1
|
Washington EJ. Developing the trehalose biosynthesis pathway as an antifungal drug target. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:30. [PMID: 40229515 PMCID: PMC11997177 DOI: 10.1038/s44259-025-00095-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/18/2025] [Indexed: 04/16/2025]
Abstract
Invasive fungal infections are responsible for millions of deaths worldwide each year. Therefore, focusing on innovative approaches to developing therapeutics that target fungal pathogens is critical. Here, we discuss targeting the fungal trehalose biosynthesis pathway with antifungal therapeutics, which may lead to the improvement of human health globally, especially as fungal pathogens continue to emerge due to fluctuations in the climate.
Collapse
Affiliation(s)
- Erica J Washington
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, 27710, USA.
- Department of Biochemistry, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Jani A, Reigler AN, Leal SM, McCarty TP. Cryptococcosis. Infect Dis Clin North Am 2025; 39:199-219. [PMID: 39710555 DOI: 10.1016/j.idc.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cryptococcosis is an invasive fungal infection caused by yeasts of the genus Cryptococcus that causes a significant global burden of disease in both immunocompromised and immunocompetent individuals. Over the past several decades, diagnosis and management of cryptococcal disease have moved to focus on rapid, reliable, and cost-effective care delivery, with the advent of new antigen detection assays and novel antifungal treatment strategies.
Collapse
Affiliation(s)
- Aditi Jani
- Division of Infectious Diseases, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashleigh N Reigler
- Division of Lab Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sixto M Leal
- Division of Lab Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Todd P McCarty
- Division of Infectious Diseases, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Zang X, Zhou Y, Li S, Shi G, Deng H, Zang X, Cao J, Yang R, Lin X, Deng H, Huang Y, Yang C, Wu N, Song C, Wu L, Xue X. Latex microspheres lateral flow immunoassay with smartphone-based device for rapid detection of Cryptococcus. Talanta 2025; 284:127254. [PMID: 39581110 DOI: 10.1016/j.talanta.2024.127254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Cryptococcus is a pathogenic fungus that poses a threat to human health. Conventional detection methods have limited the rapid and accurate qualitative and quantitative analysis of Cryptococcus, affecting early diagnosis and treatment. In this study, we developed a Point-of-Care Testing (POCT) platform that integrates lateral flow immunoassay (LFIA) with smartphones, enabling both rapid qualitative and quantitative detection of Cryptococcus. The LFIA strip utilizes latex microspheres (LMs) as labeling probes, achieving a detection limit of 3000 CFU/mL and presenting higher sensitivity than the Colloidal Gold Nanoparticles Lateral Flow Immunoassay (AuNPs-LFIA) strip, and approximately eight times that of the AuNPs-LFIA strip. Additionally, it exhibiting no cross-reactivity with over 24 common pathogens and validated in clinical samples. For quantitative analysis, artificial intelligence algorithms were employed to convert smartphone-captured images into grayscale values. Eleven feature values were utilized as a dataset for machine learning to construct a linear regression model, with Mean Squared Error (MSE) and R2 reaching 0.45 and 0.91, respectively. Moreover, the recovery rates in the serum samples ranged from 90.0 % to 108 %, indicating a good practicability. This research presents a rapid diagnostic technology for Cryptococcus and lays the theoretical and technical groundwork for detecting other pathogens.
Collapse
Affiliation(s)
- Xuelei Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Shandong Second Medical University, Weifang, 261053, China
| | - Yangyu Zhou
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Shuming Li
- Datang Telecom Convergence Communications Technology Co., Ltd, Beijing, 100094, China
| | - Gang Shi
- Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Hengyu Deng
- Shandong Second Medical University, Weifang, 261053, China
| | - Xuefeng Zang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jingrong Cao
- Department of Clinical Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ruonan Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Hui Deng
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yemei Huang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chen Yang
- Medical Laboratory Center, The First Medical Centre, Chinese PLA General Hospital, Beijing, 1000853, China
| | - Ningxin Wu
- Department of Cadres, 971 Hospital of the Chinese People's Liberation Army Navy, Qingdao, 266000, China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Xinying Xue
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
4
|
Ballard S, Montgomery A, Rose I, Lockhart S, DeBess E, Bermudez LE. Epidemiological Study of Cryptococcus gattii Complex Infection in Domestic and Wild Animals in Oregon. Vet Sci 2025; 12:185. [PMID: 40005945 PMCID: PMC11860517 DOI: 10.3390/vetsci12020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The members of the Cryptococcus gattii species complex are the etiologic agents of potentially fatal human infection. C. gattii causes disease in both immunocompetent and immunocompromised hosts. In the early 2000s, infection caused by C. gattii emerged in the Pacific Northwest of the US. While many studies have been published about the human infection, the epidemiological characteristics of the infection in animals, with a possible role in human infection, have not been in investigated. Cases of C. gattii diagnosed in animals in Oregon from 2008 to 2019 were cataloged by county, species of animal, site of the infection, season of the year, and C. gattii genotype. One hundred and nine cases were diagnosed, and among the genotypes of C. gattii, VGII (Cryptococcus deuterogatti) with the genotypes VGIIa, VGIIb, and VGIIc was responsible for 98% of the cases. VGIIa was identified in more than 50% of the animals, and Cryptococcus bacilliporus (VGIII) was only isolated from cat patients. The majority of the infections were diagnosed in dogs and cats, although caprines, equines, camelids, ovines, and elk were also seen with the disease. The most common site of infection in dogs was the brain; that in cats was the nasal cavity and the skin, while the lung was the most affected site in caprines, equines, camelids and elk. Marion and Lane Counties account for the majority of the infections, followed by Clackamas, Benton, and Multnomah Counties. The infection was predominantly identified during the Fall and Winter months, except for Benton County, where it was seen more commonly during the Summer months. This study reviews all the cases identified by the Department of Public Health and by the veterinarians in Oregon in the years between 2008 and 2019.
Collapse
Affiliation(s)
- Sophia Ballard
- Diagnostic Laboratory, Bacteriology and Parasitology Section, Carlson College of Veterinary Medicine, Corvallis, OR 97331, USA; (S.B.); (A.M.); (I.R.)
| | - Alexandria Montgomery
- Diagnostic Laboratory, Bacteriology and Parasitology Section, Carlson College of Veterinary Medicine, Corvallis, OR 97331, USA; (S.B.); (A.M.); (I.R.)
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
| | - Ian Rose
- Diagnostic Laboratory, Bacteriology and Parasitology Section, Carlson College of Veterinary Medicine, Corvallis, OR 97331, USA; (S.B.); (A.M.); (I.R.)
| | - Shawn Lockhart
- Center for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | | | - Luiz E. Bermudez
- Diagnostic Laboratory, Bacteriology and Parasitology Section, Carlson College of Veterinary Medicine, Corvallis, OR 97331, USA; (S.B.); (A.M.); (I.R.)
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR 97331, USA
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Hamaguchi T, Uchida N, Fujita-Nakata M, Nakanishi M, Tsuchido Y, Nagao M, Iinuma Y, Asahina M. Autochthonous Cryptococcus gattii genotype VGIIb infection in a Japanese patient with anti-granulocyte-macrophage colony-stimulating factor antibodies. J Infect Chemother 2024; 30:1069-1075. [PMID: 38479572 DOI: 10.1016/j.jiac.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
A 31-year-old Japanese man presented with cerebral and pulmonary cryptococcosis. Cryptococcus gattii (C. gattii) genotype VGIIb was detected in the patient's sputum and cerebrospinal fluid specimens. The serum levels of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies were elevated in this patient, which has been associated with pulmonary alveolar proteinosis and is considered a risk factor for C. gattii infection. After undergoing >12 months of antifungal treatments, the patient showed improvements in symptoms and findings on brain and lung imaging. Several Japanese patients who develop C. gattii infection have also been reported; however, most of these patients have been infected outside Japan, as C. gattii infection is rare in Japan. Only one patient with C. gattii genotype VGIIb infection has been reported in Japan, and it is believed that this patient contracted the infection in China. In the present case, our patient has never been outside Japan, indicating that the infection originated in Japan. Our findings suggest that C. gattii might be spreading in Japan. Therefore, patients with positive serum anti-GM-CSF antibodies should be thoroughly monitored for C. gattii infection, even those living in Japan.
Collapse
Affiliation(s)
| | - Nobuaki Uchida
- Department of Neurology, Kanazawa Medical University, Ishikawa, Japan.
| | | | - Megumi Nakanishi
- Department of Neurology, Kanazawa Medical University, Ishikawa, Japan.
| | - Yasuhiro Tsuchido
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yoshitsugu Iinuma
- Department of Infectious Diseases, Kanazawa Medical University, Ishikawa, Japan.
| | - Masato Asahina
- Department of Neurology, Kanazawa Medical University, Ishikawa, Japan.
| |
Collapse
|
6
|
Yarzábal Rodríguez LA, Álvarez Gutiérrez PE, Gunde-Cimerman N, Ciancas Jiménez JC, Gutiérrez-Cepeda A, Ocaña AMF, Batista-García RA. Exploring extremophilic fungi in soil mycobiome for sustainable agriculture amid global change. Nat Commun 2024; 15:6951. [PMID: 39138171 PMCID: PMC11322326 DOI: 10.1038/s41467-024-51223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
As the Earth warms, alternatives to traditional farming are crucial. Exploring fungi, especially poly extremophilic and extremotolerant species, to be used as plant probiotics, represents a promising option. Extremophilic fungi offer avenues for developing and producing innovative biofertilizers, effective biocontrol agents against plant pathogens, and resilient enzymes active under extreme conditions, all of which are crucial to enhance agricultural efficiency and sustainability through improved soil fertility and decreased reliance on agrochemicals. Yet, extremophilic fungi's potential remains underexplored and, therefore, comprehensive research is needed to understand their roles as tools to foster sustainable agriculture practices amid climate change. Efforts should concentrate on unraveling the complex dynamics of plant-fungi interactions and harnessing extremophilic fungi's ecological functions to influence plant growth and development. Aspects such as plant's epigenome remodeling, fungal extracellular vesicle production, secondary metabolism regulation, and impact on native soil microbiota are among many deserving to be explored in depth. Caution is advised, however, as extremophilic and extremotolerant fungi can act as both mitigators of crop diseases and as opportunistic pathogens, underscoring the necessity for balanced research to optimize benefits while mitigating risks in agricultural settings.
Collapse
Grants
- This work was supported by Fondo Nacional de Innovación y Desarrollo Científico-Tecnológico (FONDOCYT), Ministerio de Educación Superior, Ciencia y Tecnología (MESCYT), Government of Dominican Republic: Project COD. 2022-2B2-078. This work was supported by Darwin Initiative Round 27: Partnership Project DARPP220, and Darwin Initiative Round 30: Project DIR30S2/1004. This study was also supported by funding from the Slovenian Research Agency to Infrastructural Centre Mycosmo (MRIC UL, I0-0022), programs P4-0432 and P1-0198. Authors appreciate the support received from the European Commission – Program H2020, Project GEN4OLIVE: 101000427, Topic SFS-28-2018-2019-2020 Genetic resources and pre-breeding communities. RAB-G received a Sabbatical fellowship (CVU: 389616) from the National Council of Humanities, Sciences and Technologies (CONAHCyT), Government of Mexico. This work was supported by RYC2022-037554-I project funded by MCIN/AEI/10.13039/501100011033 and FSE+.
Collapse
Affiliation(s)
- Luis Andrés Yarzábal Rodríguez
- Carrera de Bioquímica y Farmacia. Grupo de Microbiología Molecular y Biotecnología (GI-M2YB). Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Cuenca, Ecuador
| | | | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Adrián Gutiérrez-Cepeda
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
- Instituto de Química, Facultad de Ciencias, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Ana María Fernández Ocaña
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Ramón Alberto Batista-García
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain.
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
7
|
Patel K, Twohig P, Peeraphatdit T, Stohs EJ, Samson K, Smith L, Patel J, Manatsathit W. Outcomes and factors associated with cryptococcal disease among cirrhotics: A study of the national inpatient sample 2005 to 2014. Clin Res Hepatol Gastroenterol 2024; 48:102337. [PMID: 38609048 DOI: 10.1016/j.clinre.2024.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Cryptococcal disease (CD) confers a higher mortality in cirrhotic patients compared to non-cirrhotic patients. Factor association for CD in cirrhotic patients is poorly understood. Our aim was to determine the incidence, demographic, and comorbidities associated with CD among cirrhotic patients in the United States (US). METHOD Retrospective analysis of admissions of cirrhotic patients, with or without CD, using the National Inpatient Sample (NIS) database from 2005 to 2014. The number of admissions were reported in raw and weighted frequencies. The trends of CD among cirrhotic patients and overall CD were evaluated. Rao-Scott chi-square, t-tests, and multivariate logistic regressions were performed to evaluate variables and CD among cirrhotic patients. RESULTS There were 886,962 admissions for cirrhosis, and 164 of these with CD. By adjusted odds ratio (AOR), CD was more often associated with cirrhosis in Southern (2.95; 95 % CI 1.24, 7.02) and Western regions (4.45; 95 % CI 1.91, 10.37), Hispanic patients (1.80; 95 % CI 1.01, 3.20), and patients with chronic kidney disease (CKD) (3.13; 95 % CI 2.09, 4.69). Of note, CD in cirrhotic patients was associated with higher inpatient mortality (AOR of 3.89, 95 % CI 2.53, 5.99), longer length of stay (9.87 vs. 4.88 days), and a higher total charge ($76,880 vs. $ 37,227) when compared to cirrhotic patients without CD. DISCUSSION Patients with cirrhosis admitted with CD have a high inpatient mortality. The geographical location and CKD were important factors associated with CD among cirrhotic patients. Autoimmune liver diseases and immunosuppression did not appear to increase the risk of CD.
Collapse
Affiliation(s)
- Kishan Patel
- Division of Gastroenterology and Nutrition, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Patrick Twohig
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thoetchai Peeraphatdit
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erica J Stohs
- Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kaeli Samson
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynette Smith
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jay Patel
- Department of Internal Medicine, University of Connecticut Medical Center, Farmington, CA 06030, USA
| | - Wuttiporn Manatsathit
- Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
McHale TC, Boulware DR, Kasibante J, Ssebambulidde K, Skipper CP, Abassi M. Diagnosis and management of cryptococcal meningitis in HIV-infected adults. Clin Microbiol Rev 2023; 36:e0015622. [PMID: 38014977 PMCID: PMC10870732 DOI: 10.1128/cmr.00156-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Cryptococcal meningitis is a leading cause of morbidity and mortality globally, especially in people with advanced HIV disease. Cryptococcal meningitis is responsible for nearly 20% of all deaths related to advanced HIV disease, with the burden of disease predominantly experienced by people in resource-limited countries. Major advancements in diagnostics have introduced low-cost, easy-to-use antigen tests with remarkably high sensitivity and specificity. These tests have led to improved diagnostic accuracy and are essential for screening campaigns to reduce the burden of cryptococcosis. In the last 5 years, several high-quality, multisite clinical trials have led to innovations in therapeutics that have allowed for simplified regimens, which are better tolerated and result in less intensive monitoring and management of medication adverse effects. One trial found that a shorter, 7-day course of deoxycholate amphotericin B is as effective as the longer 14-day course and that flucytosine is an essential partner drug for reducing mortality in the acute phase of disease. Single-dose liposomal amphotericin B has also been found to be as effective as a 7-day course of deoxycholate amphotericin B. These findings have allowed for simpler and safer treatment regimens that also reduce the burden on the healthcare system. This review provides a detailed discussion of the latest evidence guiding the clinical management and special circumstances that make cryptococcal meningitis uniquely difficult to treat.
Collapse
Affiliation(s)
- Thomas C. McHale
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David R. Boulware
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | | | - Caleb P. Skipper
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
9
|
Tugume L, Ssebambulidde K, Kasibante J, Ellis J, Wake RM, Gakuru J, Lawrence DS, Abassi M, Rajasingham R, Meya DB, Boulware DR. Cryptococcal meningitis. Nat Rev Dis Primers 2023; 9:62. [PMID: 37945681 DOI: 10.1038/s41572-023-00472-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/12/2023]
Abstract
Cryptococcus neoformans and Cryptococcus gattii species complexes cause meningoencephalitis with high fatality rates and considerable morbidity, particularly in persons with deficient T cell-mediated immunity, most commonly affecting people living with HIV. Whereas the global incidence of HIV-associated cryptococcal meningitis (HIV-CM) has decreased over the past decade, cryptococcosis still accounts for one in five AIDS-related deaths globally due to the persistent burden of advanced HIV disease. Moreover, mortality remains high (~50%) in low-resource settings. The armamentarium to decrease cryptococcosis-associated mortality is expanding: cryptococcal antigen screening in the serum and pre-emptive azole therapy for cryptococcal antigenaemia are well established, whereas enhanced pre-emptive combination treatment regimens to improve survival of persons with cryptococcal antigenaemia are in clinical trials. Short courses (≤7 days) of amphotericin-based therapy combined with flucytosine are currently the preferred options for induction therapy of cryptococcal meningitis. Whether short-course induction regimens improve long-term morbidity such as depression, reduced neurocognitive performance and physical disability among survivors is the subject of further study. Here, we discuss underlying immunology, changing epidemiology, and updates on the management of cryptococcal meningitis with emphasis on HIV-associated disease.
Collapse
Affiliation(s)
- Lillian Tugume
- Infectious Diseases Institute, Makerere University, Kampala, Uganda.
| | - Kenneth Ssebambulidde
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Kasibante
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Jayne Ellis
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
| | - Rachel M Wake
- Institute for Infection and Immunity, St George's University of London, London, UK
| | - Jane Gakuru
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David S Lawrence
- Clinical Research Department, Faculty of Infectious and Tropical Diseases London School of Hygiene and Tropical Medicine, London, UK
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Mahsa Abassi
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Radha Rajasingham
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David B Meya
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - David R Boulware
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Pace CN, Haulena M, Drumm HE, Akhurst L, Raverty SA. CAUSES AND TRENDS OF HARBOR SEAL (PHOCA VITULINA) MORTALITY ALONG THE BRITISH COLUMBIA COAST, CANADA, 2012-2020. J Wildl Dis 2023; 59:629-639. [PMID: 37540148 DOI: 10.7589/jwd-d-22-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 08/05/2023]
Abstract
A retrospective study was conducted to categorize and describe the causes of mortality in harbor seals (Phoca vitulina) along the British Columbia coast that presented to the Vancouver Aquarium Marine Mammal Rescue Centre (MMR) for rehabilitation from 2012 to 2020. Medical records for 1,279 predominantly perinatal live-stranded harbor seals recovered in this region were reviewed. Approximately 20.0% (256 individuals; 137 males, 118 females, 1 unknown) of these animals died while at MMR. Infectious disease was the most common cause of death, accounting for 60.5% of mortality across all age classes. This was followed by nonanthropogenic trauma (7.1%), metabolic illness (5.4%), nutritional deficiency (5.0%), parasitic illness (5.0%), congenital disorders (2.5%), and human-associated trauma (0.4%). Pups were the most common age class (87.4%) amongst mortalities and predominantly died of an infectious process (62.5%). Phocid herpesvirus-1 infection was identified in 18.9% of the mortalities, with the highest prevalence occurring in 2019 (30.8%). Fungal disease was detected in six seals: three cases of pulmonary mycosis due to Cryptococcus gattii and three cases consistent with mucormycosis. In six cases, mortality was attributed to congenital disorders. Two of these cases involved axial skeletal malformities that are not currently described in the literature. This is the first study to describe the causes of mortality in harbor seals undergoing rehabilitation in British Columbia.
Collapse
Affiliation(s)
- Courtney N Pace
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Hannah E Drumm
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Lindsaye Akhurst
- Vancouver Aquarium, 845 Avison Way, Vancouver, British Columbia V6G 3E2, Canada
| | - Stephen A Raverty
- Animal Health Center British Columbia Ministry of Agriculture, 1767 Angus Campbell Rd., Abbotsford, British Columbia V3G 2M3, Canada
| |
Collapse
|
11
|
Serna-Espinosa BN, Forero-Castro M, Morales-Puentes ME, Parra-Giraldo CM, Escandón P, Sánchez-Quitian ZA. First report of environmental isolation of Cryptococcus and Cryptococcus-like yeasts from Boyacá, Colombia. Sci Rep 2023; 13:15755. [PMID: 37735454 PMCID: PMC10514045 DOI: 10.1038/s41598-023-41994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
The Cryptococcus genus comprises more than 100 species, of which C. neoformans and C. gattii are the leading cause of cryptococcosis. The distribution of C. gattii and C. neoformans species complexes has been extensively studied and widely reported globally. Other species such as Naganishia albida, Papiliotrema laurentii, and Papiliotrema flavescens have been reported as pathogenic yeasts. Since there are no reports of environmental isolation in the Boyacá region (Colombia), this study aimed to isolate and characterize Cryptococcus and Cryptococcus-like yeasts from pigeon feces, Eucalyptus, and olive trees distributed in the municipalities of Tunja and Ricaute Alto. The environmental data was recovered, and the isolations obtained were identified by microscopy, biochemical test, MALDI-TOF MS, URA5-RFLP, and sequencing of the ITS and LSU loci. For the 93 pigeon dropping samples collected in Tunja, 23 yielded to C. neoformans, 3 to N. globosa, 2 N. albida and 1 to P. laurentii. Of the 1188 samples collected from olive trees, 17 (1.43%) positive samples were identified as C. gattii species complex (4), C. neoformans species complex (2), P. laurentii (3), N. albida (2), N. globosa (5) and P. flavescens (1). Likewise, specimens of C. neoformans presented molecular type VNI and molecular type VNII; for C. gattii the molecular types found were VGIII and one VGIV by URA5-RFLP but VGIII by MALDI-TOF and sequencing of the ITS and LSU. Therefore, it can be concluded that the species of Cryptococcus, Naganishia and Papiliotrema genera, are present in the environment of Boyacá, and show a predilection for climate conditions that are typical of this region.
Collapse
Affiliation(s)
- Briggith-Nathalia Serna-Espinosa
- Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - Maribel Forero-Castro
- Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - María Eugenia Morales-Puentes
- Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - Claudia Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Calle 26 # 51-20, Bogotá, D.C., Colombia
| | - Zilpa Adriana Sánchez-Quitian
- Grupo de Investigación Gestión Ambiental, Facultad de Ciencias e Ingeniería, Departamento de Biología y Microbiología, Universidad de Boyacá, Carrera 2ª Este No. 64-169, Tunja, Boyacá, Colombia.
| |
Collapse
|
12
|
Bennett J. Concerning Features of Emerging Fungal Infections. PHYSICIAN ASSISTANT CLINICS 2023. [DOI: 10.1016/j.cpha.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Hitchcock M, Xu J. Global Analyses of Multi-Locus Sequence Typing Data Reveal Geographic Differentiation, Hybridization, and Recombination in the Cryptococcus gattii Species Complex. J Fungi (Basel) 2023; 9:276. [PMID: 36836390 PMCID: PMC9967412 DOI: 10.3390/jof9020276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Cryptococcus gattii species complex (CGSC) is a basidiomycete haploid yeast and globally distributed mammalian pathogen. CGSC is comprised of six distinct lineages (VGI, VGII, VGIII, VGIV, VGV, and VGVI); however, the geographical distribution and population structure of these lineages is incompletely described. In this study, we analyze published multi-locus sequence data at seven loci for 566 previously recorded sequence types (STs) encompassing four distinct lineages (VGI, VGII, VGIII, and VGIV) within the CGSC. We investigate indicators of both clonal dispersal and recombination. Population genetic analyses of the 375 STs representing 1202 isolates with geographic information and 188 STs representing 788 isolates with ecological source data suggested historically differentiated geographic populations with infrequent long-distance gene flow. Phylogenetic analyses of sequences at the individual locus and of the concatenated sequences at all seven loci among all 566 STs revealed distinct clusters largely congruent with four major distinct lineages. However, 23 of the 566 STs (4%) each contained alleles at the seven loci belonging to two or more lineages, consistent with their hybrid origins among lineages. Within each of the four major lineages, phylogenetic incompatibility analyses revealed evidence for recombination. However, linkage disequilibrium analyses rejected the hypothesis of random recombination across all samples. Together, our results suggest evidence for historical geographical differentiation, sexual recombination, hybridization, and both long-distance and localized clonal expansion in the global CGSC population.
Collapse
Affiliation(s)
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
14
|
Lahiri S, Chandrashekar N. Advanced approach for antifungal susceptibility and characterization of resistance properties in clinical and environmental isolates of Cryptococcus species complex. INFECTIOUS MEDICINE 2022; 1:147-153. [PMID: 38077629 PMCID: PMC10699700 DOI: 10.1016/j.imj.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/17/2022] [Accepted: 08/23/2022] [Indexed: 09/07/2024]
Abstract
BACKGROUND Meningitis due to Cryptococcus neoformans/gattii is a fatal infection affecting immunocompromised population worldwide. Amphotericin B (AmB), fluconazole (FLC) and 5-flucytosine are the drugs of choice to treat the infection. We studied antifungal susceptibility pattern of clinical and environmental cryptococcal species using newer approach and analyze their resistant characteristics. METHODS Eighty clinical (54 C. neoformans and 26 C. gattii) and 18 environmental (14 C. neoformans and 4 C. gattii) isolates were subjected to antifungal susceptibility testing by automated (VITEK2C) method. Minimum inhibitory concentrations (MIC) were analyzed statistically. Genomic DNA of FLC resistant isolates was extracted and amplified to detect presence of CnAFR1 gene. RESULTS C. neoformans showed 1.85% and 21.4% AmB resistance, and 1.85% and 28.5% FLC- resistance, whereas C. gattii showed 25% and 50% FLC-resistance among clinical and environmental isolates respectively. MIC values were significantly (p < 0.05) different for the isolates from 2 sources. CnAFR1 gene sequence analysis revealed phylogenetic relationship among the resistant isolates. CONCLUSIONS This pioneering study provides an insight into the sensitivity patterns of clinical and environmental cryptococcal isolates from south India. The recent emergence of AmB-resistance may transpire as a challenge for the clinicians. As the clinical and environmental isolates are phylogenetically evolved from CnAFR1 gene of Filobasidiella neoformans, the resistance is most probably an inherent attribute. This study emphasizes the need for speciation and antifungal susceptibility testing of cryptococcal isolates from clinical sources to institute appropriate antifungal therapy and to reduce the mortality and morbidity.
Collapse
Affiliation(s)
- Shayanki Lahiri
- Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, USA
| | - Nagarathna Chandrashekar
- Department of Neuromicrobiology, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| |
Collapse
|
15
|
Davis MJ, Martin RE, Pinheiro GM, Hoke ES, Moyer S, Mayer-Barber KD, Chang YC, Kwon-Chung KJ. MDA5 signaling induces type 1 IFN- and IL-1-dependent lung vascular permeability which protects mice from opportunistic fungal infection. Front Immunol 2022; 13:931194. [PMID: 35967332 PMCID: PMC9368195 DOI: 10.3389/fimmu.2022.931194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lungs balance threat from primary viral infection, secondary infection, and inflammatory damage. Severe pulmonary inflammation induces vascular permeability, edema, and organ dysfunction. We previously demonstrated that poly(I:C) (pICLC) induced type 1 interferon (t1IFN) protected mice from Cryptococcus gattii (Cg) via local iron restriction. Here we show pICLC increased serum protein and intravenously injected FITC-dextran in the lung airspace suggesting pICLC induces vascular permeability. Interestingly, pICLC induced a pro-inflammatory signature with significant expression of IL-1 and IL-6 which depended on MDA5 and t1IFN. Vascular permeability depended on MDA5, t1IFN, IL-1, and IL-6. T1IFN also induced MDA5 and other MDA5 signaling components suggesting that positive feedback contributes to t1IFN dependent expression of the pro-inflammatory signature. Vascular permeability, induced by pICLC or another compound, inhibited Cg by limiting iron. These data suggest that pICLC induces t1IFN which potentiates pICLC-MDA5 signaling increasing IL-1 and IL-6 resulting in leakage of antimicrobial serum factors into lung airspace. Thus, induced vascular permeability may act as an innate defense mechanism against opportunistic fungal infection, such as cryptococcosis, and may be exploited as a host-directed therapeutic target.
Collapse
Affiliation(s)
- Michael J. Davis
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rachel E. Martin
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Giovana M. Pinheiro
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elizabeth S. Hoke
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shannon Moyer
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Kyung J. Kwon-Chung,
| |
Collapse
|
16
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
17
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
18
|
Central Nervous System Cryptococcosis due to Cryptococcus gattii in the Tropics. CURRENT TROPICAL MEDICINE REPORTS 2022; 9:1-7. [PMID: 35378784 PMCID: PMC8967080 DOI: 10.1007/s40475-022-00253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 10/27/2022]
|
19
|
Muselius B, Durand SL, Geddes-McAlister J. Proteomics of Cryptococcus neoformans: From the Lab to the Clinic. Int J Mol Sci 2021; 22:12390. [PMID: 34830272 PMCID: PMC8618913 DOI: 10.3390/ijms222212390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fungal pathogens cause an array of diseases by targeting both immunocompromised and immunocompetent hosts. Fungi overcome our current arsenal of antifungals through the emergence and evolution of resistance. In particular, the human fungal pathogen, Cryptococcus neoformans is found ubiquitously within the environment and causes severe disease in immunocompromised individuals around the globe with limited treatment options available. To uncover fundamental knowledge about this fungal pathogen, as well as investigate new detection and treatment strategies, mass spectrometry-based proteomics provides a plethora of tools and applications, as well as bioinformatics platforms. In this review, we highlight proteomics approaches within the laboratory to investigate changes in the cellular proteome, secretome, and extracellular vesicles. We also explore regulation by post-translational modifications and the impact of protein-protein interactions. Further, we present the development and comprehensive assessment of murine models of cryptococcal infection, which provide valuable tools to define the dynamic relationship between the host and pathogen during disease. Finally, we explore recent quantitative proteomics studies that begin to extrapolate the findings from the bench to the clinic for improved methods of fungal detection and monitoring. Such studies support a framework for personalized medical approaches to eradicate diseases caused by C. neoformans.
Collapse
Affiliation(s)
| | | | - Jennifer Geddes-McAlister
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON N1G 2W1, Canada; (B.M.); (S.-L.D.)
| |
Collapse
|
20
|
Teman SJ, Gaydos JK, Norman SA, Huggins JL, Lambourn DM, Calambokidis J, Ford JKB, Hanson MB, Haulena M, Zabek E, Cottrell P, Hoang L, Morshed M, Garner MM, Raverty S. Epizootiology of a Cryptococcus gattii outbreak in porpoises and dolphins from the Salish Sea. DISEASES OF AQUATIC ORGANISMS 2021; 146:129-143. [PMID: 34672263 DOI: 10.3354/dao03630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cryptococcus gattii is a fungal pathogen that primarily affects the respiratory and nervous systems of humans and other animals. C. gattii emerged in temperate North America in 1999 as a multispecies outbreak of cryptococcosis in British Columbia (Canada) and Washington State and Oregon (USA), affecting humans, domestic animals, and wildlife. Here we describe the C. gattii epizootic in odontocetes. Cases of C. gattii were identified in 42 odontocetes in Washington and British Columbia between 1997 and 2016. Species affected included harbor porpoises Phocoena phocoena (n = 26), Dall's porpoises Phocoenoides dalli (n = 14), and Pacific white-sided dolphins Lagenorhynchus obliquidens (n = 2). The probable index case was identified in an adult male Dall's porpoise in 1997, 2 yr prior to the initial terrestrial outbreak. The spatiotemporal extent of the C. gattii epizootic was defined, and cases in odontocetes were found to be clustered around terrestrial C. gattii hotspots. Case-control analyses with stranded, uninfected odontocetes revealed that risk factors for infection were species (Dall's porpoises), age class (adult animals), and season (winter). This study suggests that mycoses are an emerging source of mortality for odontocetes, and that outbreaks may be associated with anthropogenic environmental disturbance.
Collapse
Affiliation(s)
- Sarah J Teman
- The SeaDoc Society, Karen C. Drayer Wildlife Health Center - Orcas Island Office, UC Davis School of Veterinary Medicine, Eastsound, WA 98245, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int J Mol Sci 2021; 22:ijms221810104. [PMID: 34576268 PMCID: PMC8466259 DOI: 10.3390/ijms221810104] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Fungal infections have become a major health concern, given that invasive infections by Candida, Cryptococcus, and Aspergillus species have led to millions of mortalities. Conventional antifungal drugs including polyenes, echinocandins, azoles, allylamins, and antimetabolites have been used for decades, but their limitations include off-target toxicity, drug-resistance, poor water solubility, low bioavailability, and weak tissue penetration, which cannot be ignored. These drawbacks have led to the emergence of novel antifungal therapies. In this review, we discuss the nanosystems that are currently utilized for drug delivery and the application of antifungal therapies.
Collapse
|
22
|
Sun T, Li Y, Li Y, Li H, Gong Y, Wu J, Ning Y, Ding C, Xu Y. Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Front Cell Infect Microbiol 2021; 11:662404. [PMID: 34485169 PMCID: PMC8415117 DOI: 10.3389/fcimb.2021.662404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingxing Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Hailong Li
- National Health Commission Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiyi Gong
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jianqiang Wu
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yating Ning
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Maciey S, Maria CS, Oshima S, Newberry JA. Cryptococcus gattii Meningitis in a Previously Healthy Young Woman: A Case Report. Clin Pract Cases Emerg Med 2021; 5:345-349. [PMID: 34437044 PMCID: PMC8373182 DOI: 10.5811/cpcem.2021.5.52344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Cryptococcus gattii (C. gatti) is a rare cause of meningitis in the United States. Outbreaks in new geographic distributions in the past few decades raise concern that climate change may be contributing to a broader distribution of this pathogen. We review a case of C. gattii in a 23-year-old woman in Northern California who was diagnosed via lumbar puncture after six weeks of headache, blurred vision, and tinnitus. CASE REPORT A 23-year-old previously healthy young woman presented to the emergency department (ED) after multiple visits to primary care, other EDs, and neurologists, for several weeks of headache, nausea, tinnitus, and blurred vision. On examination the patient was found to have a cranial nerve VI palsy (impaired abduction of the left eye) and bilateral papilledema on exam. Lumbar puncture had a significantly elevated opening pressure. Cerebrospinal fluid studies were positive for C. gattii. The patient was treated with serial lumbar punctures, followed by lumbar drain, as well as amphotericin and flucytosine. The patient had improvement in headache and neurologic symptoms and was discharged to another facility that specializes in management of this disease to undergo further treatment with immunomodulators and steroids. CONCLUSION Fungal meningitis is uncommon in the US, particularly among immunocompetent patients. Due to climate change, C. gattii may be a new pathogen to consider. This finding raises important questions to the medical community about the way global climate change affects day to day medical care now, and how it may change in the future.
Collapse
Affiliation(s)
- Sarabeth Maciey
- Stanford School of Medicine, Stanford Health Care, Department of Emergency Medicine, Palo Alto, California
| | - Chloe Santa Maria
- Stanford School of Medicine, Stanford Comprehensive Otolaryngology Clinic, Department of Otolaryngology, Stanford School of Medicine, Palo Alto, California
| | - Sachie Oshima
- Stanford School of Medicine, Stanford Health Care, Department of Emergency Medicine, Palo Alto, California
| | - Jennifer A Newberry
- Stanford School of Medicine, Stanford Health Care, Department of Emergency Medicine, Palo Alto, California
| |
Collapse
|
24
|
Serna-Espinosa BN, Guzmán-Sanabria D, Forero-Castro M, Escandón P, Sánchez-Quitian ZA. Environmental Status of Cryptococcus neoformans and Cryptococcus gattii in Colombia. J Fungi (Basel) 2021; 7:410. [PMID: 34073882 PMCID: PMC8225054 DOI: 10.3390/jof7060410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/24/2021] [Accepted: 05/20/2021] [Indexed: 01/15/2023] Open
Abstract
The genus Cryptococcus comprises more than 80 species, including C. neoformans and C. gattii, which are pathogenic to humans, mainly affecting the central nervous system. The two species differ in geographic distribution and environmental niche. C. neoformans has a worldwide distribution and is often isolated from bird droppings. On the contrary, C. gattii is reported in tropical and subtropical regions and is associated with Eucalyptus species. This review aims to describe the distribution of environmental isolates of the Cryptococcus neoformans species complex and the Cryptococcus gattii species complex in Colombia. A systematic investigation was carried out using different databases, excluding studies of clinical isolates reported in the country. The complex of the species of C. gattii is recovered mainly from trees of the genus Eucalyptus spp., while the complex of the species of C. neoformans is recovered mainly from avian excrement, primarily Columba livia (pigeons) excrement. In addition, greater positivity was found at high levels of relative humidity. Likewise, an association was observed between the presence of the fungus in places with little insolation and cold or temperate temperatures compared to regions with high temperatures.
Collapse
Affiliation(s)
- Briggith-Nathalia Serna-Espinosa
- Grupo de Investigación Ciencias Biomédicas, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (B.-N.S.-E.); (M.F.-C.)
| | - Diomedes Guzmán-Sanabria
- Grupo de Investigación Gestión Ambiental, Departamento de Biología y Microbiología, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Carrera 2a Este No. 64-169, Tunja 150003, Colombia;
| | - Maribel Forero-Castro
- Grupo de Investigación Ciencias Biomédicas, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia; (B.-N.S.-E.); (M.F.-C.)
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Calle 26 No. 51-20, Bogotá 111321, Colombia;
| | - Zilpa Adriana Sánchez-Quitian
- Grupo de Investigación Gestión Ambiental, Departamento de Biología y Microbiología, Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Carrera 2a Este No. 64-169, Tunja 150003, Colombia;
| |
Collapse
|
25
|
Donlin MJ, Lane TR, Riabova O, Lepioshkin A, Xu E, Lin J, Makarov V, Ekins S. Discovery of 5-Nitro-6-thiocyanatopyrimidines as Inhibitors of Cryptococcus neoformans and Cryptococcus gattii. ACS Med Chem Lett 2021; 12:774-781. [PMID: 34055225 DOI: 10.1021/acsmedchemlett.1c00038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Opportunistic infections from pathogenic fungi present a major challenge to healthcare because of a very limited arsenal of antifungal drugs, an increasing population of immunosuppressed patients, and increased prevalence of resistant clinical strains due to overuse of the few available antifungals. Cryptococcal meningitis is a life-threatening opportunistic fungal infection caused by one of two species in the Cryptococcus genus, Cryptococcus neoformans and Cryptococcus gattii. Eighty percent of cryptococcosis diseases are caused by C. neoformans that is endemic in the environment. The standard of care is limited to old antifungals, and under a high standard of care, mortality remains between 10 and 30%. We have identified a series of 5-nitro-6-thiocyanatopyrimidine antifungal drug candidates using in vitro and computational machine learning approaches. These compounds can inhibit C. neoformans growth at submicromolar levels, are effective against fluconazole-resistant C. neoformans and a clinical strain of C. gattii, and are not antagonistic with currently approved antifungals.
Collapse
Affiliation(s)
- Maureen J. Donlin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
- Institute for Drug and Biotherapeutic Development, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Thomas R. Lane
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| | - Olga Riabova
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Alexander Lepioshkin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Evan Xu
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Jeffrey Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina 27606, United States
| |
Collapse
|
26
|
|
27
|
Abstract
Self-splicing proteins, called inteins, are present in many human pathogens, including the emerging fungal threats Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga), the causative agents of cryptococcosis. Inhibition of protein splicing in Cryptococcus sp. interferes with activity of the only intein-containing protein, Prp8, an essential intron splicing factor. Here, we screened a small-molecule library to find addititonal, potent inhibitors of the Cne Prp8 intein using a split-GFP splicing assay. This revealed the compound 6G-318S, with IC50 values in the low micromolar range in the split-GFP assay and in a complementary split-luciferase system. A fluoride derivative of the compound 6G-318S displayed improved cytotoxicity in human lung carcinoma cells, although there was a slight reduction in the inhibition of splicing. 6G-318S and its derivative inhibited splicing of the Cne Prp8 intein in vivo in Escherichia coli and in C. neoformans Moreover, the compounds repressed growth of WT C. neoformans and C. gattii In contrast, the inhibitors were less potent at inhibiting growth of the inteinless Candida albicans Drug resistance was observed when the Prp8 intein was overexpressed in C. neoformans, indicating specificity of this molecule toward the target. No off-target activity was observed, such as inhibition of serine/cysteine proteases. The inhibitors bound covalently to the Prp8 intein and binding was reduced when the active-site residue Cys1 was mutated. 6G-318S showed a synergistic effect with amphotericin B and additive to indifferent effects with a few other clinically used antimycotics. Overall, the identification of these small-molecule intein-splicing inhibitors opens up prospects for a new class of antifungals.
Collapse
|
28
|
Marr KA, Sun Y, Spec A, Lu N, Panackal A, Bennett J, Pappas P, Ostrander D, Datta K, Zhang SX, Williamson PR. A Multicenter, Longitudinal Cohort Study of Cryptococcosis in Human Immunodeficiency Virus-negative People in the United States. Clin Infect Dis 2021; 70:252-261. [PMID: 30855688 DOI: 10.1093/cid/ciz193] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cryptococcosis is increasingly recognized in people without human immunodeficiency virus (HIV). METHODS A multicenter, prospective cohort study was performed in 25 US centers. Consenting patients were prospectively followed for ≤2 years. Neurological morbidities were assessed with longitudinal event depiction and functional scores (Montreal Cognitive Assessment [MoCA]). Risks of death were analyzed using Cox regression. RESULTS One hundred forty-five subjects were enrolled. Most were male (95; 65.5%) and had immunosuppression (120; 82.8%), including solid organ transplant (SOT; 33.8%), autoimmunity (15.9%), and hematologic malignancies (11.7%). Disease involved the central nervous system (CNS) in 71 subjects (49%). Fever was uncommon, documented in 40 (27.8%) subjects, and absence was associated with diagnostic delay (mean: 48.2 vs 16.5 days; P = .007). Abnormal MoCA scores (<26) were predictive of CNS disease; low scores (<22) were associated with poor long-term cognition. Longitudinal event depiction demonstrated frequent complications in people with CNS disease; 25 subjects (35.2%) required >1 lumbar puncture and 8 (11.3%) required ventriculostomies. In multivariable models, older age (>60 years) was associated with higher risks of death (hazard ratio [HR], 2.14; 95% confidence interval [CI], 1.05-4.38; P = .036), and lower risks were noted with underlying hematologic malignancy (HR, 0.29; 95% CI, 0.09-0.98; P = .05) and prior SOT (HR, 0.153; 95% CI, 0.05-0.44; P = .001). CONCLUSIONS Despite aggressive antifungal therapies, outcomes of CNS cryptococcosis in people without HIV are characterized by substantial long-term neurological sequelae. Studies are needed to understand mechanism(s) of cognitive decline and to enable better treatment algorithms.
Collapse
Affiliation(s)
- Kieren A Marr
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Yifei Sun
- Department of Biostatistics, Columbia University, New York
| | - Andrej Spec
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Na Lu
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Anil Panackal
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John Bennett
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Peter Pappas
- Department of Medicine, University of Alabama at Birmingham
| | - Darin Ostrander
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Kausik Datta
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
29
|
Ghosh PN, Brookes LM, Edwards HM, Fisher MC, Jervis P, Kappel D, Sewell TR, Shelton JM, Skelly E, Rhodes JL. Cross-Disciplinary Genomics Approaches to Studying Emerging Fungal Infections. Life (Basel) 2020; 10:E315. [PMID: 33260763 PMCID: PMC7761180 DOI: 10.3390/life10120315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future.
Collapse
Affiliation(s)
- Pria N. Ghosh
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Lola M. Brookes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| | - Hannah M. Edwards
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Phillip Jervis
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Dana Kappel
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Thomas R. Sewell
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Jennifer M.G. Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
| | - Emily Skelly
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Johanna L. Rhodes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| |
Collapse
|
30
|
Fu Y, Huang X, Zhou Z. Insight into the Assembling Mechanism of Cryptococcus Capsular Glucuronoxylomannan Based on Molecular Dynamics Simulations. ACS OMEGA 2020; 5:29351-29356. [PMID: 33225166 PMCID: PMC7676341 DOI: 10.1021/acsomega.0c04164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Cryptococcus spp. is an invasive fungal pathogen and causes life-threatening cryptococcosis. Opportunistic cryptococcal infections among the immunocompromised population are mostly caused by Cryptococcus neoformans, whereas the geographical dissemination of Cryptococcus gattii in recent years has threatened lives of even immunocompetent people. The capsule, mainly composed of glucuronoxylomannan (GXM) polysaccharides, plays important roles in the virulence of Cryptococcus spp. The assembling mechanism of GXM polysaccharides into the capsule is little understood because of insufficient experimental data. Molecular modeling and molecular dynamics simulation provide insight into the assembling process. We first built GXM oligosaccharide models of serotypes D, A, B, and C and extracted their secondary structure information from simulation trajectories. All the four mainchains tend to take the nearly twofold helical conformation, whereas peripheral sidechains prefer to form left-handed helices, which are further stabilized by intramolecular hydrogen bonds. Based on the obtained secondary structure information, GXM polysaccharide arrays were built to simulate capsule-assembling processes of C. neoformans and C. gattii using serotypes A and C as representatives, respectively. Trajectory analysis illustrates that electrostatic neutralization of acidic sidechain residues of GXM is a prerequisite for capsule assembling, followed by formation of intermolecular hydrogen bond networks. Further insight into the assembling mechanism of GXM polysaccharides provides the possibility to develop novel treatment and prevention solutions for cryptococcosis.
Collapse
Affiliation(s)
- Yankai Fu
- Key
Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Beijing
Key Laboratory for Mechanism Study and Precision Diagnosis of Invasive
Fungal Diseases, Dynamiker Biotechnology
Sub-Center, Tianjin 300467, China
| | - Xinglu Huang
- Key
Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Zeqi Zhou
- Beijing
Key Laboratory for Mechanism Study and Precision Diagnosis of Invasive
Fungal Diseases, Dynamiker Biotechnology
Sub-Center, Tianjin 300467, China
| |
Collapse
|
31
|
Huang C, Tsui CKM, Chen M, Pan K, Li X, Wang L, Chen M, Zheng Y, Zheng D, Chen X, Jiang L, Wei L, Liao W, Cao C. Emerging Cryptococcus gattii species complex infections in Guangxi, southern China. PLoS Negl Trop Dis 2020; 14:e0008493. [PMID: 32845884 PMCID: PMC7449396 DOI: 10.1371/journal.pntd.0008493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022] Open
Abstract
The emergence and spread of cryptococcosis caused by the Cryptococcus gattii species complex has become a major public concern worldwide. C. deuterogattii (VGIIa) outbreaks in the Pacific Northwest region demonstrate the expansion of this fungal infection to temperate climate regions. However, infections due to the C. gattii species complex in China have rarely been reported. In this study, we studied eleven clinical strains of the C. gattii species complex isolated from Guangxi, southern China. The genetic identity and variability of these isolates were analyzed via multi-locus sequence typing (MLST), and the phylogenetic relationships among these isolates and global isolates were evaluated. The mating type, physiological features and antifungal susceptibilities of these isolates were also characterized. Among the eleven isolates, six belonged to C. deuterogattii, while five belonged to C. gattii sensu stricto. The C. deuterogattii strains from Guangxi, southern China were genetically variable and clustered with different clinical isolates from Brazil. All strains were MATα, and three C. deuterogattii isolates (GX0104, GX0105 and GX0147) were able to undergo sexual reproduction. Moreover, most strains had capsule and were capable of melanin production when compared to the outbreak strain from Canada. Most isolates were susceptible to antifungal drugs; yet one of eleven immunocompetent patients died of cryptococcal meningitis caused by C. deuterogattii (GX0147). Our study indicated that the highly pathogenic C. deuterogattii may be emerging in southern China, and effective nationwide surveillance of C. gattii species complex infection is necessary. Cryptococcosis is a fatal systemic fungal disease caused by Cryptococcus neoformans/gattii species complexes. As a former member of the C. neoformans, C. gattii had been easily neglected before being elevated to species level. Human C. gattii species complex infection was previously confined to the tropical and subtropical regions worldwide. However, in 1999, an outbreak of C. gattii species complex occurred on Vancouver Island in Canada then expanded to the Pacific Northwest in the USA, causing over 200 infections. The highly virulent, highly pathogenic and more resistant to antifungal drugs of this species have become a therapeutic problem. To initiate a better understanding of the infection characteristics and pathogenicity of C. gattii species complex in Guangxi, southern China, the current study aimed to characterize the C. gattii species complex isolates genetically and phenotypically. The ISHAM consensus MLST scheme was utilized to investigate the genetic structure of C. gattii species complex and to correlate their geographic origin, clinical source, virulence factors and antifungal susceptibility. The authors expect that this work can support surveillance and encourage more research and public health initiatives to prevent and control the cryptococcosis cause by C. gattii species complex.
Collapse
Affiliation(s)
- Chunyang Huang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Clement K. M. Tsui
- Department of Pathology, Sidra Medicine, Qatar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine–Qatar, Doha, Qatar
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Min Chen
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Kaisu Pan
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xiuying Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Meini Chen
- Clinical Medicine (8-year program), XiangYa School of Medicine, Central South University, Changsha, P. R. China
| | - Yanqing Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Dongyan Zheng
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Xingchun Chen
- The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, P. R. China
| | - Li Jiang
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Lili Wei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, P. R. China
- * E-mail: (WL); (CC)
| | - Cunwei Cao
- Department of Dermatology and Venereology, The First Affiliated Hospital of Guangxi Medical University, Nanning, P. R. China
- * E-mail: (WL); (CC)
| |
Collapse
|
32
|
A Cytoplasmic Heme Sensor Illuminates the Impacts of Mitochondrial and Vacuolar Functions and Oxidative Stress on Heme-Iron Homeostasis in Cryptococcus neoformans. mBio 2020; 11:mBio.00986-20. [PMID: 32723917 PMCID: PMC7387795 DOI: 10.1128/mbio.00986-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal diseases are increasing in frequency, and new drug targets and antifungal drugs are needed to bolster therapy. The mechanisms by which pathogens obtain critical nutrients such as iron from heme during host colonization represent a promising target for therapy. In this study, we employed a fluorescent heme sensor to investigate heme homeostasis in Cryptococcus neoformans. We demonstrated that endocytosis is a key aspect of heme acquisition and that vacuolar and mitochondrial functions are important in regulating the pool of available heme in cells. Stress generated by oxidative conditions impacts the heme pool, as do the drugs artemisinin and metformin; these drugs have heme-related activities and are in clinical use for malaria and diabetes, respectively. Overall, our study provides insights into mechanisms of fungal heme acquisition and demonstrates the utility of the heme sensor for drug characterization in support of new therapies for fungal diseases. Pathogens must compete with hosts to acquire sufficient iron for proliferation during pathogenesis. The pathogenic fungus Cryptococcus neoformans is capable of acquiring iron from heme, the most abundant source in vertebrate hosts, although the mechanisms of heme sensing and acquisition are not entirely understood. In this study, we adopted a chromosomally encoded heme sensor developed for Saccharomyces cerevisiae to examine cytosolic heme levels in C. neoformans using fluorescence microscopy, fluorimetry, and flow cytometry. We validated the responsiveness of the sensor upon treatment with exogenous hemin, during proliferation in macrophages, and in strains defective for endocytosis. We then used the sensor to show that vacuolar and mitochondrial dysregulation and oxidative stress reduced the labile heme pool in the cytosol. Importantly, the sensor provided a tool to further demonstrate that the drugs artemisinin and metformin have heme-related activities and the potential to be repurposed for antifungal therapy. Overall, this study provides insights into heme sensing by C. neoformans and establishes a powerful tool to further investigate mechanisms of heme-iron acquisition in the context of fungal pathogenesis.
Collapse
|
33
|
Kim SH, Liu C, Zhou Y, Zhang YK, McGregor C, Steere L, Frederick BH, Liu CT, Whitesell L, Cowen LE. Inhibiting Protein Prenylation with Benzoxaboroles to Target Fungal Plant Pathogens. ACS Chem Biol 2020; 15:1930-1941. [PMID: 32573189 DOI: 10.1021/acschembio.0c00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fungal pathogens pose an increasing threat to global food security through devastating effects on staple crops and contamination of food supplies with carcinogenic toxins. Widespread deployment of agricultural fungicides has increased crop yields but is driving increasingly frequent resistance to available agents and creating environmental reservoirs of drug-resistant fungi that can also infect susceptible human populations. To uncover non-cross-resistant modes of antifungal action, we leveraged the unique chemical properties of boron chemistry to synthesize novel 6-thiocarbamate benzoxaboroles with broad spectrum activity against diverse fungal plant pathogens. Through whole genome sequencing of Saccharomyces cerevisiae isolates selected for stable resistance to these compounds, we identified mutations in the protein prenylation-related genes, CDC43 and ERG20. Allele-swapping experiments confirmed that point mutations in CDC43, which encodes an essential catalytic subunit within geranylgeranyl transferase I (GGTase I) complex, were sufficient to confer resistance to the benzoxaboroles. Mutations in ERG20, which encodes an upstream farnesyl pyrophosphate synthase in the geranylgeranylation pathway, also conferred resistance. Consistent with impairment of protein prenylation, the compounds disrupted membrane localization of the classical geranylgeranylation substrate Cdc42. Guided by molecular docking predictions, which favored Cdc43 as the most likely direct target, we overexpressed and purified functional GGTase I complex to demonstrate direct binding of benzoxaboroles to it and concentration-dependent inhibition of its transferase activity. Further development of the boron-containing scaffold described here offers a promising path to the development of GGTase I inhibitors as a mechanistically distinct broad spectrum fungicide class with reduced potential for cross-resistance to antifungals in current use.
Collapse
Affiliation(s)
- Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Chunliang Liu
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Yasheen Zhou
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Yong-Kang Zhang
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Cari McGregor
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Luke Steere
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Brittany H. Frederick
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - C. Tony Liu
- Boragen, Inc., 5 Laboratory Drive, Ste. 2150, Durham, North Carolina 27709, United States
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
34
|
Jin L, Cao JR, Xue XY, Wu H, Wang LF, Guo L, Shen DX. Clinical and microbiological characteristics of Cryptococcus gattii isolated from 7 hospitals in China. BMC Microbiol 2020; 20:73. [PMID: 32228457 PMCID: PMC7106762 DOI: 10.1186/s12866-020-01752-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Infection, even outbreak, caused by Cryptococcus gattii (C. gattii) has been reported in Canada and the United States, but there were sparsely-reported cases of C. gattii in China. Our interest in occurrence, clinical manifestation, laboratory identification and molecular characterization of Chinese C. gattii strains leads us to this research. Results Out of 254 clinical isolates, initially identified as Cryptococcus neoformans (C. neoformans), eight strains were re-identified as C. gattii. Multi-locus sequence typing (MLST) showed genotype VGI accounted for the most (6 / 8), the other two strains were genotype VGII (VGIIa and VGIIb respectively) with 3 specific spectra of molecular weight about 4342, 8686, 9611 Da by MALDI-TOF MS. The minimal inhibitory concentrations (MICs) of Fluconazole with Yeast one was 2~4 times higher than that with ATB fungus 3 and MICs of antifungal agents against VGII strains were higher than against VGI strains. Comparative proteome analysis showed that 329 and 180 proteins were highly expressed by C. gattii VGI and VGII respectively. The enrichment of differentially expressed proteins was directed to Golgi complex. Conclusions Infection by C. gattii in China occurred sparsely. Genotype VGI was predominant but VGII was more resistant to antifungal agents. There was significant difference in protein expression profile between isolates of VGI and VGII C. gattii.
Collapse
Affiliation(s)
- Liang Jin
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Department of Clinical Laboratory, the First Hospital of Qinhuangdao, Qinhuangdao, 066000, China
| | - Jing-Rong Cao
- Department of Clinical Laboratory, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Xin-Ying Xue
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.,Department of Respiratory and Critical Care Medicine, the Affiliated Beijing Shijitan Hospital of Capital Medical University, Beijing, 100038, China
| | - Hua Wu
- Department of Clinical Laboratory, Hainan General Hospital, Haikou, 570311, China
| | - Li-Feng Wang
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ling Guo
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Ding-Xia Shen
- Medical laboratory center, First Medical Center of Chinese PLA General Hospital & Medical School of Chinese PLA, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
35
|
Grimshaw A, Palasanthiran P, Huynh J, Marais B, Chen S, McMullan B. Cryptococcal infections in children: retrospective study and review from Australia. Future Microbiol 2020; 14:1531-1544. [PMID: 31992070 DOI: 10.2217/fmb-2019-0215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Cryptococcosis causes significant morbidity and mortality worldwide, but pediatric data are limited. Methods: A retrospective literature review of Australian pediatric cryptococcosis and additional 10-year audit of cases from a large pediatric network. Results: 22 cases of cryptococcosis in children were identified via literature review: median age was 13.5 years (IQR 7.8-16 years), 18/22 (82%) had meningitis or central nervous system infection. Where outcome was reported, 11/18 (61%) died. Of six audit cases identified from 2008 to 2017, 5 (83%) had C. gattii disease and survived. One child with acute lymphoblastic leukemia and C. neoformans infection died. For survivors, persisting respiratory or neurological sequelae were reported in 4/6 cases (67%). Conclusion: Cryptococcosis is uncommon in Australian children, but is associated with substantial morbidity.
Collapse
Affiliation(s)
- Alice Grimshaw
- University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Pamela Palasanthiran
- Department of Immunology & Infectious Disease, Sydney Children's Hospital, Randwick, New South Wales, 2031, Australia.,School of Women's & Children's Health, University of New South Wales, Randwick, New South Wales, 2031, Australia
| | - Julie Huynh
- Department of Infectious Diseases & Microbiology, Children's Hospital at Westmead, Westmead, New South Wales, 2145, Australia.,Discipline of Child & Adolescent Health, The University of Sydney, Children's Hospital Westmead, New South Wales, 2145, Australia
| | - Ben Marais
- The Children's Hospital at Westmead Clinical School, Westmead, New South Wales, 2145, Australia.,Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Westmead, New South Wales, 2145, Australia.,The Children's Hospital at Westmead, Westmead, New South Wales, 2145, Australia
| | - Sharon Chen
- Marie Bashir Institute for Infectious Diseases & Biosecurity, The University of Sydney, Westmead, New South Wales, 2145, Australia.,Clinical Mycology Reference Laboratory, Centre for Infectious Diseases & Microbiology Laboratory Services, ICPMR - New South Wales Health Pathology, Westmead Hospital, New South Wales, 2145, Australia
| | - Brendan McMullan
- Department of Immunology & Infectious Disease, Sydney Children's Hospital, Randwick, New South Wales, 2031, Australia.,School of Women's & Children's Health, University of New South Wales, Randwick, New South Wales, 2031, Australia
| |
Collapse
|
36
|
Cryptococcal Immune Reconstitution Inflammatory Syndrome: a Paradoxical Response to a Complex Organism. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2020. [DOI: 10.1007/s40506-020-00210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Diaz JH. The Disease Ecology, Epidemiology, Clinical Manifestations, and Management of Emerging Cryptococcus gattii Complex Infections. Wilderness Environ Med 2019; 31:101-109. [PMID: 31813737 DOI: 10.1016/j.wem.2019.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 01/12/2023]
Abstract
Cryptococcus neoformans, a soil-dwelling fungus found worldwide, can cause cryptococcosis, an opportunistic fungal infection of the lungs and central nervous system. One former member of the C neoformans complex, Cryptococcus gattii, has caused meningitis in immunosuppressed and immunocompetent persons in endemic regions in Africa and Asia. Between 1999 and 2004, C gattii caused outbreaks of human cryptococcosis in unexpected, nonendemic, nontropical regions on Vancouver Island, Canada, and throughout the US Pacific Northwest and California. C gattii was recognized as an emerging species with several genotypes and a unique environmental relationship with trees that are often encountered in the wilderness and in landscaped parks. Because C gattii infections have a high case-fatality rate, wilderness medicine clinicians should be aware of this emerging pathogen, its disease ecology and risk factors, its expanding geographic distribution in North America, and its ability to cause fatal disease in both immunosuppressed and immunocompetent persons.
Collapse
Affiliation(s)
- James H Diaz
- Environmental and Occupational Health Sciences, School of Public Health, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA; School of Medicine, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This article describes the clinical presentation, diagnostic approach (including the use of novel diagnostic platforms), and treatment of select infectious and noninfectious etiologies of chronic meningitis. RECENT FINDINGS Identification of the etiology of chronic meningitis remains challenging, with no cause identified in at least one-third of cases. Often, several serologic, CSF, and neuroimaging studies are indicated, although novel diagnostic platforms including metagenomic deep sequencing may hold promise for identifying organisms. Infectious etiologies are more common in those at risk for disseminated disease, specifically those who are immunocompromised because of human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS), transplantation, or immunosuppressant medications. An important step in identifying the etiology of chronic meningitis is assembling a multidisciplinary team of individuals, including those with specialized expertise in ophthalmology, dermatology, rheumatology, and infectious diseases, to provide guidance regarding diagnostic procedures. SUMMARY Chronic meningitis is defined as inflammation involving the meninges that lasts at least 4 weeks and is associated with a CSF pleocytosis. Chronic meningitis has numerous possible infectious and noninfectious etiologies, making it challenging to definitively diagnose patients. Therefore, a multifaceted approach that combines history, physical examination, neuroimaging, and laboratory analysis, including novel diagnostic platforms, is needed. This article focuses on key aspects of the evaluation of and approach to patients with chronic meningitis. Specific infectious etiologies and differential diagnoses of subacute and chronic meningitis, including noninfectious etiologies, are addressed.
Collapse
|
39
|
Lin KH, Lin YP, Chung WH. Two-step method for isolating Cryptococcus species complex from environmental material using a new selective medium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:651-658. [PMID: 31215749 DOI: 10.1111/1758-2229.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Cryptococcosis is an opportunistic infection caused by the Cryptococcus species complex. An outbreak of cryptococcosis caused by Cryptococcus gattii (AFLP6/VGII) in North America has indicated the need for studies of this organism and its environmental niche. Difficulties in isolating the Cryptococcus spp. because of the overgrowth of filamentous fungi onto culture media and its low fungal population size under natural conditions limit studies of these pathogenic yeasts. We designed a selective medium that inhibits the growth of environmental filamentous fungi but does not inhibit that of Cryptococcus cells. After enrichment in acidified YPD media and inoculation onto selective media, Cryptococcus cells in brown-coloured colonies were isolated from environmental materials. This two-step method is useful for isolating environmental members of the Cryptococcus species complex, which is essential for further studies involving diversity and the microbe-environment relationship of this yeast.
Collapse
Affiliation(s)
- Kuo-Hsi Lin
- National Chung Hsing University, Taichung, Taiwan
- Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Yi-Pei Lin
- Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Wen-Hsin Chung
- National Chung Hsing University, Taichung, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), Taichung, Taiwan
| |
Collapse
|
40
|
Engelthaler DM, Casadevall A. On the Emergence of Cryptococcus gattii in the Pacific Northwest: Ballast Tanks, Tsunamis, and Black Swans. mBio 2019; 10:e02193-19. [PMID: 31575770 PMCID: PMC6775458 DOI: 10.1128/mbio.02193-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The appearance of Cryptococcus gattii in the North American Pacific Northwest (PNW) in 1999 was an unexpected and is still an unexplained event. Recent phylogenomic analyses strongly suggest that this pathogenic fungus arrived in the PNW approximately 7 to 9 decades ago. In this paper, we theorize that the ancestors of the PNW C. gattii clones arrived in the area by shipborne transport, possibly in contaminated ballast, and established themselves in coastal waters early in the 20th century. In 1964, a tsunami flooded local coastal regions, transporting C. gattii to land. The occurrence of cryptococcosis in animals and humans 3 decades later suggests that adaptation to local environs took time, possibly requiring an increase in virulence and further dispersal. Tsunamis as a mechanism for the seeding of land with pathogenic waterborne microbes may have important implications for our understanding of how infectious diseases emerge in certain regions. This hypothesis suggests experimental work for its validation or refutation.
Collapse
|
41
|
Spicer SK, Subramani A, Aguila AL, Green RM, McClelland EE, Bicker KL. Toward a clinical antifungal peptoid: Investigations into the therapeutic potential of AEC5. Biopolymers 2019; 110:e23276. [PMID: 30938841 PMCID: PMC6660985 DOI: 10.1002/bip.23276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
Cryptococcus neoformans is a fungal pathogen that causes cryptococcal meningitis in immunocompromised individuals. Existing antifungal treatment plans have high mammalian toxicity and increasing drug resistance, demonstrating the dire need for new, nontoxic therapeutics. Antimicrobial peptoids are one alternative to combat this issue. Our lab has recently identified a tripeptoid, AEC5, with promising efficacy and selectivity against C. neoformans. Here, we report studies into the broad-spectrum efficacy, killing kinetics, mechanism of action, in vivo half-life, and subchronic toxicity of this compound. Most notably, these studies have demonstrated that AEC5 rapidly reduces fungal burden, killing all viable fungi within 3 hours. Additionally, AEC5 has an in vivo half-life of 20+ hours and no observable in vivo toxicity following 28 days of daily injections. This research represents an important step in the characterization of AEC5 as a practical treatment option against C. neoformans infections.
Collapse
Affiliation(s)
- Sabrina K. Spicer
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Aarthi Subramani
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Angelica L. Aguila
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - R. Madison Green
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| | - Erin E. McClelland
- Middle Tennessee State University, Department of Biology, 1301 E. Main St., Murfreesboro, TN 37132
| | - Kevin L. Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132
| |
Collapse
|
42
|
Bruner KT, Franco-Paredes C, Henao-Martínez AF, Steele GM, Chastain DB. Cryptococcus gattii Complex Infections in HIV-Infected Patients, Southeastern United States. Emerg Infect Dis 2019; 24:1998-2002. [PMID: 30334702 PMCID: PMC6199986 DOI: 10.3201/eid2411.180787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increased awareness of C. gattii infections in these patients is critical for improving diagnosis, treatment, and outcomes. Cryptococcus gattii traditionally infects immunocompetent hosts and causes devastating pulmonary or central nervous system disease. However, this infection rarely occurs in patients infected with HIV. We report 3 cases of HIV-associated C. gattii complex infections in the southeastern United States. Detection of C. gattii in HIV-infected patients in this region warrants increased awareness of this threat to ensure appropriate diagnosis and treatment to optimize patient outcomes.
Collapse
|
43
|
van Bruggen AHC, Goss EM, Havelaar A, van Diepeningen AD, Finckh MR, Morris JG. One Health - Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:927-937. [PMID: 30769316 DOI: 10.1016/j.scitotenv.2019.02.091] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
The One Health concept proposes that there is a connection between human, animal and environmental health. Plants and their health are not explicitly included. In this review, we broaden the One Health concept to include soil, plant, animal and ecosystem health. We argue that the health conditions of all organisms in an ecosystem are interconnected through the cycling of subsets of microbial communities from the environment (in particular the soil) to plants, animals and humans, and back into the environment. After an introduction on health concepts, we present examples of community stability and resilience, diversity and interconnectedness as affected by pollutants, and integrity of nutrient cycles and energy flows. Next, we explain our concept of microbial cycling in relation to ecosystem health, and end with examples of plant and animal disease outbreaks in relation to microbial community composition and diversity. We conclude that we need a better understanding of the role of interconnected microbiomes in promoting plant and animal health and possible ways to stimulate a healthy, diverse microbiome throughout human-dominated ecosystems. We suggest that it is essential to maintain ecosystem and soil health through diversification of plant communities and oligotrophication of managed ecosystems.
Collapse
Affiliation(s)
- Ariena H C van Bruggen
- Department of Plant Pathology, University of Florida, Gainesville FL32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA.
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville FL32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA
| | - Arie Havelaar
- Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA; Department of Animal Science, University of Florida, Gainesville FL32611, USA
| | - Anne D van Diepeningen
- Business Unit Biointeractions and Plant Health, Wageningen UR, 6708 PB Wageningen, the Netherlands
| | - Maria R Finckh
- Faculty of Organic Agricultural Sciences, Ecological Plant Protection, University of Kassel, 37213 Witzenhausen, Germany
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville FL32611, USA; Department of Medicine, School of Medicine, University of Florida, Gainesville FL32611, USA
| |
Collapse
|
44
|
Abstract
Invasive candidiasis (IC) remains the most common invasive fungal infection following solid-organ transplant (SOT), but risk factors are evolving. Current challenges include infection due to drug resistant non-albicans and emerging novel species such as Candida auris. Preventive antifungal use in SOT needs to be re-examined in light of these current challenges. Cryptococcosis is the second most common IFI following SOT. Cryptococcus gattii is an emerging pathogen that can have reduced in-vitro susceptibility to antifungal agents. Cryptococcus associated IRIS in SOT is a clinical entity that warrants heightened awareness for timely recognition and management.
Collapse
Affiliation(s)
- Sarah Taimur
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, One-Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
45
|
Damasceno-Escoura AH, de Souza ML, de Oliveira Nunes F, Pardi TC, Gazotto FC, Florentino DH, Mora DJ, Silva-Vergara ML. Epidemiological, Clinical and Outcome Aspects of Patients with Cryptococcosis Caused by Cryptococcus gattii from a Non-endemic Area of Brazil. Mycopathologia 2018; 184:65-71. [PMID: 30415450 DOI: 10.1007/s11046-018-0304-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/19/2018] [Indexed: 11/28/2022]
Abstract
Cryptococcosis by Cryptococcus gattii occurs mainly in immunocompetent hosts, however, during the last decades, a growing number of cases in immunocompromised individuals have been noticed around the world. This report presents epidemiological, clinical and outcome aspects of patients with cryptococcosis caused by this species from a non-endemic area in Brazil. Of 278 Cryptococcus spp. clinical isolates recovered during the same period, 267 (96%) were molecularly identified as Cryptococcus neoformans VNI genotype and 11 (4%) as C. gattii VGII genotype by URA-5 RFLP. Of the 11 C. gattii patients, eight were male, mean age of 47.5 years. Of these, four were HIV-infected, one was kidney transplanted, one presented low CD4+ T cells values of unknown cause, another presented chronic liver disease meanwhile the remaining four were apparently immunocompetent. Disseminated disease and cryptococcal meningitis were present in four patients each. Most patients received amphotericin B plus fluconazole. Seven out of the 11 patients cured and four died before or during the therapy. The increased number of individuals with cryptococcosis by this species during the last decades needs to be carefully evaluated specially those who are HIV-infected. Nevertheless, Cryptococcus species differentiation is currently relevant in order to better know their relation with geographical, clinical host preference and outcome particularities.
Collapse
Affiliation(s)
- Alessandro Henrique Damasceno-Escoura
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil
| | - Matheus Lucas de Souza
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil
| | - Felipe de Oliveira Nunes
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil
| | - Thiago César Pardi
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil
| | - Fernanda Castro Gazotto
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil
| | - Danilo Heitor Florentino
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil
| | - Delio José Mora
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil
| | - Mario León Silva-Vergara
- Internal Medicine Department, Infectious Diseases Unit, Triângulo Mineiro Federal University, Medicina Tropical, Caixa Postal 118, Uberaba, Minas Gerais, CEP 38001-170, Brazil.
| |
Collapse
|
46
|
Middleton MP, Armstrong SA, Bicker KL. Improved potency and reduced toxicity of the antifungal peptoid AEC5 through submonomer modification. Bioorg Med Chem Lett 2018; 28:3514-3519. [PMID: 30297282 DOI: 10.1016/j.bmcl.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/23/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
As proteolytically stable peptidomimetics, peptoids could serve as antifungal agents to supplement a therapeutic field wrought with toxicity issues. We report the improvement of an antifungal peptoid, AEC5, through an iterative structure-activity relationship study. A sarcosine scan was used to first identify the most pharmacophorically important peptoid building blocks of AEC5, followed by sequential optimization of each building block. The optimized antifungal peptoid from this study, β-5, has improved potency towards Cryptococcus neoformans and decreased toxicity towards mammalian cells. For example, the selectivity ratio for C. neoformans over mammalian fibroblasts was improved from 8 for AEC5 to 37 for β-5.
Collapse
Affiliation(s)
- Madyson P Middleton
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States
| | - Scott A Armstrong
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States
| | - Kevin L Bicker
- Middle Tennessee State University, Department of Chemistry, 1301 E. Main St., Murfreesboro, TN 37132, United States.
| |
Collapse
|
47
|
Vu K, Thompson GR, Roe CC, Sykes JE, Dreibe EM, Lockhart SR, Meyer W, Engelthaler DM, Gelli A. Flucytosine resistance in Cryptococcus gattii is indirectly mediated by the FCY2-FCY1-FUR1 pathway. Med Mycol 2018; 56:857-867. [PMID: 29554336 PMCID: PMC10905989 DOI: 10.1093/mmy/myx135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/12/2017] [Indexed: 11/14/2022] Open
Abstract
Cryptococcosis is an opportunistic fungal infection caused by members of the two sibling species complexes: Cryptococcus neoformans and Cryptococcus gattii. Flucytosine (5FC) is one of the most widely used antifungals against Cryptococcus spp., yet very few studies have looked at the molecular mechanisms responsible for 5FC resistance in this pathogen. In this study, we examined 11 C. gattii clinical isolates of the major molecular type VGIII based on differential 5FC susceptibility and asked whether there were genomic changes in the key genes involved in flucytosine metabolism. Susceptibility assays and sequencing analysis revealed an association between a point mutation in the cytosine deaminase gene (FCY1) and 5FC resistance in two of the studied 5FC resistant C. gattii VGIII clinical isolates, B9322 and JS5. This mutation results in the replacement of arginine for histidine at position 29 and occurs within a variable stretch of amino acids. Heterologous expression of FCY1 and spot sensitivity assays, however, demonstrated that this point mutation did not have any effect on FCY1 activities and was not responsible for 5FC resistance. Comparative sequence analysis further showed that no changes in the amino acid sequence and no genomic alterations were observed within 1 kb of the upstream and downstream sequences of either cytosine permeases (FCY2-4) or uracil phosphoribosyltransferase (FUR1) genes in 5FC resistant and 5FC susceptible C. gattii VGIII isolates. The herein obtained results suggest that the observed 5FC resistance in the isolates B9322 and JS5 is due to changes in unknown protein(s) or pathway(s) that regulate flucytosine metabolism.
Collapse
Affiliation(s)
- Kiem Vu
- Department of Pharmacology, University of California, Davis, California, USA
| | - George R Thompson
- Department of Medical Microbiology and Immunology, University of California, Davis, California, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Davis, California, USA
| | - Chandler C Roe
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Jane E Sykes
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia USA
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Clinical School, Sydney Medical School, Westmead Hospital, The University of Sydney, Westmead Institute for Medical Research, Sydney, Australia
| | | | - Angie Gelli
- Department of Pharmacology, University of California, Davis, California, USA
| |
Collapse
|
48
|
Brown HE, Ost KS, Esher SK, Pianalto KM, Saelens JW, Guan Z, Andrew Alspaugh J. Identifying a novel connection between the fungal plasma membrane and pH-sensing. Mol Microbiol 2018; 109:474-493. [PMID: 29885030 PMCID: PMC6173979 DOI: 10.1111/mmi.13998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
The mechanisms by which micro-organisms sense and internalize extracellular pH signals are not completely understood. One example of a known external pH-sensing process is the fungal-specific Rim/Pal signal transduction pathway. Fungi, such as the opportunistic pathogen Cryptococcus neoformans, use Rim signaling to sense and respond to changes in environmental pH. Mutations in this pathway result in strains that are attenuated for survival at alkaline pH, and often for survival within the host. Here, we used an insertional mutagenesis screen to identify novel genes required for C. neoformans growth at host pH. We discovered altered alkaline pH growth in several strains with specific defects in plasma membrane composition and maintenance of phospholipid assembly. Among these, loss of function of the Cdc50 lipid flippase regulatory subunit affected the temporal dynamics of Rim pathway activation. We defined distinct and overlapping cellular processes regulated by Rim101 and Cdc50 through analysis of the transcriptome in these mutant strains. We further explored how pH-induced membrane changes affect membrane-bound pH-sensing proteins, specifically the C-terminal domain of the Rra1 protein, an upstream Rim pathway activator and pH sensor. These results suggest both broadly applicable and phylum-specific molecular interactions that drive microbial environmental sensing.
Collapse
Affiliation(s)
- Hannah E Brown
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kyla S Ost
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Shannon K Esher
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kaila M Pianalto
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Joseph W Saelens
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - J Andrew Alspaugh
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
49
|
Freij JB, Fu MS, De Leon Rodriguez CM, Dziedzic A, Jedlicka AE, Dragotakes Q, Rossi DCP, Jung EH, Coelho C, Casadevall A. Conservation of Intracellular Pathogenic Strategy among Distantly Related Cryptococcal Species. Infect Immun 2018; 86:e00946-17. [PMID: 29712729 PMCID: PMC6013651 DOI: 10.1128/iai.00946-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/02/2018] [Indexed: 01/22/2023] Open
Abstract
The genus Cryptococcus includes several species pathogenic for humans. Until recently, the two major pathogenic species were recognized to be Cryptococcus neoformans and Cryptococcus gattii We compared the interaction of murine macrophages with three C. gattii species complex strains (WM179, R265, and WM161, representing molecular types VGI, VGIIa, and VGIII, respectively) and one C. neoformans species complex strain (H99, molecular type VNI) to ascertain similarities and differences in the yeast intracellular pathogenic strategy. The parameters analyzed included nonlytic exocytosis frequency, phagolysosomal pH, intracellular capsular growth, phagolysosomal membrane permeabilization, and macrophage transcriptional response, assessed using time-lapse microscopy, fluorescence microscopy, flow cytometry, and gene expression microarray analysis. The most striking result was that the intracellular pathogenic strategies of C. neoformans and C. gattii species complex strains were qualitatively similar, despite the species having separated an estimated 100 million years ago. Macrophages exhibited a leaky phagolysosomal membrane phenotype and nonlytic exocytosis when infected with either C. gattii or C. neoformans Conservation of the intracellular strategy among species that separated long ago suggests that it is ancient and possibly maintained by similar selection pressures through eons.
Collapse
Affiliation(s)
- Joudeh B Freij
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne E Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Diego C P Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eric H Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Albert Einstein School of Medicine, Department of Microbiology and Immunology, New York, New York, USA
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
50
|
Caballero Van Dyke MC, Wormley FL. A Call to Arms: Quest for a Cryptococcal Vaccine. Trends Microbiol 2018; 26:436-446. [PMID: 29103990 PMCID: PMC5910246 DOI: 10.1016/j.tim.2017.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/16/2022]
Abstract
Cryptococcosis remains a significant cause of morbidity and mortality world-wide, particularly among AIDS patients. Yet, to date, there are no licensed vaccines clinically available to treat or prevent cryptococcosis. In this review, we provide a rationale to support continued investment in Cryptococcus vaccine research, potential challenges that must be overcome along the way, and a literature review of the current progress underway towards developing a vaccine to prevent cryptococcosis.
Collapse
Affiliation(s)
- Marley C Caballero Van Dyke
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Floyd L Wormley
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA; The South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|