1
|
Andersen-Ranberg E, Nymo IH, Jokelainen P, Emelyanova A, Jore S, Laird B, Davidson RK, Ostertag S, Bouchard E, Fagerholm F, Skinner K, Acquarone M, Tryland M, Dietz R, Abass K, Rautio A, Hammer S, Evengård B, Thierfelder T, Stimmelmayr R, Jenkins E, Sonne C. Environmental stressors and zoonoses in the Arctic: Learning from the past to prepare for the future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:176869. [PMID: 39423885 DOI: 10.1016/j.scitotenv.2024.176869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The risk of zoonotic disease transmission from animals to humans is elevated for people in close contact with domestic and wild animals. About three-quarters of all known human infectious diseases are zoonotic, and potential health impacts of these diseases are higher where infectious disease surveillance and access to health care and public health services are limited. This is especially the case for remote circumarctic regions, where drivers for endemic, emerging, and re-emerging zoonotic diseases include anthropogenic influences, such as pollution by long-range transport of industrial chemicals, climate change, loss of biodiversity and ecosystem alterations. In addition to these, indirect effects including natural changes in food web dynamics, appearance of invasive species and thawing permafrost also affect the risk of zoonotic disease spill-over. In other words, the Arctic represents a changing world where pollution, loss of biodiversity and habitat, and maritime activity are likely driving forward occurrence of infectious diseases. As a broad international consortium with a wide range of expertise, we here describe a selection of case studies highlighting the importance of a One Health approach to zoonoses in the circumarctic, encompassing human health, animal health, and environmental health aspects. The cases highlight critical gaps in monitoring and current knowledge, focusing on environmental stressors and lifestyle factors, and they are examples of current occurrences in the Arctic that inform on critically needed actions to prepare us for the future. Through these presentations, we recommend measures to enhance awareness and management of existing and emerging zoonoses with epidemic and pandemic potential while also focusing on the impacts of various environmental stressors and lifestyle factors on zoonoses in the Arctic.
Collapse
Affiliation(s)
- Emilie Andersen-Ranberg
- University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Clinical Sciences, Dyrlægevej 16, 1870 Frederiksberg, Denmark.
| | - Ingebjørg H Nymo
- Norwegian Veterinary Institute, Holtveien 66, 9016 Tromsø, Norway; Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Framstredet 39, Breivika, 9019 Tromsø, Norway
| | - Pikka Jokelainen
- Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Anastasia Emelyanova
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Solveig Jore
- Department of Zoonotic, Food & Waterborne Infections, Norwegian Institute of Public Health, Postbox 222 Skøyen, 0213 Oslo, Norway
| | - Brian Laird
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | | | - Sonja Ostertag
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Emilie Bouchard
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, St Hyacinthe J2T 1B3, Canada; Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Freja Fagerholm
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Kelly Skinner
- School of Public Health Sciences, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Mario Acquarone
- Arctic Monitoring and Assessment Programme, Hjalmar Johansens gate 14, 9007 Tromsø, Norway
| | - Morten Tryland
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Anne Evenstads Veg 80, 2480 Koppang, Norway
| | - Rune Dietz
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Khaled Abass
- Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, postbox 27272, United Arab Emirates
| | - Arja Rautio
- Thule Institute, University of Oulu, Paavo Havaksen tie 3, 90570 Oulu, Finland; Research Unit of Biomedicine and Internal Medicine, Faculty of Medicine, University of Oulu, Paavo Havaksen tie 3 Linnanmaa, 90014, Finland
| | - Sjúrður Hammer
- Faroese Environment Agency, Traðagøta 38, 165 Argir, Faroe Islands; University of the Faroe Islands, Vestara Bryggja 15, 100 Tórshavn, Faroe Islands
| | - Birgitta Evengård
- Department of Clinical Microbiology and the Arctic Center, Umeå University, Johan Bures Väg 5, 90187 Umeå, Sweden
| | - Tomas Thierfelder
- Department of Energy and Technology, Swedish University of Agricultural Sciences, postbox 75651, Uppsala, Sweden
| | - Raphaela Stimmelmayr
- Department of Wildlife management, North Slope Borough, postbox 69, 99723 Utqiagvik, AK, USA
| | - Emily Jenkins
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon S7N 5B4, Canada
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
2
|
Maurin M, Hennebique A, Brunet C, Pondérand L, Pelloux I, Boisset S, Caspar Y. Non-vaccinal prophylaxis of tularemia. Front Microbiol 2024; 15:1507469. [PMID: 39669787 PMCID: PMC11635305 DOI: 10.3389/fmicb.2024.1507469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Tularemia is a re-emerging zoonosis in many endemic countries. It is caused by Francisella tularensis, a gram-negative bacterium and biological threat agent. Humans are infected from the wild animal reservoir, the environmental reservoir or by the bite of arthropod vectors. This infection occurs through the cutaneous, conjunctival, digestive or respiratory routes. Tularemia generally manifests itself as an infection at the site of entry of the bacteria with regional lymphadenopathy, or as a systemic disease, particularly pulmonary. It is often a debilitating condition due to persistent symptoms and sometimes a life-threatening condition. There is effective antibiotic treatment for this disease but no vaccine is currently available for humans or animals. Due to the complexity of the F. tularensis life cycle and multiple modes of human infection, non-vaccine prophylaxis of tularemia is complex and poorly defined. In this review, we summarize the various individual prophylactic measures available against tularemia based on the different risk factors associated with the disease. We also discuss the currently underdeveloped possibilities for collective prophylaxis. Prophylactic measures must be adapted in each tularemia endemic area according to the predominant modes of human and animal infection. They requires a One Health approach to control both animal and environmental reservoirs of F. tularensis, as well as arthropod vectors, to slow the current expansion of endemic areas of this disease in a context of climate change.
Collapse
Affiliation(s)
- Max Maurin
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Aurélie Hennebique
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Recherche Translationnelle et Innovation en Médecine et Complexité (TIMC), Centre National de la Recherche Scientifique (CNRS), Université Grenoble Alpes, Grenoble, France
| | - Camille Brunet
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Léa Pondérand
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Isabelle Pelloux
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
| | - Sandrine Boisset
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| | - Yvan Caspar
- Centre Hospitalier Universitaire Grenoble Alpes, Centre National de Référence Francisella Tularensis, , Grenoble, France
- Université Grenoble Alpes, Commissariat à l’énergie atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
3
|
Herrera-Rodríguez D, Jareño-Moreno S, Buch-Cardona C, Mougeot F, Luque-Larena JJ, Vidal D. Water and mosquitoes as key components of the infective cycle of Francisella tularensis in Europe: a review. Crit Rev Microbiol 2024; 50:922-936. [PMID: 38393764 DOI: 10.1080/1040841x.2024.2319040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
Francisella tularensis is the pathogen of tularemia, a zoonotic disease that have a broad range of hosts. Its epidemiology is related to aquatic environments, particularly in the subspecies holarctica. In this review, we explore the role of water and mosquitoes in the epidemiology of Francisella in Europe. F. tularensis epidemiology has been linked to natural waters, where its persistence has been associated with biofilm and amebas. In Sweden and Finland, the European countries where most human cases have been reported, mosquito bites are a main route of transmission. F. tularensis is present in other European countries, but to date positive mosquitoes have not been found. Biofilm and amebas are potential sources of Francisella for mosquito larvae, however, mosquito vector capacity has not been demonstrated experimentally, with the need to be studied using local species to uncover a potential transmission adaptation. Transstadial, for persistence through life stages, and mechanical transmission, suggesting contaminated media as a source for infection, have been studied experimentally for mosquitoes, but their natural occurrence needs to be evaluated. It is important to clear up the role of different local mosquito species in the epidemiology of F. tularensis and their importance in all areas where tularemia is present.
Collapse
Affiliation(s)
- Daniel Herrera-Rodríguez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Castilla la Mancha (UCLM), Ciudad Real, España
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, España
| | - Sara Jareño-Moreno
- Facultad de Veterinaria, Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | - Clara Buch-Cardona
- Facultad de Biociencias, Universidad Autónoma de Barcelona (UAB), Barcelona, España
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC - CSIC, UCLM, JCCM), Ciudad Real, España
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales, E.T.S. Ingenierías Agrarias, Universidad de Valladolid (UVa), Palencia, España
- Sustainable Forest Management Research Institute (iuFOR), Universidad de Valladolid (UVa), Palencia, España
| | - Dolors Vidal
- Departamento de Microbiología, Facultad de Medicina, Universidad de Castilla la Mancha (UCLM), Ciudad Real, España
| |
Collapse
|
4
|
Plymoth M, Lundqvist R, Nystedt A, Sjöstedt A, Gustafsson TN. Targeting Tularemia: Clinical, Laboratory, and Treatment Outcomes From an 11-year Retrospective Observational Cohort in Northern Sweden. Clin Infect Dis 2024; 78:1222-1231. [PMID: 38393822 PMCID: PMC11093680 DOI: 10.1093/cid/ciae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Tularemia is an important reemerging disease with a multimodal transmission pattern. Treatment outcomes of current recommended antibiotic regimens (including ciprofloxacin and doxycycline) remain unclear. In this retrospective cohort study, we report clinical, laboratory, geographical, and treatment outcomes of laboratory-confirmed tularemia cases over an 11-year period in Northern Sweden. METHODS Data from reported tularemia cases (aged >10 years at time of study) in Norrbotten county between 2011 and 2021 were collected through review of electronic medical records and participant questionnaires; 415 of 784 accepted participation (52.9%). Of these, 327 were laboratory-confirmed cases (serology and/or polymerase chain reaction). A multivariable logistic regression model was used to investigate variables associated with retreatment. RESULTS Median age of participants was 54 years (interquartile range [IQR], 41.5-65) and 49.2% were female. Although ulceroglandular tularemia was the predominant form (n = 215, 65.7%), there were several cases of pulmonary tularemia (n = 40; 12.2%). Inflammatory markers were largely nonspecific, with monocytosis frequently observed (n = 36/75; 48%). Tularemia was often misdiagnosed on presentation (n = 158, 48.3%), with 65 (19.9%) receiving initial inappropriate antibiotics and 102 (31.2%) retreated. Persistent lymphadenopathy was infrequent (n = 22, 6.7%), with 10 undergoing surgical interventions. In multivariable analysis of variables associated with retreatment, we highlight differences in time until receiving appropriate antibiotics (8 [IQR, 3.25-20.75] vs 7 [IQR, 4-11.25] days; adjusted P = .076), and doxycycline-based treatment regimen (vs ciprofloxacin; adjusted P = .084), although this was not significant after correction for multiple comparisons. CONCLUSIONS We comprehensively summarize clinical, laboratory, and treatment outcomes of type B tularemia. Targeting tularemia requires clinical awareness, early diagnosis, and timely commencement of treatment for an appropriate duration.
Collapse
Affiliation(s)
- Martin Plymoth
- Department of Clinical Microbiology, Sunderby Research Unit, Umeå University, Umeå, Sweden
- Department of Infectious Diseases, Westmead Hospital, Sydney, New South Wales, Australia
| | - Robert Lundqvist
- Department of Public Health and Clinical Medicine, Sunderby Research Unit, Umeå University, Umeå, Sweden
| | - Anders Nystedt
- Department of Communicable Disease Control, County Council of Norrbotten, Luleå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Tomas N Gustafsson
- Department of Clinical Microbiology, Sunderby Research Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Ahmed S, Ahmad E. Tackling Tularemia: Call to Action for 2023 Resurgence in Sweden. Asia Pac J Public Health 2024; 36:415-416. [PMID: 38546149 DOI: 10.1177/10105395241241421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Affiliation(s)
- Shahzaib Ahmed
- Fatima Memorial Hospital College of Medicine & Dentistry, Lahore, Pakistan
| | - Eeman Ahmad
- Fatima Memorial Hospital College of Medicine & Dentistry, Lahore, Pakistan
| |
Collapse
|
6
|
Ahmed A, Ume-e-Habiba. Tularemia resurgence in Sweden 2023: A call to arms for health. New Microbes New Infect 2024; 57:101222. [PMID: 38322732 PMCID: PMC10844103 DOI: 10.1016/j.nmni.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Affiliation(s)
- Aliza Ahmed
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Ume-e-Habiba
- Jinnah Sindh Medical University, Karachi, Pakistan
| |
Collapse
|
7
|
Hušková J, Hušek J. Population Density of European Hare Predicts Risk of Tularemia Infection, Czech Republic, 2006-2022. Vector Borne Zoonotic Dis 2023; 23:615-618. [PMID: 37589998 DOI: 10.1089/vbz.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Background: Over 200 different animal species are susceptible to infection by tularemia, highly infectious disease caused by Francisella tularensis. Hares (Lepus sp.) and small rodents, such as common vole (Microtus arvalis), have been acknowledged as the most significant sources of human tularemia infection in most European countries. Our objective was to verify ability of these species in predicting incidence of human tularemia in a Central European country, the Czech Republic. Materials and Methods: We used 17 years of data on densities of European hare (Lepus europaeus) and common vole, and climate variability to test effects of these factors on temporal dynamics of tularemia incidence. The data were obtained from annual reports available from online e-repositories. Results: The analysis showed that 33% of the yearly variation in human tularemia incidence was explained solely by the abundance of European hare in the Czech Republic during 2007-2022. Density of common vole and North Atlantic Oscillation index, a measure of climate variability, did not significantly explain tularemia incidence. While hare population declined severely during 1993-2022, we did not detect any clear accompanied decrease in the prevalence of tularemia in humans and hares. Conclusion: Contrary to expectations, only hares proved capable in predicting yearly dynamics in human tularemia incidence in the Czech Republic. We call for continued monitoring of infection rates in hares and advocate the use of hunter estimates of hare abundance as a cheap and effective means of predicting the risk of tularemia.
Collapse
Affiliation(s)
- Jana Hušková
- Department of Microbiology, Regional Hospital Kolín, Kolín, Czech Republic
| | - Jan Hušek
- Department of Zoology, National Museum of the Czech Republic, Prague, Czech Republic
- Department of Biology, University of Hradec Králové, Hradec Králové, Czech Republic
| |
Collapse
|
8
|
Tularemia Presenting Solely with Cervical Lymphadenopathy and Fever. Diagnostics (Basel) 2022; 12:diagnostics12082000. [PMID: 36010350 PMCID: PMC9407280 DOI: 10.3390/diagnostics12082000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
A 52-year-old German female presented with cervical lymphadenopathy and fever. Despite the initial symptom-presentation leading to the consideration of sarcoidosis, lymphoma, tuberculosis, and toxoplasmosis, an extensive serologic and histo- and molecular pathologic workup eventually indicated a likely diagnosis of tularemia. This case brings to light that tularemia is a diagnostic challenge and requires high reliance on the epidemiological context thorough patient history, and an extensive interdisciplinary diagnostic workup.
Collapse
|
9
|
Working correlates of protection predict SchuS4-derived-vaccine candidates with improved efficacy against an intracellular bacterium, Francisella tularensis. NPJ Vaccines 2022; 7:95. [PMID: 35977964 PMCID: PMC9385090 DOI: 10.1038/s41541-022-00506-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/01/2022] [Indexed: 11/09/2022] Open
Abstract
Francisella tularensis, the causative agent of tularemia, is classified as Tier 1 Select Agent with bioterrorism potential. The efficacy of the only available vaccine, LVS, is uncertain and it is not licensed in the U.S. Previously, by using an approach generally applicable to intracellular pathogens, we identified working correlates that predict successful vaccination in rodents. Here, we applied these correlates to evaluate a panel of SchuS4-derived live attenuated vaccines, namely SchuS4-ΔclpB, ΔclpB-ΔfupA, ΔclpB-ΔcapB, and ΔclpB-ΔwbtC. We combined in vitro co-cultures to quantify rodent T-cell functions and multivariate regression analyses to predict relative vaccine strength. The predictions were tested by rat vaccination and challenge studies, which demonstrated a clear relationship between the hierarchy of in vitro measurements and in vivo vaccine protection. Thus, these studies demonstrated the potential power a panel of correlates to screen and predict the efficacy of Francisella vaccine candidates, and in vivo studies in Fischer 344 rats confirmed that SchuS4-ΔclpB and ΔclpB-ΔcapB may be better vaccine candidates than LVS.
Collapse
|
10
|
Spatial Analysis of Mosquito-Borne Diseases in Europe: A Scoping Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14158975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mosquito-borne infections are increasing in endemic areas and previously unaffected regions. In 2020, the notification rate for Dengue was 0.5 cases per 100,000 population, and for Chikungunya <0.1/100,000. In 2019, the rate for Malaria was 1.3/100,000, and for West Nile Virus, 0.1/100,000. Spatial analysis is increasingly used in surveillance and epidemiological investigation, but reviews about their use in this research topic are scarce. We identify and describe the methodological approaches used to investigate the distribution and ecological determinants of mosquito-borne infections in Europe. Relevant literature was extracted from PubMed, Scopus, and Web of Science from inception until October 2021 and analysed according to PRISMA-ScR protocol. We identified 110 studies. Most used geographical correlation analysis (n = 50), mainly applying generalised linear models, and the remaining used spatial cluster detection (n = 30) and disease mapping (n = 30), mainly conducted using frequentist approaches. The most studied infections were Dengue (n = 32), Malaria (n = 26), Chikungunya (n = 26), and West Nile Virus (n = 24), and the most studied ecological determinants were temperature (n = 39), precipitation (n = 24), water bodies (n = 14), and vegetation (n = 11). Results from this review may support public health programs for mosquito-borne disease prevention and may help guide future research, as we recommended various good practices for spatial epidemiological studies.
Collapse
|
11
|
Schöbi N, Agyeman PKA, Duppenthaler A, Bartenstein A, Keller PM, Suter-Riniker F, Schmidt KM, Kopp MV, Aebi C. PEDIATRIC TULAREMIA– A CASE SERIES FROM A SINGLE CENTER IN SWITZERLAND. Open Forum Infect Dis 2022; 9:ofac292. [PMID: 35873298 PMCID: PMC9301579 DOI: 10.1093/ofid/ofac292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background The incidence of tularemia has recently increased throughout Europe. Pediatric tularemia typically presents with ulceroglandular or glandular disease and requires antimicrobial therapy not used in the empirical management of childhood acute lymphadenitis. We describe the clinical presentation and course in a case series comprising 20 patients. Methods This is a retrospective analysis of a single-center case series of microbiologically confirmed tularemia in patients <16 years of age diagnosed between 2010 and 2021. Results Nineteen patients (95%) presented with ulceroglandular (n = 14) or glandular disease (n = 5), respectively. A characteristic entry site lesion (eschar) was present in 14 (74%). Fever was present at illness onset in 15 patients (75%) and disappeared in all patients before targeted therapy was initiated. The diagnosis was confirmed by serology in 18 patients (90%). While immunochromatography was positive as early as on day 7, a microagglutination test titer 1:≥160 was found no earlier than on day 13. Sixteen patients (80%) were initially treated with an antimicrobial agent ineffective against F. tularensis. The median delay (range) from illness onset to initiation of targeted therapy was 12 (6–40) days. Surgical incision and drainage were ultimately performed in 12 patients (60%). Conclusions Pediatric tularemia in Switzerland usually presents with early, self-limiting fever and a characteristic entry site lesion with regional lymphadenopathy draining the scalp or legs. Particularly in association with a tick exposure history, this presentation may allow early first-line therapy with an agent specifically targeting F. tularensis, potentially obviating the need for surgical therapy.
Collapse
Affiliation(s)
- Nina Schöbi
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Philipp KA Agyeman
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Andrea Duppenthaler
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Bern University Hospital, Inselspital, University of Bern , Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern , Switzerland
| | | | - Kristina M Schmidt
- Spiez Laboratory, Federal Office for Civil Protection and Swiss National Reference Center for Francisella tularensis (NANT) , Spiez , Switzerland
| | - Matthias V Kopp
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
- 17 Center North (ARCN), Member of the German Lung Research Center (DZL) , 18 University of Luebeck , Germany
| | - Christoph Aebi
- Division of Pediatric Infectious Disease, Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern , Switzerland
| |
Collapse
|
12
|
Sipari S, Khalil H, Magnusson M, Evander M, Hörnfeldt B, Ecke F. Climate change accelerates winter transmission of a zoonotic pathogen. AMBIO 2022; 51:508-517. [PMID: 34228253 PMCID: PMC8800963 DOI: 10.1007/s13280-021-01594-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 05/30/2023]
Abstract
Many zoonotic diseases are weather sensitive, raising concern how their distribution and outbreaks will be affected by climate change. At northern high latitudes, the effect of global warming on especially winter conditions is strong. By using long term monitoring data (1980-1986 and 2003-2013) from Northern Europe on temperature, precipitation, an endemic zoonotic pathogen (Puumala orthohantavirus, PUUV) and its reservoir host (the bank vole, Myodes glareolus), we show that early winters have become increasingly wet, with a knock-on effect on pathogen transmission in its reservoir host population. Further, our study is the first to show a climate change effect on an endemic northern zoonosis, that is not induced by increased host abundance or distribution, demonstrating that climate change can also alter transmission intensity within host populations. Our results suggest that rainy early winters accelerate PUUV transmission in bank voles in winter, likely increasing the human zoonotic risk in the North.
Collapse
Affiliation(s)
- Saana Sipari
- Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83 Umeå, Sweden
| | - Hussein Khalil
- Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83 Umeå, Sweden
| | - Magnus Magnusson
- Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83 Umeå, Sweden
| | - Magnus Evander
- Umeå University, Department of Clinical Microbiology, 901 85 Umeå, Sweden
| | - Birger Hörnfeldt
- Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83 Umeå, Sweden
| | - Frauke Ecke
- Swedish University of Agricultural Sciences, Skogsmarksgränd, 901 83 Umeå, Sweden
| |
Collapse
|
13
|
Miącz K, Śledź J, Karwacki MW. 'Unique does not mean impossible: infant presenting with complicated course of ulceroglandular tularemia.'. Oxf Med Case Reports 2021; 2021:omab086. [PMID: 34527259 PMCID: PMC8436267 DOI: 10.1093/omcr/omab086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022] Open
Abstract
Tularemia is a disease caused by Francisella tularensis—gram-negative coccobacillus. The ulceroglandular type characterized by skin ulcers and painful regional adenopathy is recognized as the most common. A 1-year-old patient was admitted with severe normocytic anemia, high fever and hepatosplenomegaly. A nonspecific lesion in the axillary region with a homogenous nodal reaction was found, combined with a history of a tick-bite in the pectoral muscle. Primary differentiation included leukemia, lymphoma, mononucleosis, borrelial lymphoma and simple abscess. All of the above were excluded. A further search for diagnosis focused on tick-borne diseases: TIBOLa or anaplasmosis. The ulceroglandular tularemia was eventually confirmed serologically. Besides the fact that tularemia is a rare diagnosis nowadays, it is still necessary to include this disease in the differentiation of a nonresolving tick-bite abscess with lymphadenopathy. Diagnostic vigilance is the key to effective treatment because other obvious symptoms such as severe anemia might delay the diagnosis.
Collapse
Affiliation(s)
- Karolina Miącz
- Medical University of Warsaw, "Spherocyte" Student's Scientific Association, Department of Pediatric Hematology and Oncology, Clinical Transplantology and Pediatrics, 63 A Żwirki i Wigury Avenue, 02-091 Warsaw, Poland
| | - Jakub Śledź
- Medical University of Warsaw, "Spherocyte" Student's Scientific Association, Department of Pediatric Hematology and Oncology, Clinical Transplantology and Pediatrics, 63 A Żwirki i Wigury Avenue, 02-091 Warsaw, Poland
| | - Marek W Karwacki
- Medical University of Warsaw, Department of Pediatric Hematology and Oncology, Clinical Transplantology and Pediatrics, , 63 A Żwirki i Wigury Avenue, 02-091 Warsaw, Poland
| |
Collapse
|
14
|
Modern Development and Production of a New Live Attenuated Bacterial Vaccine, SCHU S4 ΔclpB, to Prevent Tularemia. Pathogens 2021; 10:pathogens10070795. [PMID: 34201577 PMCID: PMC8308573 DOI: 10.3390/pathogens10070795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/04/2022] Open
Abstract
Inhalation of small numbers of Francisella tularensis subspecies tularensis (Ftt) in the form of small particle aerosols causes severe morbidity and mortality in people and many animal species. For this reason, Ftt was developed into a bona fide biological weapon by the USA, by the former USSR, and their respective allies during the previous century. Although such weapons were never deployed, the 9/11 attack quickly followed by the Amerithrax attack led the U.S. government to seek novel countermeasures against a select group of pathogens, including Ftt. Between 2005–2009, we pursued a novel live vaccine against Ftt by deleting putative virulence genes from a fully virulent strain of the pathogen, SCHU S4. These mutants were screened in a mouse model, in which the vaccine candidates were first administered intradermally (ID) to determine their degree of attenuation. Subsequently, mice that survived a high dose ID inoculation were challenged by aerosol or intranasally (IN) with virulent strains of Ftt. We used the current unlicensed live vaccine strain (LVS), first discovered over 70 years ago, as a comparator in the same model. After screening 60 mutants, we found only one, SCHU S4 ΔclpB, that outperformed LVS in the mouse ID vaccination-respiratory-challenge model. Currently, SCHU S4 ΔclpB has been manufactured under current good manufacturing practice conditions, and tested for safety and efficacy in mice, rats, and macaques. The steps necessary for advancing SCHU S4 ΔclpB to this late stage of development are detailed herein. These include developing a body of data supporting the attenuation of SCHU S4 ΔclpB to a degree sufficient for removal from the U.S. Select Agent list and for human use; optimizing SCHU S4 ΔclpB vaccine production, scale up, and long-term storage; and developing appropriate quality control testing approaches.
Collapse
|
15
|
Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, Kutz S, Lee DS, Chetkiewicz CLB, Lair S, Preston ND, Pruvot M, Ray JC, Reid D, Sleeman JM, Stimmelmayr R, Stephen C, Walzer C. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Front Public Health 2021; 9:627654. [PMID: 34026707 PMCID: PMC8131663 DOI: 10.3389/fpubh.2021.627654] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Collapse
Affiliation(s)
- Lucy O. Keatts
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Martin Robards
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, United States
| | - Sarah H. Olson
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine & Arctic and Northern Studies Program, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Stephen J. Insley
- Wildlife Conservation Society Canada, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David S. Lee
- Department of Wildlife and Environment, Nunavut Tunngavik Inc., Ottawa, ON, Canada
| | | | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Université de Montréal, Montreal, QC, Canada
| | | | - Mathieu Pruvot
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Donald Reid
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Jonathan M. Sleeman
- United States Geological Survey National Wildlife Health Center, Madison, WI, United States
| | - Raphaela Stimmelmayr
- North Slope Department of Wildlife Management, Utqiagvik, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Craig Stephen
- University of British Columbia, Vancouver, BC, Canada
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Chris Walzer
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Conservation Medicine Unit, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
16
|
Kubiliute I, Zablockiene B, Paulauskiene R, Navickas G, Jancoriene L. A Rare Case of Tularemia Complicated by Rhabdomyolysis with a Successful Outcome. Medicina (B Aires) 2021; 57:medicina57050449. [PMID: 34062973 PMCID: PMC8147915 DOI: 10.3390/medicina57050449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 11/16/2022] Open
Abstract
We present a case of tularemia complicated by rhabdomyolysis in a 43-year-old male who presented with fever, swelling, and pain of the right groin and a history of a week-old tick bite. Empirical parenteral amoxicillin/clavulanic acid treatment was initiated. Suspecting tularemia, parenteral gentamycin was added. Later, the patient started to complain of muscle pain, weakness, and difficulties in breathing and walking. Heightened levels of creatine kinase and myoglobin concentration (42,670 IU/L and >12,000 μg/L, respectively) were found. Due to rhabdomyolysis, large amounts of intravenous fluid therapy were initiated to prevent kidney damage, continuing intravenous antibiotic therapy. Francisella tularensis IgG in serum was found to be positive only on the sixteenth day of hospitalization. Upon discharge, the laboratory analyses returned to normal levels, and the patient was in good condition. The successful outcome could be associated with the early appropriate therapy of tularemia and its rare complication of rhabdomyolysis.
Collapse
Affiliation(s)
- Ieva Kubiliute
- Center of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania; (B.Z.); (R.P.); (L.J.)
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
- Correspondence: ; Tel.: +370-5-275-2594
| | - Birute Zablockiene
- Center of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania; (B.Z.); (R.P.); (L.J.)
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| | - Rasute Paulauskiene
- Center of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania; (B.Z.); (R.P.); (L.J.)
| | - Giedrius Navickas
- Center of Cardiology and Angiology, Cardiac Intensive Care Department, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania;
| | - Ligita Jancoriene
- Center of Infectious Diseases, Vilnius University Hospital Santaros Klinikos, 08410 Vilnius, Lithuania; (B.Z.); (R.P.); (L.J.)
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 01513 Vilnius, Lithuania
| |
Collapse
|
17
|
Abdellahoum Z, Maurin M, Bitam I. Tularemia as a Mosquito-Borne Disease. Microorganisms 2020; 9:microorganisms9010026. [PMID: 33374861 PMCID: PMC7823759 DOI: 10.3390/microorganisms9010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis (Ft) is the etiological agent of tularemia, a disease known for over 100 years in the northern hemisphere. Ft includes four subspecies, of which two are the etiologic agents of tularemia: Ft subsp. tularensis (Ftt) and Ft subsp. holarctica (Fth), mainly distributed in North America and the whole northern hemisphere, respectively. Several routes of human infection with these bacteria exist, notably through bites of Ixodidae ticks. However, mosquitoes represent the main vectors of Fth in Scandinavia, where large tularemia outbreaks have occurred, usually during the warm season. The mechanisms making mosquitoes vectors of Fth are still unclear. This review covers the inventory of research work and epidemiological data linking tularemia to mosquitoes in Scandinavia and highlights the gaps in understanding mosquitoes and Ft interactions.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria;
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France
- Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400 Saint Martin d’Heres, France
- Correspondence: (M.M.); (I.B.); Tel.: +33-476-769-594 (M.M.); +213-559-775-322 (I.B.)
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria;
- Ecole Supérieure des Sciences de l’Aliment et des Industries Alimentaires, Alger 16004, Algeria
- Correspondence: (M.M.); (I.B.); Tel.: +33-476-769-594 (M.M.); +213-559-775-322 (I.B.)
| |
Collapse
|
18
|
Seiwald S, Simeon A, Hofer E, Weiss G, Bellmann-Weiler R. Tularemia Goes West: Epidemiology of an Emerging Infection in Austria. Microorganisms 2020; 8:E1597. [PMID: 33081341 PMCID: PMC7602993 DOI: 10.3390/microorganisms8101597] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The zoonotic disease tularemia is caused by the Gram-negative bacterium Francisella tularensis, with the two major subspecies tularensis and holarctica being responsible for infections in humans and animals. The F. tularensis subspecies holarctica is less virulent and prevalent in Europe and Asia. Over the last few centuries, few epidemic outbreaks and low numbers of infections have been registered in the eastern part of Austria, specifically in the provinces of Lower Austria, Burgenland, and Styria. The reported infections were mostly associated with hunting hares and the skinning of carcasses. Within the last decade, ticks have been identified as important vectors in Tyrol and served as first evidence for the spread of F. tularensis to Western Austria. In 2018, the pathogen was detected in hares in the provinces of Tyrol, Vorarlberg, and Salzburg. We presume that F. tularensis is now established in most regions of Austria, and that the investigation of potential host and vector animals should be spotlighted by public institutions. Tularemia in humans presents with various clinical manifestations. As glandular, ulceroglandular, and typhoidal forms occur in Austria, this infectious disease should be considered as a differential diagnosis of unknown fever.
Collapse
Affiliation(s)
- Stefanie Seiwald
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Anja Simeon
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Erwin Hofer
- Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety (AGES), 2340 Mödling, Austria;
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (S.S.); (A.S.); (G.W.)
| |
Collapse
|
19
|
Implications of Projected Hydroclimatic Change for Tularemia Outbreaks in High-Risk Areas across Sweden. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186786. [PMID: 32957641 PMCID: PMC7558863 DOI: 10.3390/ijerph17186786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
Hydroclimatic change may affect the range of some infectious diseases, including tularemia. Previous studies have investigated associations between tularemia incidence and climate variables, with some also establishing quantitative statistical disease models based on historical data, but studies considering future climate projections are scarce. This study has used and combined hydro-climatic projection outputs from multiple global climate models (GCMs) in phase six of the Coupled Model Intercomparison Project (CMIP6), and site-specific, parameterized statistical tularemia models, which all imply some type of power-law scaling with preceding-year tularemia cases, to assess possible future trends in disease outbreaks for six counties across Sweden, known to include tularemia high-risk areas. Three radiative forcing (emissions) scenarios are considered for climate change projection until year 2100, incuding low (2.6 Wm−2), medium (4.5 Wm−2), and high (8.5 Wm−2) forcing. The results show highly divergent changes in future disease outbreaks among Swedish counties, depending primarily on site-specific type of the best-fit disease power-law scaling characteristics of (mostly positive, in one case negative) sub- or super-linearity. Results also show that scenarios of steeper future climate warming do not necessarily lead to steeper increase of future disease outbreaks. Along a latitudinal gradient, the likely most realistic medium climate forcing scenario indicates future disease decreases (intermittent or overall) for the relatively southern Swedish counties Örebro and Gävleborg (Ockelbo), respectively, and disease increases of considerable or high degree for the intermediate (Dalarna, Gävleborg (Ljusdal)) and more northern (Jämtland, Norrbotten; along with the more southern Värmland exception) counties, respectively.
Collapse
|
20
|
The clinical spectrum of tularemia-Two cases. IDCases 2020; 21:e00890. [PMID: 32670793 PMCID: PMC7350126 DOI: 10.1016/j.idcr.2020.e00890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022] Open
Abstract
We report two cases of tularemia with different clinical manifestations, both suspected of tick-borne transmission and with near-complete remission of all symptoms within 3 months after antimicrobial treatment. The first patient presented with a classical ulceroglandular manifestation; general malaise, an ulcer and lymphadenopathy, occurring two weeks after a tick bite. Diagnosis was established by polymerase chain reaction of a skin biopsy from the ulcer. The second patient presented with a rare systemic manifestation including bacteremia and myocarditis resulting in severe clinical heart failure, pulmonary edema and secondary kidney failure. Previous tick bites were elucidated after the bacteremia was discovered. The cases underscore the heterogeneity of manifestations, the diagnostic approach and the importance of thorough medical history including recent exposures especially in cases with infection of unknown origin.
Collapse
|
21
|
Obaidat MM, Malania L, Bani Salman AE, Arner RJ, Roess AA. Seroepidemiology, Spatial Distribution, and Risk Factors of Francisella tularensis in Jordan. Am J Trop Med Hyg 2020; 103:659-664. [PMID: 32524955 DOI: 10.4269/ajtmh.19-0335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
There is a paucity of data on Francisella tularensis in the Middle East and North Africa. This is the first countrywide study to determine the seroprevalence, spatial distribution, and risk factors for F. tularensis in Jordan. A total of 828 Jordanians were serologically tested for F. tularensis by ELISA. These individuals filled out a self-administered questionnaire to collect demographic and risk factor information. Bivariate and multivariate logistic regressions were performed to determine which variables are associated with seropositivity. The overall seroprevalence of F. tularensis was 7.7% (95% CI: 6.10-9.75). The bivariate analyses showed that age, region of residence, small ruminant ownership, and practicing horticulture were significantly associated with seropositivity, and these variables were controlled for in the multivariate analysis. The multivariate analysis showed an increased odds of seropositivity among individuals living in northern desert, middle, and northern highland areas, compared with individuals living in the drier southern area, as 7.27 (95% CI: 2.49-21.19), 3.79 (95% CI: 1.53-9.39), and 3.52 (95% CI: 1.45-388.55), respectively. Individuals owning a small ruminant had 1.86 (95% CI: 1.02-3.40) greater odds for seropositivity than individuals who do not own a small ruminant. Individuals practicing horticulture had 2.10 (95% CI: 1.20-3.66) greater odds for seropositivity than individuals who do not practice horticulture. This is the first study to address the seroprevalence of F. tularensis in Jordan and the Middle East. Further research is needed to identify clinical cases of tularemia in Jordan and to determine the circulating F. tularensis subspecies.
Collapse
Affiliation(s)
- Mohammad M Obaidat
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Lile Malania
- National Center for Disease Control and Public Health, Tbilisi, Georgia
| | - Alaa E Bani Salman
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Ryan J Arner
- Ryan Arner Science Consulting, LLC, Freeport, Pennsylvania
| | - Amira A Roess
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, Virginia.,Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia
| |
Collapse
|
22
|
Cronhjort S, Wilhelmsson P, Karlsson L, Thelaus J, Sjödin A, Forsberg P, Lindgren PE. The Tick-Borne Diseases STING study: Real-time PCR analysis of three emerging tick-borne pathogens in ticks that have bitten humans in different regions of Sweden and the Aland islands, Finland. Infect Ecol Epidemiol 2019; 9:1683935. [PMID: 31741721 PMCID: PMC6844441 DOI: 10.1080/20008686.2019.1683935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/17/2019] [Indexed: 11/27/2022] Open
Abstract
A milder climate has during the last decade contributed to an increased density and spreading of ixodid ticks, thus enhancing their role as emerging vectors for pathogenic microorganisms in northern Europe. It remains unclear if they contribute to the occurrence of infections caused by the bacteria Bartonella spp., Francisella tularensis subspecies holarctica and the parasite Toxoplasma gondii in Sweden and on the Åland islands, Finland. In this study, we want to improve understanding of the tick-borne transmission of these pathogens. Volunteers were recruited at primary healthcare centers. Ticks and blood samples were acquired from participants recruited in 2008 and 2009. Health questionnaires were completed, and medical records were acquired where applicable. Feeding time was estimated and screening of pathogens in the ticks was performed through real-time PCR. Ticks (n = 1849) were of mixed developmental stages: 76 larvae, 1295 nymphs, 426 adults and 52 undetermined. All analyzed ticks were considered negative for these pathogens since the CT-values were all below the detection limit for Bartonella spp. (1663 ticks), Francisella spp. (1849 ticks) and Toxoplasma gondii (1813 ticks). We assume that infections with these pathogens are caused by other transmission pathways within these regions of Sweden and the Åland islands, Finland.
Collapse
Affiliation(s)
- Samuel Cronhjort
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Peter Wilhelmsson
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Clinical Microbiology, Jönköping, Region Jönköping County, and the Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Linda Karlsson
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Johanna Thelaus
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Andreas Sjödin
- Division of CBRN Defence and Security, Swedish Defence Research Agency, Umeå, Sweden
| | - Pia Forsberg
- Divison of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Per-Eric Lindgren
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Clinical Microbiology, Jönköping, Region Jönköping County, and the Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Borlu A, Benli AR, Doganay M. Epidemiological features of tularaemia in Central Anatolia, Turkey. Trop Doct 2019; 49:264-268. [PMID: 31185830 DOI: 10.1177/0049475519855288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tularaemia has become a public health threat in Turkey. Our aim was to examine the epidemiological characteristics of 154 tularaemia cases reported from Kayseri, Central Anatolia, between 2010 and 2017. Clinical diagnosis was confirmed by micro-agglutination test (≥1/160 titres). Most patients (56.5%) were residing in rural areas. The year with the highest case load was 2011 (40% of all cases). Tularaemia was reported in all seasons, but mostly in February (26.1%). Morbidity rates were higher in women and people aged ≥65 years. The tularaemia incidence in Kayseri was higher than in the whole country between 2011 and 2016, though after the initial outbreak between 2010 and 2012, it seems to have become less frequent.
Collapse
Affiliation(s)
- Arda Borlu
- Assistant Professor, Department of Public Health, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ali Ramazan Benli
- Associate Professor, Provincial Directorate of Health, Kayseri, Turkey
| | - Mehmet Doganay
- Professor, Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
24
|
Muhammad J, Rabbani M, Shabbir MZ, Muhammad K, Ghori MT, Chaudhry HR, Ul Hassnain Z, Jamil T, Abbas T, Chaudhry MH, Haisem-ur-Rasool M, Ali MA, Nisar M, Kirimanjeswara GS, Jayarao BM. Cross Sectional Study and Risk Factors Analysis of Francisella tularensis in Soil Samples in Punjab Province of Pakistan. Front Cell Infect Microbiol 2019; 9:89. [PMID: 31024860 PMCID: PMC6460113 DOI: 10.3389/fcimb.2019.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Tularemia is an endemic zoonotic disease in many parts of the world including Asia. A cross-sectional study was conducted to determine genome-based prevalence of Francisella tularensis (Ft) in soil, assess an association between its occurrence in soil and likely predictors i.e., macro and micro-nutrients and several categorical variables, and determine seroconversion in small and large ruminants. The study included a total of 2,280 soil samples representing 456 villages in eight districts of the Punjab Province of Pakistan followed by an analysis of serum antibodies in 707 ruminants. The genome of Ft was detected in 3.25% (n = 74, 95% CI: 2.60-4.06) of soil samples. Soluble salts (OR: 1.276, 95% CI: 1.043-1.562, p = 0.015), Ni (OR: 2.910, 95%CI: 0.795-10.644, p = 0.106), Mn (OR:0.733, 95% CI:0.565-0.951, p = 0.019), Zn (OR: 4.922, 95% CI:0.929-26.064, p = 0.061) and nutrients clustered together as PC-1 (OR: 4.76, 95% CI: 2.37-9.54, p = 0.000) and PC-3 (OR: 0.357, 95% CI: 0.640, p = 0.001) were found to have a positive association for the presence of Ft in soil. The odds of occurrence of Ft DNA in soil were higher at locations close to a water source, including canals, streams or drains, [χ2 = 6.7, OR = 1.19, 95% CI:1.05-3.09, p = 0.004] as well as places where animals were present [χ2 = 4.09, OR = 2.06, 95% CI: 1.05-4.05, p = 0.02]. The seroconversion was detected in 6.22% (n = 44, 95% CI: 4.67-8.25) of domestic animals. An occurrence of Ft over a wide geographical region indicates its expansion to enzootic range, and demonstrates the need for further investigation among potential disease reservoirs and at-risk populations, such as farmers and veterinarians.
Collapse
Affiliation(s)
- Javed Muhammad
- University of Veterinary and Animal Sciences, Lahore, Pakistan
- University of Swabi, Swabi, Pakistan
| | - Masood Rabbani
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | - Khushi Muhammad
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | | - Zia Ul Hassnain
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tariq Jamil
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tariq Abbas
- Department of Epidemiology and Public Health, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | | | | | - Muhammad Nisar
- Department of Epidemiology and Public Health, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | | |
Collapse
|
25
|
Hennebique A, Boisset S, Maurin M. Tularemia as a waterborne disease: a review. Emerg Microbes Infect 2019; 8:1027-1042. [PMID: 31287787 PMCID: PMC6691783 DOI: 10.1080/22221751.2019.1638734] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022]
Abstract
Francisella tularensis is a Gram-negative, intracellular bacterium causing the zoonosis tularemia. This highly infectious microorganism is considered a potential biological threat agent. Humans are usually infected through direct contact with the animal reservoir and tick bites. However, tularemia cases also occur after contact with a contaminated hydro-telluric environment. Water-borne tularemia outbreaks and sporadic cases have occurred worldwide in the last decades, with specific clinical and epidemiological traits. These infections represent a major public health and military challenge. Human contaminations have occurred through consumption or use of F. tularensis-contaminated water, and various aquatic activities such as swimming, canyoning and fishing. In addition, in Sweden and Finland, mosquitoes are primary vectors of tularemia due to infection of mosquito larvae in contaminated aquatic environments. The mechanisms of F. tularensis survival in water may include the formation of biofilms, interactions with free-living amoebae, and the transition to a 'viable but nonculturable' state, but the relative contribution of these possible mechanisms remains unknown. Many new aquatic species of Francisella have been characterized in recent years. F. tularensis likely shares with these species an ability of long-term survival in the aquatic environment, which has to be considered in terms of tularemia surveillance and control.
Collapse
Affiliation(s)
- Aurélie Hennebique
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Sandrine Boisset
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Centre National de la Recherche Scientifique, TIMC-IMAG, Grenoble, France
| |
Collapse
|
26
|
Akhvlediani N, Burjanadze I, Baliashvili D, Tushishvili T, Broladze M, Navdarashvili A, Dolbadze S, Chitadze N, Topuridze M, Imnadze P, Kazakhashvili N, Tsertsvadze T, Kuchuloria T, Akhvlediani T, McNutt LA, Chanturia G. Tularemia transmission to humans: a multifaceted surveillance approach. Epidemiol Infect 2018; 146:2139-2145. [PMID: 30249311 PMCID: PMC6453017 DOI: 10.1017/s0950268818002492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 11/06/2022] Open
Abstract
Tularemia has sustained seroprevalence in Eurasia, with estimates as high as 15% in endemic regions. The purpose of this report is to characterise the current epidemiology of Francisella tularensis subspecies holarctica in Georgia. Three surveillance activities are summarised: (1) acute infections captured in Georgia's notifiable disease surveillance system, (2) infectious disease seroprevalence study of military volunteers, and (3) a study of seroprevalence and risk factors in endemic regions. Descriptive analyses of demographic, exposure and clinical factors were conducted for the surveillance studies; bivariate analyses were computed to identify risk factors of seropositivity using likelihood ratio χ2 tests or Fisher's exact tests. Of the 19 incident cases reported between 2014 and August 2017, 10 were confirmed and nine met the presumptive definition; the estimated annual incidence was 0.12/100 000. The first cases of tularemia in Western Georgia were reported. Seroprevalences of antibodies for F. tularensis were 2.0% for military volunteers and 5.0% for residents in endemic regions. Exposures correlated with seropositivity included work with hay and contact with multiple types of animals. Seroprevalence studies conducted periodically may enhance our understanding of tularemia in countries with dramatically underestimated incidence rates.
Collapse
Affiliation(s)
- N. Akhvlediani
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
- US Army Medical Research Unit Georgia, Tbilisi, Georgia
| | - I. Burjanadze
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - D. Baliashvili
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - T. Tushishvili
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - M. Broladze
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - A. Navdarashvili
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - S. Dolbadze
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - N. Chitadze
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - M. Topuridze
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - P. Imnadze
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
- Department of Epidemiology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - N. Kazakhashvili
- Department of Epidemiology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - T. Tsertsvadze
- Infectious Diseases, AIDS and Clinical Immunology Research Centre, Tbilisi, Georgia
| | - T. Kuchuloria
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
- US Army Medical Research Unit Georgia, Tbilisi, Georgia
| | - T. Akhvlediani
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
- US Army Medical Research Unit Georgia, Tbilisi, Georgia
| | - L.-A. McNutt
- Institute for Health and the Environment, University at Albany, State University of New York, NY, USA
| | - G. Chanturia
- Department of Molecular Epidemiology, National Centre for Disease Control and Public Health, Tbilisi, Georgia
| |
Collapse
|
27
|
Jaakkola JJK, Juntunen S, Näkkäläjärvi K. The Holistic Effects of Climate Change on the Culture, Well-Being, and Health of the Saami, the Only Indigenous People in the European Union. Curr Environ Health Rep 2018; 5:401-417. [PMID: 30350264 PMCID: PMC6306421 DOI: 10.1007/s40572-018-0211-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE OF REVIEW (1) To develop a framework for understanding the holistic effects of climate change on the Saami people; (2) to summarize the scientific evidence about the primary, secondary, and tertiary effects of climate change on Saami culture and Sápmi region; and (3) to identify gaps in the knowledge of the effects of climate change on health and well-being of the Saami. RECENT FINDINGS The Saami health is on average similar, or slightly better compared to the health of other populations in the same area. Warming climate has already influenced Saami reindeer culture. Mental health and suicide risk partly linked to changing physical and social environments are major concerns. The lifestyle, diet, and morbidity of the Saami are changing to resemble the majority populations posing threats for the health of the Saami and making them more vulnerable to the adverse effects of climate change. Climate change is a threat for the cultural way of life of Saami. Possibilities for Saami to adapt to climate change are limited.
Collapse
Affiliation(s)
- Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research, University of Oulu, P. O. Box 5000, FI-90014, Oulu, Finland.
| | - Suvi Juntunen
- Center for Environmental and Respiratory Health Research, University of Oulu, P. O. Box 5000, FI-90014, Oulu, Finland
| | | |
Collapse
|
28
|
Janse I, van der Plaats RQJ, de Roda Husman AM, van Passel MWJ. Environmental Surveillance of Zoonotic Francisella tularensis in the Netherlands. Front Cell Infect Microbiol 2018; 8:140. [PMID: 29868496 PMCID: PMC5951967 DOI: 10.3389/fcimb.2018.00140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
Tularemia is an emerging zoonosis caused by the Gram-negative bacterium Francisella tularensis, which is able to infect a range of animal species and humans. Human infections occur through contact with animals, ingestion of food, insect bites or exposure to aerosols or water, and may lead to serious disease. F. tularensis may persist in aquatic reservoirs. In the Netherland, no human tularemia cases were notified for over 60 years until in 2011 an endemic patient was diagnosed, followed by 17 cases in the 6 years since. The re-emergence of tularemia could be caused by changes in reservoirs or transmission routes. We performed environmental surveillance of F. tularensis in surface waters in the Netherlands by using two approaches. Firstly, 339 samples were obtained from routine monitoring -not related to tularemia- at 127 locations that were visited between 1 and 8 times in 2015 and 2016. Secondly, sampling efforts were performed after reported tularemia cases (n = 8) among hares or humans in the period 2013–2017. F. tularensis DNA was detected at 17% of randomly selected surface water locations from different parts of the country. At most of these positive locations, DNA was not detected at each time point and levels were very low, but at two locations contamination was clearly higher. From 7 out of the 8 investigated tularemia cases, F. tularensis DNA was detected in at least one surface water sample collected after the case. By using a protocol tailored for amplification of low amounts of environmental DNA, 10 gene targets were sequenced. Presence of F. tularensis subspecies holarctica was confirmed in 4 samples, and in 2 of these, clades B.12 and B.6 were identified. This study shows that for tularemia, information regarding the spatial and temporal distribution of its causative agent could be derived from environmental surveillance of surface waters. Tracking a particular strain in the environment as source of infection is feasible and could be substantiated by genotyping, which was achieved in water samples with only low levels of F. tularemia present. These techniques allow the establishment of a link between tularemia cases and environmental samples without the need for cultivation.
Collapse
Affiliation(s)
- Ingmar Janse
- Zoonoses and Environmental Microbiology, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rozemarijn Q J van der Plaats
- Zoonoses and Environmental Microbiology, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ana Maria de Roda Husman
- Zoonoses and Environmental Microbiology, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Mark W J van Passel
- Zoonoses and Environmental Microbiology, Centre for Infectious Diseases Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
29
|
Wittwer M, Altpeter E, Pilo P, Gygli SM, Beuret C, Foucault F, Ackermann-Gäumann R, Karrer U, Jacob D, Grunow R, Schürch N. Population Genomics of Francisella tularensis subsp. holarctica and its Implication on the Eco-Epidemiology of Tularemia in Switzerland. Front Cell Infect Microbiol 2018; 8:89. [PMID: 29623260 PMCID: PMC5875085 DOI: 10.3389/fcimb.2018.00089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/07/2018] [Indexed: 12/30/2022] Open
Abstract
Whole genome sequencing (WGS) methods provide new possibilities in the field of molecular epidemiology. This is particularly true for monomorphic organisms where the discriminatory power of traditional methods (e.g., restriction enzyme length polymorphism typing, multi locus sequence typing etc.) is inadequate to elucidate complex disease transmission patterns, as well as resolving the phylogeny at high resolution on a micro-geographic scale. In this study, we present insights into the population structure of Francisella tularensis subsp. holarctica, the causative agent of tularemia in Switzerland. A total of 59 Fth isolates were obtained from castor bean ticks (Ixodes ricinus), animals and humans and a high resolution phylogeny was inferred using WGS methods. The majority of the Fth population in Switzerland belongs to the west European B.11 clade and shows an extraordinary genetic diversity underlining the old evolutionary history of the pathogen in the alpine region. Moreover, a new B.11 subclade was identified which was not described so far. The combined analysis of the epidemiological data of human tularemia cases with the whole genome sequences of the 59 isolates provide evidence that ticks play a pivotal role in transmitting Fth to humans and other vertebrates in Switzerland. This is further underlined by the correlation of disease risk estimates with climatic and ecological factors influencing the survival of ticks.
Collapse
Affiliation(s)
- Matthias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.,Swiss National Reference Center for Francisella tularensis (NANT), Spiez, Switzerland
| | | | - Paola Pilo
- Department of Infectious Diseases and Pathobiology, Institute of Veterinary Bacteriology, University of Berne, Berne, Switzerland
| | - Sebastian M Gygli
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Beuret
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland
| | | | - Rahel Ackermann-Gäumann
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.,Swiss National Reference Centre for Tick-Transmitted Diseases (NRZK), Spiez, Switzerland
| | - Urs Karrer
- University of Basel, Basel, Switzerland.,Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Daniela Jacob
- ZBS 2, Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Roland Grunow
- ZBS 2, Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Nadia Schürch
- Spiez Laboratory, Federal Office for Civil Protection, Spiez, Switzerland.,Swiss National Reference Center for Francisella tularensis (NANT), Spiez, Switzerland
| |
Collapse
|
30
|
Janse I, Maas M, Rijks JM, Koene M, van der Plaats RQ, Engelsma M, van der Tas P, Braks M, Stroo A, Notermans DW, de Vries MC, Reubsaet F, Fanoy E, Swaan C, Kik MJ, IJzer J, Jaarsma RI, van Wieren S, de Roda-Husman AM, van Passel M, Roest HJ, van der Giessen J. Environmental surveillance during an outbreak of tularaemia in hares, the Netherlands, 2015. ACTA ACUST UNITED AC 2018; 22:30607. [PMID: 28877846 PMCID: PMC5587900 DOI: 10.2807/1560-7917.es.2017.22.35.30607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Tularaemia, a disease caused by the bacterium Francisella tularensis, is a re-emerging zoonosis in the Netherlands. After sporadic human and hare cases occurred in the period 2011 to 2014, a cluster of F. tularensis-infected hares was recognised in a region in the north of the Netherlands from February to May 2015. No human cases were identified, including after active case finding. Presence of F. tularensis was investigated in potential reservoirs and transmission routes, including common voles, arthropod vectors and surface waters. F. tularensis was not detected in common voles, mosquito larvae or adults, tabanids or ticks. However, the bacterium was detected in water and sediment samples collected in a limited geographical area where infected hares had also been found. These results demonstrate that water monitoring could provide valuable information regarding F. tularensis spread and persistence, and should be used in addition to disease surveillance in wildlife.
Collapse
Affiliation(s)
- Ingmar Janse
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,These authors share first authorship
| | - Miriam Maas
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,These authors share first authorship
| | - Jolianne M Rijks
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Miriam Koene
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Rozemarijn Qj van der Plaats
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marc Engelsma
- Department of Diagnostics and Crisis Organisation, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Peter van der Tas
- GGD Fryslân, Regional Public Health Service of Friesland, Leeuwarden, the Netherlands
| | - Marieta Braks
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Arjan Stroo
- Netherlands Food and Consumer Product Safety Authority, Wageningen, the Netherlands
| | - Daan W Notermans
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Maaike C de Vries
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Frans Reubsaet
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ewout Fanoy
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,GGD Utrecht, Regional Public Health Service of Utrecht, Zeist, the Netherlands
| | - Corien Swaan
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marja Jl Kik
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Jooske IJzer
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | - Ryanne I Jaarsma
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sip van Wieren
- Resource Ecology Group, Department of Environmental Science, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Ana Maria de Roda-Husman
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mark van Passel
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Hendrik-Jan Roest
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Joke van der Giessen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.,Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| |
Collapse
|
31
|
Cubero Á, Durántez C, Almaraz A, Fernández-Lago L, Gutiérrez MP, Castro MJ, Bratos MA, Simarro M, March GA, Orduña A. Usefulness of a single-assay chemiluminescence test (Tularaemia VIRCLIA IgG + IgM monotest) for the diagnosis of human tularemia. Comparison of five serological tests. Eur J Clin Microbiol Infect Dis 2017; 37:643-649. [PMID: 29280085 DOI: 10.1007/s10096-017-3155-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022]
Abstract
The aim of this work was to ascertain the usefulness of a new commercially-available single-assay chemiluminescence test (CHT) for the diagnosis of human tularemia (Tularaemia VIRCLIA IgG + IgM monotest, Vircell, Santa Fe, Granada, Spain). A total of 773 sera from 773 patients including 364 initial sera from patients with diagnosed tularemia, patients with suspected tularemia not confirmed (100), healthy people (152), patients with serology positive to Brucella (97), patients diagnosed with other infectious diseases (30), and patients diagnosed with autoimmune diseases (30) were included. All sera were tested by CHT, "in-house" microagglutination test (MAT), immunochromatographic test (ICT) (Virapid Tularaemia, Vircell, Santa Fe Granada, Spain), and "in-house" ELISA IgG, and ELISA IgM. Of the total initial sera, 334 (sensitivity 91.8%) were positive in the CHT, 332 (sensitivity 91.2%) in the MAT, 330 (sensitivity 90.7%) in the ICT, and 328 (sensitivity 90.1%) in the ELISA IgG and ELISA IgM tests. The specificity of the CHT was 96.7%; of the MAT, 100%; of the ICT, 98.7%; and of the ELISA IgG and ELISA IgM, 97.4%. In the group of patients with serology positive to Brucella, at least 12.4% of sera were positive in tularemia tests (12.4% in ELISA IgM, 13.4% in MAT, 14.4% in ICT, and 15.5% in CHT and ELISA IgG). In conclusion, CHT presents a sensitivity and specificity in early diagnosis of human tularemia, similar to MAT, ICT, and ELISA IgG and ELISA IgM. Its single assay design allows lower costs, especially in areas of low endemicity or inter-epidemic periods.
Collapse
Affiliation(s)
- África Cubero
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Carlos Durántez
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Ana Almaraz
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | | | - María P Gutiérrez
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - María J Castro
- Faculty of Nursery, University of Valladolid, Valladolid, Spain
| | - Miguel A Bratos
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain.,Service of Microbiology, Hospital Clínico Universitario, Ramón y Cajal avenue, Number 3, 47003, Valladolid, Spain
| | - María Simarro
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
| | - Gabriel A March
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain. .,Service of Microbiology, Hospital Clínico Universitario, Ramón y Cajal avenue, Number 3, 47003, Valladolid, Spain.
| | - Antonio Orduña
- Department of Microbiology, Faculty of Medicine, University of Valladolid, Valladolid, Spain.,Service of Microbiology, Hospital Clínico Universitario, Ramón y Cajal avenue, Number 3, 47003, Valladolid, Spain
| |
Collapse
|
32
|
|
33
|
Lindhusen Lindhé E, Hjertqvist M, Wahab T. Outbreak of tularaemia connected to a contaminated well in the Västra Götaland region in Sweden. Zoonoses Public Health 2017; 65:142-146. [PMID: 28905501 DOI: 10.1111/zph.12382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Indexed: 11/28/2022]
Abstract
Tularaemia, is a zoonotic disease caused by the bacterium Francisella tularensis. This disease has been reported in Sweden since 1931 and its wide distribution in the country poses a challenge for understanding the transmission, ecology and epidemiology of the disease. In Sweden, the disease is usually transmitted by mosquitoes, but in this study we could show that consumption of well water was epidemiologically linked to the outbreak, by isolating F. tularensis from the water. In this article, we describe an outbreak of tularaemia in the region of Västra Götaland in the southwest of Sweden in spring of 2013.
Collapse
Affiliation(s)
- E Lindhusen Lindhé
- Department of Communicable Disease Control and Prevention, Region Västra Götaland, Gothenburg, Sweden
| | - M Hjertqvist
- Department of Monitoring and Evaluation, Public Health Agency of Sweden, Solna, Sweden
| | - T Wahab
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| |
Collapse
|
34
|
Borde JP, Zange S, Antwerpen MH, Georgi E, von Buttlar H, Kern WV, Rieg S. Five cases of vector-borne Francisella tularensis holarctica infections in south-western Germany and genetic diversity. Ticks Tick Borne Dis 2017; 8:808-812. [PMID: 28684041 DOI: 10.1016/j.ttbdis.2017.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 11/25/2022]
Abstract
Tularemia is a rare zoonotic disease in Germany. Francisella tularensis has been isolated previously from ticks in southern Germany underscoring the importance of ticks (Ixodes ricinus) in tularemia transmission, but there have been only few reports from this region with single cases or small case series of tick-borne transmissions of tularemia. We report five cases of non-game animal associated tularemia diagnosed from 2010 to 2016 in southwestern Germany - Baden-Wuerttemberg. Our case series and molecular typing (MLVA) results add published clinical experience to this underdiagnosed disease and consolidate previous findings regarding tick-borne transmission of tularemia and phylogenetic diversity in Germany.
Collapse
Affiliation(s)
- Johannes P Borde
- Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, Am Marktplatz 8, 77704 Oberkirch, Germany; Department of Medicine II, Division of Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Sabine Zange
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Markus H Antwerpen
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Heiner von Buttlar
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany
| | - Winfried V Kern
- Department of Medicine II, Division of Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Siegbert Rieg
- Department of Medicine II, Division of Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
35
|
Kenney A, Cusick A, Payne J, Gaughenbaugh A, Renshaw A, Wright J, Seeber R, Barnes R, Florjanczyk A, Horzempa J. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis. PLoS One 2017; 12:e0175157. [PMID: 28486521 PMCID: PMC5423603 DOI: 10.1371/journal.pone.0175157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/21/2017] [Indexed: 11/22/2022] Open
Abstract
Francisella tularensis is disseminated in nature by biting arthropods such as mosquitoes. The relationship between mosquitoes and F. tularensis in nature is highly ambiguous, due in part to the fact that mosquitoes have caused significant tularemia outbreaks despite being classified as a mechanical vector of F. tularensis. One possible explanation for mosquitoes being a prominent, yet mechanical vector is that these insects feed on flower nectar between blood meals, allowing for transmission of F. tularensis between mosquitoes. Here, we aimed to assess whether F. tularensis could survive in flower nectar. Moreover, we examined if mosquitoes could interact with or ingest and transmit F. tularensis from one source of nectar to another. F. tularensis exhibited robust survivability in flower nectar with concentrations of viable bacteria remaining consistent with the rich growth medium. Furthermore, F. tularensis was able to survive (albeit to a lesser extent) in 30% sucrose (a nectar surrogate) over a period of time consistent with that of a typical flower bloom. Although we observed diminished bacterial survival in the nectar surrogate, mosquitoes that fed on this material became colonized with F. tularensis. Finally, colonized mosquitoes were capable of transferring F. tularensis to a sterile nectar surrogate. These data suggest that flower nectar may be capable of serving as a temporary source of F. tularensis that could contribute to the amplification of outbreaks. Mosquitoes that feed on an infected mammalian host and subsequently feed on flower nectar could deposit some F. tularensis bacteria into the nectar in the process. Mosquitoes subsequently feeding on this nectar source could potentially become colonized by F. tularensis. Thus, the possibility exists that flower nectar may allow for vector-vector transmission of F. tularensis.
Collapse
Affiliation(s)
- Adam Kenney
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Austin Cusick
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Jessica Payne
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Anna Gaughenbaugh
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Andrea Renshaw
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Jenna Wright
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Roger Seeber
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Rebecca Barnes
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Aleksandr Florjanczyk
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America
| |
Collapse
|
36
|
|
37
|
The European Union summary report on trends and sources of zoonoses, zoonotic agents and food‐borne outbreaks in 2015. EFSA J 2016. [DOI: 10.2903/j.efsa.2016.4634] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
38
|
Abstract
Sweden reports large and variable numbers of human tularemia cases, but the high-risk regions are anecdotally defined and factors explaining annual variations are poorly understood. Here, high-risk regions were identified by spatial cluster analysis on disease surveillance data for 1984-2012. Negative binomial regression with five previously validated predictors (including predicted mosquito abundance and predictors based on local weather data) was used to model the annual number of tularemia cases within the high-risk regions. Seven high-risk regions were identified with annual incidences of 3·8-44 cases/100 000 inhabitants, accounting for 56·4% of the tularemia cases but only 9·3% of Sweden's population. For all high-risk regions, most cases occurred between July and September. The regression models explained the annual variation of tularemia cases within most high-risk regions and discriminated between years with and without outbreaks. In conclusion, tularemia in Sweden is concentrated in a few high-risk regions and shows high annual and seasonal variations. We present reproducible methods for identifying tularemia high-risk regions and modelling tularemia cases within these regions. The results may help health authorities to target populations at risk and lay the foundation for developing an early warning system for outbreaks.
Collapse
|
39
|
Bruce M, Zulz T, Koch A. Surveillance of infectious diseases in the Arctic. Public Health 2016; 137:5-12. [PMID: 27473191 DOI: 10.1016/j.puhe.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/11/2016] [Accepted: 06/14/2016] [Indexed: 01/12/2023]
Abstract
OBJECTIVES This study reviews how social and environmental issues affect health in Arctic populations and describes infectious disease surveillance in Arctic Nations with a special focus on the activities of the International Circumpolar Surveillance (ICS) project. METHODS We reviewed the literature over the past 2 decades looking at Arctic living conditions and their effects on health and Arctic surveillance for infectious diseases. RESULTS In regards to other regions worldwide, the Arctic climate and environment are extreme. Arctic and sub-Arctic populations live in markedly different social and physical environments compared to those of their more southern dwelling counterparts. A cold northern climate means people spending more time indoors, amplifying the effects of household crowding, smoking and inadequate ventilation on the person-to-person spread of infectious diseases. The spread of zoonotic infections north as the climate warms, emergence of antibiotic resistance among bacterial pathogens, the re-emergence of tuberculosis, the entrance of HIV into Arctic communities, the specter of pandemic influenza or the sudden emergence and introduction of new viral pathogens pose new challenges to residents, governments and public health authorities of all Arctic countries. ICS is a network of hospitals, public health agencies, and reference laboratories throughout the Arctic working together for the purposes of collecting, comparing and sharing of uniform laboratory and epidemiological data on infectious diseases of concern and assisting in the formulation of prevention and control strategies (Fig. 1). In addition, circumpolar infectious disease research workgroups and sentinel surveillance systems for bacterial and viral pathogens exist. CONCLUSIONS The ICS system is a successful example of collaborative surveillance and research in an extreme environment.
Collapse
Affiliation(s)
- M Bruce
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK, USA.
| | - T Zulz
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Anchorage, AK, USA
| | - A Koch
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
40
|
Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. THE LANCET. INFECTIOUS DISEASES 2016; 16:113-124. [PMID: 26738841 DOI: 10.1016/s1473-3099(15)00355-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 09/17/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
Abstract
Tularaemia is a zoonotic disease caused by Francisella tularensis, a Gram-negative, facultative intracellular bacterium. Typically, human and animal infections are caused by F tularensis subspecies tularensis (type A) strains mainly in Canada and USA, and F tularensis subspecies holarctica (type B) strains throughout the northern hemisphere, including Europe. In the past, the epidemiological, clinical, therapeutic, and prognostic aspects of tularaemia reported in the English medical literature were mainly those that had been reported in the USA, where the disease was first described. Tularaemia has markedly changed in the past decade, and a large number of studies have provided novel data for the disease characteristics in Europe. In this Review we aim to emphasise the specific and variable aspects of tularaemia in different European countries. In particular, two natural lifecycles of F tularensis have been described in this continent, although not fully characterised, which are associated with different modes of transmission, clinical features, and public health burdens of tularaemia.
Collapse
Affiliation(s)
- Max Maurin
- Centre National de Référence des Francisella, Département des Agents Infectieux, Institut de Biologie et Pathologie, CHU de Grenoble, Grenoble, cedex 9, France; Université Grenoble Alpes and Centre National de la Recherche Scientifique, Laboratoire Adaptation et Pathogénie des Microorganismes, IMR 5163, Grenoble, France.
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary; OIE Reference Laboratory for Tularemia, Budapest, Country
| |
Collapse
|
41
|
Dobay A, Pilo P, Lindholm AK, Origgi F, Bagheri HC, König B. Dynamics of a Tularemia Outbreak in a Closely Monitored Free-Roaming Population of Wild House Mice. PLoS One 2015; 10:e0141103. [PMID: 26536232 PMCID: PMC4633114 DOI: 10.1371/journal.pone.0141103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 10/04/2015] [Indexed: 11/18/2022] Open
Abstract
Infectious disease outbreaks can be devastating because of their sudden occurrence, as well as the complexity of monitoring and controlling them. Outbreaks in wildlife are even more challenging to observe and describe, especially when small animals or secretive species are involved. Modeling such infectious disease events is relevant to investigating their dynamics and is critical for decision makers to accomplish outbreak management. Tularemia, caused by the bacterium Francisella tularensis, is a potentially lethal zoonosis. Of the few animal outbreaks that have been reported in the literature, only those affecting zoo animals have been closely monitored. Here, we report the first estimation of the basic reproduction number R0 of an outbreak in wildlife caused by F. tularensis using quantitative modeling based on a susceptible-infected-recovered framework. We applied that model to data collected during an extensive investigation of an outbreak of tularemia caused by F. tularensis subsp. holarctica (also designated as type B) in a closely monitored, free-roaming house mouse (Mus musculus domesticus) population in Switzerland. Based on our model and assumptions, the best estimated basic reproduction number R0 of the current outbreak is 1.33. Our results suggest that tularemia can cause severe outbreaks in small rodents. We also concluded that the outbreak self-exhausted in approximately three months without administrating antibiotics.
Collapse
Affiliation(s)
- Akos Dobay
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Paola Pilo
- Institute for Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna K. Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Origgi
- Institute for Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Centre for Fish and Wildlife Health (FIWI), Vetsuisse Faculty, Bern, Switzerland
| | - Homayoun C. Bagheri
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Barbara König
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
42
|
Rossow H, Ollgren J, Hytonen J, Rissanen H, Huitu O, Henttonen H, Kuusi M, Vapalahti O. Incidence and seroprevalence of tularaemia in Finland, 1995 to 2013: regional epidemics with cyclic pattern. ACTA ACUST UNITED AC 2015; 20:21209. [PMID: 26314404 DOI: 10.2807/1560-7917.es2015.20.33.21209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the incidence of reported tularaemia by year and region and the prevalence of antibodies against Francisella tularensis in the adult general population in Finland. Moreover, we assessed the correlation between vole population cycles and human tularaemia outbreaks. The seroprevalence study made use of serum samples from a nationwide population-based health survey (Health 2000). The samples of 1,045 randomly selected persons, representative for the Finnish population in each region, were screened with an enzyme-linked immunosorbent assay (ELISA) for the presence of IgG antibodies against F. tularensis, and positive results were further confirmed by immunoblotting. A serological response to F. tularensis was found in 2% (95% confidence interval: 1.1–3.5) of the population. Incidence and seroprevalence were highest in the same areas, and vole population peaks clearly preceded tularaemia outbreaks one year later.
Collapse
Affiliation(s)
- H Rossow
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|