1
|
Warit S, Meesawat S, Cheawchanlertfa P, Makhao N, Srilohasin P, Kaewparuehaschai M, Noradechanon K, Pomcoke A, Kemthong T, Prammananan T, Kanitpun R, Palaga T, Malaivijitnond S, Chaiprasert A. The new gamma interferon (IFN-γ) algorithm for tuberculosis diagnosis in cynomolgus macaques. PLoS One 2024; 19:e0302349. [PMID: 39680542 DOI: 10.1371/journal.pone.0302349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Tuberculosis (TB) is the first infectious disease to be screened-out from specified pathogen-free cynomolgus macaques (Macaca fascicularis; Mf) using in human pharmaceutical testing. Being in either latent or active stage after exposure to the Mycobacterium tuberculosis complex (MTBC), the monkey gamma-interferon release assay (mIGRA) was previously introduced for early TB detection. However, a notable incidence of indeterminate results was observed. In this study, we compared two positive mitogen references, phytohemagglutinin (PHA) that is used in the QuantiFERON-TB Gold Plus kit (QFT-PHA) and a combination of Concanavalin A and Pokeweed mitogen (ConA+PWM), in a cohort of 316 MTBC-exposed Mf. Following a 29-month follow-up of 100 selected animals, we established a new mIGRA interpretation algorithm that demonstrated a significant shift in the negative and indeterminate cases regardless of whether the QFT-PHA or ConA+PWM was used as a mitogen. That is, if the ODNIL value was ≤0.18, ODMIT-NIL > ODNIL, and the ODTB1/2-NIL were ≥0.05 and ≥25% of individual ODNIL, the mIGRA result was interpreted as 'positive'. If the ODNIL value was ≤0.18, ODMIT-NIL > ODNIL, and the ODTB-NIL was <0.05, the mIGRA result was interpreted as 'negative'. If the ODNIL value was >0.18 or the OD of mitogen references [OD(QFT-PHA) and OD(ConA+PWM)] were ≤0.18, the mIGRA result was interpreted as 'indeterminate'. As a result, negative cases increased by 10-50%, indeterminate cases decreased by 40-80%, and the number of TB-positive cases remained unchanged. Our findings highlight the critical role of mitogens as positive controls in mIGRA interpretation. This study provides the mIGRA value for the TB screening of cynomolgus macaques that enables the identification of true positive and suspicious TB cases for quarantine programs.
Collapse
Affiliation(s)
- Saradee Warit
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Suthirote Meesawat
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
| | | | - Nampueng Makhao
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Srilohasin
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Kirana Noradechanon
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Areeya Pomcoke
- Department of National Parks, Wildlife and Plant Conservation (DNP), Bangkok, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
| | - Therdsak Prammananan
- Industrial Tuberculosis Team, Industrial Medical Molecular Biotechnology Research Group, BIOTEC, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Reka Kanitpun
- National Institute of Animal Health (NIAH), Kaset Klang, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suchinda Malaivijitnond
- National Primate Research Center of Thailand- Chulalongkorn University, Saraburi, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Pongma C, Songthammanuphap S, Puthong S, Buakeaw A, Prammananan T, Warit S, Tipkantha W, Kaewkhunjob E, Jairak W, Kongmakee P, Pabutta C, Sripiboon S, Yindeeyoungyeon W, Palaga T. Using whole blood cultures in interferon gamma release assays to detect Mycobacterium tuberculosis complex infection in Asian elephants (Elephas maximus). PLoS One 2023; 18:e0288161. [PMID: 37498897 PMCID: PMC10374124 DOI: 10.1371/journal.pone.0288161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
Elephants are susceptible to Mycobacterium tuberculosis (M. tb) complex (MTBC) infections. Diagnosis of tuberculosis (TB) in elephants is difficult, and most approaches used for human TB diagnosis are not applicable. An interferon gamma release assay (IGRA) to diagnose TB in Asian elephants (Elephas maximus) using peripheral blood mononuclear cells (PBMCs) has been previously developed. Although the assay is shown to be valid in determining MTBC infection status, the laborious PBMC isolation process makes it difficult to use. In this study, we simplified the method by using whole blood cultures (WC) as the starting material. Using PBMC cultures for IGRA, the MTBC infection status of 15 elephants was first confirmed. Among these animals, one has been previously confirmed for M. tb infection by both TB culture and PCR and the other was confirmed for MTBC infection in this study by droplet digital PCR (ddPCR) method. WC for IGRA consisted of an unstimulated sample, a mitogen stimulated sample, and sample stimulated with recombinant M. tb antigens, ESAT6 and CFP10. Using WC for IGRA in the 15 enrolled elephants, the results showed that 7 out of 15 samples yielded MTBC infection positive status that were completely concordant with those from the results using PBMCs. To test this method, WC for IGRA were applied in another elephant cohort of 9 elephants. The results from this cohort revealed a perfect match between the results from PBMC and WC. Responses to ESAT6 or CFP10 by PBMC and WC were not completely concordant, arguing for the use of at least two M. tb antigens for stimulation. Given the ease of sample handling, smaller blood sample volumes and equivalent efficacy relative to the PBMC approach, using WC for IGRA provides a novel, rapid, and user-friendly TB diagnostic method for determining the MTBC infection in elephants.
Collapse
Affiliation(s)
- Chitsuda Pongma
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | | | - Songchan Puthong
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Therdsak Prammananan
- The National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Saradee Warit
- The National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wanlaya Tipkantha
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Erngsiri Kaewkhunjob
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Waleemas Jairak
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Piyaporn Kongmakee
- Bureau of Conservation and Research, Zoological Park Organization of Thailand, Bangkok, Thailand
| | - Choenkwan Pabutta
- Elephant Kingdom Project, Zoological Park Organization of Thailand, Surin, Thailand
| | - Supaphen Sripiboon
- Department of Large Animals and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Wandee Yindeeyoungyeon
- The National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Tanapat Palaga
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
4
|
Meiring C, Schurz H, van Helden P, Hoal E, Tromp G, Kinnear C, Kleynhans L, Glanzmann B, van Schalkwyk L, Miller M, Möller M. African wild dogs (Lycaon pictus) from the Kruger National Park, South Africa are currently not inbred but have low genomic diversity. Sci Rep 2022; 12:14979. [PMID: 36056068 PMCID: PMC9440078 DOI: 10.1038/s41598-022-19025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
African wild dogs (Lycaon pictus) have undergone severe population reductions and are listed as endangered on the International Union for Conservation of Nature Red List. Small, isolated populations have the potential to suffer from threats to their genetic diversity that may impact species viability and future survival. This study provides the first set of population-wide genomic data to address conservation concerns for this endangered species. Whole genome sequencing data were generated for 71 free-ranging African wild dogs from the Kruger National Park (KNP), South Africa, and used to estimate important population genomic parameters. Genomic diversity metrics revealed that variation levels were low; however, this African wild dog population showed low levels of inbreeding. Very few first- and second-order relationships were observed in this cohort, with most relationships falling into the third-order or distant category. Patterns of homozygosity could have resulted from historical inbreeding or a loss in genome variation due to a population bottleneck. Although the results suggest that this stronghold African wild dog population maintains low levels of inbreeding, likely due to their cooperative breeding system, it may lead to a continuous population decline when a reduced number of suitable mates are available. Consequently, the low genomic variation may influence species viability over time. This study highlights the importance of assessing population genomic parameters to set conservation priorities. Future studies should include the investigation of the potential of this endangered species to adapt to environmental changes considering the low genomic diversity in this population.
Collapse
Affiliation(s)
- Christina Meiring
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa.
| | - Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Paul van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Eileen Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Gerard Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, PO Box 241, Cape Town, 7500, South Africa
| | - Craig Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- Genomics Centre, South African Medical Research Council, Francie van Zijl Drive, PO Box 19070, Cape Town, 7500, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Brigitte Glanzmann
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- Genomics Centre, South African Medical Research Council, Francie van Zijl Drive, PO Box 19070, Cape Town, 7500, South Africa
| | - Louis van Schalkwyk
- Department of Agriculture, Land Reform and Rural Development, PO Box 12, Skukuza, 1350, South Africa
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Soutpan Road, Pretoria, 0110, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Michele Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town, 7500, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Private bag X1, Merriman Avenue, Stellenbosch, 7600, South Africa
| |
Collapse
|
5
|
Tober AV, Govender D, Russo IRM, Cable J. The microscopic five of the big five: Managing zoonotic diseases within and beyond African wildlife protected areas. ADVANCES IN PARASITOLOGY 2022; 117:1-46. [PMID: 35878948 DOI: 10.1016/bs.apar.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
African protected areas strive to conserve the continent's great biodiversity with a targeted focus on the flagship 'Big Five' megafauna. Though often not considered, this biodiversity protection also extends to the lesser-known microbes and parasites that are maintained in these diverse ecosystems, often in a silent and endemically stable state. Climate and anthropogenic change, and associated diversity loss, however, are altering these dynamics leading to shifts in ecological interactions and pathogen spill over into new niches and hosts. As many African protected areas are bordered by game and livestock farms, as well as villages, they provide an ideal study system to assess infection dynamics at the human-livestock-wildlife interface. Here we review five zoonotic, multi-host diseases (bovine tuberculosis, brucellosis, Rift Valley fever, schistosomiasis and cryptosporidiosis)-the 'Microscopic Five'-and discuss the biotic and abiotic drivers of parasite transmission using the iconic Kruger National Park, South Africa, as a case study. We identify knowledge gaps regarding the impact of the 'Microscopic Five' on wildlife within parks and highlight the need for more empirical data, particularly for neglected (schistosomiasis) and newly emerging (cryptosporidiosis) diseases, as well as zoonotic disease risk from the rising bush meat trade and game farm industry. As protected areas strive to become further embedded in the socio-economic systems that surround them, providing benefits to local communities, One Health approaches can help maintain the ecological integrity of ecosystems, while protecting local communities and economies from the negative impacts of disease.
Collapse
Affiliation(s)
- Anya V Tober
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom.
| | - Danny Govender
- SANParks, Scientific Services, Savanna and Grassland Research Unit, Pretoria, South Africa; Department of Paraclinical Sciences, University of Pretoria, Onderstepoort, South Africa
| | - Isa-Rita M Russo
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
6
|
Conserving rhinoceros in the face of disease. Proc Natl Acad Sci U S A 2022; 119:e2206438119. [PMID: 35714286 DOI: 10.1073/pnas.2206438119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Hussain R, Jamal A, Ahmed Z, Mohamed BB, Siddique AB, Khan I, Mansoor MK, Du X, Khan A. Pathological, Histological, and Molecular Based Investigations Confirm Novel Mycobacterium bovis Infection in Boselaphus tragocamelus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7601463. [PMID: 35692585 PMCID: PMC9184207 DOI: 10.1155/2022/7601463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/01/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Mycobacterium bovis (M. bovis) being the main cause of animal tuberculosis is a complex infectious agent and can be a cause of zoonotic tuberculosis zoonosis in public health. To date, the uncommon infection in public health due to M. bovis still is a great challenge to both veterinary and medical professions and requires a careful diagnosis and confirmation of the bacterium. Therefore, this study for the first time reports the clinical, gross, histopathological, and molecular based confirmation of M. bovis infection in wildlife animals (nilgai). Prior to death, the morbid animal showed severe pneumonic ailments like moist cough, thick nasal exudates, and dyspnoea. At necropsy, enlargement of mandibular cervical and mesenteric lymph nodes was observed. Different macroscopic lesions such as congestion and hyperaemia, creamy white and catarrhal exudates in trachea, consolidation, grey and red hepatisation of lungs, and micro- and macrogranulomatous tubercles containing caseous materials in lungs were observed. The heart of morbid animal showed congestions, myocarditis, and a copious amount of straw-colored fluid in the pericardial sac. At the microscopic level, lungs indicated granulomatous inflammatory response, presence of multinucleated giant cells, fibrosis, and punctuation of alveoli with chronic inflammatory cells. Histopathological examination of various sections of the heart of the infected animal showed chronic inflammatory response consisting of chronic inflammatory cells like monocyte, lymphocytes, and fibroblasts along with noncalcified eosinophilic materials. At the molecular level, M. bovis infection was confirmed in various tissues like the heart, lungs, cervical, and mesenteric lymph nodes in morbid animals. In conclusion, based on our results, it can be suggested that more molecular based epidemiological studies are crucial to know the exact cause of pulmonary and cervical tuberculosis in wild animals.
Collapse
Affiliation(s)
- Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Adil Jamal
- Sciences and Research, College of Nursing, Umm Al Qura University, 715 Makkah, Saudi Arabia
| | - Zulfiqar Ahmed
- Department of Food Science and Technology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | | | - Abu Baker Siddique
- Department of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, University of Veterinary and Animal Sciences, Lahore, Sub-Campus Jhang, Pakistan
| | - Muhammad Khalid Mansoor
- Department of Microbiology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur-63100, Pakistan
| | - Xiaoxia Du
- Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Ahrar Khan
- Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
8
|
Effect of Anthropogenic Activities on the Population of Moor Macaques (Macaca maura) in South Sulawesi, Indonesia. INT J PRIMATOL 2022. [DOI: 10.1007/s10764-022-00279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractForest loss due to anthropogenic activities is one of the main causes of plant and animal species decline. Studying the species’ population status (i.e., density, abundance, and geographic distribution) on a regular basis is one of the main tools to assess the effect of anthropogenic activities on wildlife, to monitor population dynamics and to intervene with effective conservation strategies when the population of an endangered species declines. On Sulawesi Island, Indonesia, anthropogenic activities, such as agriculture, are decreasing the remaining natural habitats available for several endemic and endangered species. The effect of this forest loss on the threatened moor macaques (Macaca maura) in South Sulawesi is unknown, and data on the population status of this species are needed to design effective conservation strategies. To assess the population status of the moor macaques, we walked linear transects (N = 29, survey effort = 114 km) at six sites between November 2019 and March 2020 to estimate macaque population density and encounter rate. We tested the effect of anthropogenic activities on macaque encounter rate. Our global density estimate (24 individuals/km2) was lower than the overall estimate from the most detailed survey conducted on this species, which covered its whole geographic distribution (36.1 individuals/km2). However, these results should be interpreted with caution because the previous density estimate falls within the confidence intervals of our estimate. Furthermore, we found regional declines in moor macaque encounter rates in at least two sites compared with previous studies. We found a high presence of anthropogenic activity in the forests inhabited by macaques. Moor macaques were less abundant in open areas with no forest (i.e., clear cuttings) than in forested areas, and in the presence of nonspecies-specific hunting traps (i.e., wire-loop traps). Moreover, moor macaques were more abundant in areas with a higher presence of humans and domestic animals. Overall, our data suggest that the population of this species may be declining in certain regions but further surveys are needed to corroborate whether this is occurring across the entire geographic distribution.
Collapse
|
9
|
Haydock LAJ, Abrams-Ogg ACG, Weese JS, Goldstein MR, Clifford AB, Sebastian A, Rea EH, Jamieson FB, Duncan C, Andrievskaia O, Savic M, Slavic D, Foster RA, Greenwood CJ, MacDonald TL, Scott JE, Sanchez A. Diagnostic and public health investigation of Mycobacterium tuberculosis infection in a dog in Ontario, Canada. J Vet Diagn Invest 2022; 34:292-297. [PMID: 35075970 PMCID: PMC8915242 DOI: 10.1177/10406387221074706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A 4-y-old, female mixed-breed dog was presented to the Ontario Veterinary College for further evaluation of multiple pulmonary and hepatic masses, intrathoracic lymphadenitis, and recent development of a pyogranulomatous pleural effusion. Along with other comprehensive tests, a thoracic lymph node biopsy was performed, and Mycobacterium tuberculosis complex infection was confirmed by real-time PCR. The dog’s condition declined post-operatively, and euthanasia was elected. Postmortem examination confirmed severe granulomatous pneumonia, hepatitis, intrathoracic and intraabdominal lymphadenitis, omentitis, and nephritis. Line-probe assays performed on samples collected postmortem confirmed the species as M. tuberculosis. 24-loci MIRU-VNTR genotyping, spoligotyping, and whole-genome sequencing revealed relations to known human isolates, but no epidemiologic link to these cases was investigated. Given the concern for potential human exposure during this animal’s disease course, a public health investigation was initiated; 45 individuals were tested for M. tuberculosis exposure, and no subsequent human infections related to this animal were identified. Our case highlights the need for more readily available, minimally invasive testing for the diagnosis of canine mycobacteriosis, and highlights the ability of canid species to act as potential contributors to the epidemiology of M. tuberculosis infections.
Collapse
Affiliation(s)
- Luke A J Haydock
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | - J Scott Weese
- Ontario Veterinary College, and Centre for Public Health and Zoonoses, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | | - Olga Andrievskaia
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Mirjana Savic
- Ottawa Laboratory Fallowfield, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Durda Slavic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Foster
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada, University of Guelph, Guelph, Ontario, Canada
| | - Christopher J Greenwood
- Health Sciences Centre, University of Guelph, Guelph, Ontario, Canada, University of Guelph, Guelph, Ontario, Canada
| | - Tamara L MacDonald
- Health Sciences Centre, University of Guelph, Guelph, Ontario, Canada, University of Guelph, Guelph, Ontario, Canada
| | - Jacqueline E Scott
- Health Sciences Centre, University of Guelph, Guelph, Ontario, Canada, University of Guelph, Guelph, Ontario, Canada
| | - Andrea Sanchez
- Health Sciences Centre, University of Guelph, Guelph, Ontario, Canada, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Jori F, Hernandez-Jover M, Magouras I, Dürr S, Brookes VJ. Wildlife-livestock interactions in animal production systems: what are the biosecurity and health implications? Anim Front 2021; 11:8-19. [PMID: 34676135 PMCID: PMC8527523 DOI: 10.1093/af/vfab045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ferran Jori
- UMR ASTRE (Animal, Health, Territories, Risks and Ecosystems), Bios Department, CIRAD, INRAE, Campus International de Baillarguet, University de Montpellier, Montpellier, Cedex 5, France
- Department of Zoology and Entomology, University of Pretoria, Hatfield, Gauteng, South Africa
| | - Marta Hernandez-Jover
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Ioannis Magouras
- Centre for Applied One Health Research and Policy Advice, Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon Tong, Hong Kong SAR
| | - Salome Dürr
- Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Victoria J Brookes
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
11
|
Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012-2020). Pathogens 2021; 10:pathogens10050584. [PMID: 34064571 PMCID: PMC8151627 DOI: 10.3390/pathogens10050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is a group of bacteria that cause tuberculosis (TB) in diverse hosts, including captive and free-ranging wildlife species. There is significant research interest in developing immunodiagnostic tests for TB that are both rapid and reliable, to underpin disease surveillance and control. The aim of this study was to carry out an updated review of diagnostics for TB in non-bovid species with a focus predominantly on those based on measurement of immunity. A search was carried out to identify relevant papers meeting a pre-defined set of inclusion criteria. Forty-one papers were identified from this search, from which only twenty papers contained data to measure and compare diagnostic performance using diagnostic odds ratio. The diagnostic tests from each study were ranked based on sensitivity, specificity, and diagnostic odds ratio to define high performing tests. High sensitivity and specificity values across a range of species were reported for a new antigenic target, P22 complex, demonstrating it to be a reliable and accurate antigenic target. Since the last review of this kind was undertaken, the immunodiagnosis of TB in meerkats and African wild dogs was reported for the first time. Suid species showed the most consistent immunological responses and highlight a potential dichotomy between humoral and cellular immune responses.
Collapse
|
12
|
Netherlands EC, Stroebel C, du Preez LH, Shabangu N, Matjila PT, van Schalkwyk OL, Penzhorn BL. Molecular confirmation of high prevalence of species of Hepatozoon infection in free-ranging African wild dogs ( Lycaon pictus) in the Kruger National Park, South Africa. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 14:335-340. [PMID: 33898235 PMCID: PMC8056134 DOI: 10.1016/j.ijppaw.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/24/2023]
Abstract
Reports in the literature indicate that species of Hepatozoon commonly occur in African wild dog (AWD) or painted wolf (Lycaon pictus) populations. These findings were based on examination of blood smears by microscopy, and specific identity of the Hepatozoon sp. gamonts seen could not be confirmed. We present the first in-depth molecular data on the prevalence of species of Hepatozoon in a free-ranging AWD population. In a general health survey of AWDs in the Kruger National Park, blood specimens (n = 74) collected from 54 individuals were examined for the presence of Hepatozoon spp. At first sampling, specimens from 42 of 54 individuals (77.7%) were positive, based on the primer set HepF300 and HepR900. Twenty individuals were resampled between 51 and 69 days after first sampling; one of these was resampled twice. Samples from six individuals that had tested negative previously now reacted positive. Assuming that all 54 individuals were still alive, the prevalence had therefore increased to 48 individuals infected, or 88.8%. Resultant 18S rDNA sequences isolated from these specimens share high similarity to other Hepatozoon canis genotypes. Phylogenetic analysis recovered the Hepatozoon sp. isolated from AWDs within the H. canis cluster, which includes species of Hepatozoon from other canid and tick hosts. First in-depth molecular data on the prevalence of species of Hepatozoon in a free-ranging African wild dog population. High prevalence (89%) of African wild dogs in the Kruger National Park parasitised with Hepatozoon sp. Two species of Hepatozoon genotypes sequenced from this African wild dog population. Resultant 18S rDNA sequences share a 99% similarity to Hepatozoon canis.
Collapse
Affiliation(s)
- Edward C Netherlands
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Carlie Stroebel
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Louis H du Preez
- African Amphibian Conservation Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.,South African Institute for Aquatic Biodiversity, Somerset Street, Makhanda, 6140, South Africa
| | - Ntji Shabangu
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | - P Tshepo Matjila
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa
| | | | - Barend L Penzhorn
- Vectors and Vector-borne Diseases Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa.,Research Affiliate, Centre for Veterinary Wildlife Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110, South Africa.,Research Associate, National Zoological Garden, South African National Biodiversity Institute, Boom Street, Pretoria, 0001, South Africa
| |
Collapse
|
13
|
Kerr TJ, Gumbo R, Goosen WJ, Rogers P, Last RD, Miller MA. Novel Techniques for Detection of Mycobacterium bovis Infection in a Cheetah. Emerg Infect Dis 2021; 26:630-631. [PMID: 32091381 PMCID: PMC7045837 DOI: 10.3201/eid2603.191542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In South Africa, bovine tuberculosis threatens some of Africa's most iconic wildlife species, including the cheetah (Acinonyx jubatus). The lack of antemortem diagnostic tests for this species strongly hinders conservation efforts. We report use of antemortem and postmortem diagnostic assays to detect Mycobacterium bovis infection in a cheetah.
Collapse
|
14
|
Bernitz N, Kerr TJ, Goosen WJ, Chileshe J, Higgitt RL, Roos EO, Meiring C, Gumbo R, de Waal C, Clarke C, Smith K, Goldswain S, Sylvester TT, Kleynhans L, Dippenaar A, Buss PE, Cooper DV, Lyashchenko KP, Warren RM, van Helden PD, Parsons SDC, Miller MA. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Front Vet Sci 2021; 8:588697. [PMID: 33585615 PMCID: PMC7876456 DOI: 10.3389/fvets.2021.588697] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Wildlife tuberculosis is a major economic and conservation concern globally. Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M. bovis), is the most common form of wildlife tuberculosis. In South Africa, to date, M. bovis infection has been detected in 24 mammalian wildlife species. The identification of M. bovis infection in wildlife species is essential to limit the spread and to control the disease in these populations, sympatric wildlife species and neighboring livestock. The detection of M. bovis-infected individuals is challenging as only severely diseased animals show clinical disease manifestations and diagnostic tools to identify infection are limited. The emergence of novel reagents and technologies to identify M. bovis infection in wildlife species are instrumental in improving the diagnosis and control of bTB. This review provides an update on the diagnostic tools to detect M. bovis infection in South African wildlife but may be a useful guide for other wildlife species.
Collapse
Affiliation(s)
- Netanya Bernitz
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Josephine Chileshe
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Roxanne L. Higgitt
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Eduard O. Roos
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Christina Meiring
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Rachiel Gumbo
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Candice de Waal
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Charlene Clarke
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Katrin Smith
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Samantha Goldswain
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Taschnica T. Sylvester
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Sven D. C. Parsons
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Meiring C, Higgitt R, Dippenaar A, Roos E, Buss P, Hewlett J, Cooper D, Rogers P, Klerk‐Lorist L, Schalkwyk L, Hausler G, Helden P, Möller M, Warren R, Miller M. Characterizing epidemiological and genotypic features of
Mycobacterium bovis
infection in wild dogs (
Lycaon pictus
). Transbound Emerg Dis 2020. [DOI: 10.1111/tbed.13947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christina Meiring
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Roxanne Higgitt
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Anzaan Dippenaar
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Eduard Roos
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Peter Buss
- Veterinary Wildlife Services South African National Parks Skukuza South Africa
| | - Jennie Hewlett
- Veterinary Wildlife Services South African National Parks Skukuza South Africa
- Paraclinical Department Faculty of Veterinary Science University of Pretoria Onderstepoort South Africa
| | - Dave Cooper
- Ezemvelo KZN Wildlife Mtubatuba South Africa
| | - Peter Rogers
- Provet Wildlife Services & Companion Animal Hospital Hoedspruit South Africa
| | - Lin‐Mari Klerk‐Lorist
- Department of Agriculture, Forestry and FisheriesOffice of the State Veterinarian Skukuza South Africa
| | - Louis Schalkwyk
- Department of Agriculture, Forestry and FisheriesOffice of the State Veterinarian Skukuza South Africa
| | - Guy Hausler
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Paul Helden
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Marlo Möller
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Rob Warren
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | - Michele Miller
- DSI‐NRF Centre of Excellence for Biomedical Tuberculosis Research Cape Town South Africa
- South African Medical Research Council Centre for Tuberculosis Research Cape Town South Africa
- Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
16
|
Larsen MH, Lacourciere K, Parker TM, Kraigsley A, Achkar JM, Adams LB, Dupnik KM, Hall-Stoodley L, Hartman T, Kanipe C, Kurtz SL, Miller MA, Salvador LCM, Spencer JS, Robinson RT. The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis (Edinb) 2020; 121:101914. [PMID: 32279870 PMCID: PMC7428850 DOI: 10.1016/j.tube.2020.101914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Mycobacteria are important causes of disease in human and animal hosts. Diseases caused by mycobacteria include leprosy, tuberculosis (TB), nontuberculous mycobacteria (NTM) infections and Buruli Ulcer. To better understand and treat mycobacterial disease, clinicians, veterinarians and scientists use a range of discipline-specific approaches to conduct basic and applied research, including conducting epidemiological surveys, patient studies, wildlife sampling, animal models, genetic studies and computational simulations. To foster the exchange of knowledge and collaboration across disciplines, the Many Hosts of Mycobacteria (MHM) conference series brings together clinical, veterinary and basic scientists who are dedicated to advancing mycobacterial disease research. Started in 2007, the MHM series recently held its 8th conference at the Albert Einstein College of Medicine (Bronx, NY). Here, we review the diseases discussed at MHM8 and summarize the presentations on research advances in leprosy, NTM and Buruli Ulcer, human and animal TB, mycobacterial disease comorbidities, mycobacterial genetics and 'omics, and animal models. A mouse models workshop, which was held immediately after MHM8, is also summarized. In addition to being a resource for those who were unable to attend MHM8, we anticipate this review will provide a benchmark to gauge the progress of future research concerning mycobacteria and their many hosts.
Collapse
Affiliation(s)
- Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Tina M Parker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Alison Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Travis Hartman
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Carly Kanipe
- Department of Immunobiology, Iowa State University, Ames, IA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sherry L Kurtz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Washington, DC, USA
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liliana C M Salvador
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Arnot LF, Michel A. Challenges for controlling bovine tuberculosis in South Africa. ACTA ACUST UNITED AC 2020; 87:e1-e8. [PMID: 32129639 PMCID: PMC7059242 DOI: 10.4102/ojvr.v87i1.1690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/04/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023]
Abstract
All effects taken together, bovine tuberculosis (bTB) has a long-term detrimental effect on bovine herds and many wildlife species in South Africa. The disease is not only found in domestic cattle but also in African buffaloes and has to date been diagnosed in 21 wildlife species, including several rare and endangered species, thus having a potentially serious effect on conservation and biodiversity. In cattle, bTB is mostly characterised by sporadic outbreaks, but bovine herds chronically infected with the clinical disease are not uncommon. Presently, the recognised bTB control strategy in South Africa is based on 'test and slaughter', using the intradermal tuberculin test, followed by the slaughter of animals that have tested positive. Affected herds are placed under veterinary quarantine with movement restrictions until the outbreak is eradicated; this can take several years or last indefinitely if the outbreak cannot be eradicated. The same measures apply to infected buffalo populations, often with no prospect of ever being eradicated. This strategy is neither practical nor viable in the context of a communal farming system and becomes unethical when dealing with valuable wildlife reservoir hosts. Transmission of bTB between wildlife and cattle has been demonstrated and emphasises the need for an effective, affordable and culturally acceptable control strategy to curb the spread of bTB in South Africa. In countries with similar challenges, vaccination has been used and found to be promising for treating wild and domestic reservoir species and may hence be of value as a complementary tool for bTB control in South Africa.
Collapse
Affiliation(s)
- Luke F Arnot
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; and, Bovine Tuberculosis and Brucellosis Research Programme, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria.
| | | |
Collapse
|
18
|
An interferon-gamma release assay for the diagnosis of the Mycobacterium bovis infection in white rhinoceros (Ceratotherium simum). Vet Immunol Immunopathol 2019; 217:109931. [PMID: 31522092 DOI: 10.1016/j.vetimm.2019.109931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/14/2019] [Indexed: 11/20/2022]
Abstract
Mycobacterium bovis (M. bovis), the cause of bovine tuberculosis, is endemic in Kruger National Park (KNP), South Africa. The risk of spread of M. bovis infection currently prevents translocation of white rhinoceros (Ceratotherium simum) from this population. Therefore, accurate assays are necessary for screening this threatened species. Interferon gamma (IFN-γ) release assays (IGRA) are commonly used for tuberculosis diagnosis in humans and other wildlife species. Hence, the aim of this study was to develop an IGRA for M. bovis detection in white rhinoceros. Heparinized whole blood was collected from immobilized white rhinoceros in KNP (n = 131) and incubated overnight in QuantiFERON®-TB Gold (QFT) blood collection tubes, after which the plasma was harvested following centrifugation. Tissue samples for mycobacterial culture were available from a subset of 21 rhinoceros. The concentration of IFN-γ in plasma samples was measured using the Mabtech equine IFN-γ ELISAPRO kit. An IGRA result was calculated as the difference in IFN-γ concentrations in the QFT Nil and TB antigen tubes. Using test results for the white rhinoceros with known infection status, a diagnostic cut-off value was calculated as 21 pg/ml. Additionally, cut-off values for IFN-γ concentrations for plasma from QFT Nil and QFT Mitogen tubes were calculated to increase confidence in IGRA result interpretation. The combination of the QFT stimulation platform and Mabtech equine IFN-γ ELISA is a promising diagnostic test to distinguish between of M. bovis-infected and -uninfected white rhinoceros.
Collapse
|