa.
Collapse
|
4
|
Gill MS, Tung Ho LS, Baele G, Lemey P, Suchard MA. A Relaxed Directional Random Walk Model for Phylogenetic Trait Evolution. Syst Biol 2018; 66:299-319. [PMID: 27798403 DOI: 10.1093/sysbio/syw093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 10/10/2016] [Indexed: 12/26/2022] Open
Abstract
Understanding the processes that give rise to quantitative measurements associated with molecular sequence data remains an important issue in statistical phylogenetics. Examples of such measurements include geographic coordinates in the context of phylogeography and phenotypic traits in the context of comparative studies. A popular approach is to model the evolution of continuously varying traits as a Brownian diffusion process acting on a phylogenetic tree. However, standard Brownian diffusion is quite restrictive and may not accurately characterize certain trait evolutionary processes. Here, we relax one of the major restrictions of standard Brownian diffusion by incorporating a nontrivial estimable mean into the process. We introduce a relaxed directional random walk (RDRW) model for the evolution of multivariate continuously varying traits along a phylogenetic tree. Notably, the RDRW model accommodates branch-specific variation of directional trends while preserving model identifiability. Furthermore, our development of a computationally efficient dynamic programming approach to compute the data likelihood enables scaling of our method to large data sets frequently encountered in phylogenetic comparative studies and viral evolution. We implement the RDRW model in a Bayesian inference framework to simultaneously reconstruct the evolutionary histories of molecular sequence data and associated multivariate continuous trait data, and provide tools to visualize evolutionary reconstructions. We demonstrate the performance of our model on synthetic data, and we illustrate its utility in two viral examples. First, we examine the spatiotemporal spread of HIV-1 in central Africa and show that the RDRW model uncovers a clearer, more detailed picture of the dynamics of viral dispersal than standard Brownian diffusion. Second, we study antigenic evolution in the context of HIV-1 resistance to three broadly neutralizing antibodies. Our analysis reveals evidence of a continuous drift at the HIV-1 population level towards enhanced resistance to neutralization by the VRC01 monoclonal antibody over the course of the epidemic. [Brownian Motion; Diffusion Processes; Phylodynamics; Phylogenetics; Phylogeography; Trait Evolution.].
Collapse
Affiliation(s)
- Mandev S Gill
- Department of Statistics, Columbia University, New York, NY 10027, USA
| | - Lam Si Tung Ho
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA
| | - Guy Baele
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstaat 10, 3000, Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology and Immunology, Rega Institute, KU Leuven, Minderbroedersstaat 10, 3000, Leuven, Belgium
| | - Marc A Suchard
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA.,Department of Biomathematics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Universtiy of California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Li X, Liu H, Liu L, Feng Y, Kalish ML, Ho SYW, Shao Y. Tracing the epidemic history of HIV-1 CRF01_AE clusters using near-complete genome sequences. Sci Rep 2017; 7:4024. [PMID: 28642469 PMCID: PMC5481428 DOI: 10.1038/s41598-017-03820-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human immunodeficiency virus (HIV) has a number of circulating recombinant forms that are the product of recombination between different HIV subtypes. The first circulating recombinant form of HIV-1 to be identified was CRF01_AE, which originated in Central Africa and is now most prevalent in Southeast and East Asia. In this study, we investigated the timescale, evolutionary history, and population genetics of the HIV-1 CRF01_AE strains primarily responsible for the epidemic in Asia. A further aim of our study was to define and standardize the nomenclature and provide well-characterized reference sequences for the phylogenetic transmission clusters of CRF01_AE. We analysed a data set of 334 near-complete genome sequences from various risk groups, sampled between 1990 and 2011 from nine countries. Phylogenetic analyses of these sequences were performed using maximum likelihood and Bayesian methods. Our study confirms that the diversity of HIV-1 CRF01_AE originated in Central Africa in the mid-1970s, was introduced into Thailand between 1979 and 1982, and began expanding there shortly afterwards (1982-1984). Subsequently, multiple clusters significantly contributed to China's HIV epidemic. A Bayesian skyline plot revealed the rapid expansion of CRF01_AE in China around 1999-2000. We identified at least eight different clusters of HIV-1 CRF01_AE formed by rapid expansion into different risk groups and geographic regions in China since the late 1980s.
Collapse
Affiliation(s)
- Xingguang Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Haizhou Liu
- Centre for Emerging Infectious Diseases, The State Key Laboratory of Virology, Wuhan Institute of Virology, University of Chinese Academy of Sciences, Wuhan, China
| | - Lu Liu
- Shantou University Medical College, Shantou, 515041, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China
| | - Marcia L Kalish
- Vanderbilt Institute for Global Health, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Romani B, Kavyanifard A, Allahbakhshi E. Functional conservation and coherence of HIV-1 subtype A Vpu alleles. Sci Rep 2017; 7:44894. [PMID: 28317943 PMCID: PMC5357900 DOI: 10.1038/srep44894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/14/2017] [Indexed: 11/09/2022] Open
Abstract
Functional studies of HIV-1 proteins are normally conducted using lab adapted strains of HIV-1. The extent of those functions in clinical strains is sometimes unknown. In this study, we amplified and sequenced HIV-1 Vpu from 10 Iranian patients infected with HIV-1. Phylogenetic analysis indicated that the Vpu alleles were closely related to the CRF35_AD from Iran and subtype A Vpu. We addressed some of the well-established functions of the HIV-1 Vpu, as well as some of its recently reported functions. Ability of the clinical strains of subtype A Vpu alleles for downregulation of CD4 was similar to that of the lab adapted NL4.3 Vpu. Majority of the subtype A Vpu alleles performed stronger than NL4.3 Vpu for downregulation of SNAT1. The Vpu alleles differentially induced downregulation of HLA-C, ranging from no effect to 88% downregulation of surface HLA-C. Downregulation of tetherin and enhancement of virus release was similar for the subtype A Vpu alleles and NL4.3. Subtype A Vpu alleles were more potent when compared with NL4.3 for inhibition of NF-κB activation. Our study shows that subtype A Vpu alleles exert the classical functions of HIV-1 Vpu.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran
| |
Collapse
|
7
|
Romani B, Kavyanifard A, Allahbakhshi E. Functional conservation and coherence of HIV-1 subtype A Vpu alleles. Sci Rep 2017; 7:87. [PMID: 28273896 PMCID: PMC5428049 DOI: 10.1038/s41598-017-00222-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/14/2017] [Indexed: 12/19/2022] Open
Abstract
Functional studies of HIV-1 proteins are normally conducted using lab adapted strains of HIV-1. The extent of those functions in clinical strains is sometimes unknown. In this study, we amplified and sequenced HIV-1 Vpu from 10 Iranian patients infected with HIV-1. Phylogenetic analysis indicated that the Vpu alleles were closely related to the CRF35_AD from Iran and subtype A Vpu. We addressed some of the well-established functions of the HIV-1 Vpu, as well as some of its recently reported functions. Ability of the clinical strains of subtype A Vpu alleles for downregulation of CD4 was similar to that of the lab adapted NL4.3 Vpu. Majority of the subtype A Vpu alleles performed stronger than NL4.3 Vpu for downregulation of SNAT1. The Vpu alleles differentially induced downregulation of HLA-C, ranging from no effect to 88% downregulation of surface HLA-C. Downregulation of tetherin and enhancement of virus release was similar for the subtype A Vpu alleles and NL4.3. Subtype A Vpu alleles were more potent when compared with NL4.3 for inhibition of NF-κB activation. Our study shows that subtype A Vpu alleles exert the classical functions of HIV-1 Vpu.
Collapse
Affiliation(s)
- Bizhan Romani
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran.,Department of Biology, Faculty of Science, University of Isfahan, Isfahan, 81746-73441, Iran
| | | | - Elham Allahbakhshi
- Cellular and Molecular Research Center (CMRC), Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, 61357-15794, Iran.
| |
Collapse
|
8
|
Delatorre E, Bello G. Time-scale of minor HIV-1 complex circulating recombinant forms from Central and West Africa. BMC Evol Biol 2016; 16:249. [PMID: 27852214 PMCID: PMC5112642 DOI: 10.1186/s12862-016-0824-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022] Open
Abstract
Background Several HIV-1 circulating recombinant forms with a complex mosaic structure (CRFs_cpx) circulate in central and western African regions. Here we reconstruct the evolutionary history of some of these complex CRFs (09_cpx, 11_cpx, 13_cpx and 45_cpx) and further investigate the dissemination dynamic of the CRF11_cpx clade by using a Bayesian coalescent-based method. Results The analysis of two HIV-1 datasets comprising 181 pol (36 CRF09_cpx, 116 CRF11_cpx, 20 CRF13_cpx and 9 CRF45_cpx) and 125 env (12 CRF09_cpx, 67 CRF11_cpx, 17 CRF13_cpx and 29 CRF45_cpx) sequences pointed to quite consistent onset dates for CRF09_cpx (~1966: 1958–1979), CRF11_cpx (~1957: 1950–1966) and CRF13_cpx (~1965: 1958–1973) clades; while some divergence was found for the estimated date of origin of CRF45_cpx clade [pol = 1970 (1964–1976); env = 1960 (1952–1969)]. Phylogeographic reconstructions indicate that the HIV-1 CRF11_cpx clade most probably emerged in Cameroon and from there it was first disseminated to the Central Africa Republic and Chad in the early 1970s and to other central and western African countries from the early 1980s onwards. Demographic reconstructions suggest that the CRF11_cpx epidemic grew between 1960 and 1990 with a median exponential growth rate of 0.27 year−1, and stabilized after. Conclusions These results reveal that HIV-1 CRFs_cpx clades have been circulating in Central Africa for a period comparable to other much more prevalent HIV-1 group M lineages. Cameroon was probably the epicenter of dissemination of the CRF11_cpx clade that seems to have experienced a long epidemic growth phase before stabilization. The epidemic growth of the CRF11_cpx clade was roughly comparable to other HIV-1 group M lineages circulating in Central Africa. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0824-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil 4365, 21040-360, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Lamers SL, Barbier AE, Ratmann O, Fraser C, Rose R, Laeyendecker O, Grabowski MK. HIV-1 Sequence Data Coverage in Central East Africa from 1959 to 2013. AIDS Res Hum Retroviruses 2016; 32:904-8. [PMID: 27353049 DOI: 10.1089/aid.2016.0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Central and Eastern African HIV sequence data have been most critical in understanding the establishment and evolution of the global HIV pandemic. Here we report on the extent of publicly available HIV genetic sequence data in the Los Alamos National Laboratory Sequence Database sampled from 1959 to 2013 from six African countries: Uganda, Kenya, Tanzania, Burundi, the Democratic Republic of Congo, and Rwanda. We have summarized these data, including HIV subtypes, the years sampled, and the genomic regions sequenced. We also provide curated alignments for this important geographic area in five HIV genomic regions with substantial coverage.
Collapse
Affiliation(s)
| | | | - Oliver Ratmann
- Medical Research Council Centre for Outbreak Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Medical Research Council Centre for Outbreak Analysis and Modeling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | - Oliver Laeyendecker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary K. Grabowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
10
|
Frost SDW, Kwofie SK. Surveys, Serologies, and Sequences Reveal History of Iatrogenic Transmission of HIV-1. J Infect Dis 2016; 214:341-3. [PMID: 26768255 PMCID: PMC7107339 DOI: 10.1093/infdis/jiw012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine Institute of Public Health, University of Cambridge, United Kingdom
| | - Samuel K Kwofie
- Department of Veterinary Medicine Biomedical Engineering Department, University of Ghana, Legon
| |
Collapse
|
11
|
High Degree of HIV-1 Group M (HIV-1M) Genetic Diversity within Circulating Recombinant Forms: Insight into the Early Events of HIV-1M Evolution. J Virol 2015; 90:2221-9. [PMID: 26656688 DOI: 10.1128/jvi.02302-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/24/2015] [Indexed: 12/18/2022] Open
Abstract
The existence of various highly divergent HIV-1 lineages and of recombination-derived sequence tracts of indeterminate origin within established circulating recombinant forms (CRFs) strongly suggests that HIV-1 group M (HIV-1M) diversity is not fully represented under the current classification system. Here we used a fully exploratory screen for recombination on a set of 480 near-full-length genomes representing the full known diversity of HIV-1M. We decomposed recombinant sequences into their constituent parts and then used maximum-likelihood phylogenetic analyses of this mostly recombination-free data set to identify rare divergent sequence lineages that fall outside the major named HIV-1M taxonomic groupings. We found that many of the sequence fragments occurring within CRFs (including CRF04_cpx, CRF06_cpx, CRF11_cpx, CRF18_cpx, CRF25_cpx, CRF27_cpx, and CRF49_cpx) are in fact likely derived from divergent unclassified parental lineages that may predate the current subtypes, even though they are presently identified as derived from currently defined HIV-1M subtypes. Our evidence suggests that some of these CRFs are descended predominantly from what were or are major previously unidentified HIV-1M lineages that were likely epidemiologically relevant during the early stages of the HIV-1M epidemic. The restriction of these divergent lineages to the Congo basin suggests that they were less infectious and/or simply not present at the time and place of the initial migratory wave that triggered the global epidemic.IMPORTANCE HIV-1 group M (HIV-1M) likely spread to the rest of the world from the Congo basin in the mid-1900s (N. R. Faria et al., Science 346:56-61, 2014, http://dx.doi.org/10.1126/science.1256739) and is today the principal cause of the AIDS pandemic. Here, we show that large sequence fragments from several HIV-1M circulating recombinant forms (CRFs) are derived from divergent parental lineages that cannot reasonably be classified within the nine established HIV-1M subtypes. These lineages are likely to have been epidemiologically relevant in the Congo basin at the onset of the epidemic. Nonetheless, they appear not to have undergone the same explosive global spread as other HIV-1M subtypes, perhaps because they were less transmissible. Concerted efforts to characterize more of these divergent lineages could allow the accurate inference and chemical synthesis of epidemiologically key ancestral HIV-1M variants so as to directly test competing hypotheses relating to the viral genetic factors that enabled the present pandemic.
Collapse
|
12
|
HIV competition dynamics over sexual networks: first comer advantage conserves founder effects. PLoS Comput Biol 2015; 11:e1004093. [PMID: 25654450 PMCID: PMC4318579 DOI: 10.1371/journal.pcbi.1004093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/16/2014] [Indexed: 11/24/2022] Open
Abstract
Outside Africa, the global phylogeography of HIV is characterized by compartmentalized local epidemics that are typically dominated by a single subtype, which indicates strong founder effects. We hypothesized that the competition of viral strains at the epidemic level may involve an advantage of the resident strain that was the first to colonize a population. Such an effect would slow down the invasion of new strains, and thus also the diversification of the epidemic. We developed a stochastic modelling framework to simulate HIV epidemics over dynamic contact networks. We simulated epidemics in which the second strain was introduced into a population where the first strain had established a steady-state epidemic, and assessed whether, and on what time scale, the second strain was able to spread in the population. Simulations were parameterized based on empirical data; we tested scenarios with varying levels of overall prevalence. The spread of the second strain occurred on a much slower time scale compared with the initial expansion of the first strain. With strains of equal transmission efficiency, the second strain was unable to invade on a time scale relevant for the history of the HIV pandemic. To become dominant over a time scale of decades, the second strain needed considerable (>25%) advantage in transmission efficiency over the resident strain. The inhibition effect was weaker if the second strain was introduced while the first strain was still in its growth phase. We also tested how possible mechanisms of interference (inhibition of superinfection, depletion of highly connected hubs in the network, one-time acute peak of infectiousness) contribute to the inhibition effect. Our simulations confirmed a strong first comer advantage in the competition dynamics of HIV at the population level, which may explain the global phylogeography of the virus and may influence the future evolution of the pandemic. The African epicentre of the HIV pandemic is home to a vast array of divergent viruses; however, local epidemics in other parts of the world are typically dominated by a single variant (subtype) of the virus, with different subtypes found in the different regions. This pattern indicates that local epidemics outside Africa have been started by the introduction of single “founder” viruses in the susceptible populations. However, how these patterns persisted over several decades in the face of international migration requires further explanation. By analyzing simulated epidemics, we demonstrated that an epidemic established by the first successful founder strain can inhibit the introduction and slow down the subsequent spread of further virus strains by several mechanisms of interference. Our results have implications for the global evolution of the HIV pandemic: the fast expansion of subtypes benefited from a “first comer advantage,” and founder viruses may have been selected by random sampling, rather than due to superior transmissibility/fitness; the fast expansion of these (possibly) suboptimal virus strains may have considerably delayed the spread of more transmissible HIV variants; however, the future evolution of the pandemic is likely to be characterized by a slow expansion of viral strains with increased transmission potential.
Collapse
|
13
|
Tongo M, Burgers WA. Challenges in the design of a T cell vaccine in the context of HIV-1 diversity. Viruses 2014; 6:3968-90. [PMID: 25341662 PMCID: PMC4213573 DOI: 10.3390/v6103968] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/15/2014] [Accepted: 10/18/2014] [Indexed: 12/27/2022] Open
Abstract
The extraordinary variability of HIV-1 poses a major obstacle to vaccine development. The effectiveness of a vaccine is likely to vary dramatically in different populations infected with different HIV-1 subtypes, unless innovative vaccine immunogens are developed to protect against the range of HIV-1 diversity. Immunogen design for stimulating neutralizing antibody responses focuses on “breadth” – the targeting of a handful of highly conserved neutralizing determinants on the HIV-1 Envelope protein that can recognize the majority of viruses across all HIV-1 subtypes. An effective vaccine will likely require the generation of both broadly cross-neutralizing antibodies and non-neutralizing antibodies, as well as broadly cross-reactive T cells. Several approaches have been taken to design such broadly-reactive and cross-protective T cell immunogens. Artificial sequences have been designed that reduce the genetic distance between a vaccine strain and contemporary circulating viruses; “mosaic” immunogens extend this concept to contain multiple potential T cell epitope (PTE) variants; and further efforts attempt to focus T cell immunity on highly conserved regions of the HIV-1 genome. Thus far, a number of pre-clinical and early clinical studies have been performed assessing these new immunogens. In this review, the potential use of these new immunogens is explored.
Collapse
Affiliation(s)
- Marcel Tongo
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, Division of Medical Virology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| |
Collapse
|
14
|
Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, Tatem AJ, Sousa JD, Arinaminpathy N, Pépin J, Posada D, Peeters M, Pybus OG, Lemey P. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014. [PMID: 25278604 DOI: 10.1126/science:1256739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations.
Collapse
Affiliation(s)
- Nuno R Faria
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Centre for Immunity, Infection and Evolution, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1766, USA. Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA 90095-1766, USA
| | - Guy Baele
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Melissa J Ward
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Andrew J Tatem
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Department of Geography and Environment, University of Southampton, Highfield, Southampton, UK
| | - João D Sousa
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium. Centro de Malária e outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | | | - Jacques Pépin
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, CHUS, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Martine Peeters
- Laboratoire Retrovirus, UMI233, Institut de Recherche pour le Développement and University of Montpellier, 911 Avenue Agropolis, BP5045, 34032 Montpellier, France
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Philippe Lemey
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Faria NR, Rambaut A, Suchard MA, Baele G, Bedford T, Ward MJ, Tatem AJ, Sousa JD, Arinaminpathy N, Pépin J, Posada D, Peeters M, Pybus OG, Lemey P. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science 2014; 346:56-61. [PMID: 25278604 PMCID: PMC4254776 DOI: 10.1126/science.1256739] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thirty years after the discovery of HIV-1, the early transmission, dissemination, and establishment of the virus in human populations remain unclear. Using statistical approaches applied to HIV-1 sequence data from central Africa, we show that from the 1920s Kinshasa (in what is now the Democratic Republic of Congo) was the focus of early transmission and the source of pre-1960 pandemic viruses elsewhere. Location and dating estimates were validated using the earliest HIV-1 archival sample, also from Kinshasa. The epidemic histories of HIV-1 group M and nonpandemic group O were similar until ~1960, after which group M underwent an epidemiological transition and outpaced regional population growth. Our results reconstruct the early dynamics of HIV-1 and emphasize the role of social changes and transport networks in the establishment of this virus in human populations.
Collapse
Affiliation(s)
- Nuno R Faria
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK. KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK. Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Centre for Immunity, Infection and Evolution, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Marc A Suchard
- Departments of Biomathematics and Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1766, USA. Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los Angeles, CA 90095-1766, USA
| | - Guy Baele
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Melissa J Ward
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | - Andrew J Tatem
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA. Department of Geography and Environment, University of Southampton, Highfield, Southampton, UK
| | - João D Sousa
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium. Centro de Malária e outras Doenças Tropicais and Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | | | - Jacques Pépin
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, CHUS, 3001, 12ème Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Martine Peeters
- Laboratoire Retrovirus, UMI233, Institut de Recherche pour le Développement and University of Montpellier, 911 Avenue Agropolis, BP5045, 34032 Montpellier, France
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | - Philippe Lemey
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| |
Collapse
|
16
|
Impact of clade, geography, and age of the epidemic on HIV-1 neutralization by antibodies. J Virol 2014; 88:12623-43. [PMID: 25142591 DOI: 10.1128/jvi.01705-14] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED Neutralizing antibodies (nAbs) are a high priority for vaccines that aim to prevent the acquisition of HIV-1 infection. Vaccine effectiveness will depend on the extent to which induced antibodies neutralize the global diversity of circulating HIV-1 variants. Using large panels of genetically and geographically diverse HIV-1 Env-pseudotyped viruses and chronic infection plasma samples, we unambiguously show that cross-clade nAb responses are commonly induced in response to infection by any virus clade. Nonetheless, neutralization was significantly greater when the plasma clade matched the clade of the virus being tested. This within-clade advantage was diminished in older, more-diverse epidemics in southern Africa, the United States, and Europe compared to more recent epidemics in Asia. It was most pronounced for circulating recombinant form (CRF) 07_BC, which is common in China and is the least-divergent lineage studied; this was followed by the slightly more diverse Asian CRF01_AE. We found no evidence that transmitted/founder viruses are generally more susceptible to neutralization and are therefore easier targets for vaccination than chronic viruses. Features of the gp120 V1V2 loop, in particular, length, net charge, and number of N-linked glycans, were associated with Env susceptibility and plasma neutralization potency in a manner consistent with neutralization escape being a force that drives viral diversification and plasma neutralization breadth. The overall susceptibility of Envs and potencies of plasma samples were highly predictive of the neutralization outcome of any single virus-plasma combination. These findings highlight important considerations for the design and testing of candidate HIV-1 vaccines that aim to elicit effective nAbs. IMPORTANCE An effective HIV-1 vaccine will need to overcome the extraordinary variability of the virus, which is most pronounced in the envelope glycoproteins (Env), which are the sole targets for neutralizing antibodies (nAbs). Distinct genetic lineages, or clades, of HIV-1 occur in different locales that may require special consideration when designing and testing vaccines candidates. We show that nAb responses to HIV-1 infection are generally active across clades but are most potent within clades. Because effective vaccine-induced nAbs are likely to share these properties, optimal coverage of a particular clade or combination of clades may require clade-matched immunogens. Optimal within-clade coverage might be easier to achieve in regions such as China and Thailand, where the epidemic is more recent and the virus less diverse than in southern Africa, the United States, and Europe. Finally, features of the first and second hypervariable regions of gp120 (V1V2) may be critical for optimal vaccine design.
Collapse
|
17
|
Delatorre E, Mir D, Bello G. Spatiotemporal dynamics of the HIV-1 subtype G epidemic in West and Central Africa. PLoS One 2014; 9:e98908. [PMID: 24918930 PMCID: PMC4053352 DOI: 10.1371/journal.pone.0098908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/03/2014] [Indexed: 01/25/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) subtype G is the second most prevalent HIV-1 clade in West Africa, accounting for nearly 30% of infections in the region. There is no information about the spatiotemporal dynamics of dissemination of this HIV-1 clade in Africa. To this end, we analyzed a total of 305 HIV-1 subtype G pol sequences isolated from 11 different countries from West and Central Africa over a period of 20 years (1992 to 2011). Evolutionary, phylogeographic and demographic parameters were jointly estimated from sequence data using a Bayesian coalescent-based method. Our analyses indicate that subtype G most probably emerged in Central Africa in 1968 (1956–1976). From Central Africa, the virus was disseminated to West and West Central Africa at multiple times from the middle 1970s onwards. Two subtype G strains probably introduced into Nigeria and Togo between the middle and the late 1970s were disseminated locally and to neighboring countries, leading to the origin of two major western African clades (GWA-I and GWA-II). Subtype G clades circulating in western and central African regions displayed an initial phase of exponential growth followed by a decline in growth rate since the early/middle 1990s; but the mean epidemic growth rate of GWA-I (0.75 year−1) and GWA-II (0.95 year−1) clades was about two times higher than that estimated for central African lineages (0.47 year−1). Notably, the overall evolutionary and demographic history of GWA-I and GWA-II clades was very similar to that estimated for the CRF06_cpx clade circulating in the same region. These results support the notion that the spatiotemporal dissemination dynamics of major HIV-1 clades circulating in western Africa have probably been shaped by the same ecological factors.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Daiana Mir
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
18
|
Abstract
Previous studies have shown that the HIV-1 epidemic in Cuba displayed a complex molecular epidemiologic profile with circulation of several subtypes and circulating recombinant forms (CRF); but the evolutionary and population history of those viral variants remains unknown. HIV-1 pol sequences of the most prevalent Cuban lineages (subtypes B, C and G, CRF18_cpx, CRF19_cpx, and CRFs20/23/24_BG) isolated between 1999 and 2011 were analyzed. Maximum-likelihood analyses revealed multiple introductions of subtype B (n≥66), subtype C (n≥10), subtype G (n≥8) and CRF18_cpx (n≥2) viruses in Cuba. The bulk of HIV-1 infections in this country, however, was caused by dissemination of a few founder strains probably introduced from North America/Europe (clades BCU-I and BCU-II), east Africa (clade CCU-I) and central Africa (clades GCU, CRF18CU and CRF19CU), or locally generated (clades CRFs20/23/24_BG). Bayesian-coalescent analyses show that the major HIV-1 founder strains were introduced into Cuba during 1985–1995; whereas the CRFs_BG strains emerged in the second half of the 1990s. Most HIV-1 Cuban clades appear to have experienced an initial period of fast exponential spread during the 1990s and early 2000s, followed by a more recent decline in growth rate. The median initial growth rate of HIV-1 Cuban clades ranged from 0.4 year−1 to 1.6 year−1. Thus, the HIV-1 epidemic in Cuba has been a result of the successful introduction of a few viral strains that began to circulate at a rather late time of the AIDS pandemic, but then were rapidly disseminated through local transmission networks.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
19
|
Abstract
One of the major characteristics of HIV-1 is its high genetic variability and extensive heterogeneity. This characteristic is due to its molecular traits, which in turn allows it to vary, recombine, and diversify at a high frequency. As such, it generates complex molecular forms, termed recombinants, which evade the human immune system and so survive. There is no sequence constraint to the recombination pattern as it appears to occur at inter-group (between groups M and O), as well as interand intra-subtype within group M. Rapid emergence and active global transmission of HIV-1 recombinants, known as circulating recombinant forms (CRFs) and unique recombinant forms (URFs), requires urgent attention. To date, 55 CRFs have been reported around the world. The first CRF01_AE originated from Central Africa but spread widely in Asia. The most recent CRF; CRF55_01B is a recombinant form of CRF01_AE and subtype B, although its origin is yet to be publicly disclosed. HIV-1 recombination is an ongoing event and plays an indispensable role in HIV epidemics in different regions. Africa, Asia and South America are identified as recombination hot-spots. They are affected by continual emergence and cocirculation of newly emerging CRFs and URFs, which are now responsible for almost 20% of HIV-1 infections worldwide. Better understanding of recombinants is necessary to determine their biological and molecular attributes.
Collapse
Affiliation(s)
- Katherine A Lau
- Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute , Westmead Hospital, The University of Sydney
| | - Justin J L Wong
- Gene and Stem Cell Therapy Program, Centenary Institute , Royal Prince Alfred Hospital, The University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Ward MJ, Lycett SJ, Kalish ML, Rambaut A, Leigh Brown AJ. Estimating the rate of intersubtype recombination in early HIV-1 group M strains. J Virol 2013; 87:1967-73. [PMID: 23236072 PMCID: PMC3571495 DOI: 10.1128/jvi.02478-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/06/2012] [Indexed: 11/20/2022] Open
Abstract
West Central Africa has been implicated as the epicenter of the HIV-1 epidemic, and almost all group M subtypes can be found there. Previous analysis of early HIV-1 group M sequences from Kinshasa in the Democratic Republic of Congo, formerly Zaire, revealed that isolates from a number of individuals fall in different positions in phylogenetic trees constructed from sequences from opposite ends of the genome as a result of recombination between viruses of different subtypes. Here, we use discrete ancestral trait mapping to develop a procedure for quantifying HIV-1 group M intersubtype recombination across phylogenies, using individuals' gag (p17) and env (gp41) subtypes. The method was applied to previously described HIV-1 group M sequences from samples obtained in Kinshasa early in the global radiation of HIV. Nine different p17 and gp41 intersubtype recombinant combinations were present in the data set. The mean number of excess ancestral subtype transitions (NEST) required to map individuals' p17 subtypes onto the gp14 phylogeny samples, compared to the number required to map them onto the p17 phylogenies, and vice versa, indicated that excess subtype transitions occurred at a rate of approximately 7 × 10(-3) to 8 × 10(-3) per lineage per year as a result of intersubtype recombination. Our results imply that intersubtype recombination may have occurred in approximately 20% of lineages evolving over a period of 30 years and confirm intersubtype recombination as a substantial force in generating HIV-1 group M diversity.
Collapse
Affiliation(s)
- Melissa J. Ward
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Samantha J. Lycett
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Marcia L. Kalish
- Vanderbilt University, Vanderbilt Institute for Global Health, Nashville, Tennessee, USA
| | - Andrew Rambaut
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew J. Leigh Brown
- University of Edinburgh, Institute of Evolutionary Biology, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Baryshev PB, Bogachev VV, Gashnikova NM. Genetic characterization of an isolate of HIV type 1 AG recombinant form circulating in Siberia, Russia. Arch Virol 2012; 157:2335-41. [PMID: 22903393 PMCID: PMC3506197 DOI: 10.1007/s00705-012-1442-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 06/28/2012] [Indexed: 11/30/2022]
Abstract
Before 2008, HIV-1 subtype A was the predominant genetic variant in the Novosibirsk oblast of Russia as well as in most parts of this country. However, a rapid spread of the recombinant HIV-1 02_AG form has been reported in Novosibirsk since 2009. We have analyzed the genome of the 10.RU.6637 isolate, a HIV-1 02_AG recombinant form, which represents a monophyletic cluster of the HIV-1 variants widespread in this region. Phylogenetic analysis has shown that the Siberian 10.RU.6637 isolate displays the highest sequence identity to the HIV-1 subtype AG forms circulating in Uzbekistan. However, recombination analysis of 10.RU.6637 has demonstrated that this isolate is a recombinant form between HIV-1 subtype A and CRF02_AG, differing in its genetic structure from both the CRF02_AG reference sequences and the Central Asian variants of HIV-1 02_AG.
Collapse
Affiliation(s)
- P B Baryshev
- State Research Center of Virology and Biotechnology VECTOR, Novosibirsk, Russia.
| | | | | |
Collapse
|
22
|
Abstract
The HIV epidemic in higher-income nations is driven by receptive anal intercourse, injection drug use through needle/syringe sharing, and, less efficiently, vaginal intercourse. Alcohol and noninjecting drug use increase sexual HIV vulnerability. Appropriate diagnostic screening has nearly eliminated blood/blood product-related transmissions and, with antiretroviral therapy, has reduced mother-to-child transmission radically. Affected subgroups have changed over time (e.g., increasing numbers of Black and minority ethnic men who have sex with men). Molecular phylogenetic approaches have established historical links between HIV strains from central Africa to those in the United States and thence to Europe. However, Europe did not just receive virus from the United States, as it was also imported from Africa directly. Initial introductions led to epidemics in different risk groups in Western Europe distinguished by viral clades/sequences, and likewise, more recent explosive epidemics linked to injection drug use in Eastern Europe are associated with specific strains. Recent developments in phylodynamic approaches have made it possible to obtain estimates of sequence evolution rates and network parameters for epidemics.
Collapse
Affiliation(s)
- Sten H Vermund
- Institute for Global Health and Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | | |
Collapse
|
23
|
Abstract
The molecular epidemiology of HIV-1 is constantly changing, mainly as a result of human migratory flows and the high adaptive ability of the virus. In recent years, Spain has become one of Europe's main destinations for immigrants and one of the western European countries with the highest rates of HIV-positive patients. Using a phylogeographic approach, we have analyzed the relationship between HIV-1 variants detected in immigrant and native populations of the urban area of Madrid. Our project was based on two coincidental facts. First, resistance tests were extended to naïve and newly diagnosed patients, and second, the Spanish government legislated the provision of legal status to many immigrants. This allowed us to obtain a large data set (n = 2,792) from 11 Madrid hospitals of viral pol sequences from the two populations, and with this unique material, we explored the impact of immigration in the epidemiological trends of HIV-1 variants circulating in the largest Spanish city. The prevalence of infections by non-B HIV-1 variants in the studied cohort was 9%, rising to 25% among native Spanish patients. Multiple transmission events involving different lineages and subsubtypes were observed in all the subtypes and recombinant forms studied. Our results also revealed strong social clustering among the most recent immigrant groups, such as Russians and Romanians, but not in those groups who have lived in Madrid for many years. Additionally, we document for the first time the presence of CRF47_BF and CRF38_BF in Europe, and a new BG recombinant form found in Spaniards and Africans is tentatively proposed. These results suggest that the HIV-1 epidemic will evolve toward a more complex epidemiological landscape.
Collapse
|
24
|
Djoko CF, Rimoin AW, Vidal N, Tamoufe U, Wolfe ND, Butel C, LeBreton M, Tshala FM, Kayembe PK, Muyembe JJ, Edidi-Basepeo S, Pike BL, Fair JN, Mbacham WF, Saylors KE, Mpoudi-Ngole E, Delaporte E, Grillo M, Peeters M. High HIV type 1 group M pol diversity and low rate of antiretroviral resistance mutations among the uniformed services in Kinshasa, Democratic Republic of the Congo. AIDS Res Hum Retroviruses 2011; 27:323-9. [PMID: 20954909 DOI: 10.1089/aid.2010.0201] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For the first time the genetic diversity among the uniformed personnel in Kinshasa, the capital city of the Democratic Republic of Congo (DRC), a country that has experienced military conflicts since 1998 and in which the global HIV-1/M pandemic started, has now been documented. A total of 94 HIV-1-positive samples, collected in 2007 in Kinshasa garrison settings from informed consenting volunteers, were genetically characterized in the pol region (protease and RT). An extensive diversity was observed, with 51% of the strains corresponding to six pure subtypes (A 23%, C 13.8%, D, G, H, J, and untypable), 15% corresponding to nine different CRFs (01, 02, 11, 13, 25, 26, 37, 43, and 45), and 34% being unique recombinants with one-third being complex mosaic viruses involving three or more different subtypes/CRFs. Only one strain harbored a single mutation, I54V, associated with drug resistance to protease inhibitors. Due to their high mobility and potential risk behavior, HIV infections in military personnel can lead to an even more complex epidemic in the DRC and to a possible increase of subtype C.
Collapse
Affiliation(s)
- Cyrille F. Djoko
- Global Viral Forecasting Initiative (GVF), San Francisco, California, and Yaoundé, Cameroon
- Biotechnology Center and Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Nicole Vidal
- Laboratoire Retrovirus, UMR 145, Institute for Research and Development (IRD) and University of Montpellier 1, Montpellier, France
| | - Ubald Tamoufe
- Global Viral Forecasting Initiative (GVF), San Francisco, California, and Yaoundé, Cameroon
| | - Nathan D. Wolfe
- Global Viral Forecasting Initiative (GVF), San Francisco, California, and Yaoundé, Cameroon
- Stanford University, Program in Human Biology, Stanford, California
| | - Christelle Butel
- Laboratoire Retrovirus, UMR 145, Institute for Research and Development (IRD) and University of Montpellier 1, Montpellier, France
| | - Matthew LeBreton
- Global Viral Forecasting Initiative (GVF), San Francisco, California, and Yaoundé, Cameroon
| | - Felix M. Tshala
- Military Health Services, Ministry of Defence, Kinshasa, Democratic Republic of the Congo
| | - Patrick K. Kayembe
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Jean Jacques Muyembe
- National Institute for Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Samuel Edidi-Basepeo
- National AIDS Control Program Laboratory, Kinshasa, Democratic Republic of the Congo
| | - Brian L. Pike
- Global Viral Forecasting Initiative (GVF), San Francisco, California, and Yaoundé, Cameroon
| | - Joseph N. Fair
- Global Viral Forecasting Initiative (GVF), San Francisco, California, and Yaoundé, Cameroon
| | - Wilfred F. Mbacham
- Biotechnology Center and Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Karen E. Saylors
- Global Viral Forecasting Initiative (GVF), San Francisco, California, and Yaoundé, Cameroon
| | | | - Eric Delaporte
- Laboratoire Retrovirus, UMR 145, Institute for Research and Development (IRD) and University of Montpellier 1, Montpellier, France
- Department of Infectious Diseases, CHU, Montpellier, France
| | - Michael Grillo
- Department of Defense HIV AIDS Prevention Program (DHAPP), San Diego, California
| | - Martine Peeters
- Laboratoire Retrovirus, UMR 145, Institute for Research and Development (IRD) and University of Montpellier 1, Montpellier, France
| |
Collapse
|
25
|
Van Heuverswyn F, Peeters M. The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep 2010; 9:338-46. [PMID: 17618555 DOI: 10.1007/s11908-007-0052-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
HIV type 1 (HIV-1) and type 2 (HIV-2) are the result of several cross-species transmissions from primates to humans. Recently, the ancestral strains of HIV-1 groups M and N were shown to still persist in today's wild chimpanzee populations (Pan troglodytes troglodytes) in south Cameroon. Lately, HIV-1 group O-related viruses have been identified in western gorillas (Gorilla gorilla), called SIVgor, but chimpanzees are most likely the original reservoir of this simian immunodeficiency virus (SIV) infection. HIV-2 is the result of at least eight distinct cross-species transmissions of SIV from sooty mangabeys (Cercocebus atys) in West Africa. Although the origin of HIV-1 and HIV-2 became clearer, some important questions concerning pathogenicity and epidemic spread of certain HIV/SIV variants need to be further elucidated. Because humans are still exposed to a plethora of primate lentiviruses through hunting and handling of primate bushmeat, the possibility of additional zoonotic transfers of primate lentiviruses from other primates must be considered.
Collapse
Affiliation(s)
- Fran Van Heuverswyn
- UMR145, 'Institut de Recherche pour le Développement (IRD)' and University of Montpellier 1, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cdx5, France
| | | |
Collapse
|
26
|
Carr JK, Wolfe ND, Torimiro JN, Tamoufe U, Mpoudi-Ngole E, Eyzaguirre L, Birx DL, McCutchan FE, Burke DS. HIV-1 recombinants with multiple parental strains in low-prevalence, remote regions of Cameroon: evolutionary relics? Retrovirology 2010; 7:39. [PMID: 20426823 PMCID: PMC2879232 DOI: 10.1186/1742-4690-7-39] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 04/28/2010] [Indexed: 12/31/2022] Open
Abstract
Background The HIV pandemic disseminated globally from Central West Africa, beginning in the second half of the twentieth century. To elucidate the virologic origins of the pandemic, a cross-sectional study was conducted of the genetic diversity of HIV-1 strains in villagers in 14 remote locations in Cameroon and in hospitalized and STI patients. DNA extracted from PBMC was PCR amplified from HIV(+) subjects. Partial pol amplicons (N = 164) and nearly full virus genomes (N = 78) were sequenced. Among the 3956 rural villagers studied, the prevalence of HIV infection was 4.9%; among the hospitalized and clinic patients, it was 8.6%. Results Virus genotypes fell into two distinctive groups. A majority of the genotyped strains (109/164) were the circulating recombinant form (CRF) known to be endemic in West Africa and Central West Africa, CRF02_AG. The second most common genetic form (9/164) was the recently described CRF22_01A1, and the rest were a collection of 4 different subtypes (A2, D, F2, G) and 6 different CRFs (-01, -11, -13, -18, -25, -37). Remarkably, 10.4% of HIV-1 genomes detected (17/164) were heretofore undescribed unique recombinant forms (URF) present in only a single person. Nearly full genome sequencing was completed for 78 of the viruses of interest. HIV genetic diversity was commonplace in rural villages: 12 villages each had at least one newly detected URF, and 9 villages had two or more. Conclusions These results show that while CRF02_AG dominated the HIV strains in the rural villages, the remainder of the viruses had tremendous genetic diversity. Between the trans-species transmission of SIVcpz and the dispersal of pandemic HIV-1, there was a time when we hypothesize that nascent HIV-1 was spreading, but only to a limited extent, recombining with other local HIV-1, creating a large variety of recombinants. When one of those recombinants began to spread widely (i.e. became epidemic), it was recognized as a subtype. We hypothesize that the viruses in these remote Cameroon villages may represent that pre-epidemic stage of viral evolution.
Collapse
Affiliation(s)
- Jean K Carr
- Institute of Human Virology, Univ, of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sanabani SS, Pastena ERDS, Kleine Neto W, Barreto CC, Ferrari KT, Kalmar EMN, Ferreira S, Sabino EC. Near full-length genome analysis of low prevalent human immunodeficiency virus type 1 subclade F1 in São Paulo, Brazil. Virol J 2009; 6:78. [PMID: 19531216 PMCID: PMC2704198 DOI: 10.1186/1743-422x-6-78] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/16/2009] [Indexed: 01/13/2023] Open
Abstract
Background The genetic diversity of the human immunodeficiency virus type 1 (HIV-1) is critical to lay the groundwork for the design of successful drugs or vaccine. In this study we aimed to characterize and define the molecular prevalence of HIV-1 subclade F1 currently circulating in São Paulo, Brazil. Methods A total of 36 samples were selected from 888 adult patients residing in São Paulo who had previously been diagnosed in two independent studies in our laboratory as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA was amplified from the purified genomic DNA of all 36 blood samples by 5 fragments overlapping PCR followed by direct sequencing. Sequence data were obtained from the 5 fragments of pure subclade F1 and phylogenetic trees were constructed and compared with previously published sequences. Subclades F1 that exhibited mosaic structure with other subtypes were omitted from any further analysis Results Our methods of fragment amplification and sequencing confirmed that only 5 sequences inferred from pol region as subclade F1 also holds true for the genome as a whole and, thus, estimated the true prevalence at 0.56%. The results also showed a single phylogenetic cluster of the Brazilian subclade F1 along with non-Brazilian South American isolates in both subgenomic and the full-length genomes analysis with an overall intrasubtype nucleotide divergence of 6.9%. The nucleotide differences within the South American and Central African F1 strains, in the C2-C3 env, were 8.5% and 12.3%, respectively. Conclusion All together, our findings showed a surprisingly low prevalence rate of subclade F1 in Brazil and suggest that these isolates originated in Central Africa and subsequently introduced to South America.
Collapse
|
28
|
Close phylogenetic relationship between Angolan and Romanian HIV-1 subtype F1 isolates. Retrovirology 2009; 6:39. [PMID: 19386115 PMCID: PMC2680801 DOI: 10.1186/1742-4690-6-39] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/22/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Here, we investigated the phylogenetic relationships of the HIV-1 subtype F1 circulating in Angola with subtype F1 strains sampled worldwide and reconstructed the evolutionary history of this subtype in Central Africa. METHODS Forty-six HIV-1-positive samples were collected in Angola in 2006 and subtyped at the env-gp41 region. Partial env-gp120 and pol-RT sequences and near full-length genomes from those env-gp41 subtype F1 samples were further generated. Phylogenetic analyses of partial and full-length subtype F1 strains isolated worldwide were carried out. The onset date of the subtype F1 epidemic in Central Africa was estimated using a Bayesian Markov chain Monte Carlo approach. RESULTS Nine Angolan samples were classified as subtype F1 based on the analysis of the env-gp41 region. All nine Angolan sequences were also classified as subtype F1 in both env-gp120 and pol-RT genomic regions, and near full-length genome analysis of four of these samples confirmed their classification as "pure" subtype F1. Phylogenetic analyses of subtype F1 strains isolated worldwide revealed that isolates from the Democratic Republic of Congo (DRC) were the earliest branching lineages within the subtype F1 phylogeny. Most strains from Angola segregated in a monophyletic group together with Romanian sequences; whereas South American F1 sequences emerged as an independent cluster. The origin of the subtype F1 epidemic in Central African was estimated at 1958 (1934-1971). CONCLUSION "Pure" subtype F1 strains are common in Angola and seem to be the result of a single founder event. Subtype F1 sequences from Angola are closely related to those described in Romania, and only distantly related to the subtype F1 lineage circulating in South America. Original diversification of subtype F1 probably occurred within the DRC around the late 1950s.
Collapse
|
29
|
van der Kuyl AC, Cornelissen M. Identifying HIV-1 dual infections. Retrovirology 2007; 4:67. [PMID: 17892568 PMCID: PMC2045676 DOI: 10.1186/1742-4690-4-67] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/24/2007] [Indexed: 11/15/2022] Open
Abstract
Transmission of human immunodeficiency virus (HIV) is no exception to the phenomenon that a second, productive infection with another strain of the same virus is feasible. Experiments with RNA viruses have suggested that both coinfections (simultaneous infection with two strains of a virus) and superinfections (second infection after a specific immune response to the first infecting strain has developed) can result in increased fitness of the viral population. Concerns about dual infections with HIV are increasing. First, the frequent detection of superinfections seems to indicate that it will be difficult to develop a prophylactic vaccine. Second, HIV-1 superinfections have been associated with accelerated disease progression, although this is not true for all persons. In fact, superinfections have even been detected in persons controlling their HIV infections without antiretroviral therapy. Third, dual infections can give rise to recombinant viruses, which are increasingly found in the HIV-1 epidemic. Recombinants could have increased fitness over the parental strains, as in vitro models suggest, and could exhibit increased pathogenicity. Multiple drug resistant (MDR) strains could recombine to produce a pan-resistant, transmittable virus. We will describe in this review what is presently known about super- and re-infection among ambient viral infections, as well as the first cases of HIV-1 superinfection, including HIV-1 triple infections. The clinical implications, the impact of the immune system, and the effect of anti-retroviral therapy will be covered, as will as the timing of HIV superinfection. The methods used to detect HIV-1 dual infections will be discussed in detail. To increase the likelihood of detecting a dual HIV-1 infection, pre-selection of patients can be done by serotyping, heteroduplex mobility assays (HMA), counting the degenerate base codes in the HIV-1 genotyping sequence, or surveying unexpected increases in the viral load during follow-up. The actual demonstration of dual infections involves a great deal of additional research to completely characterize the patient's viral quasispecies. The identification of a source partner would of course confirm the authenticity of the second infection.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre of the University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
30
|
McNulty A, Jennings C, Bennett D, Fitzgibbon J, Bremer JW, Ussery M, Kalish ML, Heneine W, García-Lerma JG. Evaluation of dried blood spots for human immunodeficiency virus type 1 drug resistance testing. J Clin Microbiol 2007; 45:517-21. [PMID: 17166967 PMCID: PMC1829056 DOI: 10.1128/jcm.02016-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/23/2006] [Accepted: 12/03/2006] [Indexed: 11/20/2022] Open
Abstract
Dried blood spots (DBS) are simpler to prepare, store, and transport than plasma or serum and may represent a good alternative for drug resistance genotyping, particularly in resource-limited settings. However, the utility of DBS for drug resistance testing is unknown. We investigated the efficiency of amplification of large human immunodeficiency virus type 1 (HIV-1) pol fragments (1,023 bp) from DBS stored at different temperatures, the type of amplified product(s) (RNA and/or DNA), and the similarity between plasma and DBS sequences. We evaluated two matched plasma/DBS panels stored for 5 to 6 years at several temperatures and 40 plasma/DBS specimens collected from untreated persons in Cameroon and stored for 2 to 3 years at -20 degrees C. The amplification of HIV-1 pol was done using an in-house reverse transcriptase-nested PCR assay. Reactions were done with and without reverse transcription to evaluate the contribution of HIV DNA to pol sequences from DBS. Amplification was successful for the DBS samples stored for 5 to 6 years at -20 degrees C or at -70 degrees C but not for those stored at room temperature. Thirty-seven of the 40 (92.5%) DBS from Cameroon were amplifiable, including 8/11 (72.7%) with plasma virus loads of <10,000 RNA copies/ml and all 29 with plasma virus loads of >10,000. Proviral DNA contributed significantly to DBS sequences in 24 of the 37 (65%) specimens from Cameroon. The overall similarity between plasma and DBS sequences was 98.1%. Our results demonstrate the feasibility of DBS for drug resistance testing and indicate that -20 degrees C is a suitable temperature for long-term storage of DBS. The amplification of proviral DNA from DBS highlights the need for a wider evaluation of the concordance of resistance genotypes between plasma and DBS.
Collapse
Affiliation(s)
- Amanda McNulty
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Rd., Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Minin VN, Dorman KS, Fang F, Suchard MA. Phylogenetic mapping of recombination hotspots in human immunodeficiency virus via spatially smoothed change-point processes. Genetics 2006; 175:1773-85. [PMID: 17194781 PMCID: PMC1855141 DOI: 10.1534/genetics.106.066258] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a Bayesian framework for inferring spatial preferences of recombination from multiple putative recombinant nucleotide sequences. Phylogenetic recombination detection has been an active area of research for the last 15 years. However, only recently attempts to summarize information from several instances of recombination have been made. We propose a hierarchical model that allows for simultaneous inference of recombination breakpoint locations and spatial variation in recombination frequency. The dual multiple change-point model for phylogenetic recombination detection resides at the lowest level of our hierarchy under the umbrella of a common prior on breakpoint locations. The hierarchical prior allows for information about spatial preferences of recombination to be shared among individual data sets. To overcome the sparseness of breakpoint data, dictated by the modest number of available recombinant sequences, we a priori impose a biologically relevant correlation structure on recombination location log odds via a Gaussian Markov random field hyperprior. To examine the capabilities of our model to recover spatial variation in recombination frequency, we simulate recombination from a predefined distribution of breakpoint locations. We then proceed with the analysis of 42 human immunodeficiency virus (HIV) intersubtype gag recombinants and identify a putative recombination hotspot.
Collapse
Affiliation(s)
- Vladimir N Minin
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
32
|
Schaefer A, Robbins KE, Nzilambi EN, St. Louis ME, Quinn TC, Folks TM, Kalish ML, Pieniazek D. Divergent HIV and simian immunodeficiency virus surveillance, Zaire. Emerg Infect Dis 2006; 11:1446-8. [PMID: 16229778 PMCID: PMC3310624 DOI: 10.3201/eid1109.050179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent HIV infection or divergent HIV or simian immunodeficiency virus (SIV) strains may be responsible for Western blot–indeterminate results on 70 serum samples from Zairian hospital employees that were reactive in an enzyme immunoassay. Using universal polymerase chain reaction HIV-1, HIV-2, and SIV primers, we detected 1 (1.4%) HIV-1 sequence. Except for 1 sample, no molecular evidence for unusual HIV- or SIV-like strains in this sampling was found.
Collapse
Affiliation(s)
- Amanda Schaefer
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | - Thomas M. Folks
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marcia L. Kalish
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Danuta Pieniazek
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|