1
|
Tang X, Zhang C, Geng Q, Chen D, Ma W. Antibody-dependent enhancement of ORFV uptake into host cells. Virulence 2025; 16:2466503. [PMID: 39954287 PMCID: PMC11834454 DOI: 10.1080/21505594.2025.2466503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 12/28/2024] [Accepted: 02/09/2025] [Indexed: 02/17/2025] Open
Abstract
Orf virus (ORFV) has been demonstrated to infect both goat non-immune cells, specifically goat epithelial cells, and goat blood immune cells. Our previous studies have indicated that ORFV gains entry into goat epithelial cells via clathrin-mediated endocytosis and macropinocytosis pathways. However, the pathway by which ORFV enters goat blood immune cells has not yet been elucidated. Our findings revealed a differential viral internalization pathway in ORFV-infects goat immune cells contrasting the internalization pathways in goat epithelial cells, potentially involving an antibody-related mechanism. Therefore, our hypothesis posits that ORFV gains entry into goat immune cells via the antibody-dependent enhancement (ADE) pathway. Our experimental findings confirm the presence of the ADE effect in ORFV-infected goat immune cells, mediated by Fc receptors (FcRs) as demonstrated in antibody-blocking experiments. Furthermore, the ADE effect was also observed in goat epithelial cells. Nevertheless, the ADE effect observed in goat epithelial cells was not found to be dependent on the interaction between the virus-antibody complex and Fc receptors, as demonstrated by antibody-blocking experiments. Instead, it is suggested that an alternative mechanism involving the complement factor and complement receptors (CRs) may be responsible. Overall, this research offers insights into the unique ADE pathway of ORFV infection in different cell types, offering a novel perspective on the infection and pathogenic mechanisms of ORFV.
Collapse
Affiliation(s)
- Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, Yunnan Province, China
| | - Chenyibo Zhang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Qingru Geng
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi Province, China
| |
Collapse
|
2
|
Ahmed S, Liu G, Sadiq A, Farooq U, Yang H, Yongbin L, Yiyu S, Xiaodong W, Jiang X. Integration of Immune Responses and Transcriptomic Signatures Reveals the Efficacy of Maternal Genetic Vaccination in a Pregnant Model and Its Neonates. Immunology 2025; 174:322-339. [PMID: 39762199 DOI: 10.1111/imm.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 02/07/2025] Open
Abstract
Maternal vaccination is essential for safeguarding both mother and foetus from infectious diseases. This study investigated the immunogenicity and efficacy of a maternal ORF-B2L genetic vaccine in a pregnant rat model, focusing on maternal-neonatal immune modulation, placental and neonatal spleen transcriptomics and the underlying mechanisms contributing to neonatal immune development. Female rats received intramuscular injections of either a gene vaccine (GV) containing 200 μg of recombinant ORF-B2L DNA and 50 μg of a subunit protein or an empty plasmid as a control. Results showed significantly higher levels of specific anti-B2L antibodies and Th1 and Th2 cytokine levels in both maternal and neonatal sera from the GV group compared to the control group (p < 0.05). Transcriptome analysis identified 1295 differentially expressed genes (DEGs) in the placenta and 998 DEGs in the neonatal spleen, with upregulated pathways associated with immune cell recruitment, cytokine signalling and hormone regulation in the GV group. Notably, upregulated DEGs such as TLR4, ESR1 and various cytokine/chemokine-related genes in the placenta suggest enhanced immune regulation and foetal protection. In the neonatal spleen, increased expression of IL-1β, IL-6, IL-10 and CD69 indicates enhanced T and B cell development and pathogen defence. The upregulation of IL-1β suggests a Th1 response, while elevated IL-10 indicates a potential Th2-biased immunity, reflecting a balanced Th1/Th2 response that is crucial for effective adaptive immunity. Overall, maternal ORF-B2L genetic vaccination induces a robust immune response, enhancing maternal-foetal protection and shaping neonatal immune responses, offering valuable insights for optimizing maternal vaccination strategies.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Liu Yongbin
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wang Xiaodong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Ahmed S, Liu G, Sadiq A, Yang H, Yongbin L, Farooq U, Yi D, Yiyu S, Xiaodong W, Ahmed M, Jiang X. Synergistic Effect of Maternal Micronutrient Supplementation on ORFV DNA Vaccine Immune Response in a Pregnant Model. Biol Trace Elem Res 2025; 203:1582-1599. [PMID: 38874865 DOI: 10.1007/s12011-024-04263-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
Contagious ecthyma is a contagious zoonotic disease caused by the Orf virus that can infect farm animals and humans, but no vaccine is available for pregnant mothers. Excessive oxidative stress during pregnancy can suppress the vaccine immune response in pregnant mothers; hence, maternal micronutrient supplementation could effectively improve the immune response, health, and oxidative status during pregnancy. In this study, we employed an 8-week-old pregnant rat model to receive a single intramuscular dose of 200 µg of ORF DNA vaccine with or without vitamin E and selenium supplementation to evaluate their effect on immune responses (specific IgG and IgG isotypes), oxidative stress, liver enzymes, and blood glucose levels in maternal-neonatal serum and milk secretions. Additionally, antioxidant-related gene expressions were analyzed in the maternal placenta and pups' liver. The results showed that supplementation of vitamin E and selenium with ORF DNA vaccination increased the production of specific antibody and IgG isotypes (IgG1 and IgG2a) and reduced the oxidative stress in neonatal-maternal serum and milk compared to both the control group and those vaccinated without supplementation (p < 0.05). Notably, the ORF DNA vaccine did not cause oxidative stress and hepatic damage. However, combined supplementation of vitamin E and selenium with DNA vaccination significantly decreased serum malondialdehyde (MDA) levels and improved the antioxidant-related enzyme activities of glutathione peroxidase (GPX), superoxide dismutase 1 (SOD1), and selenoprotein P (SELP) in the maternal placenta and liver of pups (p < 0.05). In conclusion, maternal supplementation of vitamin E and selenium enhanced the immune responses of the ORF DNA vaccine by mitigating oxidative stress in pregnant rats and could thus be a promising strategy for better health outcomes for both mothers and neonates.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-I-Azam University, Islamabad, Pakistan
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Liu Yongbin
- College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wang Xiaodong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mehboob Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
4
|
Reichen C, Beirão BCB, Monteiro ALG. Contagious ecthyma in small ruminants: from etiology to vaccine challenges - a review. Vet Res Commun 2025; 49:115. [PMID: 39992468 DOI: 10.1007/s11259-025-10677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Orf virus (ORFV) is an epitheliotropic, double-stranded DNA pathogen belonging to the genus Parapoxvirus, and it is the causative agent of contagious ecthyma (CE) in small ruminants. It is an endemic disease on goat and sheep herds around the world. It is often a neglected disease, with impacts on herd health and productivity, while also being an occupational zoonosis. This review explores the causative agent of ovine ecthyma, its epidemiology, and clinical manifestations, with a particular emphasis on its interaction with the host's immune system and the development of ORFV vaccines. Like other members of the Poxviridae family, ORFV expresses numerous immunomodulatory genes, which complicate vaccination efforts and disease management. This review highlights the challenges posed by ORFV in achieving effective immunization and discusses potential vaccine strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Caroline Reichen
- Department of Animal Science, Sheep and Goat Production and Research Center (LAPOC), Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil.
| | - Breno Castello Branco Beirão
- Department of Basic Pathology, Comparative Immunology Laboratory (LIC), Federal University of Paraná (UFPR), Curitiba, 81531-980, Paraná, Brazil
| | - Alda Lúcia Gomes Monteiro
- Department of Animal Science, Sheep and Goat Production and Research Center (LAPOC), Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
5
|
Graf A, Rziha HJ, Krebs S, Wolf E, Blum H, Büttner M. Parapoxvirus species revisited by whole genome sequencing: A retrospective analysis of bovine virus isolates. Virus Res 2024; 346:199404. [PMID: 38782262 PMCID: PMC11152744 DOI: 10.1016/j.virusres.2024.199404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Parapoxviruses (PPV) of animals are spread worldwide. While the Orf virus (ORFV) species is a molecularly well-characterized prototype pathogen of small ruminants, the genomes of virus species affecting large ruminants, namely Bovine papular stomatitis virus (BPSV) and Pseudocowpox virus (PCPV), are less well known. Using Nanopore sequencing we retrospectively show the whole genome sequences (WGS) of six BPSV, three PCPV isolates and an attenuated ORFV strain, originating from different geographic locations. A phylogenetic tree shows that the de novo assembled genomes belong to PPV species including WGS of reference PPV. Remarkably, Nanopore sequencing allowed the molecular resolution of inverted terminal repeats (ITR) and the hairpin loop within the de novo assembled WGS. Additionally, peculiarities regarding map location of two genes and the heterogeneity of a genomic region were noted. Details for the molecular variability of an interferon response modulatory gene (ORF116) and the PCPV specificity of gene 073.5 are reported. In summary, WGS gained by Nanopore sequencing allowed analysis of complete PPV genomes and confident virus species attribution within a phylogenetic tree avoiding uncertainty of limited gene-based diagnostics. Nanopore-based WGS provides robust comparison of PPV genomes and reliable identity determination of new Poxviruses.
Collapse
Affiliation(s)
- Alexander Graf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Hanns-Joachim Rziha
- Institute of Immunology, University Hospital Tübingen, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Dept. Genomics, Gene Centre, Ludwig-Maximilians-Universität München (LMU), 81377 Munich, Germany
| | - Mathias Büttner
- Institute of Immunology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
6
|
Zhang Z, Zhang X, Feng K, Ba S, Yang T, Gong J, Yang Z, Zhang H, Sun Z, Li P. Screening and characterization of a novel linear B-cell epitope on orf virus F1L protein. Front Microbiol 2024; 15:1373687. [PMID: 38974027 PMCID: PMC11224485 DOI: 10.3389/fmicb.2024.1373687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Background Orf, also known as contagious ecthyma (CE), is an acute, contagious zoonotic disease caused by the orf virus (ORFV). The F1L protein is a major immunodominant protein on the surface of ORFV and can induce the production of neutralizing antibodies. Methods The prokaryotic expression system was used to produce the recombinant F1L protein of ORFV, which was subsequently purified and used to immunize mice. Positive hybridoma clones were screened using an indirect enzyme-linked immunosorbent assay (ELISA). The reactivity and specificity of the monoclonal antibody (mAb) were verified through Western blot and indirect immunofluorescence (IFA). The linear antigenic epitope specific to the mAb was identified through Western blot, using truncated F1L proteins expressed in eukaryotic cells. A multiple sequence alignment of the ORFV reference strains was performed to evaluate the degree of conservation of the identified epitope. Results After three rounds of subcloning, a mAb named Ba-F1L was produced. Ba-F1L was found to react with both the exogenously expressed F1L protein and the native F1L protein from ORFV-infected cells, as confirmed by Western blot and IFA. The mAb recognized the core epitope 103CKSTCPKEM111, which is highly conserved among various ORFV strains, as shown by homologous sequence alignment. Conclusion The mAb produced in the present study can be used as a diagnostic reagent for detecting ORFV and as a basic tool for exploring the mechanisms of orf pathogenesis. In addition, the identified linear epitope may be valuable for the development of epitope-based vaccines.
Collapse
Affiliation(s)
- Zhibang Zhang
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
| | - Xiaoyan Zhang
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
| | - Kang Feng
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Shufan Ba
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
| | - Taotao Yang
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
| | - Jinxiang Gong
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ziyin Yang
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Hong Zhang
- Xinyu Mengling Animal Husbandry Development Co., Ltd., Xinyu, Jiangxi, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Pengcheng Li
- College of Life Sciences and Resource and Environment, Yichun University, Yichun, Jiangxi, China
| |
Collapse
|
7
|
Du G, Zhang C, Cao X, Li L, Zhang Y, Shang Y, Wu J. Generation and application of immortalized sheep fetal fibroblast cell line. BMC Vet Res 2024; 20:198. [PMID: 38745180 PMCID: PMC11092253 DOI: 10.1186/s12917-024-04054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Primary sheep fetal fibroblasts (SFFCs) have emerged as a valuable resource for investigating the molecular and pathogenic mechanisms of orf viruses (ORFV). However, their utilization is considerably restricted due to the exorbitant expenses associated with their isolation and culture, their abbreviated lifespan, and the laborious procedure. RESULTS In our investigation, the primary SFFCs were obtained and immortalized by introducing a lentiviral recombinant plasmid containing the large T antigen from simian virus 40 (SV40). The expression of fibronectin and vimentin proteins, activity of SV40 large T antigen, cell proliferation assays, and analysis of programmed cell death revealed that the immortalized large T antigen SFFCs (TSFFCs) maintained the same physiological characteristics and biological functions as the primary SFFCs. Moreover, TSFFCs demonstrated robust resistance to apoptosis, extended lifespan, and enhanced proliferative activity compared to primary SFFCs. Notably, the primary SFFCs did not undergo in vitro transformation or exhibit any indications of malignancy in nude mice. Furthermore, the immortalized TSFFCs displayed live ORFV vaccine susceptibility. CONCLUSIONS Immortalized TSFFCs present valuable in vitro models for exploring the characteristics of ORFV using various techniques. This indicates their potential for secure utilization in future studies involving virus isolation, vaccine development, and drug screening.
Collapse
Affiliation(s)
- Guoyu Du
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
| | - Cheng Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lingxia Li
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
8
|
Németh C, Boros Á, Mészáros E, Gyömörei C, Albert E, Pankovics P, Reuter G. Human orf virus (family Poxviridae) infection following a lamb bite in Hungary. Arch Virol 2024; 169:59. [PMID: 38430421 PMCID: PMC10908620 DOI: 10.1007/s00705-024-06002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Human orf disease (called ecthyma contagiosum or contagious/infectious pustular dermatitis in animals) was confirmed on the fingers of both hands of a 24-year-old female, after feeding diseased lambs with a nursing bottle in April 2023. In addition to skin symptoms, she had low-grade fever (37.6°C) and swollen lymph nodes in both axilla. The presence of orf virus (genus Parapoxvirus, family Poxviridae) was confirmed, and this strain, Baja/2023/HUN (OR372161-OR372163), was found to have > 98% nucleotide sequence identity to sheep-origin orf viruses in four tested genome regions (ORF011/B2L, ORF019, ORF020/VIR, and ORF056). This is the first report of a human case of infection with the neglected zoonotic orf virus in Hungary.
Collapse
Affiliation(s)
- Csongor Németh
- Department of Dermatology, Venereology and Oncodermatology, Medical School, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary
| | | | - Csaba Gyömörei
- Department of Pathology, Medical School, University of Pécs, Pécs, Hungary
| | - Ervin Albert
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Szigeti út 12, H-7624, Pécs, Hungary.
| |
Collapse
|
9
|
Coradduzza E, Scarpa F, Rocchigiani AM, Cacciotto C, Lostia G, Fiori MS, Rodriguez Valera Y, De Pascali AM, Brandolini M, Azzena I, Locci C, Casu M, Bechere R, Pintus D, Ligios C, Scagliarini A, Sanna D, Puggioni G. The Global Evolutionary History of Orf Virus in Sheep and Goats Revealed by Whole Genomes Data. Viruses 2024; 16:158. [PMID: 38275968 PMCID: PMC10820850 DOI: 10.3390/v16010158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Orf virus (ORFV) belongs to the genus Parapoxvirus (Poxviridae family). It is the causative agent of contagious ecthyma (CE) that is an economically detrimental disease affecting small ruminants globally. Contagious ecthyma outbreaks are usually reported in intensive breeding of sheep and goats but they have also been reported in wildlife species. Notably, ORFV can infect humans, leading to a zoonotic disease. This study aims to elucidate the global evolutionary history of ORFV genomes in sheep and goats, including the first genomes from Central America in the analyses. In comparison to the last study on ORFV whole genomes, the database now includes 11 more sheep and goat genomes, representing an increase of 42%. The analysis of such a broader database made it possible to obtain a fine molecular dating of the coalescent time for ORFV S and G genomes, further highlighting the genetic structuring between sheep and goat genomes and corroborating their emergence in the latter half of 20th century.
Collapse
Affiliation(s)
- Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Angela Maria Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Carla Cacciotto
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
- Mediterranean Center for Disease Control, 07100 Sassari, Italy
| | - Giada Lostia
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Mariangela Stefania Fiori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | | | - Alessandra Mistral De Pascali
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Martina Brandolini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Ilenia Azzena
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Chiara Locci
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
| | - Marco Casu
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy; (C.C.); (M.C.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| | - Alessandra Scagliarini
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, 40138 Bologna, Italy; (A.M.D.P.); (M.B.); (A.S.)
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.); (C.L.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (G.L.); (M.S.F.); (R.B.); (D.P.); (C.L.); (G.P.)
| |
Collapse
|
10
|
Mungmunpuntipantip R, Wiwanitkit V. Orf, a Human Parapoxvirus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:171-181. [PMID: 38801578 DOI: 10.1007/978-3-031-57165-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite being common worldwide, parapoxvirus infections are regarded as neglected zoonoses because their incidence is either unknown or grossly overestimated. In ruminants all throughout the world, parapoxvirus produces oral lesions and infectious pustular dermatitis. The pathogen is typically spread directly via items contaminated with parapoxvirus and indirectly via a near contact with dermatological lesions that contain the virus on affected animals. Animals infected with the parapoxvirus typically exhibit no clinical symptoms, and the mode of parapoxvirus transmission is occasionally unclear. For accurate etiological diagnosis and appropriate therapy of patients affected by zoonotic infections, the significance of adopting a "One Health" approach and cross-sector collaboration between human and veterinary medicine should be emphasized. The causative pathogen of ecthyma contagiosum in general people is the orf virus, which mostly infects various animals, either pets or wildlife species. The illness primarily affects minute wild ruminants, sheep, cattle, deer, and goats, and it can spread to people through contact with infected animals or contaminated meats anywhere in the world. Taxonomically speaking, the virus belongs to the parapoxvirus genus. Thus pathogen can be detected from crusts for a very long period (several months to several years), and the virus is found to be resistant to inactivation with a hot or dry atmosphere. In immunocompetent individuals, the lesions often go away on their own with a period as long 2 months. Nevertheless, it necessitates the applying of diverse strategies, such as antiviral, immunological modulator, or modest surgical excisions in immunosuppressed patients. The interaction of the virus with various host populations aids in the development of a defense mechanism against the immune system. The parapoxvirus illness in humans is covered in this chapter. The orf illness, a significant known human parapoxvirus infection, is given specific attention.
Collapse
|
11
|
Yao X, Jing T, Geng Q, Pang M, Zhao X, Li S, Chen D, Ma W. Dual analysis of wild-type and attenuated Orf virus and host cell transcriptomes revealed novel virus-host cell interactions. mSphere 2023; 8:e0039823. [PMID: 37982609 PMCID: PMC10732022 DOI: 10.1128/msphere.00398-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Currently, the only available commercial vaccines for Orf virus (ORFV) are live attenuated vaccines, which present a potential risk of reversion to virulence. Therefore, understanding the pathogenic mechanisms of different virulent strains of ORFV and host immune responses triggered by these viruses is crucial for developing new vaccines and interventions. In this study, we found that the attenuated strain downregulates the host innate immune response and antiviral activity. In addition, we noted that the wild-type strain can induce the immune response pattern centered on interferon-stimulated genes and interferon regulatory factor gene family. We predicted that STAT1 and STAT2 are the main transcription factors upstream of target gene promoters through gene regulatory networks and exert significant regulatory effects on co-expressed genes. Our study elucidated the complex interaction between ORFV strains and host cell immune responses, providing new insights into vaccine research for ORFV.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tian Jing
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingru Geng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuanduo Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaofei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
12
|
Yu D, Yao K, Deng D, Liu Y, Wu R, Li Y, Gao J, Wang X, Fu L, Yang Y, Mu Q, Ma L. A transmission chain from sheep to sheep and human of zoonotic orf virus during the mpox epidemic. Emerg Microbes Infect 2023; 12:2233636. [PMID: 37427540 PMCID: PMC10360991 DOI: 10.1080/22221751.2023.2233636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/27/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Affiliation(s)
- Dan Yu
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Kaihu Yao
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Danyu Deng
- The Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, People’s Republic of China
| | - Ying Liu
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Rina Wu
- Department of Dermatology, International Mongolian Hospital of Inner Mongolia, Hohhot, People’s Republic of China
| | - Yanfei Li
- Department of Dermatology, The First Hospital of Hohhot, Hohhot, People’s Republic of China
| | - Jinling Gao
- Department of Dermatology, Dengkou County People’s Hospital, Bayannur, People’s Republic of China
| | - Xinyu Wang
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Libing Fu
- Department of Pathology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Yonghong Yang
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Qiri Mu
- Department of Dermatology, International Mongolian Hospital of Inner Mongolia, Hohhot, People’s Republic of China
| | - Lin Ma
- Department of Dermatology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| |
Collapse
|
13
|
Atiyyat B. A transmission chain from sheep to sheep and human of zoonotic orf virus during the mpox epidemic. Emerg Microbes Infect 2023:2233636. [PMID: 37880971 DOI: 10.1080/22221751.2023.2233636_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Affiliation(s)
- Bayan Atiyyat
- Laboratory of Dermatology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Center for Children's Health, Beijing 100045, China
| |
Collapse
|
14
|
Tang X, Xie Y, Li G, Niyazbekova Z, Li S, Chang J, Chen D, Ma W. ORFV entry into host cells via clathrin-mediated endocytosis and macropinocytosis. Vet Microbiol 2023; 284:109831. [PMID: 37480660 DOI: 10.1016/j.vetmic.2023.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Orf virus (ORFV), also known as infectious pustular virus, leads to an acute contagious zoonotic infectious disease. ORFV can directly contact and infect epithelial cells of skin and mucosa, causing damage to tissue cells. So far, the pathway of ORFV entry into cells is unclear. Therefore, finding the internalization pathway of ORFV will help to elucidate the cellular and molecular mechanisms of ORFV infection and invasion, which in turn will provide a certain reference for the prevention and treatment of ORFV. In the present study, chemical inhibitors were used to analyze the mechanism of ORFV entry into target cells. The results showed that the inhibitor of clathrin-mediated endocytosis could inhibit ORFV entry into cells. However, the inhibitor of caveolae-mediated endocytosis cannot inhibit ORFV entry into cells. In addition, inhibition of macropinocytosis pathway also significantly reduced ORFV internalization. Furthermore, the inhibitors of acidification and dynamin also prevented ORFV entry. However, results demonstrated that inhibitors inhibited ORFV entry but did not inhibit ORFV binding. Notably, extracellular trypsin promoted ORFV entry into cells directly, even when the endocytic pathway was inhibited. In conclusion, ORFV enters into its target cells by clathrin-mediated endocytosis and macropinocytosis, while caveolae-dependent endocytosis has little effects on this process. In addition, the entry into target cells by ORFV required an acid environment and the effect of dynamin. Meanwhile, we emphasize that broad-spectrum antiviral inhibitors and extracellular enzyme inhibitors are likely to be effective strategies for the prevention and treatment of ORFV infection.
Collapse
Affiliation(s)
- Xidian Tang
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Yanfei Xie
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Guanhua Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Zhannur Niyazbekova
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Shaofei Li
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China
| | - Jianjun Chang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai Province, China; College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai Province, China
| | - Dekun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| | - Wentao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
15
|
Schwartz DA, Ha S, Dashraath P, Baud D, Pittman PR, Adams Waldorf K. Mpox Virus in Pregnancy, the Placenta, and Newborn. Arch Pathol Lab Med 2023; 147:746-757. [PMID: 36857117 DOI: 10.5858/arpa.2022-0520-sa] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
CONTEXT.— Before its eradication, the smallpox virus was a significant cause of poor obstetric outcomes, including maternal and fetal morbidity and mortality. The mpox (monkeypox) virus is now the most pathogenic member of the Orthopoxvirus genus infecting humans. The 2022 global mpox outbreak has focused attention on its potential effects during pregnancy. OBJECTIVE.— To understand the comparative effects of different poxvirus infections on pregnancy, including mpox virus, variola virus, vaccinia virus, and cowpox virus. The impact on the pregnant individual, fetus, and placenta will be examined, with particular attention to the occurrence of intrauterine vertical transmission and congenital infection. DATA SOURCES.— The data are obtained from the authors' cases and from various published sources, including early historical information and contemporary publications. CONCLUSIONS.— Smallpox caused maternal and perinatal death, with numerous cases reported of intrauterine transmission. In endemic African countries, mpox has also affected pregnant individuals, with up to a 75% perinatal case fatality rate. Since the start of the 2022 mpox outbreak, increasing numbers of pregnant women have been infected with the virus. A detailed description is given of the congenital mpox syndrome in a stillborn fetus, resulting from maternal-fetal transmission and placental infection, and the potential mechanisms of intrauterine infection are discussed. Other poxviruses, notably vaccinia virus and, in 1 case, cowpox virus, can also cause perinatal infection. Based on the historical evidence of poxvirus infections, mpox remains a threat to the pregnant population, and it can be expected that additional cases will occur in the future.
Collapse
Affiliation(s)
- David A Schwartz
- From Perinatal Pathology Consulting, Atlanta, Georgia (Schwartz)
| | - Sandy Ha
- The Department of Obstetrics and Gynecology, University of Washington, Seattle (Ha)
| | - Pradip Dashraath
- The Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (Dashraath)
| | - David Baud
- Materno-Fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland (Baud)
| | - Phillip R Pittman
- The Department of Clinical Research, US Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland (Pittman)
| | - Kristina Adams Waldorf
- The Departments of Obstetrics and Gynecology and Global Health, University of Washington School of Medicine, Seattle (Adams Waldorf)
| |
Collapse
|
16
|
Du G, Wu J, Zhang C, Cao X, Li L, He J, Zhang Y, Shang Y. The whole genomic analysis of the Orf virus strains ORFV-SC and ORFV-SC1 from the Sichuan province and their weak pathological response in rabbits. Funct Integr Genomics 2023; 23:163. [PMID: 37188892 DOI: 10.1007/s10142-023-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
The Orf virus (ORFV) is a member of the Parapoxvirus genus of the Poxviridae family and can cause contagious diseases in sheep, goats, and wild ungulates. In the present study, two ORFV isolates (ORFV-SC isolated from Sichuan province and ORFV-SC1 produced by 60 passages of ORFV-SC in cells) were sequenced and compared to multiple ORFVs. The two ORFV sequences had entire genome sizes of 14,0707 bp and 141,154 bp, respectively, containing 130 and 131 genes, with a G + C content of 63% for the ORFV-SC sequence and 63.9% for the ORFV-SC1 sequence. Alignment of ORFV-SC and ORFV-SC1 with five other ORFV isolates revealed that ORFV-SC, ORFV-SC1, and NA1/11 shared > 95% nucleotide identity with 109 genes. Five genes (ORF007, ORF20, ORF080, ORF112, ORF116) have low amino acids identity between ORFV-SC and ORFV-SC1. Mutations in amino acids result in changes in the secondary and tertiary structure of ORF007, ORF020, and ORF112 proteins. The phylogenetic tree based on the complete genome sequence and 37 single genes revealed that the two ORFV isolates originated from sheep. Finally, animal experiments demonstrated that ORFV-SC1 is less harmful to rabbits than ORFV-SC. The exploration of two full-length viral genome sequences provides valuable information in ORFV biology and epidemiology research. Furthermore, ORFV-SC1 demonstrated an acceptable safety profile following animal vaccination, indicating its potential as a live ORFV vaccine.
Collapse
Affiliation(s)
- Guoyu Du
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jinyan Wu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Cheng Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Institute of Veterinary Research (CAAS) Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Xiaoan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Lingxia Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730046, China.
| | - Youjun Shang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| |
Collapse
|
17
|
Shen Z, Liu B, Zhu Z, Du J, Zhou Z, Pan C, Chen Y, Yin C, Luo Y, Li H, Chen X. Construction of a Triple-Gene Deletion Mutant of Orf Virus and Evaluation of Its Safety, Immunogenicity and Protective Efficacy. Vaccines (Basel) 2023; 11:vaccines11050909. [PMID: 37243014 DOI: 10.3390/vaccines11050909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Contagious ecthyma is a zoonotic disease caused by the orf virus (ORFV). Since there is no specific therapeutic drug available, vaccine immunization is the main tool to prevent and control the disease. Previously, we have reported the construction of a double-gene deletion mutant of ORFV (rGS14ΔCBPΔGIF) and evaluated it as a vaccine candidate. Building on this previous work, the current study reports the construction of a new vaccine candidate, generated by deleting a third gene (gene 121) to generate ORFV rGS14ΔCBPΔGIFΔ121. The in vitro growth characteristics, as well as the in vivo safety, immunogenicity, and protective efficacy, were evaluated. RESULTS: There was a minor difference in viral replication and proliferation between ORFV rGS14ΔCBPΔGIFΔ121 and the other two strains. ORFV rGS14ΔCBPΔGIFΔ121 induced continuous differentiation of PBMC to CD4+T cells, CD8+T cells and CD80+CD86+ cells and caused mainly Th1-like cell-mediated immunity. By comparing the triple-gene deletion mutant with the parental strain and the double-gene deletion mutant, we found that the safety of both the triple-gene deletion mutant and the double-gene deletion mutant could reach 100% in goats, while the safety of parental virus was only 50% after continually observing immunized animals for 14 days. A virulent field strain of ORFV from an ORF scab was used in the challenge experiment by inoculating the virus to the hairless area of the inner thigh of immunized animals. The result showed that the immune protection rate of triple-gene deletion mutant, double-gene mutant, and the parental virus was 100%, 66.7%, and 28.6%, respectively. In conclusion, the safety, immunogenicity, and immune-protectivity of the triple-gene deletion mutant were greatly improved to 100%, making it an excellent vaccine candidate.
Collapse
Affiliation(s)
- Zhanning Shen
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Bo Liu
- China Institute of Veterinary Drug Control, Beijing 100081, China
- International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Huanrong Li
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
18
|
Juang SJ, Win KT, Chen YL, Chen HW, Cheng PS. Orf Infection on the Scalp of a Taiwanese Woman: A Case Report and Literature Review. Life (Basel) 2023; 13:life13020358. [PMID: 36836716 PMCID: PMC9966865 DOI: 10.3390/life13020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/07/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Orf, or ecthyma contagiosum, is a zoonosis caused by Parapoxvirus that infects sheep and goats. Human transmission typically occurs in persons in contact with the infected animals or contaminated fomites and environment. In humans, it generally occurs as solitary or multiple skin lesions on the hands or fingers. Involvement of the head region has rarely been reported. CASE PRESENTATION We report an unusual case with multiple orf lesions on the scalp of a middle-aged woman, along with a review of previously reported Orf cases on the head region. CONCLUSIONS Although Orf infection rarely happens on the head region, it should be considered in the differential diagnosis of cases with relevant animal exposure.
Collapse
Affiliation(s)
- Shiow-Jen Juang
- Department of Dermatology, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Khin-Than Win
- Department of Pathology, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Yen-Lin Chen
- Tri-Service General Hospital, Taipei 11490, Taiwan
| | - Hung-Wen Chen
- Graduate Institute of Applied Science and Engineering, Fu-Jen Catholic University, New Taipei 242, Taiwan
| | - Pai-Shan Cheng
- Department of Dermatology, Chi Mei Medical Center, Tainan 71004, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Mangga HK, Bala JA, Balakrishnan KN, Bukar AM, Lawan Z, Gambo A, Jesse FFA, Noordin MM, Mohd-Azmi ML. Genome-Wide Analysis and Molecular Characterization of Orf Virus Strain UPM/HSN-20 Isolated From Goat in Malaysia. Front Microbiol 2022; 13:877149. [PMID: 35898905 PMCID: PMC9309513 DOI: 10.3389/fmicb.2022.877149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 12/03/2022] Open
Abstract
Contagious ecthyma commonly known as Orf is a globally important, highly contagious zoonotic, transboundary disease that affects domestic and wild ruminants. The disease is of great economic significance causing an immense impact on animal health, welfare, productivity, and trade. Detailed analysis of the viral genome is crucial to further elucidate the molecular mechanism of Orf virus (ORFV) pathogenesis. In the present study, a confluent monolayer of lamb testicle cells was infected with the processed scab sample obtained from an infected goat. The presence of the virus was confirmed using polymerase chain reaction and electron microscopy, while its genome was sequenced using next-generation sequencing technology. The genome sequence of Malaysian ORFV strain UPM/HSN-20 was found to contain 132,124 bp with a G + C content of 63.7%. The homology analysis indicates that UPM/HSN-20 has a high level of identity 97.3–99.0% with the other reference ORFV strain. Phylogenetic analysis revealed that ORFV strain UPM/HSN-20 is genetically more closely related to ORFV strain XY and NP from China. The availability of the genome-wide analysis of ORFV UPM/HSN-20 strain from Malaysia will serve as a good platform for further understanding of genetic diversity, ORFV infection, and strategic development for control measures.
Collapse
Affiliation(s)
- Hassana Kyari Mangga
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
- *Correspondence: Hassana Kyari Mangga,
| | - Jamilu Abubakar Bala
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Bayero University Kano, Kano, Nigeria
| | - Krishnan Nair Balakrishnan
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Alhaji Modu Bukar
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Science Laboratory Technology, Ramat Polytechnic Maiduguri, Maiduguri, Nigeria
| | - Zaharaddeen Lawan
- Department of Agricultural Technology, College of Agriculture, Hussaini Adamu Federal Polytechnic, Kazaure, Nigeria
| | - Auwal Gambo
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Microbiology, Faculty of Science, Usmanu Danfodiyo University Sokoto, Sokoto, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mustapha M. Noordin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd-Lila Mohd-Azmi
- Virology Unit, Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- Mohd-Lila Mohd-Azmi,
| |
Collapse
|
20
|
Coradduzza E, Sanna D, Scarpa F, Azzena I, Fiori MS, Scivoli R, Rocchigiani AM, Bechere R, Dettori MA, Pintus D, Evangelista E, Casu M, Ligios C, Puggioni G. A Deeper Insight into Evolutionary Patterns and Phylogenetic History of ORF Virus through the Whole Genome Sequencing of the First Italian Strains. Viruses 2022; 14:v14071473. [PMID: 35891452 PMCID: PMC9318404 DOI: 10.3390/v14071473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Orf virus (ORFV) is distributed worldwide and is the causative agent of contagious ecthyma that mainly occurs in sheep and goats. This disease was reported for the first time at the end of 18th century in Europe but very little is currently known about the temporal and geographic origins of this virus. In the present study, the use of new Italian whole genomes allowed for better inference on the evolutionary history of ORFV. In accordance with previous studies, two genome types (S and G) were described for infection of sheep and goats, respectively. These two well-differentiated groups of genomes originated for evolutive convergence in the late 1800s in two different areas of the world (Europe for S type and Asia for G type), but it was only in the early 1900s that the effective size of ORFV increased among hosts and the virus spread across the whole European continent. The Italian strains which were sequenced in the present study were isolated on the Mediterranean island of Sardinian and showed to be exclusive to this geographic area. One of them is likely representative of the early European forms of ORFV which infected sheep and became extinct about one century ago. Such an ancient Sardinian strain may have reached the island simple by chance, where it quickly adapted to the new habitat.
Collapse
Affiliation(s)
- Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.)
- Correspondence:
| | - Fabio Scarpa
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.)
| | - Ilenia Azzena
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy; (F.S.); (I.A.)
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy;
| | - Mariangela S. Fiori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Angela M. Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Maria A. Dettori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Eloisa Evangelista
- Ames Polydiagnostic Group Center SRL, Casalnuovo di Napoli, 80013 Naples, Italy;
| | - Marco Casu
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy;
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (M.S.F.); (R.S.); (A.M.R.); (R.B.); (M.A.D.); (D.P.); (C.L.); (G.P.)
| |
Collapse
|
21
|
Ma W, Pang M, Lei X, Wang Z, Feng H, Li S, Chen D. Orf Virus Detection in the Saliva and Milk of Dairy Goats. Front Microbiol 2022; 13:837808. [PMID: 35432295 PMCID: PMC9006325 DOI: 10.3389/fmicb.2022.837808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Orf is a zoonotic and highly contagious disease caused by Orf virus (ORFV) infection. Orf outbreaks in sheep and goats usually lead to high culling rate and mortality in newborn kids and lambs, posing a great threat to the development of goat and sheep industry. Human Orf occurs via direct contact with infected animals or fomites. While this disease is traditionally thought to spread through direct contact, whether other transmission routes exist remains unclear. Herein, we report the detection of ORFV in the saliva and milk of dairy goats without clinical Orf symptoms. Further analyses showed that these ORFV are infectious, as they can induce characteristic cytopathic changes in primary mammary and lip cells. Importantly, these ORFV can induce typical Orf lesions after inoculation in ORFV-free dairy goats. This is the first study showing that live, infectious ORFV can be isolated from the saliva and milk of asymptomatic goats, highlighting novel potential transmission routes of ORFV. These findings provide a novel idea for the prevention and control of Orf spread.
Collapse
|
22
|
A Review of Infectious Diseases Associated with Religious and Nonreligious Rituals. Interdiscip Perspect Infect Dis 2021; 2021:1823957. [PMID: 34912451 PMCID: PMC8668350 DOI: 10.1155/2021/1823957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Rituals are an integral part of human life but a wide range of rituals (both religious and non-religious), from self-flagellation to blood brotherhood to ritual sprinkling of holy water, have been associated with transmission of infections. These infections include angiostrongyliasis, anthrax, brucellosis, cholera, COVID-19, cutaneous larva migrans, Ebola, hepatitis viruses, herpes simplex virus, HIV, human T-cell leukemia virus (HTLV), kuru, Mycobacterium bovis, Naegleria fowleri meningoencephalitis, orf, rift valley fever, and sporotrichosis. Education and community engagement are important cornerstones in mitigating infectious risks associated with rituals.
Collapse
|
23
|
Bukar AM, Jesse FFA, Abdullah CAC, Noordin MM, Lawan Z, Mangga HK, Balakrishnan KN, Azmi MLM. Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines (Basel) 2021; 9:1341. [PMID: 34835272 PMCID: PMC8624149 DOI: 10.3390/vaccines9111341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orf virus (ORFV), the prototype species of the parapoxvirus genus, is the causative agent of contagious ecthyma, an extremely devastating skin disease of sheep, goats, and humans that causes enormous economic losses in livestock production. ORFV is known for its ability to repeatedly infect both previously infected and vaccinated sheep due to several immunomodulatory genes encoded by the virus that temporarily suppress host immunity. Therefore, the development of novel, safe and effective vaccines against ORFV infection is an important priority. Although, the commercially licensed live-attenuated vaccines have provided partial protection against ORFV infections, the attenuated viruses have been associated with major safety concerns. In addition to safety issues, the persistent reinfection of vaccinated animals warrants the need to investigate several factors that may affect vaccine efficacy. Perhaps, the reason for the failure of the vaccine is due to the long-term adaptation of the virus in tissue culture. In recent years, the development of vaccines against ORFV infection has achieved great success due to technological advances in recombinant DNA technologies, which have opened a pathway for the development of vaccine candidates that elicit robust immunity. In this review, we present current knowledge on immune responses elicited by ORFV, with particular attention to the effects of the viral immunomodulators on the host immune system. We also discuss the implications of strain variation for the development of rational vaccines. Finally, the review will also aim to demonstrate future strategies for the development of safe and efficient vaccines against ORFV infections.
Collapse
Affiliation(s)
- Alhaji Modu Bukar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
- Department of Science Laboratory Technology, School Agriculture and Applied Sciences, Ramat Polytechnic Maiduguri, Maiduguri 1070, Borno, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Mustapha M. Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Zaharaddeen Lawan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Hassana Kyari Mangga
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Mohd-Lila Mohd Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| |
Collapse
|
24
|
Raele DA, Stoffolano JG, Vasco I, Pennuzzi G, Nardella La Porta MC, Cafiero MA. Study on the Role of the Common House Fly, Musca domestica, in the Spread of ORF Virus (Poxviridae) DNA under Laboratory Conditions. Microorganisms 2021; 9:microorganisms9112185. [PMID: 34835311 PMCID: PMC8623399 DOI: 10.3390/microorganisms9112185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
ORF virus (Poxviridae) is the causative agent of contagious ecthyma (soremouth), a disease primarily affecting sheep and goats worldwide, but also humans exposed to disease-ridden animals. Pathogens are shed with scabs, and infection mainly occurs by direct contact. Although the disease is relatively benign and self-limiting, the morbidity rate is high in livestock with subsequent significant financial and economic impact. The aim of the study was to experimentally investigate the potential for the housefly, Musca domestica, to act as a mechanical vector of the virus. Homogenate of crusted scabs from ORFV-positive sheep (Italy, Apulia) were used to infect laboratory-reared flies. Flies walking on viral mixture and flies inoculated on their wings were individually placed in Falcon tubes and the ORFV DNA was searched by PCR on tube walls; flies were fed on the same homogenized crusts and their crop and spots (vomit and feces) molecularly examined for ORF DNA at 2, 4, and 6 h. All of the flies (100%) used in the experiments were able to pick up and transmit the viral genome to contact surfaces; 60% were found ORF virus (DNA)-positive in both spots and crop. These results suggest that M. domestica could play a role as potential mechanical vector and/or reservoir in the epidemiology of the ORF virus infection. Thus, house fly management should be considered in the measures to control the disease in ovine-caprine farms.
Collapse
Affiliation(s)
- Donato Antonio Raele
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71100 Foggia, Italy; (I.V.); (G.P.); (M.C.N.L.P.); (M.A.C.)
- Correspondence:
| | - John G. Stoffolano
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| | - Ilaria Vasco
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71100 Foggia, Italy; (I.V.); (G.P.); (M.C.N.L.P.); (M.A.C.)
| | - Germana Pennuzzi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71100 Foggia, Italy; (I.V.); (G.P.); (M.C.N.L.P.); (M.A.C.)
| | - Maria Concetta Nardella La Porta
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71100 Foggia, Italy; (I.V.); (G.P.); (M.C.N.L.P.); (M.A.C.)
| | - Maria Assunta Cafiero
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia 20, 71100 Foggia, Italy; (I.V.); (G.P.); (M.C.N.L.P.); (M.A.C.)
| |
Collapse
|
25
|
Kassa T. A Review on Human Orf: A Neglected Viral Zoonosis. Res Rep Trop Med 2021; 12:153-172. [PMID: 34267574 PMCID: PMC8275206 DOI: 10.2147/rrtm.s306446] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022] Open
Abstract
Orf virus (ORFV) is the etiologic agent of Orf or ecthyma contagiosum in humans but primarily affects different domestic and wild animals. The disease mostly affects sheep, goats and other small wild ruminants and spreads to humans through direct contact with infected animals or by way of contaminated fomites worldwide. ORFV is taxonomically classified as a member of the genus Parapoxvirus. It is known to have tolerance to inactivation in a drier environment, and it has been recovered from crusts after several months to years. Among immunocompetent people, the lesions usually resolve by its natural course within a maximum of 8 weeks. In immunosuppressed patients, however, it needs the use of various approaches including antiviral, immune modifier or minor surgical excisions. The virus through its association with divergent host ranges helps to develop a mechanism to evade the immune system. The relative emergence of Orf, diagnosed on clinical ground among human cases, in unusual frequencies in southwest Ethiopia between October 2019 and May 2020, was the driver to write this review. The objective was to increase health care providers' diagnostic curiosity and to bring the attentiveness of public health advisors for prevention, control and the development of schemes for surveillance of Orf zoonosis in a similar setting like Ethiopia.
Collapse
Affiliation(s)
- Tesfaye Kassa
- School of Medical Laboratory Science, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
26
|
Yao X, Pang M, Wang T, Chen X, Tang X, Chang J, Chen D, Ma W. Genomic Features and Evolution of the Parapoxvirus during the Past Two Decades. Pathogens 2020; 9:E888. [PMID: 33120928 PMCID: PMC7694016 DOI: 10.3390/pathogens9110888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022] Open
Abstract
Parapoxvirus (PPV) has been identified in some mammals and poses a great threat to both the livestock production and public health. However, the prevalence and evolution of this virus are still not fully understood. Here, we performed an in silico analysis to investigate the genomic features and evolution of PPVs. We noticed that although there were significant differences of GC contents between orf virus (ORFV) and other three species of PPVs, all PPVs showed almost identical nucleotide bias, that is GC richness. The structural analysis of PPV genomes showed the divergence of different PPV species, which may be due to the specific adaptation to their natural hosts. Additionally, we estimated the phylogenetic diversity of seven different genes of PPV. According to all available sequences, our results suggested that during 2010-2018, ORFV was the dominant virus species under the selective pressure of the optimal gene patterns. Furthermore, we found the substitution rates ranged from 3.56 × 10-5 to 4.21 × 10-4 in different PPV segments, and the PPV VIR gene evolved at the highest substitution rate. In these seven protein-coding regions, purifying selection was the major evolutionary pressure, while the GIF and VIR genes suffered the greatest positive selection pressure. These results may provide useful knowledge on the virus genetic evolution from a new perspective which could help to create prevention and control strategies.
Collapse
Affiliation(s)
- Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Ming Pang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Tianxing Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xi Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Xidian Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Jianjun Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; (X.Y.); (M.P.); (T.W.); (X.C.); (X.T.)
| |
Collapse
|
27
|
Dysbiosis of the gut microbiota maybe exacerbate orf pathology by promoting inflammatory immune responses. Vet Microbiol 2020; 251:108884. [PMID: 33086176 DOI: 10.1016/j.vetmic.2020.108884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
Orf is a contagious disease caused by the epitheliotropic orf virus (ORFV) that mainly affects goats and sheep. Orf occurs worldwide and can cause great losses to livestock production. Mounting evidence has shown that gut microbiota plays a pivotal role in shaping the immune responses of the host and thus affecting the infection process of a wide range of pathogens. However, it is unclear whether gut microbiota plays a role during orf development. In this study, we exploited asymptomatic ORFV-carrier goats to explore the potential effects of gut microbiota on orf pathogenesis. The results showed that antibiotics-induced gut microbiota disruption significantly aggravated orf, as indicated by the greater disease severity and higher percentage of animals manifesting clinical orf symptoms. Further analysis suggested IL-17-induced excessive neutrophil accumulation in the diseased lips was potentially responsible for the tissue pathology. In addition, skin γδT cells may be an important source of IL-17. In conclusion, our study showed that the gut microbiota of ORFV-carrier goats plays a central role in controlling inflammatory pathology during ORFV infection, partly through suppressing IL-17-mediated local proinflammatory immune responses. This finding can provide help for elucidating the pathogenesis of orf and also suggests an efficient strategy to minimize the inflammatory pathology by maintaining a healthy gut microbiota during orf development.
Collapse
|