1
|
Lupini C, Gentile N, Graziosi G, Quaglia G, Lizzi G, Pedrazzoli S, Tucciarone CM, Franzo G, Legnardi M, Baston R, Cecchinato M, Menotti L, Brandimarti R, Avitabile E, Catelli E. Avian metapneumovirus subtype B in a Northern shoveler ( Spatula clypeata) wintering in Italy: implications for the domestic-wild bird interface? Avian Pathol 2025; 54:351-358. [PMID: 39749584 DOI: 10.1080/03079457.2024.2441175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Avian metapneumovirus (aMPV) is an important pathogen in poultry, primarily affecting chickens and turkeys, and it causes acute respiratory disease or reproductive disorders. Considering previous molecular or serological evidence of aMPV in different wild bird species, the role of non-domestic hosts in the virus epidemiology has been called into question. A molecular survey was therefore performed on wild aquatic bird species sampled during the Italian Avian Influenza Surveillance plan from 2021-2023 in the Bologna province. A total of 250 oropharyngeal swabs were collected and screened for all circulating aMPV subtypes through multiplex real-time RT-PCR. An aMPV-B strain, named aMPV/B/Italy/Northern_shoveler/80/21, was detected in an adult Northern shoveler (Spatula clypeata) wintering in Italy in 2021, and it was characterized by partial amplification and sequencing of the attachment glycoprotein gene. Phylogenetic analysis showed close relationships between this strain and those circulating in Italian poultry from 2014-2019. Given the high aMPV-B burden on the Italian poultry sector and the similarity of aMPV/B/Italy/Northern_shoveler/80/21 strain to those circulating in chickens and turkeys, potential virus spillover from domestic to wild birds could have occurred at the livestock-wildlife interface. Considering that aMPV-B is well adapted to gallinaceans, this represents one of the rare molecular detections of this subtype in waterfowl species. Expanding aMPV monitoring and conducting further biological studies on wild hosts are essential for a better understanding of their role in maintaining aMPV circulation.RESEARCH HIGHLIGHTSWild birds sampled in Italy tested for aMPV detection and characterization.aMPV-B found for the first time in a wintering Northern shoveler.Close phylogenetic relationship with aMPV-B strains circulating in Italian poultry.
Collapse
Affiliation(s)
- Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Nicla Gentile
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Gabriele Lizzi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| | - Claudia M Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Riccardo Baston
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Renato Brandimarti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, BO, Italy
| |
Collapse
|
2
|
Liu H, Pan S, Wang C, Yang W, Wei X, He Y, Xu T, Shi K, Si H. Review of respiratory syndromes in poultry: pathogens, prevention, and control measures. Vet Res 2025; 56:101. [PMID: 40382667 DOI: 10.1186/s13567-025-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/22/2024] [Indexed: 05/20/2025] Open
Abstract
Respiratory syndromes (RS) include a variety of diseases that lead to respiratory dysfunction, resulting in significant economic losses for the poultry industry. Infectious agents and unfavourable environmental factors cause these respiratory diseases, and rapid transmission, high morbidity rates, and frequent mixed infections characterise them. The challenge in preventing and treating these diseases arises from the complexity of their triggers and the potential for secondary infections. Current vaccines often do not provide effective prevention, and the overuse of certain medications can lead to increased bacterial resistance, complicating prevention and control efforts. This review article examines the common sources of respiratory infections in poultry flocks, including infectious bronchitis virus, avian influenza virus, Newcastle disease virus, infectious laryngotracheitis virus, avian metapneumovirus, pathogenic Escherichia coli, Haemophilus paragallinarum, Mycoplasma gallisepticum, and Chlamydia. It also considers non-infectious factors such as adverse environmental conditions and management errors. The article provides an updated, comprehensive overview of widespread and economically significant poultry respiratory pathogens. It briefly discusses detection technology and vaccine development based on the transmission characteristics of RS. Furthermore, it explores prevention and control measures such as combination drug strategies and antibiotic alternatives to enhance understanding and implementation of effective disease prevention and control measures.
Collapse
Affiliation(s)
- Huixin Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
| | - Sijia Pan
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
| | - Chenchen Wang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
| | - Wenwen Yang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
| | - Xiaofang Wei
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
| | - Yang He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
| | - Ting Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Yao Z, Li J, Shi Y, Sun T, Yang X, Mao J, Quan R, Wang D, Wang D, Zhou J, Liu J, Chu J, Hou L. Isolation and identification of a subtype C avian metapneumovirus in chickens in Jiangsu, China. Microb Pathog 2025; 202:107394. [PMID: 40021030 DOI: 10.1016/j.micpath.2025.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Avian metapneumovirus (aMPV) is a viral pathogen that mainly causes respiratory signs and drops in egg production in turkeys, chickens, and ducks. Here, an aMPV subgroup C (aMPV/C) strain, designated GX22-01, was isolated and identified from severe respiratory disease in broiler breeder chickens in 2022 in Jiangsu, China, as evidenced by indirect immunofluorescence and western blotting using specific anti-viral protein antibodies and by sequence analysis of viral nucleoprotein (N) gene. N gene sequencing indicated that the GX22-01 strain shares a high identity (94.3%-99.8 %) with aMPV/C isolates, especially with Chinese aMPV/C isolates from ducks and chickens, which are divided into aMPV/C cluster through N gene-based phylogenetic analysis. The aMPV/C GX22-01 strain was continuously passaged in Vero cells and the viral titers approximately reached 106.0 TCID50/0.1 mL. Pathogenic analysis showed that aMPV/C GX22-01 strain inoculation caused respiratory signs in 2-week-old specific-pathogen-free (SPF) chickens and resulted in pathogenic damage in tracheae and lung tissues, accompanied by positive viral signals using indirect immunohistochemistry. These results provide epidemiological and pathogenic data for developing effective measures against aMPV/C infection in China.
Collapse
Affiliation(s)
- Zhiyan Yao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingyi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jingyu Mao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jun Chu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China.
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Xu G, Wang B, Qiao Z, Fan L, Jiang S, Zhang R. Isolation and characterization of an avian metapneumovirus subtype C circulating in Cherry Valley ducks. Poult Sci 2025; 104:104650. [PMID: 39729730 PMCID: PMC11741941 DOI: 10.1016/j.psj.2024.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024] Open
Abstract
Since 2023, an infectious upper respiratory tract disease has been persisted in outbreaks among in a flock of Cherry Valley ducks in Shandong Province, China. This outbreak was traced to avian metapneumovirus subtype C (aMPV-C), a significant pathogen associated with egg-drop and acute respiratory diseases in poultry. It is noteworthy that prior to this, aMPV-C infection had not been previously documented in Cherry Valley ducks within China. In this study, we successfully isolated and characterized the aMPV-C LY0913 strain from the affected Cherry Valley duck flock. Sequence analysis showed that the fusion (F) protein of LY0913 exhibited a 97.8-98.7 % amino acid similarity with seven other aMPV-C strains, displaying the closest relationship to the strains isolated from Muscovy ducks in southern China in 2010. Furthermore, five concurrent amino acid mutations were identified in the F protein, providing valuable insights into the outbreak of aMPV-C in Cherry Valley ducks. The LY0913 strain demonstrated typical cytopathic effects on Vero cells and caused mortality in Cherry Valley duck embryos. In vivo infection of Cherry Valley ducklings with LY0913 reproduced the typical clinical signs and pathological lesions observed in the original infected cases. This study is the first to identify aMPV-C as a causative agent of respiratory disease in Cherry Valley ducks in China, highlighting its emergence and potential risk to previously unaffected avian populations. Urgent enhanced surveillance and biosecurity measures are strongly recommended to prevent further spread within duck flocks.
Collapse
Affiliation(s)
- Guige Xu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271017, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271017, China
| | - Bingna Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271017, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271017, China
| | - Zhiwen Qiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271017, China
| | - Li Fan
- Animal Disease Prevention and Control Center, Tai'an 271000, Shandong, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271017, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271017, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271017, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271017, China.
| |
Collapse
|
5
|
Su M, Cheng J, Xu X, Liu Y, Zhao Y, Wang Y, Du X, Ying J, Yan J, Zheng H, Cheng C, Sun J. Establishment and application of a one-step multiplex real-time PCR assay for detection of A, B, and C subtypes of avian metapneumovirus. Poult Sci 2025; 104:104608. [PMID: 39631286 PMCID: PMC11665345 DOI: 10.1016/j.psj.2024.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Avian metapneumovirus (aMPV) represents a significant threat to the poultry industry, exhibiting a high degree of genetic diversity. Of these, the aMPV types A (aMPV-A), B (aMPV-B) and C (aMPV-C) are frequently detected in Chinese waterfowl and live poultry markets. Therefore, the rapid and accurate identification of these subtypes is of paramount importance in order to halt the spread of the disease. In this study, we have developed a multiplex real-time PCR assay endowed with the capacity to simultaneously discriminate aMPV-A, aMPV-B, and aMPV-C. This method demonstrates remarkable specificity, selectively amplifying aMPV-A, aMPV-B, and aMPV-C without cross-reactivity with other common avian pathogens. Furthermore, this method exhibits high sensitivity, with a detection threshold of 8.5 × 102 copies/μL for aMPV-A, aMPV-B, and aMPV-C. Moreover, the assay demonstrates reproducibility, as evidenced by intra- and inter-assay variability, with a coefficient of variation between 0.21% and 1.91%. Additionally, the receiver operating characteristic (ROC) curve analysis demonstrated that the multiplex real-time PCR assay exhibited high specificity and sensitivity (100.0% and 100.0% for aMPV-A, 90.9% and 100.0% for aMPV-B, 100% and 96.8% for aMPV-C) when compared with the classical aMPV real-time RT-PCR. Analyses of field samples (n=105) using the multiplex real-time PCR assay indicated that 35.2% (37/105) of samples were positive for aMPV, of which 29.7% (11/37) for aMPV-A, 32.4% (12/37) for aMPV-B and 37.8% (14/37) for aMPV-C. These data demonstrated that the multiplex real-time PCR assay can be used for epidemiological investigations of tree subtypes of aMPV and that aMPV had been observed to exhibit a proclivity for multiple types of co-infection in the Zhejiang province of China.
Collapse
Affiliation(s)
- Mingjun Su
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Jiongze Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiangwen Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Yijia Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Yulin Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Yutao Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiaoxu Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Jiale Ying
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Junfang Yan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Huihua Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Changyong Cheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Jing Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| |
Collapse
|
6
|
Loor-Giler A, Muslin C, Santander-Parra S, Coello D, De la Torre D, Abad H, Nuñez L. Simultaneous detection of infectious bronchitis virus and avian metapneumovirus genotypes A, B, and C by multiplex RT-qPCR assay in chicken tracheal samples in Ecuador. Front Vet Sci 2024; 11:1387172. [PMID: 39091399 PMCID: PMC11292056 DOI: 10.3389/fvets.2024.1387172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Respiratory RNA viruses such as Infectious bronchitis virus (IBV) and Avian metapneumovirus (aMPV), which are characterized by generating both respiratory damage and adverse effects on reproductive organs, affect poultry production economically due to high mortality rate and decrease in egg production and quality. Particularly, aMPV has three genotypes that have been reported with greater frequency in chickens: aMPV-A, aMPV-B, and aMPV-C. The present study proposes the design of a multiplex RT-qPCR assay for the simultaneous diagnosis of the 3 genotypes of interest of aMPV and IBV, followed by testing of 200 tracheal samples of vaccinated chickens with respiratory symptoms and finally a phylogenetic analysis of the sequences found. The assay detected up to 1 copy of each viral genome. The standard curves showed an efficiency between 90 and 100% in the multiplex assay and inter- and intra-assay coefficients of variation of 0.363 and 0.459, respectively and inter- and intra-assay coefficients of variation of 0.363 and 0.459, respectively. 69.5% of samples were found positive alone or in coinfection. 114 samples were positive for IBV, 13 for aMPV-A and 25 for aMPV-B. RNA of aMPV-C was no detected. The most commonly found combination was aMPV-B and IBV within 6 samples, and the least common was aMPV-A and aMPV-B in coinfection in 2 samples. The assay was specific for amplification of the genomes of the studied respiratory viruses (IBV, aMPV-A, aMPV-B, aMPV-C) as no amplification was shown from other viral genomes (ChPV, CAstV, ANV, and FAdV) or from the negative controls. Partial genomic Sanger sequencing enabled to identify circulating vaccine-derived and wild-type strains of IBV and vaccine and vaccine-derived strains of aMPV-B. In conclusion, this newly developed multiplex RT-qPCR was shown to be able to detect individual infections as well as co-infections among the respiratory viruses investigated. It was demonstrated to be a reliable and efficient tool for rapidly and safely diagnosing these infections. Furthermore, this study represents the first report of aMPV strains in Ecuadorian poultry and demonstrates the circulation of aMPV-A, aMPV-B, and GI-13 IBV strains in unvaccinated chicken populations in the country. Thus, it highlights the importance of simultaneously identifying these pathogens in greater detail and on a regular basis in Ecuador.
Collapse
Affiliation(s)
- Anthony Loor-Giler
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de las Américas (UDLA), Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Claire Muslin
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito, Ecuador
- One Health Research Group, Universidad de Las Americas, Quito, Ecuador
| | - Silvana Santander-Parra
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito, Ecuador
| | - Dayana Coello
- Laboratorios de Investigación, Dirección General de Investigación, Universidad de las Américas (UDLA), Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Carrera de Ingeniería en Biotecnología, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - David De la Torre
- LABIGEN, Laboratory of Molecular Biology and Genetics, Quito, Ecuador
| | - Hernán Abad
- LABIGEN, Laboratory of Molecular Biology and Genetics, Quito, Ecuador
| | - Luis Nuñez
- Facultad de Ciencias de la Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas, Quito, Ecuador
- One Health Research Group, Universidad de Las Americas, Quito, Ecuador
| |
Collapse
|
7
|
Goraichuk IV, Torchetti MK, Killian ML, Kapczynski DR, Sary K, Kulkarni A, Suarez DL. Introduction of Avian metapneumovirus subtype A to the United States: molecular insights and implications. Front Microbiol 2024; 15:1428248. [PMID: 39035438 PMCID: PMC11258015 DOI: 10.3389/fmicb.2024.1428248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
Avian metapneumovirus (aMPV) poses a significant threat to the poultry industry worldwide, primarily affecting turkeys and chickens. The recent detection of aMPV-A and -B subtypes in the United States marks a significant shift after a prolonged period free of aMPV following the eradication of the previously circulating subtype C. Hence, the demand for molecular diagnostic tests for aMPV has arisen due to their limited availability in the US market. In this study, we present the molecular characterization based on the complete genome sequence of aMPV subtype A, which was detected in the US for the first time. Four RT-qPCR positive samples were subjected to next-generation sequencing analysis, resulting in the assembly of one complete and one near-complete genome sequences. Phylogenetic analysis revealed that the isolated strains clustered within the aMPV-A subtype and were most closely related to recent Mexican strains. A detailed amino acid analysis identified unique mutations in the G gene of the US isolates compared to Mexican strains. Additionally, we compared the performance, cross-reactivity, and limit of detection of our revised aMPV subtype-specific RT-qPCR test with two commercial kits, demonstrating similar detection and subtyping capabilities. These findings highlight the importance of accurate diagnostic methods for disease management in the poultry industry, provide valuable insights into the epidemiology of aMPV, and underscore the need for continued vigilance and surveillance to mitigate its impact on poultry production.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - Mia K. Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Mary L. Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA, United States
| | - Darrell R. Kapczynski
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - Kathleen Sary
- Georgia Poultry Laboratory Network, Gainesville, GA, United States
| | - Arun Kulkarni
- Georgia Poultry Laboratory Network, Gainesville, GA, United States
| | - David L. Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
8
|
Franzo G, Legnardi M, Faustini G, Baston R, Poletto F, Cecchinato M, Tucciarone CM. Tracing the Flight: Investigating the Introduction of Avian Metapneumovirus (aMPV) A and B. Animals (Basel) 2024; 14:1786. [PMID: 38929405 PMCID: PMC11200574 DOI: 10.3390/ani14121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Avian metapneumovirus (aMPV) has been identified as an important cause of respiratory and reproductive disease, leading to significant productive losses worldwide. Different subtypes have been found to circulate in different regions, with aMPV-A and B posing a significant burden especially in the Old World, and aMPV-C in North America, albeit with limited exceptions of marginal economic relevance. Recently, both aMPV-A and aMPV-B have been reported in the U.S.; however, the route of introduction has not been investigated. In the present study, the potential importation pathways have been studied through phylogenetic and phylodynamic analyses based on a broad collection of partial attachment (G) protein sequences collected worldwide. aMPV-B circulating in the U.S. seems the descendant of Eastern Asian strains, which, in turn, are related to European ones. A likely introduction pathway mediated by wild bird migration through the Beringian crucible, where the East Asian and Pacific American flight paths intersect, appears likely and was previously reported for avian influenza. aMPV-A, on the other hand, showed a Mexican origin, involving strains related to Asian ones. Given the low likelihood of trade or illegal importation, the role of wild birds appears probable also in this case, since the region is covered by different flight paths directed in a North-South direction through America. Since the information on the role of wild birds in aMPV epidemiology is still scarce and scattered, considering the significant practical implications for the poultry industry demonstrated by recent U.S. outbreaks, further surveys on wild birds are encouraged.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Italy; (M.L.); (G.F.); (R.B.); (F.P.); (M.C.); (C.M.T.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Guo J, Shi Y, Jiang G, Zeng P, Wu Z, Wang D, Cui Y, Yang X, Zhou J, Feng X, Hou L, Liu J. SQSTM1 downregulates avian metapneumovirus subgroup C replication via mediating selective autophagic degradation of viral M2-2 protein. J Virol 2024; 98:e0005124. [PMID: 38466095 PMCID: PMC11019959 DOI: 10.1128/jvi.00051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.
Collapse
Affiliation(s)
- Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Genghong Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Penghui Zeng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhi Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Luqman M, Duhan N, Temeeyasen G, Selim M, Jangra S, Mor SK. Geographical Expansion of Avian Metapneumovirus Subtype B: First Detection and Molecular Characterization of Avian Metapneumovirus Subtype B in US Poultry. Viruses 2024; 16:508. [PMID: 38675851 PMCID: PMC11054003 DOI: 10.3390/v16040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Avian metapneumovirus (aMPV), classified within the Pneumoviridae family, wreaks havoc on poultry health. It typically causes upper respiratory tract and reproductive tract infections, mainly in turkeys, chickens, and ducks. Four subtypes of AMPV (A, B, C, D) and two unclassified subtypes have been identified, of which subtypes A and B are widely distributed across the world. In January 2024, an outbreak of severe respiratory disease occurred on turkey and chicken farms across different states in the US. Metagenomics sequencing of selected tissue and swab samples confirmed the presence of aMPV subtype B. Subsequently, all samples were screened using an aMPV subtype A and B multiplex real-time RT-PCR kit. Of the 221 farms, 124 (56%) were found to be positive for aMPV-B. All samples were negative for subtype A. Six whole genomes were assembled, five from turkeys and one from chickens; all six assembled genomes showed 99.29 to 99.98% nucleotide identity, indicating a clonal expansion event for aMPV-B within the country. In addition, all six sequences showed 97.74 to 98.58% nucleotide identity with previously reported subtype B sequences, e.g., VCO3/60616, Hungary/657/4, and BR/1890/E1/19. In comparison to these two reference strains, the study sequences showed unique 49-62 amino acid changes across the genome, with maximum changes in glycoprotein (G). One unique AA change from T (Threonine) to I (Isoleucine) at position 153 in G protein was reported only in the chicken aMPV sequence, which differentiated it from turkey sequences. The twelve unique AA changes along with change in polarity of the G protein may indicate that these unique changes played a role in the adaptation of this virus in the US poultry. This is the first documented report of aMPV subtype B in US poultry, highlighting the need for further investigations into its genotypic characterization, pathogenesis, and evolutionary dynamics.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunil Kumar Mor
- Animal Disease Research and Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, College of Agriculture, Food & Environmental Sciences, South Dakota State University, Brookings, SD 57007, USA; (M.L.); (N.D.); (G.T.); (M.S.); (S.J.)
| |
Collapse
|
11
|
Cui Y, Li S, Xu W, Li Y, Xie J, Wang D, Guo J, Zhou J, Feng X, Hou L, Liu J. A Receptor Integrin β1 Promotes Infection of Avian Metapneumovirus Subgroup C by Recognizing a Viral Fusion Protein RSD Motif. Int J Mol Sci 2024; 25:829. [PMID: 38255903 PMCID: PMC10815723 DOI: 10.3390/ijms25020829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin β1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Siting Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weiyin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yeqiu Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiali Xie
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (S.L.); (W.X.); (Y.L.); (J.X.); (D.W.); (J.G.); (J.Z.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Salles GBC, Pilati GVT, Savi BP, Muniz EC, Dahmer M, Vogt JR, de Lima Neto AJ, Fongaro G. Surveillance of Avian Metapneumovirus in Non-Vaccinated Chickens and Co-Infection with Avian Pathogenic Escherichia coli. Microorganisms 2023; 12:56. [PMID: 38257889 PMCID: PMC10820577 DOI: 10.3390/microorganisms12010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Brazil is the second largest producer of broiler chicken in the world, and the surveillance of avian pathogens is of great importance for the global economy and nutrition. Avian metapneumovirus (aMPV) infection results in high rates of animal carcass losses due to aerosacculitis and these impacts can be worsened through co-infection with pathogenic bacteria, particularly Escherichia coli (APEC). The present study evaluated the seroprevalence of the main aMPV subtypes in unvaccinated broiler chickens from poultry farms in Brazil, as well as the clinical effects of co-infection with APEC. Blood samples, respiratory swabs, femurs, liver, and spleen of post-mortem broiler chickens were collected from 100 poultry production batches, totaling 1000 samples. The selection of the production batch was based on the history of systemic and respiratory clinical signs. The results indicated that 20% of the lots showed serological evidence of the presence of aMPV, with two lots being positive for aMPV-B. A total of 45% of batches demonstrated co-infection between aMPV and APEC. The results point to the need for viral surveillance, targeted vaccination, and vaccination programs, which could reduce clinical problems and consequently reduce the use of antibiotics to treat bacterial co-infections.
Collapse
Affiliation(s)
- Gleidson Biasi Carvalho Salles
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.V.T.P.); (B.P.S.); (M.D.)
- Zoetis Industry of Veterinary Products LTDA, São Paulo 04709-11, SP, Brazil; (E.C.M.); (J.R.V.); (A.J.d.L.N.)
| | - Giulia Von Tönnemann Pilati
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.V.T.P.); (B.P.S.); (M.D.)
| | - Beatriz Pereira Savi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.V.T.P.); (B.P.S.); (M.D.)
| | - Eduardo Correa Muniz
- Zoetis Industry of Veterinary Products LTDA, São Paulo 04709-11, SP, Brazil; (E.C.M.); (J.R.V.); (A.J.d.L.N.)
| | - Mariane Dahmer
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.V.T.P.); (B.P.S.); (M.D.)
| | - Josias Rodrigo Vogt
- Zoetis Industry of Veterinary Products LTDA, São Paulo 04709-11, SP, Brazil; (E.C.M.); (J.R.V.); (A.J.d.L.N.)
| | - Antonio José de Lima Neto
- Zoetis Industry of Veterinary Products LTDA, São Paulo 04709-11, SP, Brazil; (E.C.M.); (J.R.V.); (A.J.d.L.N.)
| | - Gislaine Fongaro
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (G.V.T.P.); (B.P.S.); (M.D.)
| |
Collapse
|
13
|
A. Abd El-Ghany W. Avian Metapneumovirus Infection in Poultry Flocks: A Review of Current Knowledge. PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE 2023; 46:971-1002. [DOI: 10.47836/pjtas.46.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Avian metapneumovirus (aMPV) is one of the respiratory viruses that cause global economic losses in poultry production systems. Therefore, it was important to design a comprehensive review article that gives more information about aMPV infection regarding the distribution, susceptibility, transmission, pathogenesis, pathology, diagnosis, and prevention. The aMPV infection is characterized by respiratory and reproductive disorders in turkeys and chickens. The disease condition is turkey rhinotracheitis in turkeys and swollen head syndrome in chickens. Infection with aMPV is associated with worldwide economic losses, especially in complications with other infections or poor environmental conditions. The genus Metapneumovirus is a single-stranded enveloped RNA virus and contains A, B, C, and D subtypes. Meat and egg-type birds are susceptible to aMPV infection. The virus can transmit through aerosol, direct contact, mechanical, and vertical routes. The disease condition is characterized by respiratory manifestations, a decrease in egg production, growth retardation, increasing morbidity rate, and sometimes nervous signs and a high mortality rate, particularly in concurrent infections. Definitive diagnosis of aMPV is based mainly on isolation and identification methods, detection of the viral DNA, as well as seroconversion. Prevention of aMPV infection depends on adopting biosecurity measures and vaccination using inactivated, live attenuated, and recombinant or DNA vaccines.
Collapse
|
14
|
Conan A, Nekouei O, Paudel S, Ching A, Yau D, Pfeiffer D. Serological survey of avian metapneumovirus in vaccinated and unvaccinated broiler chickens in Hong Kong. Trop Anim Health Prod 2023; 55:179. [PMID: 37119359 DOI: 10.1007/s11250-023-03592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
In chickens, avian metapneumovirus (aMPV) causes the swollen head syndrome, a respiratory disease often associated with a reduction in egg production. The virus' epidemiology in East and Southeast Asia is poorly understood. An aMPV serological survey was conducted on broiler chicken farms of Hong Kong SAR to assess the seroprevalence of aMPV in unvaccinated batches and the serological status of vaccinated batches. Blood samples were collected from 53-93-day-old chickens in 24 chicken farms of Hong Kong SAR and sera were tested for aMPV antibodies by ELISA. Seroprevalence in aMPV unvaccinated birds was 80.6% (95% confidence interval (CI): 78.9-82.2) with a high variation between batches. Batch-level seroprevalence was not significantly different between birds hatched during the rainy season (74.3%, 95% CI: 64.0-84.5) and the ones hatched during the dry season (88.7%, 95% CI: 80.1-97.3, p = 0.5). The high seroprevalence and high antibody titers that are reported in this study indicate repeated exposure of broiler chickens to aMPV in Hong Kong SAR poultry farms. Based on these results, we recommend improving the surveillance of respiratory pathogens and applying appropriate prophylactic measures against aMPV such as vaccination.
Collapse
Affiliation(s)
- Anne Conan
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China.
| | - Omid Nekouei
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Surya Paudel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Arthur Ching
- CityU Veterinary Diagnostic Laboratory, City University of Hong Kong, Hong Kong SAR, China
| | - Denis Yau
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China
| | - Dirk Pfeiffer
- Centre for Applied One Health Research and Policy Advice, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Avian Metapneumovirus Subgroup C Phosphoprotein Suppresses Type I Interferon Production by Blocking Interferon Regulatory Factor 3 Nuclear Translocation. Microbiol Spectr 2023; 11:e0341322. [PMID: 36537793 PMCID: PMC9927154 DOI: 10.1128/spectrum.03413-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) is an important pathogen that causes upper respiratory symptoms and egg production decline in turkeys and chickens. aMPV/C infection leads to inhibition of the host antiviral immune response. However, our understanding of the molecular mechanisms underlying host immune response antagonized by aMPV/C infection is limited. In this study, we demonstrated that the aMPV/C phosphoprotein (P) inhibits the IFN antiviral signaling pathway triggered by melanoma differentiation gene 5 (MDA5) and reduces interferon β (IFN-β) production and IFN-stimulated genes (ISGs) by targeting IFN regulatory factor 7 (IRF7) but not nuclear factor κB (NF-κB) in DF-1 cells. Moreover, we found that aMPV/C P protein only blocks the nuclear translocation of IRF3 by interacting with IRF3 in HEK-293T cells, instead of affecting IRF3 phosphorylation and inducing IRF3 degradation, which suppresses IRF3 signaling activation and results in a decrease in IFN-β production. Collectively, these results reveal a novel mechanism by which aMPV/C infection disrupts IFN-β production in the host. IMPORTANCE The innate immune response is the first defense line of host cells and organisms against viral infections. When RNA viruses infect cells, viral RNA induces activation of retinoic acid-induced gene I and melanoma differentiation gene 5, which initiates downstream molecules and finally produces type I interferon (IFN-I) to regulate antiviral immune responses. The mechanism for avian metapneumovirus (aMPV) modulating IFN-I production to benefit its replication remains unknown. Here, we demonstrate that phosphoprotein of aMPV subgroup C (aMPV/C) selectively inhibits the nuclear translocation of interferon regulatory 3 (IRF3), instead of affecting the expression and phosphorylation of IRF3, which finally downregulates IFN-I production. This study showed a novel mechanism for aMPV/C infection antagonizing the host IFN response.
Collapse
|
16
|
Lupini C, Tucciarone CM, Mescolini G, Quaglia G, Graziosi G, Turblin V, Brown P, Cecchinato M, Legnardi M, Delquigny T, Lemiere S, Perreul G, Catelli E. Longitudinal Survey on aMPV Circulation in French Broiler Flocks following Different Vaccination Strategies. Animals (Basel) 2022; 13:ani13010057. [PMID: 36611670 PMCID: PMC9817960 DOI: 10.3390/ani13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/04/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, the impact of respiratory disease resulting from Avian Metapneumovirus (aMPV) infection has been generally rising in the broiler industry in Europe. In this context, in order to investigate aMPV contribution to the clinical picture and the potential benefits of diversified vaccination strategies compared to nonvaccination policies, a longitudinal monitoring was performed, also evaluating Infectious Bronchitis Virus (IBV) presence. Broiler flocks located in Western France, where aMPV has already proven to be a health and productivity issue, were screened by RT-PCR on rhino-pharyngeal swabs, and the viruses were genetically characterized by sequence analysis. For a more comprehensive picture of aMPV molecular epidemiology and evolution in France, aMPV subtype B strains detected from 1985 to 1998 were sequenced and included in the analysis. The survey confirmed the detection of aMPV subtype B in commercial broiler flocks in France, together with a certain heterogeneity demonstrated by the circulation of more recent and historical French field strains. No IBV field strains were detected. The implementation and evaluation of different management choices and vaccine strategies suggests once again that immunization does not prevent infection but contributes greatly to the containment of the clinical manifestations.
Collapse
Affiliation(s)
- Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
- Correspondence:
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| | - Vincent Turblin
- MC VET Conseil—RESEAU CRISTAL, 72300 Sablé sur Sarthe, France
| | - Paul Brown
- Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitairede l’alimentation, de l’environnement et du Travail, B.P., 53-22440 Ploufragan, France
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, PD, Italy
| | | | | | | | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, BO, Italy
| |
Collapse
|
17
|
Lemaitre E, Bougeard S, Allée C, Eterradossi N, Courtillon C, Brown PA. Avian metapneumovirus: A five-plex digital droplet RT-PCR method for identification of subgroups A, B, C, and D. Front Vet Sci 2022; 9:1058294. [PMID: 36458056 PMCID: PMC9705331 DOI: 10.3389/fvets.2022.1058294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
End-point and real-time avian metapneumovirus (AMPV) RT-PCRs have been developed to detect one or two of the four recognized subgroups (A,B,C, and D) simultaneously or for broad range AMPV detection. Current subgroup specific tests target variable areas of the genome which makes these PCRs sensitive to specificity defects as recently documented. In the current study, a single five-plex digital droplet RT-PCR targeting the conserved viral polymerase gene of AMPV, which is less prone to genetic drift, has been designed. This digital droplet RT-PCR was capable of identifying each of the four AMPV subgroups. Each subgroup was identified according to a specifically assigned fluorescent amplitude. Specificity, which was tested including 31 AMPV strains, non-AMPV avian viruses and closely related human respiratory viruses, was 100%. The specific limit of detection for extracted viral RNA was estimated between 1 and 3 copies/μl. This tool simplifies the number of tests required for AMPV genotype diagnostics and should be theoretically less effected by viral genome evolution due to its target region. Ultimately, application of this test will contribute to an improved understanding of the global geographic distribution and subgroup host range of field strains.
Collapse
Affiliation(s)
- Evelyne Lemaitre
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), VIPAC Unit, WOAH Reference Laboratory for Avian Metapneumovirus Infections, Ploufragan, France
| | - Stéphanie Bougeard
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), EPISABE Unit, Ploufragan, France
| | - Chantal Allée
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), VIPAC Unit, WOAH Reference Laboratory for Avian Metapneumovirus Infections, Ploufragan, France
| | - Nicolas Eterradossi
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), VIPAC Unit, WOAH Reference Laboratory for Avian Metapneumovirus Infections, Ploufragan, France
| | - Céline Courtillon
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), VIPAC Unit, WOAH Reference Laboratory for Avian Metapneumovirus Infections, Ploufragan, France
| | - Paul Alun Brown
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), VIPAC Unit, WOAH Reference Laboratory for Avian Metapneumovirus Infections, Ploufragan, France
| |
Collapse
|
18
|
Jesse ST, Ribó-Molina P, Jo WK, Rautenschlein S, Vuong O, Fouchier RAM, Ludlow M, Osterhaus ADME. Molecular characterization of avian metapneumovirus subtype C detected in wild mallards (Anas platyrhynchos) in The Netherlands. Transbound Emerg Dis 2022; 69:3360-3370. [PMID: 36029486 DOI: 10.1111/tbed.14688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/21/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Avian metapneumovirus (AMPV) represents a long-term threat to the poultry industry due to its etiological role in the induction of acute respiratory disease and/or egg drop syndrome in domestic turkeys, chickens, and ducks. Although this disease is commonly referred to as turkey rhinotracheitis, the host range of AMPV encompasses many avian species. We have screened 1323 oropharyngeal- and cloacal swab samples obtained from wild mallards in the Netherlands from 2017 to 2019 by RT-PCR using a degenerate primer pair to detect all members of the Paramyxoviridae and Pneumoviridae or an avian metapneumovirus subtype C (AMPV-C)-specific RT-qPCR assay. We identified a total of seven cases of AMPV-C infections in wild, healthy mallards (Anas platyrhynchos), of which two AMPV-C positive samples were further processed using next-generation sequencing. Phylogenetic analysis of the two complete genomes showed that the newly identified AMPV-C strains share closest sequence identity (97%) with Eurasian lineage AMPV-C strains identified in Muscovy ducks in China that presented with severe respiratory disease and egg production loss in 2011. Further analysis of G protein amino acid sequences showed a high degree of variability between the newly identified AMPV-C variants. PONDR scoring of the G protein has revealed the ectodomain of AMPV-C to be partitioned into a long intrinsically disordered and short ordered region, giving insights into AMPV G protein structural biology. In summary, we provide the first report of full-length AMPV-C genome sequences derived from wild birds in Europe. This emphasizes the need for further surveillance efforts to better characterize the host range, epidemiologic distribution, and pathogenicity of AMPV-C to determine the risk posed by cross-species jumps from wildfowl to domesticated avian species.
Collapse
Affiliation(s)
- Sonja T Jesse
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Pau Ribó-Molina
- Department Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wendy K Jo
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Oanh Vuong
- Department Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Ludlow
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
19
|
Graziosi G, Lupini C, Catelli E. Disentangling the role of wild birds in avian metapneumovirus (aMPV) epidemiology: A systematic review and meta-analysis. Transbound Emerg Dis 2022; 69:3285-3299. [PMID: 35960706 PMCID: PMC10086952 DOI: 10.1111/tbed.14680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 02/07/2023]
Abstract
Given the avian metapneumovirus (aMPV) disease burden in poultry worldwide and the evidence of a possible role played by wild birds in the virus epidemiology, the present study summarizes aMPV serological and molecular data on free-ranging avifauna available in the literature by conducting a systematic review and meta-analysis. A computerized literature research was performed on PubMed, Scopus, CAB Direct and Web of Science to identify relevant publications across the period 1990-2021, along with the screening of reference lists. A random-effect model was applied to calculate pooled prevalence estimates with 95% confidence intervals. The inconsistency index statistic (I2 ) was applied to assess between-study heterogeneity. Subgroup analyses for molecular studies only were performed according to geographical area of samplings, taxonomic order, genus and migration patterns of the birds surveyed. A total of 11 publications on molecular surveys and 6 on serological ones were retained for analysis. The pooled molecular prevalence was 6% (95% CI: 1-13%) and a high between-study heterogeneity was detected (I2 = 96%, p < .01). Moderator analyses showed statistically significant differences according to geographical area studied, taxonomic order and genus. Concerning serological prevalence, a pooled estimate of 14% (95% CI: 1-39%), along with a high between-study heterogeneity, was obtained (I2 = 98%, p < .01). Moderator analysis was not performed due to the scarcity of eligible serological studies included. Overall, molecular and serological evidence suggests that some wild bird taxa could play a role in aMPV epidemiology. Particularly, wild ducks, geese, gulls and pheasants, according to scientific contributions hereby considered, proved to be susceptible to aMPV, and due to host ecology, may act as a viral carrier or reservoir. Further surveys of wild birds are encouraged for a better comprehension of the poultry/wild bird interface in aMPV epidemiology and for better characterizing the virus host breadth.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, BO, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, BO, Italy
| |
Collapse
|
20
|
Wang J, Hou L, Wei L, Yan X, Zhu S, Quan R, Li Z, Wang D, Jiang H, Song J, Cui Y, Liu J. Characterization of avain metapneumovirus subgroup C isolated from chickens in Beijing, China. Poult Sci 2022; 102:102250. [PMID: 36435163 PMCID: PMC9700036 DOI: 10.1016/j.psj.2022.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Avian metapneumovirus (aMPV) is an important causative agent that causes acute respiratory disease and egg-dropping in chickens and turkeys. Here, we characterized an aMPV subgroup C (aMPV/C) from 320-day-old broiler breeder chickens with severe respiratory diseases in Beijing, China, as evidenced by RT-PCR typing and confirmation of the nucleoprotein (N) gene sequence. The N gene sequence of the aMPV/C strain (designated BJ17) exhibited no deletions or insertions and possessed 94.6% to 99.6% identity to those of published aMPV/C isolates. The phylogenetic tree of the nucleotide sequences constructed using the neighbor-joining clustering method showed that the BJ17 strain formed one cluster with other aMPV/C viruses and formed one subcluster with published Chinese aMPV/C isolates regardless of Muscovy duck or chicken origins. Comparative analysis of the N proteins showed that a unique amino acid residue D at position 110 might be associated with regional distribution due to its occurrence in all the Chinese aMPV/C isolates only. Strain BJ17 was successfully isolated by cultured Vero cell passage and further inoculated in 3-wk-old specific-pathogen-free chickens for the examination of pathogenicity. Animal experimental results showed that BJ17-inoculated chickens had severe respiratory diseases and inflammatory lesions, as demonstrated by pathological changes and aMPV antigen in the nasal turbinate, tracheae, and lung tissues. These results enrich the available information regarding the epidemiology and pathogenicity of aMPV/C in chickens, which may facilitate the development of effective measures against aMPV/C infection in China.
Collapse
Affiliation(s)
- Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Xv Yan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Dan Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Haijun Jiang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Haidian District, Beijing, China
| | - Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China,Corresponding author:
| |
Collapse
|
21
|
Kariithi HM, Christy N, Decanini EL, Lemiere S, Volkening JD, Afonso CL, Suarez DL. Detection and Genome Sequence Analysis of Avian Metapneumovirus Subtype A Viruses Circulating in Commercial Chicken Flocks in Mexico. Vet Sci 2022; 9:vetsci9100579. [PMID: 36288192 PMCID: PMC9612082 DOI: 10.3390/vetsci9100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Avian metapneumoviruses (aMPV subtypes A-D) are respiratory and reproductive pathogens of poultry. Since aMPV-A was initially reported in Mexico in 2014, there have been no additional reports of its detection in the country. Using nontargeted next-generation sequencing (NGS) of FTA card-spotted respiratory samples from commercial chickens in Mexico, seven full genome sequences of aMPV-A (lengths of 13,288-13,381 nucleotides) were de novo assembled. Additionally, complete coding sequences of genes N (n = 2), P and M (n = 7 each), F and L (n = 1 each), M2 (n = 6), SH (n = 5) and G (n = 2) were reference-based assembled from another seven samples. The Mexican isolates phylogenetically group with, but in a distinct clade separate from, other aMPV-A strains. The genome and G-gene nt sequences of the Mexican aMPVs are closest to strain UK/8544/06 (97.22-97.47% and 95.07-95.83%, respectively). Various amino acid variations distinguish the Mexican isolates from each other, and other aMPV-A strains, most of which are in the G (n = 38), F (n = 12), and L (n = 19) proteins. Using our sequence data and publicly available aMPV-A data, we revised a previously published rRT-PCR test, which resulted in different cycling and amplification conditions for aMPV-A to make it more compatible with other commonly used rRT-PCR diagnostic cycling conditions. This is the first comprehensive sequence analysis of aMPVs in Mexico and demonstrates the value of nontargeted NGS to identify pathogens where targeted virus surveillance is likely not routinely performed.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kaptagat Rd, Nairobi P.O. Box 57811-00200, Kenya
- Correspondence: (H.M.K.); (D.L.S.); Tel.: +1-(706)-546-3479 (D.L.S.)
| | - Nancy Christy
- Boehringer Ingelheim Animal Health, Guadalajara 44940, Mexico
| | - Eduardo L. Decanini
- Boehringer Ingelheim Animal Health IMETA, Dubai P.O. Box 507066, United Arab Emirates
| | | | | | | | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA
- Correspondence: (H.M.K.); (D.L.S.); Tel.: +1-(706)-546-3479 (D.L.S.)
| |
Collapse
|
22
|
Lachheb J, Bouslama Z, Nsiri J, Badr C, Al Gallas N, Souissi N, Khazri I, Larbi I, Kaboudi K, Ghram A. Phylogenetic and phylodynamic analyses of subtype-B metapneumovirus from chickens in Tunisia. Poult Sci 2022; 102:102253. [PMID: 36455491 PMCID: PMC9712995 DOI: 10.1016/j.psj.2022.102253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Swollen Head Syndrome (SHS) is an economically important viral disease of chickens caused by avian metapneumovirus (aMPV). The virus comprises 6 different subtypes (A,B,C,D, New-1 and New-2). To date, no information was available on the presence of the virus in Tunisian poultry. The present work aims to detect the presence of (aMPV) in broiler chicken in Tunisia, then to characterise the isolates in order to determine their subtype and to estimate their geographic origin of introduction. A total of 289 samples were collected, aMPV detection was detected by real time RT-PCR and molecular characterization was warried out by Sanger sequencing on the glycoprotein (G) gene. Phylogenetic analysis was carried out using Beast 2 software. Out of the 289 samples, 21 were revealed positive to aMPV. Only 2 isolates have been confirmed by sequencing analysis ; one isolate sampled in 2015 and another in 2019. Based on the partial G gene sequence, analysis of these 2 Tunisian isolates showed that they belong to subtype B. The isolate sampled in 2015, appeared to be phylogenetically related to derived vaccine strain. However, the one sampled in 2019 appeared to be a field strain. Phylodynamic analysis provided evidence that this field strain derived from a Spanish strain and probably the virus has been introduced from Spain to North Africa back in 2016. This study is the first that highlighted the circulation of (aMPV) in Tunisia. It is possible that aMPV has been circulating in Tunisia and neighboring countries without being detected. Also, multiple strains could be present and therefore multiple introductions have happened. Through this study, we shed the light on the importance of reinforcing farms biosecurity as well as virological surveillance.
Collapse
Affiliation(s)
- Jihene Lachheb
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar (UTM), Tunisia.
| | - Zied Bouslama
- Laboratory of Viruses, Vectors and Hosts, LR20 IPT 02 Institut Pasteur de Tunis, Université de Tunis El Manar (UTM), Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar (UTM), Tunisia
| | - Chaima Badr
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar (UTM), Tunisia
| | - Nazek Al Gallas
- Food and Water Control Laboratory, National Center for Salmonella, Shigella, and Vibriospp. Institut Pasteur de Tunis, Tunisia
| | - Nada Souissi
- Veterinary Research Institute of Tunis (IRVT), Tunisia
| | - Imed Khazri
- Veterinary Research Institute of Tunis (IRVT), Tunisia
| | - Imen Larbi
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar (UTM), Tunisia
| | - Khaled Kaboudi
- Department of Poultry Farming and Pathology, National Veterinary Medicine School, Sidi Thabet, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar (UTM), Tunisia
| |
Collapse
|
23
|
Tucciarone CM, Franzo G, Legnardi M, Pasotto D, Lupini C, Catelli E, Quaglia G, Graziosi G, Dal Molin E, Gobbo F, Cecchinato M. Molecular Survey on A, B, C and New Avian Metapneumovirus (aMPV) Subtypes in Wild Birds of Northern-Central Italy. Vet Sci 2022; 9:vetsci9070373. [PMID: 35878390 PMCID: PMC9319881 DOI: 10.3390/vetsci9070373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Avian metapneumovirus (aMPV) is a common pathogen in poultry and has been detected in wild birds, suggesting the possible role in viral dissemination. A feature of aMPV is its genetic and antigenic variability, which has allowed the identification of various subtypes of the virus with different characteristics in terms of host tropism. Two new subtypes of aMPV were recently identified in gulls and parakeets. We aimed to explore the epidemiology of old and new aMPV subtypes in wild birds. Samples were collected in Italy during the surveillance of avian influenza in wild species and were tested with two multiplex real time RT-PCRs that were able to detect and distinguish the aMPV subtypes (A, B, C, gull, and parakeet subtypes). All of the individuals were negative, except for one mallard that was positive for aMPV subtype C. The M and G genes of this strain were molecularly characterized and revealed similarities with Chinese and European strains, including an Italian sequence that was previously detected in a widgeon. These findings confirm the susceptibility of mallards, which are closely related to domestic species, highlighting the importance of the epidemiological monitoring of aMPV circulation. Abstract Recent insights into the genetic and antigenic variability of avian metapneumovirus (aMPV), including the discovery of two new subtypes, have renewed interest in this virus. aMPV causes a well-known respiratory disease in poultry. Domestic species show different susceptibility to aMPV subtypes, whereas sporadic detections in wild birds have revealed links between epidemiology and migration routes. To explore the epidemiology of aMPV in wild species, a molecular survey was conducted on samples that were collected from wild birds during avian influenza surveillance activity in Italy. The samples were screened in pools by multiplex real time RT-PCR assays in order to detect and differentiate subtypes A, B, C, and those that have been newly identified. All the birds were negative, except for a mallard (Anas platyrhynchos) that was positive for aMPV subtype C (sampled in Padua, in the Veneto region, in 2018). The sequencing of partial M and full G genes placed the strain in an intermediate position between European and Chinese clusters. The absence of subtypes A and B supports the negligible role of wild birds, whereas subtype C detection follows previous serological and molecular identifications in Italy. Subtype C circulation in domestic and wild populations emphasizes the importance of molecular test development and adoption to allow the prompt detection of this likely emerging subtype.
Collapse
Affiliation(s)
- Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
- Correspondence:
| | - Daniela Pasotto
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 43, 40064 Ozzano dell’Emilia, Italy; (C.L.); (E.C.); (G.Q.); (G.G.)
| | - Emanuela Dal Molin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (E.D.M.); (F.G.)
| | - Federica Gobbo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy; (E.D.M.); (F.G.)
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy; (C.M.T.); (G.F.); (D.P.); (M.C.)
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua 16, Viale dell’Università, 35020 Legnaro, Italy
| |
Collapse
|
24
|
Wang S, Jiang N, Jiang L, Zhuang Q, Chen Q, Hou G, Xiao Z, Zhao R, Li Y, Zhao C, Zhang F, Yu J, Li J, Liu H, Sun F, Wang K. Establishment and application of a quadruple real-time RT-PCR for detecting avian metapneumovirus. PLoS One 2022; 17:e0270708. [PMID: 35763505 PMCID: PMC9239461 DOI: 10.1371/journal.pone.0270708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
In order to develop an appropriate method for high-throughput detection of avian metapneumovirus, a quadruple real-time reverse-transcription polymerase chain reaction assay was established with four pairs of specific primers and four specific probes based on the G or M gene of aMPV-A, aMPV-B, aMPV-C and aMPV-D. Its specificity and sensitivity were evaluated, and clinical samples were tested by the method. The results showed that all the four subgroups of avian metapneumovirus can be detected in the quadruple real-time RT-PCR assay simultaneously, with a detection limit of 100-1000 cRNA copies/reaction. The other common poultry viruses were negative. In the avian clinical sample detection, 39 out of 1920 clinical samples collected from 8 provinces were positive. Compared with published RT-PCR assays, the κ value of the quadruple real-time RT-PCR assay in 1920 avian clinical samples was 1.000 (P < 0.001). The established method could be used for the rapid detection of the four subgroups of avian metapneumovirus with high specificity and high sensitivity.
Collapse
Affiliation(s)
- Suchun Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Nan Jiang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Lijian Jiang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Qingye Zhuang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong, China
| | - Qiong Chen
- Xiamen Agriculture Product Quality and Safety Test Centre, Xiamen, Fujian, China
| | - Guangyu Hou
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhiyu Xiao
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Ran Zhao
- Xiamen Agriculture Product Quality and Safety Test Centre, Xiamen, Fujian, China
| | - Yang Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Chenglong Zhao
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Fuyou Zhang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jianmin Yu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Jinping Li
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Hualei Liu
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Fuliang Sun
- Agricultural College, Yanbian University, Yanji, Jilin, China
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| |
Collapse
|
25
|
Wang D, Hou L, Zhu N, Yang X, Zhou J, Cui Y, Guo J, Feng X, Liu J. Interaction of Nucleolin with the Fusion Protein of Avian Metapneumovirus Subgroup C Contributes to Viral Replication. Viruses 2022; 14:v14071402. [PMID: 35891383 PMCID: PMC9317408 DOI: 10.3390/v14071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Avian metapneumovirus subgroup C (aMPV/C) is highly pathogenic to various avian species with acute respiratory tract clinicopathology and/or drops in egg production. Nucleolin (NCL), an important nucleolar protein, has been shown to regulate multiple viral replication and serve as a functional receptor for viral entry and internalization. Whether NCL is involved in aMPV/C pathogenesis is not known. In this study, we found that aMPV/C infection altered the subcellular localization of NCL in cultured cells. siRNA-targeted NCL resulted in a remarkable decline in aMPV/C replication in Vero cells. DF-1 cells showed a similar response after CRISPR/Cas9-mediated knock out of NCL during aMPV/C infection. Conversely, NCL overexpression significantly increased aMPV/C replication. Pretreatment with AS1411-a aptamer, a guanine (G)-rich oligonucleotide that forms four-stranded structures and competitively binding to NCL, decreased aMPV/C replication and viral titers in cultured cells. Additionally, we found that the aMPV/C fusion (F) protein specifically interacts with NCL through its central domain and that AS1411 disrupts this interaction, thus inhibiting viral replication. Taken together, these results reveal that the aMPV/C F protein interacts with NCL, which is employed by aMPV/C for efficient replication, thereby highlighting the strategic potential for control and therapy of aMPV/C infection.
Collapse
Affiliation(s)
- Dedong Wang
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ning Zhu
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Yang
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongqiu Cui
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jue Liu
- College of Veterimary Medicine, Yangzhou University, Yangzhou 225009, China; (D.W.); (L.H.); (N.Z.); (X.Y.); (J.Z.); (Y.C.); (J.G.); (X.F.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
26
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
27
|
Hosseini H, Ziafati Kafi Z, Malekan M, Ghafouri SA, Fallah Mehrabadi MH, Sadri N, Hojabr Rajeoni A, Ghalyanchilangeroudi A. Molecular characterization of circulating avian metapneumovirus, subgroup B, in broiler chickens, Iran, 2016-2018. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:217-221. [PMID: 34777522 DOI: 10.22099/ijvr.2021.38859.5660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/09/2021] [Accepted: 03/07/2021] [Indexed: 09/30/2022]
Abstract
Background Avian metapneumovirus (aMPV) infection has significant economic impacts on the poultry industry all around the world. Aims The aim of this study is molecular investigations of different types of aMPV in broiler farms in different provinces of Iran from 2016 to 2018. Methods Tracheal and oropharyngeal swabs were collected from two hundred broiler chickens with respiratory signs in ten provinces of Iran, including Kurdistan, West Azerbaijan, Semnan, Esfahan, Sistan and Baluchistan, Qazvin, Khuzestan, Fars, Gilan, and Khorasan Razavi from February 2016 to December 2018. After RNA extraction, the presence of aMPV was confirmed using N gene special primers. Then, subtype-specific primers were utilized to differentiate the specific subtype. All positive samples were sequenced. Results As a general trend, the percentage of aMPV positive chickens increased gradually over time. All samples were clustered together and placed in the subtype B aMPV group. Although 2 samples from 2016 and 2 samples from 2018 were placed in a separate branch, most of the current study samples of 2016, 2017, and 2018 revealed six segregated sub-branches, and they were placed close to other isolates of 2011 and 2013 from Iran. Conclusion The current field study indicated the presence of aMPV in a considerable number of areas in Iran. Thus, the role of this virus in broiler respiratory complex should not be neglected.
Collapse
Affiliation(s)
- H Hosseini
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Z Ziafati Kafi
- Ph.D. Student in Virology, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - M Malekan
- Department of Veterinary Service, Savapars Company (Ceva Sante Animale Co. Exclusive Distributor in Iran), Tehran, Iran
| | - S A Ghafouri
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M H Fallah Mehrabadi
- Department of Poultry Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - N Sadri
- Ph.D. Student in Virology, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A Hojabr Rajeoni
- Ph.D. Student in Virology, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Avian Metapneumovirus Subgroup C Induces Mitochondrial Antiviral Signaling Protein Degradation through the Ubiquitin-Proteasome Pathway. Viruses 2021; 13:v13101990. [PMID: 34696420 PMCID: PMC8537000 DOI: 10.3390/v13101990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial antiviral signaling (MAVS) protein, a critical adapter, links the upstream recognition of viral RNA to downstream antiviral signal transduction. However, the interaction mechanism between avian metapneumovirus subgroup C (aMPV/C) infection and MAVS remains unclear. Here, we confirmed that aMPV/C infection induced a reduction in MAVS expression in Vero cells in a dose-dependent manner, and active aMPV/C replication was required for MAVS decrease. We also found that the reduction in MAVS occurred at the post-translational level rather than at the transcriptional level. Different inhibitors were used to examine the effect of proteasome or autophagy on the regulation of MAVS. Treatment with a proteasome inhibitor MG132 effectively blocked MAVS degradation. Moreover, we demonstrated that MAVS mainly underwent K48-linked ubiquitination in the presence of MG132 in aMPV/C-infected cells, with amino acids 363, 462, and 501 of MAVS being pivotal sites in the formation of polyubiquitin chains. Finally, E3 ubiquitin ligases for MAVS degradation were screened and identified and RNF5 targeting MAVS at Lysine 363 and 462 was shown to involve in MAVS degradation in aMPV/C-infected Vero cells. Overall, these results reveal the molecular mechanism underlying aMPV/C infection-induced MAVS degradation by the ubiquitin-proteasome pathway.
Collapse
|
29
|
Nguyen VG, Chung HC, Do HQ, Nguyen TT, Cao TBP, Truong HT, Mai TN, Le TT, Nguyen TH, Le TL, Huynh TML. Serological and Molecular Characterization of Avian Metapneumovirus in Chickens in Northern Vietnam. Vet Sci 2021; 8:vetsci8100206. [PMID: 34679036 PMCID: PMC8538526 DOI: 10.3390/vetsci8100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
Avian Metapneumovirus (aMPV) is a causative agent of respiratory disease complex in turkeys and chickens that has recently been detected in Vietnam. Due to its novelty, this study was conducted to elucidate the distribution of aMPV in several provinces in northern Vietnam. By the application of Enzyme-Linked Immunosorbent Assay (ELISA) and nested Reverse Transcription-Polymerase Chain Reaction (RT-PCR), this study demonstrated the circulation of aMPV in 12 out of 14 cities/provinces with positive rates of 37.6% and 17.2%, respectively. All nested RT-PCR positive samples were aMPV subgroup B. By pairing the detection results with age groups, it was observed that aMPV infections occurred in chickens of all ages. Additionally, by genetic characterization, aMPV strains were demonstrated to not be attenuated vaccine viruses and to belong to at least two genetic clades. Overall, the obtained results provided insights into the prevalence of aMPV and indicated a greater complexity of respiratory diseases in chickens in Vietnam.
Collapse
Affiliation(s)
- Van-Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Hee-Chun Chung
- Department of Veterinary Medicine Virology Lab., College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.-C.C.); (H.-Q.D.)
| | - Hai-Quynh Do
- Department of Veterinary Medicine Virology Lab., College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea; (H.-C.C.); (H.-Q.D.)
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Thanh-Trung Nguyen
- Department of Pharmacology, Toxicology, Internal Medicine and Diagnostics, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam;
| | - Thi-Bich-Phuong Cao
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Ha-Thai Truong
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Thi-Ngan Mai
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
| | - Thi-Trinh Le
- Vietnam Green Vet Joint Stock Company, Hanoi 100000, Vietnam;
| | - Thi-Hoa Nguyen
- Key Laboratory for Veterinary Biotechnology, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.-H.N.); (T.-L.L.)
| | - Thi-Luyen Le
- Key Laboratory for Veterinary Biotechnology, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (T.-H.N.); (T.-L.L.)
| | - Thi-My-Le Huynh
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.-G.N.); (T.-B.-P.C.); (H.-T.T.); (T.-N.M.)
- Correspondence: ; Tel.: +84-913-081-492
| |
Collapse
|
30
|
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SHE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs 2021; 19:246. [PMID: 33925365 PMCID: PMC8146879 DOI: 10.3390/md19050246] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
Collapse
Affiliation(s)
- Disha Varijakzhan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rabiha Seboussi
- Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates;
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
31
|
Xu W, Suderman M, Koziuk J, Ojkic D, Berhane Y. Development of A recombinant nucleocapsid based indirect ELISA for the detection of antibodies to avian metapneumovirus subtypes, A, B, and C. Vet Immunol Immunopathol 2020; 231:110151. [PMID: 33227621 DOI: 10.1016/j.vetimm.2020.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/29/2020] [Accepted: 11/07/2020] [Indexed: 10/23/2022]
Abstract
Nucleocapsid (N) protein is the most highly expressed of all avian metapneumovirus (aMPV) viral proteins and stimulates a substantial immune response in infected animals. Codon optimized recombinant N (rec-N) protein from aMPV subtypes A, B, and C were expressed using the baculoviral expression system in Trichoplusia ni (Tni) insect cells. A mixture of purified rec-N antigens from each subtype was used as a coating antigen and was evaluated in indirect ELISA (iELISA) to assess antibody response in serum samples collected from experimentally infected chickens and turkeys with different aMPV subtypes. Also, archived field serum samples that were collected from different poultry submissions were used. Receiver operating characteristic (ROC) analysis was performed using chicken and turkey serum samples that were confirmed by indirect fluorescent antibody (IFA) test for serostatus (positive n = 270, negative n = 610). The ROC analysis showed sensitivity and specificity of 97 % at a cut-off value of 0.25. The rec-N iELISA was compared with a commercial whole virus-based APV kit. The rec-N iELISA showed comparable results in detecting antibody response in aMPV infected chicken sera but was more sensitive in detecting early antibody response in aMPV infected turkey serum samples. Our results further confirm the presence of aMPV antibodies in Canadian domestic poultry populations. The developed aMPV-rec N iELISA offers a safe and valuable alternative to whole virus-based iELISA for serodiagnosis and seroepidemiological surveillance of the disease in domestic poultry.
Collapse
Affiliation(s)
- Wanhong Xu
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, MB, R3E 3M4, Canada
| | - Matthew Suderman
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, MB, R3E 3M4, Canada
| | - Janice Koziuk
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, MB, R3E 3M4, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, N1H 6R8, Canada
| | - Yohannes Berhane
- National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, MB, R3E 3M4, Canada; Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
32
|
Franzo G, Legnardi M, Mescolini G, Tucciarone CM, Lupini C, Quaglia G, Catelli E, Cecchinato M. Avian Metapneumovirus subtype B around Europe: a phylodynamic reconstruction. Vet Res 2020; 51:88. [PMID: 32641149 PMCID: PMC7346485 DOI: 10.1186/s13567-020-00817-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/10/2022] Open
Abstract
Avian Metapneumovirus (aMPV) has been recognized as a respiratory pathogen of turkey and chickens for a long time. Recently, a crescent awareness of aMPV, especially subtype B, clinical and economic impact has risen among European researchers and veterinarians. Nevertheless, the knowledge of its epidemiology and evolution is still limited. In the present study, the broadest available collection of partial G gene sequences obtained from European aMPV-B strains was analyzed using different phylodynamic and biostatistical approaches to reconstruct the viral spreading over time and the role of different hosts on its evolution. After aMPV-B introduction, approximatively in 1985 in France, the infection spread was relatively quick, involving the Western and Mediterranean Europe until the end of the 1990s, and then spreading westwards at the beginning of the new millennium, in parallel with an increase of viral population size. In the following period, a wider mixing among aMPV-B strains detected in eastern and western countries could be observed. Most of the within-country genetic heterogeneity was ascribable to single or few introduction events, followed by local circulation. This, combined with the high evolutionary rate herein demonstrated, led to the establishment of genetically and phenotypically different clusters among countries, which could affect the efficacy of natural or vaccine-induced immunity and should be accounted for when planning control measure implementation. On the contrary, while a significant strain exchange was proven among turkey, guinea fowl and chicken, no evidence of differential selective pressures or specific amino-acid mutations was observed, suggesting that no host adaptation is occurring.
Collapse
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy.
| | - Matteo Legnardi
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | | | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'emilia, BO, Italy
| | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, PD, Italy
| |
Collapse
|
33
|
Complete Genome Sequence of an Avian Metapneumovirus Subtype B Strain from Hungary. Microbiol Resour Announc 2020; 9:9/19/e00177-20. [PMID: 32381608 PMCID: PMC7206486 DOI: 10.1128/mra.00177-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Avian metapneumoviruses (aMPVs), which have been reported in many countries, cause acute upper respiratory tract disease in chickens and turkeys. Using next-generation sequencing, we report here the complete genome sequence of an aMPV subtype B strain that was isolated from a turkey in Hungary in 1989. Avian metapneumoviruses (aMPVs), which have been reported in many countries, cause acute upper respiratory tract disease in chickens and turkeys. Using next-generation sequencing, we report here the complete genome sequence of an aMPV subtype B strain that was isolated from a turkey in Hungary in 1989.
Collapse
|
34
|
Quan R, Wei L, Hou L, Wang J, Zhu S, Li Z, Lv M, Liu J. Proteome Analysis in a Mammalian Cell line Reveals that PLK2 is Involved in Avian Metapneumovirus Type C (aMPV/C)-Induced Apoptosis. Viruses 2020; 12:v12040375. [PMID: 32231136 PMCID: PMC7232392 DOI: 10.3390/v12040375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/09/2023] Open
Abstract
Avian metapneumovirus subtype C (aMPV/C) causes an acute respiratory disease that has caused serious economic losses in the Chinese poultry industry. In the present study, we first explored the protein profile in aMPV/C-infected Vero cells using iTRAQ quantitative proteomics. A total of 921 of 7034 proteins were identified as significantly altered by aMPV/C infection. Three selected proteins were confirmed by Western blot analysis. Bioinformatics GO analysis revealed multiple signaling pathways involving cell cycle, endocytosis, and PI3K-Akt, mTOR, MAPK and p53 signaling pathways, which might participate in viral infection. In this analysis, we found that PLK2 expression was upregulated by aMPV/C infection and investigated whether it contributed to aMPV/C-mediated cellular dysfunction. Suppressing PLK2 attenuated aMPV/C-induced reactive oxygen species (ROS) production and p53-dependent apoptosis and reduced virus release. These results in a mammalian cell line suggest that high PLK2 expression correlates with aMPV/C-induced apoptosis and viral replication, providing new insight into the potential avian host cellular response to aMPV/C infection and antiviral targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Liu
- Correspondence: ; Tel.: 86-10-51503671; Fax: 86-10-51503498
| |
Collapse
|
35
|
Current scenario of viral diseases in Turkish poultry industry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933919000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Umar S, Teillaud A, Aslam HB, Guerin JL, Ducatez MF. Molecular epidemiology of respiratory viruses in commercial chicken flocks in Pakistan from 2014 through to 2016. BMC Vet Res 2019; 15:351. [PMID: 31638995 PMCID: PMC6802313 DOI: 10.1186/s12917-019-2103-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Background Viral diseases are a matter of great concern for poultry farmers in Pakistan. Multiple common viral respiratory diseases (CVRDs) cause huge economic losses in the poultry industry. The prevalence of CVRDs in many countries, including Pakistan, is not clearly understood. Results Incidences of 5 chicken respiratory viruses: avian influenza virus (AIV), Newcastle disease virus (NDV/AAVV-1), infectious bronchitis virus (IBV), avian metapneumovirus (aMPV) and infectious laryngotracheitis virus (ILTV) were assessed on commercial Pakistani farms with respiratory problems from 2014 through to 2016. While AIV and AAVV-1 were frequently detected (16 to 17% of farms), IBV and aMPV were rarely detected (in 3 to 5% of farms) and ILTV was not detected. We characterized H9 AIV of the G1 lineage, genotype VII AAVV-1, GI-13 IBV, and type B aMPV strains with very little genetic variability in the 2-year study period. Co-infections with AIV and AAVV-1 were common and wild type AAVV-1 was detected despite the use of vaccines. Control measures to limit the virus burden in chicken flocks are discussed. Conclusions Our data shows that AIV (H9), AAVV-1, IBV and aMPV are prevalent in commercial poultry in Pakistan. Further studies are necessary to assess circulating strains, economic losses caused by infections and coinfections of these pathogens, and the costs and benefits of countermeasures. Furthermore, veterinarians and farmers should be informed of the pathogens circulating in the field and hence advised on the use of vaccines.
Collapse
Affiliation(s)
- Sajid Umar
- IHAP, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, 31076, Toulouse, France.,PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Angélique Teillaud
- IHAP, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, 31076, Toulouse, France
| | | | - Jean-Luc Guerin
- IHAP, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, 31076, Toulouse, France.
| |
Collapse
|
37
|
Brown PA, Allée C, Courtillon C, Szerman N, Lemaitre E, Toquin D, Mangart JM, Amelot M, Eterradossi N. Host specificity of avian metapneumoviruses. Avian Pathol 2019; 48:311-318. [DOI: 10.1080/03079457.2019.1584390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Paul A. Brown
- VIPAC Unit (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Chantal Allée
- VIPAC Unit (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Céline Courtillon
- VIPAC Unit (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Nathan Szerman
- VIPAC Unit (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Evelyne Lemaitre
- VIPAC Unit (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Didier Toquin
- VIPAC Unit (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Jean-Michel Mangart
- SELEAC Unit Anses (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Michel Amelot
- SELEAC Unit Anses (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Nicolas Eterradossi
- VIPAC Unit (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| |
Collapse
|
38
|
Bayraktar E, Umar S, Yilmaz A, Turan N, Franzo G, Tucciarone CM, Cecchinato M, Cakan B, Iqbal M, Yilmaz H. First Molecular Characterization of Avian Metapneumovirus (aMPV) in Turkish Broiler Flocks. Avian Dis 2018; 62:425-430. [PMID: 31119927 DOI: 10.1637/11915-061818-resnote.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 11/05/2022]
Abstract
Viral respiratory diseases, including avian metapneumovirus (aMPV), have a significant economic impact on poultry industries. The frequency and genotype diversity of aMPV in Turkish broiler flocks is not known at present. The aim of this study was to report the first molecular identification and phylogeny of aMPV, which is circulating in Turkish broiler flocks. Trachea tissue samples and tracheal swabs were collected from 110 broiler flocks distributed in different geographical regions in Turkey between March 2017 and March 2018. Detection of aMPV was confirmed with the use of universal reverse transcriptase (RT) PCR, and eight (7.2%) broiler farms were positive for aMPV. Sequence analysis of the G gene revealed the exclusive presence of subtype B viruses. Three field isolates clustered closely with a 2002 Israel isolate, indicating a potential transmission route between these two countries and through the Middle East. The remaining five field isolates were closely related to a vaccine strain, even though broiler flocks in Turkey are not routinely vaccinated against aMPV. Therefore, we speculate these five isolates could have originated from nearby vaccinated turkey farms. Additionally, the presence of some nucleotide substitutions compared to the reference vaccine sequence suggests prolonged circulation and evolution of the original vaccine virus or a vaccine subpopulation was selected under field conditions. This evidence emphasizes the need for further detailed and more systemic approaches to evaluate aMPV spread and evolution in order to design effective control strategies.
Collapse
Affiliation(s)
- E Bayraktar
- CEVA Animal Health, Poultry Section, Istanbul, Turkey
| | - S Umar
- Veterinary Faculty, Department of Virology, University of Istanbul-Cerrahpas_a, Avcilar, 34320, Istanbul, Turkey
| | - A Yilmaz
- Veterinary Faculty, Department of Virology, University of Istanbul-Cerrahpas_a, Avcilar, 34320, Istanbul, Turkey
| | - N Turan
- Veterinary Faculty, Department of Virology, University of Istanbul-Cerrahpas_a, Avcilar, 34320, Istanbul, Turkey
| | - G Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - C M Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - B Cakan
- CEVA Animal Health, Poultry Section, Istanbul, Turkey
| | - M Iqbal
- The Pirbright Institute, United Kingdom
| | - H Yilmaz
- Veterinary Faculty, Department of Virology, University of Istanbul-Cerrahpas_a, Avcilar, 34320, Istanbul, Turkey,
| |
Collapse
|
39
|
Yu M, Xing L, Chang F, Bao Y, Wang S, He X, Wang J, Wang S, Liu Y, Farooque M, Pan Q, Wang Y, Gao L, Qi X, Hussain A, Li K, Liu C, Zhang Y, Cui H, Wang X, Gao Y. Genomic sequence and pathogenicity of the first avian metapneumovirus subtype B isolated from chicken in China. Vet Microbiol 2018; 228:32-38. [PMID: 30593377 DOI: 10.1016/j.vetmic.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022]
Abstract
Avian metapneumovirus (aMPV), which has been reported in many countries, causes an acute upper respiratory tract disease in chickens and turkeys. Although aMPV was first detected in China in 1999, there has been no further effort to isolate and characterize the aMPV subtype B (aMPV/B) from field outbreaks. In the present study, we used Vero cells to culture a viral strain, LN16, isolated from chickens with swollen head syndrome. The results of RT-PCR, indirect immunofluorescent antibody, and G gene sequence analyses confirmed that strain LN16 corresponds to aMPV/B. We amplified and sequenced the complete genome of strain LN16 and found it to be 13,513 nucleotides in length. Nine viral protein genes of the strain were between 93.2% and 98.4% identical to those of the pathogenic field isolate VCO3/60616. However, insertions and deletions were detected in the intergenic regions. Animal experiments showed that 72.7% of chickens infected with strain LN16 had excess mucus, nasal discharge, and inflammation in the lungs and turbinate. In addition, 27.2% of chickens infected with LN16 shed progeny virions. Viral tissue distribution analysis showed that aMPV could be detected in the turbinate and occasionally in immune organs. This is the first report of the isolation of aMPV/B in China and the first complete genome sequence of aMPV/B from chicken. These findings enrich the epidemiological data on aMPV and may contribute to the development of effective measures to prevent its further spread in China.
Collapse
Affiliation(s)
- Mengmeng Yu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Lixiao Xing
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Fangfang Chang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yuanling Bao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Suyan Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xijun He
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jingfei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shida Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Muhammad Farooque
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Altaf Hussain
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, 225009, PR China.
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin 150069, PR China.
| |
Collapse
|
40
|
Jardine CM, Parmley EJ, Buchanan T, Nituch L, Ojkic D. Avian metapneumovirus subtype C in Wild Waterfowl in Ontario, Canada. Transbound Emerg Dis 2018; 65:1098-1102. [DOI: 10.1111/tbed.12832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 11/29/2022]
Affiliation(s)
- C. M. Jardine
- Department of Pathobiology; University of Guelph; Guelph ON Canada
- Department of Pathobiology; Canadian Wildlife Health Cooperative; University of Guelph; Guelph ON Canada
| | - E. J. Parmley
- Department of Pathobiology; Canadian Wildlife Health Cooperative; University of Guelph; Guelph ON Canada
| | - T. Buchanan
- Ontario Ministry of Natural Resources and Forestry; Trent University; Peterborough ON Canada
| | - L. Nituch
- Ontario Ministry of Natural Resources and Forestry; Trent University; Peterborough ON Canada
| | - D. Ojkic
- Animal Health Laboratory; University of Guelph; Guelph ON Canada
| |
Collapse
|
41
|
Lemaitre E, Allée C, Vabret A, Eterradossi N, Brown PA. Single reaction, real time RT-PCR detection of all known avian and human metapneumoviruses. J Virol Methods 2017; 251:61-68. [PMID: 29030071 PMCID: PMC7119483 DOI: 10.1016/j.jviromet.2017.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022]
Abstract
Detection of all known avian and human MPV subgroups in a single reaction rRT-PCR. Highly sensitive and specific method using SYBR Green I technology. Complete validation of the method for detection of avian metapneumoviruses.
Current molecular methods for the detection of avian and human metapneumovirus (AMPV, HMPV) are specifically targeted towards each virus species or individual subgroups of these. Here a broad range SYBR Green I real time RT-PCR was developed which amplified a highly conserved fragment of sequence in the N open reading frame. This method was sufficiently efficient and specific in detecting all MPVs. Its validation according to the NF U47-600 norm for the four AMPV subgroups estimated low limits of detection between 1000 and 10 copies/μL, similar with detection levels described previously for real time RT-PCRs targeting specific subgroups. RNA viruses present a challenge for the design of durable molecular diagnostic test due to the rate of change in their genome sequences which can vary substantially in different areas and over time. The fact that the regions of sequence for primer hybridization in the described method have remained sufficiently conserved since the AMPV and HMPV diverged, should give the best chance of continued detection of current subgroups and of potential unknown or future emerging MPV strains.
Collapse
Affiliation(s)
- E Lemaitre
- Université Européenne de Bretagne, Anses (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan/Plouzané Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), OIE Reference Laboratory for Turkey Rhinotracheitis, B.P.53, 22440 Ploufragan, France
| | - C Allée
- Université Européenne de Bretagne, Anses (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan/Plouzané Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), OIE Reference Laboratory for Turkey Rhinotracheitis, B.P.53, 22440 Ploufragan, France
| | - A Vabret
- Department of Virology, University Hospital of Caen, 14033 Caen, France
| | - N Eterradossi
- Université Européenne de Bretagne, Anses (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan/Plouzané Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), OIE Reference Laboratory for Turkey Rhinotracheitis, B.P.53, 22440 Ploufragan, France
| | - P A Brown
- Université Européenne de Bretagne, Anses (French Agency for Food, Environmental and Occupational Health Safety), Ploufragan/Plouzané Laboratory, Avian and Rabbit Virology Immunology and Parasitology Unit (VIPAC), OIE Reference Laboratory for Turkey Rhinotracheitis, B.P.53, 22440 Ploufragan, France.
| |
Collapse
|
42
|
Hou L, Wei L, Zhu S, Wang J, Quan R, Li Z, Liu J. Avian metapneumovirus subgroup C induces autophagy through the ATF6 UPR pathway. Autophagy 2017; 13:1709-1721. [PMID: 28949785 PMCID: PMC5640183 DOI: 10.1080/15548627.2017.1356950] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 06/16/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have demonstrated that macroautophagy/autophagy plays an important role in the infectious processes of diverse pathogens. However, it remains unknown whether autophagy is induced in avian metapneumovirus (aMPV)-infected host cells, and, if so, how this occurs. Here, we report that aMPV subgroup C (aMPV/C) induces autophagy in cultured cells. We demonstrated this relationship by detecting classical autophagic features, including the formation of autophagsomes, the presence of GFP-LC3 puncta and the conversation of LC3-I into LC3-II. Also, we used pharmacological regulators and siRNAs targeting ATG7 or LC3 to examine the role of autophagy in aMPV/C replication. The results showed that autophagy is required for efficient replication of aMPV/C. Moreover, infection with aMPV/C promotes autophagosome maturation and induces a complete autophagic process. Finally, the ATF6 pathway, of which one component is the unfolded protein response (UPR), becomes activated in aMPV/C-infected cells. Knockdown of ATF6 inhibited aMPV/C-induced autophagy and viral replication. Collectively, these results not only show that autophagy promotes aMPV/C replication in the cultured cells, but also reveal that the molecular mechanisms underlying aMPV/C-induced autophagy depends on regulation of the ER stress-related UPR pathway.
Collapse
Affiliation(s)
- Lei Hou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Li Wei
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shanshan Zhu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Rong Quan
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zixuan Li
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jue Liu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
43
|
Franzo G, Tucciarone CM, Enache M, Bejan V, Ramon G, Koutoulis KC, Cecchinato M. First Report of Avian Metapneumovirus Subtype B Field Strain in a Romanian Broiler Flock During an Outbreak of Respiratory Disease. Avian Dis 2017; 61:250-254. [DOI: 10.1637/11557-121216-resnote.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Claudia Maria Tucciarone
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Mirel Enache
- Ceva Sante Animale Romania, 5 Chindiei str., Bucharest, Romania
| | - Violeta Bejan
- Ceva Sante Animale Romania, 5 Chindiei str., Bucharest, Romania
| | - Gema Ramon
- Ceva Santé Animale, 10 Avenue de la Ballastiere, 33500 Libourne, France
| | | | - Mattia Cecchinato
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
44
|
A Reverse Genetics Approach for the Design of Methyltransferase-Defective Live Attenuated Avian Metapneumovirus Vaccines. Methods Mol Biol 2016. [PMID: 27076293 DOI: 10.1007/978-1-4939-3389-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. aMPV belongs to the family Paramyxoviridae which includes many important human pathogens such as human respiratory syncytial virus (RSV), human metapneumovirus (hMPV), and human parainfluenza virus type 3 (PIV3). The family also includes highly lethal emerging pathogens such as Nipah virus and Hendra virus, as well as agriculturally important viruses such as Newcastle disease virus (NDV). For many of these viruses, there is no effective vaccine. Here, we describe a reverse genetics approach to develop live attenuated aMPV vaccines by inhibiting the viral mRNA cap methyltransferase. The viral mRNA cap methyltransferase is an excellent target for the attenuation of paramyxoviruses because it plays essential roles in mRNA stability, efficient viral protein translation and innate immunity. We have described in detail the materials and methods used to generate recombinant aMPVs that lack viral mRNA cap methyltransferase activity. We have also provided methods to evaluate the genetic stability, pathogenesis, and immunogenicity of live aMPV vaccine candidates in turkeys.
Collapse
|
45
|
Yun B, Zhang Y, Liu Y, Guan X, Wang Y, Qi X, Cui H, Liu C, Zhang Y, Gao H, Gao L, Li K, Gao Y, Wang X. TMPRSS12 Is an Activating Protease for Subtype B Avian Metapneumovirus. J Virol 2016; 90:11231-11246. [PMID: 27707927 PMCID: PMC5126379 DOI: 10.1128/jvi.01567-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
The entry of avian metapneumovirus (aMPV) into host cells initially requires the fusion of viral and cell membranes, which is exclusively mediated by fusion (F) protein. Proteolysis of aMPV F protein by endogenous proteases of host cells allows F protein to induce membrane fusion; however, these proteases have not been identified. Here, we provide the first evidence that the transmembrane serine protease TMPRSS12 facilitates the cleavage of subtype B aMPV (aMPV/B) F protein. We found that overexpression of TMPRSS12 enhanced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. Subsequently, knockdown of TMPRSS12 with specific small interfering RNAs (siRNAs) reduced aMPV/B F protein cleavage, F protein fusogenicity, and viral replication. We also found a cleavage motif in the aMPV/B F protein (amino acids 100 and 101) that was recognized by TMPRSS12. The histidine, aspartic acid, and serine residue (HDS) triad of TMPRSS12 was shown to be essential for the proteolysis of aMPV/B F protein via mutation analysis. Notably, we observed TMPRSS12 mRNA expression in target organs of aMPV/B in chickens. Overall, our results indicate that TMPRSS12 is crucial for aMPV/B F protein proteolysis and aMPV/B infectivity and that TMPRSS12 may serve as a target for novel therapeutics and prophylactics for aMPV. IMPORTANCE Proteolysis of the aMPV F protein is a prerequisite for F protein-mediated membrane fusion of virus and cell and for aMPV infection; however, the proteases used in vitro and vivo are not clear. A combination of analyses, including overexpression, knockdown, and mutation methods, demonstrated that the transmembrane serine protease TMPRSS12 facilitated cleavage of subtype B aMPV (aMPV/B) F protein. Importantly, we located the motif in the aMPV/B F protein recognized by TMPRSS12 and the catalytic triad in TMPRSS12 that facilitated proteolysis of the aMPV/B F protein. This is the first report on TMPRSS12 as a protease for proteolysis of viral envelope glycoproteins. Our study will shed light on the mechanism of proteolysis of aMPV F protein and pathogenesis of aMPV.
Collapse
Affiliation(s)
- Bingling Yun
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongzhen Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Nan Gang District, Harbin, Heilongjiang Province, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
46
|
Effect of amino acid sequence variations at position 149 on the fusogenic activity of the subtype B avian metapneumovirus fusion protein. Arch Virol 2015; 160:2445-53. [PMID: 26175070 DOI: 10.1007/s00705-015-2524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
The entry of enveloped viruses into host cells requires the fusion of viral and cell membranes. These membrane fusion reactions are mediated by virus-encoded glycoproteins. In the case of avian metapneumovirus (aMPV), the fusion (F) protein alone can mediate virus entry and induce syncytium formation in vitro. To investigate the fusogenic activity of the aMPV F protein, we compared the fusogenic activities of three subtypes of aMPV F proteins using a TCSD50 assay developed in this study. Interestingly, we found that the F protein of aMPV subtype B (aMPV/B) strain VCO3/60616 (aMPV/vB) was hyperfusogenic when compared with F proteins of aMPV/B strain aMPV/f (aMPV/fB), aMPV subtype A (aMPV/A), and aMPV subtype C (aMPV/C). We then further demonstrated that the amino acid (aa) residue 149F contributed to the hyperfusogenic activity of the aMPV/vB F protein. Moreover, we revealed that residue 149F had no effect on the fusogenic activities of aMPV/A, aMPV/C, and human metapneumovirus (hMPV) F proteins. Collectively, we provide the first evidence that the amino acid at position 149 affects the fusogenic activity of the aMPV/B F protein, and our findings will provide new insights into the fusogenic mechanism of this protein.
Collapse
|
47
|
Paudel S, Shin HJ. Role of trypsin in the replication of Avian metapneumovirus subtype C (strain MN-2a) and its entry into the Vero cells. Mol Cell Probes 2015; 29:485-491. [PMID: 26028611 DOI: 10.1016/j.mcp.2015.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 01/12/2023]
Abstract
To understand the molecular mechanisms of Avian metapneumovirus (aMPV) and the requirements involved in the infection and fusion, trypsin treatment was done in the different stages of virus; before infection, during entry and after virus infection followed by aMPV infection. The growth kinetics of aMPV was compared in time dependent manner. The effect of trypsin was found in the later stage of aMPV infection increasing the numbers of infected cells with the significant higher titer of infectious virions to that of trypsin treated before infection, during entry and aMPV. A serine protease inhibitor reduced aMPV replication in a significant way, whereas cysteine peptidase (E-64), aspartic protease (pepstatin A), and metalloprotease (phosphoramidon) inhibitors had no effect on aMPV replication. Inoculation of aMPV on Vero cells expressing the membrane-associated protease TMPRSS2 resulted in higher virus titers than that inoculated on normal Vero cells and is statistically significant (p < 0.05). Also, an inhibitor of clathrin/caveolae-mediated endocytosis had no effect on virus progeny, indicating that aMPV does not use the endocytic pathway for entry but undergoes direct fusion. The effect of lysosomotropic agents was not significant, suggesting that aMPV does not require low-pH environment in endosomes to fuse its envelope with the plasma membrane.
Collapse
Affiliation(s)
- Sarita Paudel
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea; Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
48
|
Franzo G, Drigo M, Lupini C, Catelli E, Laconi A, Listorti V, Bonci M, Naylor CJ, Martini M, Cecchinato M. A sensitive, reproducible, and economic real-time reverse transcription PCR detecting avian metapneumovirus subtypes A and B. Avian Dis 2014; 58:216-22. [PMID: 25055624 DOI: 10.1637/10676-092413-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Use of real-time PCR is increasing in the diagnosis of infectious disease due to its sensitivity, specificity, and speed of detection. These characteristics make it particularly suited for the diagnosis of viral infections, like avian metapneumovirus (AMPV), for which effective control benefits from continuously updated knowledge of the epidemiological situation. Other real-time reverse transcription (RT)-PCRs have been published based on highly specific fluorescent dye-labeled probes, but they have high initial cost, complex validation, and a marked susceptibility to the genetic variability of their target sequence. With this in mind, we developed and validated a SYBR Green I-based quantitative RT-PCR for the detection of the two most prevalent AMPV subtypes (i.e., subtypes A and B). The assay demonstrated an analytical sensitivity comparable with that of a previously published real-time RT-PCR and the ability to detect RNA equivalent to approximately 0.5 infectious doses for both A and B subtypes. The high efficiency and linearity between viral titer and crossing point displayed for both subtypes make it suited for viral quantification. Optimization of reaction conditions and the implementation of melting curve analysis guaranteed the high specificity of the assay. The stable melting temperature difference between the two subtypes indicated the possibility of subtyping through melting temperature analysis. These characteristics make our assay a sensitive, specific, and rapid tool, enabling contemporaneous detection, quantification, and discrimination of AMPV subtype A and B.
Collapse
|
49
|
Methyltransferase-defective avian metapneumovirus vaccines provide complete protection against challenge with the homologous Colorado strain and the heterologous Minnesota strain. J Virol 2014; 88:12348-63. [PMID: 25122790 DOI: 10.1128/jvi.01095-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen in the poultry industry worldwide. The conserved region VI (CR VI) of the large (L) polymerase proteins of paramyxoviruses catalyzes methyltransferase (MTase) activities that typically methylate viral mRNAs at guanine N-7 (G-N-7) and ribose 2'-O positions. In this study, we generated a panel of recombinant aMPV (raMPV) Colorado strains carrying mutations in the S-adenosyl methionine (SAM) binding site in the CR VI of L protein. These recombinant viruses were specifically defective in ribose 2'-O, but not G-N-7 methylation and were genetically stable and highly attenuated in cell culture and viral replication in the upper and lower respiratory tracts of specific-pathogen-free (SPF) young turkeys. Importantly, turkeys vaccinated with these MTase-defective raMPVs triggered a high level of neutralizing antibody and were completely protected from challenge with homologous aMPV Colorado strain and heterologous aMPV Minnesota strain. Collectively, our results indicate (i) that aMPV lacking 2'-O methylation is highly attenuated in vitro and in vivo and (ii) that inhibition of mRNA cap MTase can serve as a novel target to rationally design live attenuated vaccines for aMPV and perhaps other paramyxoviruses. IMPORTANCE Paramyxoviruses include many economically and agriculturally important viruses such as avian metapneumovirus (aMPV), and Newcastle disease virus (NDV), human pathogens such as human respiratory syncytial virus, human metapneumovirus, human parainfluenza virus type 3, and measles virus, and highly lethal emerging pathogens such as Nipah virus and Hendra virus. For many of them, there is no effective vaccine or antiviral drug. These viruses share common strategies for viral gene expression and replication. During transcription, paramyxoviruses produce capped, methylated, and polyadenylated mRNAs. Using aMPV as a model, we found that viral ribose 2'-O methyltransferase (MTase) is a novel approach to rationally attenuate the virus for vaccine purpose. Recombinant aMPV (raMPV) lacking 2'-O MTase were not only highly attenuated in turkeys but also provided complete protection against the challenge of homologous and heterologous aMPV strains. This novel approach can be applicable to other animal and human paramyxoviruses for rationally designing live attenuated vaccines.
Collapse
|
50
|
Sun S, Chen F, Cao S, Liu J, Lei W, Li G, Song Y, Lu J, Liu C, Qin J, Li H. Isolation and characterization of a subtype C avian metapneumovirus circulating in Muscovy ducks in China. Vet Res 2014; 45:74. [PMID: 25060776 PMCID: PMC4222263 DOI: 10.1186/s13567-014-0074-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/19/2014] [Indexed: 11/23/2022] Open
Abstract
Subtype C avian metapneumovirus (aMPV-C), is an important pathogen that can cause egg-drop and acute respiratory diseases in poultry. To date, aMPV-C infection has not been documented in Muscovy ducks in China. Here, we isolated and characterized an aMPV-C, designated S-01, which has caused severe respiratory disease and noticeable egg drop in Muscovy duck flocks in south China since 2010. Electron microscopy showed that the isolate was an enveloped virus exhibiting multiple morphologies with a diameter of 20-500 nm. The S-01 strain was able to produce a typical cytopathic effect (CPE) on Vero cells and cause death in 10- to 11-day-old Muscovy duck embryos. In vivo infection of layer Muscovy ducks with the isolate resulted in typical clinical signs and pathological lesions similar to those seen in the original infected cases. We report the first complete genomic sequence of aMPV-C from Muscovy ducks. A phylogenetic analysis strongly suggested that the S-01 virus belongs to the aMPV-C family, sharing 92.3%-94.3% of nucleotide identity with that of aMPV-C, and was most closely related to the aMPV-C strains isolated from Muscovy ducks in France. The deduced eight main proteins (N, P, M, F, M2, SH, G and L) of the novel isolate shared higher identity with hMPV than with other aMPV (subtypes A, B and D). S-01 could bind a monoclonal antibody against the F protein of hMPV. Together, our results indicate that subtype-C aMPV has been circulating in Muscovy duck flocks in South China, and it is urgent for companies to develop new vaccines to control the spread of the virus in China.
Collapse
Affiliation(s)
- Shikai Sun
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Sheng Cao
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| | - Jiajia Liu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wen Lei
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| | - Guangwei Li
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yongfeng Song
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| | - Junpeng Lu
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| | - Chuang Liu
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| | - Jianping Qin
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| | - Haiyan Li
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Department of Poultry Diseases, WENS Group Academy, Guangdong WENS FoodStuff Group Co. Ltd, Yunfu, 527439, Guangdong, China
| |
Collapse
|