1
|
Jorgensen D, Grassly NC, Pons-Salort M. Global age-stratified seroprevalence of enterovirus D68: a systematic literature review. THE LANCET. MICROBE 2025; 6:100938. [PMID: 39332429 DOI: 10.1016/j.lanmic.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/29/2024]
Abstract
Enterovirus D68 (EV-D68), first isolated in 1962, emerged in 2014, causing outbreaks of severe respiratory infections and acute flaccid myelitis. In this systematic review, we have compiled all available literature on age-stratified seroprevalence estimates of EV-D68. Ten studies from six countries were retained, all conducted using microneutralisation assays, despite wide variations in protocols and challenge viruses. The age profiles of seroprevalence were similar across time and regions; seroprevalence increased quickly with age, reaching roughly 100% by the age of 20 years and with no sign of decline throughout adulthood. This suggests continuous or frequent exposure of the populations to the virus, or possible cross-reactivity with other viruses. Studies with two or more cross-sectional surveys reported consistently higher seroprevalence at later timepoints, suggesting a global increase in transmission over time. This systematic review concludes that standardising serological protocols, understanding the contribution of cross-reactivity with other pathogens to the high reported seroprevalence, and quantifying individual exposure to EV-D68 over time are the main research priorities for the future.
Collapse
Affiliation(s)
- David Jorgensen
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK.
| | - Nicholas C Grassly
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Margarita Pons-Salort
- Medical Research Council (MRC) Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| |
Collapse
|
2
|
Carmona RCC, Reis FC, Cilli A, Dias JMM, Machado BC, de Morais DR, Jorge AV, Dias AMN, de Sousa CA, Calou SB, Ferreira GH, Leme L, Timenetsky MDCST, Eduardo MBDP. Beyond Poliomyelitis: A 21-Year Study of Non-Polio Enterovirus Genotyping and Its Relevance in Acute Flaccid Paralysis in São Paulo, Brazil. Viruses 2024; 16:1875. [PMID: 39772185 PMCID: PMC11680237 DOI: 10.3390/v16121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
In the context of the near-global eradication of wild poliovirus, the significance of non-polio enteroviruses (NPEVs) in causing acute flaccid paralysis (AFP) and their impact on public health has gained increased attention. This research, conducted from 2001 to 2021, examined stool samples from 1597 children under 15 years in São Paulo, Brazil, through the AFP/Poliomyelitis Surveillance Program, detecting NPEVs in 6.9% of cases. Among the 100 NPEV-positive strains analyzed, 90 were genotyped through genomic sequencing of the partial VP1 region, revealing a predominance of EV-B species (58.9%), followed by EV-A (27.8%) and EV-C (13.3%). This study identified 31 unique NPEV types, including EV-A71, CVB2, and E11, as the most prevalent, along with the first documented occurrence of CVA19 in Brazil. These findings emphasize the importance of NPEV genotyping in distinguishing AFP from poliomyelitis, enhancing understanding of these viruses' epidemiology. Moreover, it ensures that AFP cases are correctly classified, contributing to the effective surveillance and eradication efforts for poliomyelitis.
Collapse
Affiliation(s)
- Rita Cássia Compagnoli Carmona
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Fabricio Caldeira Reis
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Audrey Cilli
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Juliana Monti Maifrino Dias
- Divisão de Doenças de Transmissão Hídrica e Alimentar, Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Bráulio Caetano Machado
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Daniele Rita de Morais
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Adriana Vieira Jorge
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Amanda Meireles Nunes Dias
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Cleusa Aparecida de Sousa
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Sabrina Bonetti Calou
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Gabriel Henriques Ferreira
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | - Lucas Leme
- Núcleo de Doenças Entéricas, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| | | | - Maria Bernadete de Paula Eduardo
- Divisão de Doenças de Transmissão Hídrica e Alimentar, Centro de Vigilância Epidemiológica “Prof. Alexandre Vranjac”, Secretaria de Estado da Saúde de São Paulo, Sao Paulo 01246-900, Brazil
| |
Collapse
|
3
|
Fall A, Abdullah O, Han L, Norton JM, Gallagher N, Forman M, Morris CP, Klein E, Mostafa HH. Enterovirus D68: Genomic and Clinical Comparison of 2 Seasons of Increased Viral Circulation and Discrepant Incidence of Acute Flaccid Myelitis-Maryland, USA. Open Forum Infect Dis 2024; 11:ofae656. [PMID: 39564148 PMCID: PMC11575685 DOI: 10.1093/ofid/ofae656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
Background Enterovirus D68 (EV-D68) is associated with severe respiratory disease and acute flaccid myelitis (AFM). The 2022 outbreaks showed increased viral circulation and hospital admissions, but the expected rise in AFM cases did not occur. We analyzed EV-D68 genomes and infection outcomes from 2022 (a year without a national increase in AFM cases) and 2018 (a year with a national surge in AFM cases) to understand how viral genomic changes might influence disease outcomes. Methods Residual respiratory samples that tested positive for rhinovirus/enterovirus at the Johns Hopkins Health System between 2018 and 2022 were collected for EV-D68 polymerase chain reaction, genotyping, and whole genome sequencing. Clinical and metadata were collected in bulk from the electronic medical records. Results A total of 351 EV-D68 cases were identified, with most cases in children aged <5 years. Infections in 2018 were associated with higher odds of hospital admissions and intensive care unit care. Of 272 EV-D68 genomes, subclades B3 and A2/D1 were identified with B3 predominance (95.2%). A comparative analysis of the 2018 and 2022 whole genomes identified a cluster of amino acids (554D, 650T, 918T, 945N, 1445I, 1943I) that was associated with higher odds of severe outcomes. Conclusions Our results show significant differences in the clinical outcomes of EV-D68 infections in 2018 and 2022 and highlight a 2018 cluster of genomic changes associated with these differences. Seasonal viral genomic surveillance-with in vitro characterization of the significance of these changes to viral fitness, immune responses, and neuropathogenesis-should shed light on the viral determinants of AFM.
Collapse
Affiliation(s)
- Amary Fall
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Omar Abdullah
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lijie Han
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Julie M Norton
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Michael Forman
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - C Paul Morris
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Center for Disease Dynamics, Economics, and Policy, Washington DC, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Helfferich J, Fall A, Pardo CA, Jacobs BC, Messacar K. Acute flaccid myelitis in low- to middle-income countries: diagnosis and surveillance. Brain Commun 2024; 6:fcae167. [PMID: 39027410 PMCID: PMC11255474 DOI: 10.1093/braincomms/fcae167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/25/2024] [Accepted: 05/09/2024] [Indexed: 07/20/2024] Open
Affiliation(s)
- Jelte Helfferich
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Amary Fall
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Bart C Jacobs
- Department of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
| | - Kevin Messacar
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Hooi YT, Balasubramaniam VRMT. In vitro and in vivo models for the study of EV-D68 infection. Pathology 2023; 55:907-916. [PMID: 37852802 DOI: 10.1016/j.pathol.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 10/20/2023]
Abstract
Enterovirus D68 (EV-D68) is one of hundreds of non-polio enteroviruses that typically cause cold-like respiratory illness. The first EV-D68 outbreak in the United States in 2014 aroused widespread concern among the public and health authorities. The infection was found to be associated with increased surveillance of acute flaccid myelitis, a neurological condition that causes limb paralysis in conjunction with spinal cord inflammation. In vitro studies utilising two-dimensional (2D) and three-dimensional (3D) culture systems have been employed to elucidate the pathogenic mechanism of EV-D68. Various animal models have also been developed to investigate viral tropism and distribution, pathogenesis, and immune responses during EV-D68 infection. EV-D68 infections have primarily been investigated in respiratory, intestinal and neural cell lines/tissues, as well as in small-size immunocompetent rodent models that were limited to a young age. Some studies have implemented strategies to overcome the barriers by using immunodeficient mice or virus adaptation. Although the existing models may not fully recapitulate both respiratory and neurological disease observed in human EV-D68 infection, they have been valuable for studying pathogenesis and evaluating potential vaccine or therapeutic candidates. In this review, we summarise the methodologies and findings from each experimental model and discuss their applications and limitations.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
6
|
de Campos GM, de La-Roque DGL, Lima ARJ, Zucherato VS, de Carvalho E, de Lima LPO, de Queiroz Cattony Neto P, dos Santos MM, Ciccozzi M, Giovanetti M, Haddad R, Alcantara LCJ, Elias MC, Sampaio SC, Covas DT, Kashima S, Slavov SN. Exploring Viral Metagenomics in Pediatric Patients with Acute Respiratory Infections: Unveiling Pathogens beyond SARS-CoV-2. Microorganisms 2023; 11:2744. [PMID: 38004755 PMCID: PMC10672962 DOI: 10.3390/microorganisms11112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/26/2023] Open
Abstract
The emergence of SARS-CoV-2 and the subsequent pandemic have prompted extensive diagnostic and clinical efforts to mitigate viral spread. However, these strategies have largely overlooked the presence of other respiratory viruses. Acute respiratory diseases in pediatric patients can be caused by a diverse range of viral agents, and metagenomics represents a powerful tool for their characterization. This study aimed to investigate the viral abundance in pediatric patients with acute respiratory symptoms who tested negative for SARS-CoV-2 during the Omicron pandemic wave. To achieve this, viral metagenomics and next-generation sequencing were employed on 96 nasopharyngeal swab samples, which were organized into 12 pools, with each pool consisting of eight individual samples. Metagenomic analysis revealed that the most prevalent viruses associated with acute disease in pediatric patients were respiratory syncytial virus (detected in all pools) and enteroviruses, which are known to cause significant morbidity and mortality in children. Additionally, clinically significant viruses such as mumps orthorubulavirus, human metapneumovirus, influenza A, and a wide array of human herpesviruses (1, 3-7) were identified. These findings highlight the extensive potential of viral metagenomics in identifying viruses other than SARS-CoV-2 that contribute to acute infections in children. Consequently, this methodology should garner clinical attention in terms of differential diagnosis and the development of public policies to address such conditions in the global pediatric population.
Collapse
Affiliation(s)
- Gabriel Montenegro de Campos
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14050-190, Brazil; (G.M.d.C.); (D.G.L.d.L.-R.); (V.S.Z.); (S.K.)
| | - Debora Glenda Lima de La-Roque
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14050-190, Brazil; (G.M.d.C.); (D.G.L.d.L.-R.); (V.S.Z.); (S.K.)
| | - Alex Ranieri Jerônimo Lima
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Victória Simionatto Zucherato
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14050-190, Brazil; (G.M.d.C.); (D.G.L.d.L.-R.); (V.S.Z.); (S.K.)
| | - Eneas de Carvalho
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Loyze Paola Oliveira de Lima
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Pedro de Queiroz Cattony Neto
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Murilo Marconi dos Santos
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Marta Giovanetti
- Instututo Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil; (M.G.); (L.C.J.A.)
- Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Rodrigo Haddad
- Campus Ceilândia, University of Brasília, Federal District of Brazil, Brasília 70910-900, Brazil;
| | | | - Maria Carolina Elias
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Sandra Coccuzzo Sampaio
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Dimas Tadeu Covas
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| | - Simone Kashima
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14050-190, Brazil; (G.M.d.C.); (D.G.L.d.L.-R.); (V.S.Z.); (S.K.)
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14050-190, Brazil; (G.M.d.C.); (D.G.L.d.L.-R.); (V.S.Z.); (S.K.)
- Center for Scientific Development (CDC), Butantan Institute, São Paulo 05503-900, Brazil; (A.R.J.L.); (E.d.C.); (L.P.O.d.L.); (P.d.Q.C.N.); (M.M.d.S.); (M.C.E.); (S.C.S.); (D.T.C.)
| |
Collapse
|
7
|
Fall A, Han L, Abdullah O, Norton JM, Eldesouki RE, Forman M, Morris CP, Klein E, Mostafa HH. An increase in enterovirus D68 circulation and viral evolution during a period of increased influenza like illness, The Johns Hopkins Health System, USA, 2022. J Clin Virol 2023; 160:105379. [PMID: 36652754 DOI: 10.1016/j.jcv.2023.105379] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND An increase in influenza like illness in children and adolescents at the Johns Hopkins Health system during summer 2022 was associated with increased positivity for enterovirus/ rhinovirus. We sought to characterize the epidemiology and viral evolution of enterovirus D68 (EV-D68). METHODS A cohort of remnant respiratory samples tested at the Johns Hopkins Microbiology Laboratory was screened for EV-D68. EV-D68 positives were characterized by whole genome sequencing and viral loads were assessed by droplet digital PCR (ddPCR). Genomic changes and viral loads were analyzed along with patients' clinical presentations. RESULTS Of 566 screened samples, 126 were EV-D68 (22.3%). The median age of EV-D68 infected patients was four years, a total of 52 required supplemental oxygen (41.3%), and 35 (27.8%) were admitted. Lung disease was the most frequent comorbidity that was associated with hospitalization. A total of 75 complete and 32 partial genomes were characterized that made a new cluster within the B3 subclade that was closest to US genomes from 2018. Amino acid changes within the BC and DE loops were identified from 31 genomes (29%) which correlated with an increase in average viral load in respiratory specimens and the need for supplemental oxygen. CONCLUSIONS EV-D68 outbreaks continue to cause influenza like illness that could be overwhelming for the health system due to a significant demand for high flow oxygen. Viral evolution and an increase in the susceptible population are likely driving the trends of the increased EV-D68 infections.
Collapse
Affiliation(s)
- Amary Fall
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Lijie Han
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Omar Abdullah
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Julie M Norton
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Raghda E Eldesouki
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - Michael Forman
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States
| | - C Paul Morris
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States; National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, United States; Center for Disease Dynamics, Economics, and Policy, Washington DC, United States
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, United States.
| |
Collapse
|
8
|
Acute Flaccid Myelitis: Review of Clinical Features, Diagnosis, and Management with Nerve Transfers. Plast Reconstr Surg 2023; 151:85e-98e. [PMID: 36219869 DOI: 10.1097/prs.0000000000009788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Acute flaccid myelitis (AFM) is a devastating neurologic condition in children, manifesting as acute limb weakness and/or paralysis. Despite increased awareness of AFM following initiation of U.S. surveillance in 2014, no treatment consensus exists. The purpose of this systematic review was to summarize the most current knowledge regarding AFM epidemiology, cause, clinical features, diagnosis, and supportive and operative management, including nerve transfer. METHODS The authors systematically reviewed the literature based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using multiple databases to search the keywords ("acute flaccid myelitis"), ('acute flaccid myelitis'/exp OR 'acute flaccid myelitis'), and (Acute AND flaccid AND myelitis). Included articles reported on (1) AFM diagnosis and (2) patient-specific data regarding epidemiology, cause, clinical features, diagnostic features, or management of AFM. RESULTS Ninety-nine articles were included in this review. The precise cause and pathophysiologic mechanism of AFM remain undetermined, but AFM is strongly associated with nonpolio enterovirus infections. Clinical presentation typically comprises preceding viral prodrome, pleocytosis, spinal cord lesions on T2-weighted magnetic resonance imaging, and acute onset of flaccid weakness/paralysis with hyporeflexia in at least one extremity. Supportive care includes medical therapy and rehabilitation. Early studies of nerve transfer for AFM have shown favorable outcomes for patients with persistent weakness. CONCLUSIONS Supportive care and physical therapy are the foundation of a multidisciplinary approach to managing AFM. For patients with persistent limb weakness, nerve transfer has shown promise for improving function in distal muscle groups. Surgeons must consider potential spontaneous recovery, patient selection, donor nerve availability, recipient nerve appropriateness, and procedure timing.
Collapse
|
9
|
Fall A, Kenmoe S, Ebogo-Belobo JT, Mbaga DS, Bowo-Ngandji A, Foe-Essomba JR, Tchatchouang S, Amougou Atsama M, Yéngué JF, Kenfack-Momo R, Feudjio AF, Nka AD, Mbongue Mikangue CA, Taya-Fokou JB, Magoudjou-Pekam JN, Noura EA, Zemnou-Tepap C, Meta-Djomsi D, Maïdadi-Foudi M, Kame-Ngasse GI, Nyebe I, Djukouo LG, Kengne Gounmadje L, Tchami Ngongang D, Oyono MG, Demeni Emoh CP, Tazokong HR, Mahamat G, Kengne-Ndé C, Sadeuh-Mba SA, Dia N, La Rosa G, Ndip L, Njouom R. Global prevalence and case fatality rate of Enterovirus D68 infections, a systematic review and meta-analysis. PLoS Negl Trop Dis 2022; 16:e0010073. [PMID: 35134062 PMCID: PMC8824346 DOI: 10.1371/journal.pntd.0010073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
A substantial amount of epidemiological data has been reported on Enterovirus D68 (EV-D68) infections after the 2014 outbreak. Our goal was to map the case fatality rate (CFR) and prevalence of current and past EV-D68 infections. We conducted a systematic review (PROSPERO, CRD42021229255) with published articles on EV-68 infections in PubMed, Embase, Web of Science and Global Index Medicus up to January 2021. We determined prevalences using a model random effect. Of the 4,329 articles retrieved from the databases, 89 studies that met the inclusion criteria were from 39 different countries with apparently healthy individuals and patients with acute respiratory infections, acute flaccid myelitis and asthma-related diseases. The CFR estimate revealed occasional deaths (7/1353) related to EV-D68 infections in patients with severe acute respiratory infections. Analyses showed that the combined prevalence of current and past EV-D68 infections was 4% (95% CI = 3.1-5.0) and 66.3% (95% CI = 40.0-88.2), respectively. The highest prevalences were in hospital outbreaks, developed countries, children under 5, after 2014, and in patients with acute flaccid myelitis and asthma-related diseases. The present study shows sporadic deaths linked to severe respiratory EV-D68 infections. The study also highlights a low prevalence of current EV-D68 infections as opposed to the existence of EV-D68 antibodies in almost all participants of the included studies. These findings therefore highlight the need to implement and/or strengthen continuous surveillance of EV-D68 infections in hospitals and in the community for the anticipation of the response to future epidemics.
Collapse
Affiliation(s)
- Amary Fall
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Sebastien Kenmoe
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Marie Amougou Atsama
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaounde, Cameroon
| | | | - Alex Durand Nka
- Virology Laboratory, Chantal Biya International Reference Center for Research on HIV/AIDS Prevention and Management, Yaounde, Cameroon
| | | | | | | | - Efietngab Atembeh Noura
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | | | - Dowbiss Meta-Djomsi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Martin Maïdadi-Foudi
- Centre de Recherche sur les Maladies Émergentes et Re-Emergentes, Institut de Recherches Médicales et d’Etudes des Plantes Médicinales, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaounde, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaounde, Cameroon
| | | | | | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | | | - Ndongo Dia
- Virology Department, Institute Pasteur of Dakar, Dakar, Senegal
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Lucy Ndip
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur of Cameroon, Yaounde, Cameroon
| |
Collapse
|
10
|
Bhaskar M, Mukherjee S, Basu A. Involvement of RIG-I Pathway in Neurotropic Virus-Induced Acute Flaccid Paralysis and Subsequent Spinal Motor Neuron Death. mBio 2021; 12:e0271221. [PMID: 34781742 PMCID: PMC8593677 DOI: 10.1128/mbio.02712-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 12/01/2022] Open
Abstract
Poliomyelitis-like illness is a common clinical manifestation of neurotropic viral infections. Functional loss and death of motor neurons often lead to reduced muscle tone and paralysis, causing persistent motor sequelae among disease survivors. Despite several reports demonstrating the molecular basis of encephalopathy, the pathogenesis behind virus-induced flaccid paralysis remained largely unknown. The present study for the first time aims to elucidate the mechanism responsible for limb paralysis by studying clinical isolates of Japanese encephalitis virus (JEV) and Chandipura virus (CHPV) responsible for causing acute flaccid paralysis (AFP) in vast regions of Southeast Asia and the Indian subcontinent. An experimental model for studying virus-induced AFP was generated by intraperitoneal injection of 10-day-old BALB/c mice. Progressive decline in motor performance of infected animals was observed, with paralysis being correlated with death of motor neurons (MNs). Furthermore, we demonstrated that upon infection, MNs undergo an extrinsic apoptotic pathway in a RIG-I-dependent fashion via transcription factors pIRF-3 and pIRF-7. Both gene-silencing experiments using specific RIG-I-short interfering RNA and in vivo morpholino abrogated cellular apoptosis, validating the important role of pattern recognition receptor (PRR) RIG-I in MN death. Hence, from our experimental observations, we hypothesize that host innate response plays a significant role in deterioration of motor functioning upon neurotropic virus infections. IMPORTANCE Neurotropic viral infections are an increasingly common cause of immediate or delayed neuropsychiatric sequelae, cognitive impairment, and movement disorders or, in severe cases, death. Given the highest reported disability-adjusted life years and mortality rate worldwide, a better understanding of molecular mechanisms for underlying clinical manifestations like AFP will help in development of more effective tools for therapeutic solutions.
Collapse
Affiliation(s)
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
11
|
Yeh EA, Yea C, Bitnun A. Infection-Related Myelopathies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:141-158. [PMID: 34637338 DOI: 10.1146/annurev-pathmechdis-040121-022818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent years have seen growing attention to inflammatory and infectious disorders of the spinal cord, not only due to the discovery of autoantibody-mediated disorders of the spinal cord [e.g., aquaporin-4 immunoglobulin G (IgG) antibodies and myelin oligodendrocyte glycoprotein IgG antibodies], but also due to the emergence of clusters of infection-related myelopathy, now known as acute flaccid myelitis. We review the spectrum of infection-related myelopathies and outline a nosological classification system based on association with infection. We describe the epidemiology and definitions of myelopathies, with a discussion of clinical presentation and neuroimaging features, and then turn to specific discussion of myelopathies due to direct pathogen invasion and those considered to be post- or parainfectious. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- E Ann Yeh
- Division of Neurology, Department of Pediatrics, and Division of Neuroscience and Mental Health, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; , .,Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1X8, Canada;
| | - Carmen Yea
- Division of Neurology, Department of Pediatrics, and Division of Neuroscience and Mental Health, SickKids Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada; ,
| | - Ari Bitnun
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1X8, Canada;
| |
Collapse
|
12
|
Mascitti H. Infections du système nerveux. Med Mal Infect 2020; 50:8S1-8S5. [DOI: 10.1016/s0399-077x(20)30776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|