1
|
Wouters C, Sachithanandham J, Akin E, Pieterse L, Fall A, Truong TT, Bard JD, Yee R, Sullivan DJ, Mostafa HH, Pekosz A. SARS-CoV-2 Variants from Long-Term, Persistently Infected Immunocompromised Patients Have Altered Syncytia Formation, Temperature-Dependent Replication, and Serum Neutralizing Antibody Escape. Viruses 2024; 16:1436. [PMID: 39339912 PMCID: PMC11437501 DOI: 10.3390/v16091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
SARS-CoV-2 infection of immunocompromised individuals often leads to prolonged detection of viral RNA and infectious virus in nasal specimens, presumably due to the lack of induction of an appropriate adaptive immune response. Mutations identified in virus sequences obtained from persistently infected patients bear signatures of immune evasion and have some overlap with sequences present in variants of concern. We characterized virus isolates obtained greater than 100 days after the initial COVID-19 diagnosis from two COVID-19 patients undergoing immunosuppressive cancer therapy, wand compared them to an isolate from the start of the infection. Isolates from an individual who never mounted an antibody response specific to SARS-CoV-2 despite the administration of convalescent plasma showed slight reductions in plaque size and some showed temperature-dependent replication attenuation on human nasal epithelial cell culture compared to the virus that initiated infection. An isolate from another patient-who did mount a SARS-CoV-2 IgM response-showed temperature-dependent changes in plaque size as well as increased syncytia formation and escape from serum-neutralizing antibodies. Our results indicate that not all virus isolates from immunocompromised COVID-19 patients display clear signs of phenotypic change, but increased attention should be paid to monitoring virus evolution in this patient population.
Collapse
Affiliation(s)
- Camille Wouters
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Jaiprasath Sachithanandham
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Elgin Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Amary Fall
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thao T. Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rebecca Yee
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| | - Heba H. Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (C.W.)
| |
Collapse
|
2
|
Ip JD, Chu WM, Chan WM, Chu AWH, Leung RCY, Peng Q, Tam AR, Chan BPC, Cai JP, Yuen KY, Kok KH, Shi Y, Hung IFN, To KKW. The significance of recurrent de novo amino acid substitutions that emerged during chronic SARS-CoV-2 infection: an observational study. EBioMedicine 2024; 107:105273. [PMID: 39146693 PMCID: PMC11379563 DOI: 10.1016/j.ebiom.2024.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND De novo amino acid substitutions (DNS) frequently emerge among immunocompromised patients with chronic SARS-CoV-2 infection. While previous studies have reported these DNS, their significance has not been systematically studied. METHODS We performed a review of DNS that emerged during chronic SARS-CoV-2 infection. We searched PubMed until June 2023 using the keywords "(SARS-CoV-2 or COVID-19) and (mutation or sequencing) and ((prolonged infection) or (chronic infection) or (long term))". We included patients with chronic SARS-CoV-2 infection who had SARS-CoV-2 sequencing performed for at least 3 time points over at least 60 days. We also included 4 additional SARS-CoV-2 patients with chronic infection of our hospital not reported previously. We determined recurrent DNS that has appeared in multiple patients and determined the significance of these mutations among epidemiologically-significant variants. FINDINGS A total of 34 cases were analyzed, including 30 that were published previously and 4 from our hospital. Twenty two DNS appeared in ≥3 patients, with 14 (64%) belonging to lineage-defining mutations (LDMs) of epidemiologically-significant variants and 10 (45%) emerging among chronically-infected patients before the appearance of the corresponding variant. Notably, nsp9-T35I substitution (Orf1a T4175I) emerged in all three patients with BA.2.2 infection in 2022 before the appearance of Variants of Interest that carry nsp9-T35I as LDM (EG.5 and BA.2.86/JN.1). Structural analysis suggests that nsp9-T35I substitution may affect nsp9-nsp12 interaction, which could be critical for the function of the replication and transcription complex. INTERPRETATION DNS that emerges recurrently in different chronically-infected patients may be used as a marker for potential epidemiologically-significant variants. FUNDING Theme-Based Research Scheme [T11/709/21-N] of the Research Grants Council (See acknowledgements for full list).
Collapse
Affiliation(s)
- Jonathan Daniel Ip
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wing-Ming Chu
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Allen Wing-Ho Chu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Rhoda Cheuk-Ying Leung
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Brian Pui-Chun Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ivan Fan-Ngai Hung
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Infectious Diseases Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
3
|
Vigil K, D'Souza N, Bazner J, Cedraz FMA, Fisch S, Rose JB, Aw TG. Long-term monitoring of SARS-CoV-2 variants in wastewater using a coordinated workflow of droplet digital PCR and nanopore sequencing. WATER RESEARCH 2024; 254:121338. [PMID: 38430753 DOI: 10.1016/j.watres.2024.121338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Quantitative polymerase chain reaction (PCR) and genome sequencing are important methods for wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse transcription-droplet digital PCR (RT-ddPCR) is a highly sensitive method for quantifying SARS-CoV-2 RNA in wastewater samples to track the trends of viral activity levels but cannot identify new variants. It also takes time to develop new PCR-based assays targeting variants of interest. Whole genome sequencing (WGS) can be used to monitor known and new SARS-CoV-2 variants, but it is generally not quantitative. Several short-read sequencing techniques can be expensive and might experience delayed turnaround times when outsourced due to inadequate in-house resources. Recently, a portable nanopore sequencing system offers an affordable and real-time method for sequencing SARS-CoV-2 variants in wastewater. This technology has the potential to enable swift response to disease outbreaks without relying on clinical sequencing results. In addressing concerns related to rapid turnaround time and accurate variant analysis, both RT-ddPCR and nanopore sequencing methods were employed to monitor the emergence of SARS-CoV-2 variants in wastewater. This surveillance was conducted at 23 sewer maintenance hole sites and five wastewater treatment plants in Michigan from 2020 to 2022. In 2020, the wastewater samples were dominated by the parental variants (20A, 20C and 20 G), followed by 20I (Alpha, B.1.1.7) in early 2021 and the Delta variant of concern (VOC) in late 2021. For the year 2022, Omicron variants dominated. Nanopore sequencing has the potential to validate suspected variant cases that were initially undetermined by RT-ddPCR assays. The concordance rate between nanopore sequencing and RT-ddPCR assays in identifying SARS-CoV-2 variants to the clade-level was 76.9%. Notably, instances of disagreement between the two methods were most prominent in the identification of the parental and Omicron variants. We also showed that sequencing wastewater samples with SARS-CoV-2 N gene concentrations of >104 GC/100 ml as measured by RT-ddPCR improve genome recovery and coverage depth using MinION device. RT-ddPCR was better at detecting key spike protein mutations A67V, del69-70, K417N, L452R, N501Y, N679K, and R408S (p-value <0.05) as compared to nanopore sequencing. It is suggested that RT-ddPCR and nanopore sequencing should be coordinated in wastewater surveillance where RT-ddPCR can be used as a preliminary quantification method and nanopore sequencing as the confirmatory method for the detection of variants or identification of new variants. The RT-ddPCR and nanopore sequencing methods reported here can be adopted as a reliable in-house analysis of SARS-CoV-2 in wastewater for rapid community level surveillance and public health response.
Collapse
Affiliation(s)
- Katie Vigil
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Julia Bazner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Fernanda Mac-Allister Cedraz
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Samuel Fisch
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, United States.
| |
Collapse
|
4
|
Rapti V, Papanikolopoulou A, Kokkotis G, Livanou ME, Alexiou P, Pechlivanidou E, Syrigos NK, Spernovasilis N, Charpidou A, Poulakou G. The Burden of COVID-19 in Adult Patients With Hematological Malignancies: A Single-center Experience After the Implementation of Mass-vaccination Programs Against SARS-CoV-2. In Vivo 2023; 37:2743-2754. [PMID: 37905643 PMCID: PMC10621438 DOI: 10.21873/invivo.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Despite the widespread mass-vaccination programs worldwide and the continuing evolution of COVID-19 therapeutics, the burden of SARS-CoV-2 infection in patients with hematological malignancies (HM) remains elusive. The aim of the present study was to assess the clinical characteristics, outcomes and therapeutic strategies applied in HM patients hospitalized during the post-vaccine period in Greece. PATIENTS AND METHODS From June 2021 to October 2022, 60 HM patients with COVID-19 were retrospectively analyzed. Exploratory end-points included the incidence of intubation, probability of recovery, mortality, and duration of remdesivir (RDV) administration. RESULTS Overall, mechanical ventilation (MV) was required for five patients and crude mortality was 8.3%. HM of lymphocytic origin (p=0.035) and obesity (p=0.03) were the main determinants of the risk of intubation and among several laboratory markers, only LDH>520 IU/l was proven to be an independent MV predictor (p=0.038). The number of co-existing comorbidities (p=0.05) and disease severity on admission (p<0.001) were found to rule the probability of recovery, and dexamethasone was associated with worse prognosis, particularly in patients with mild/moderate COVID-19. RDV was administered to the entire cohort, of whom 38 were managed with an extended course. In the multivariate analysis, patients with HM of lymphocytic origin were more likely to receive RDV for more than five days (p=0.002). CONCLUSION Our study emphasizes the frailty of HM patients, even in the era of Omicron-variant predominance, and underlines the need to optimize therapy.
Collapse
Affiliation(s)
- Vasiliki Rapti
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece;
| | - Amalia Papanikolopoulou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Georgios Kokkotis
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Maria-Effrosyni Livanou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Polyxeni Alexiou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Evmorfia Pechlivanidou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos K Syrigos
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Nikolaos Spernovasilis
- Department of Infectious Diseases, German Oncology Center, Limassol, Cyprus
- School of Medicine, University of Crete, Heraklion, Greece
| | - Andriani Charpidou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| | - Garyfallia Poulakou
- Third Department of Internal Medicine, School of Medicine, National & Kapodistrian University of Athens, Sotiria General Hospital, Athens, Greece
| |
Collapse
|
5
|
Alisoltani A, Simons LM, Agnes MFR, Heald-Sargent TA, Muller WJ, Kociolek LK, Hultquist JF, Lorenzo-Redondo R, Ozer EA. Resurgence of SARS-CoV-2 Delta after Omicron variant superinfection in an immunocompromised pediatric patient. Virol J 2023; 20:246. [PMID: 37891657 PMCID: PMC10604949 DOI: 10.1186/s12985-023-02186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/18/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Persistent SARS-CoV-2 infection in immunocompromised hosts is thought to contribute to viral evolution by facilitating long-term natural selection and viral recombination in cases of viral co-infection or superinfection. However, there are limited data on the longitudinal intra-host population dynamics of SARS-CoV-2 co-infection/superinfection, especially in pediatric populations. Here, we report a case of Delta-Omicron superinfection in a hospitalized, immunocompromised pediatric patient. METHODS We conducted Illumina whole genome sequencing (WGS) for longitudinal specimens to investigate intra-host dynamics of SARS-CoV-2 strains. Topoisomerase PCR cloning of Spike open-reading frame and Sanger sequencing of samples was performed for four specimens to validate the findings. Analysis of publicly available SARS-CoV-2 sequence data was performed to investigate the co-circulation and persistence of SARS-CoV-2 variants. RESULTS Results of WGS indicate the patient was initially infected with the SARS-CoV-2 Delta variant before developing a SARS-CoV-2 Omicron variant superinfection, which became predominant. Shortly thereafter, viral loads decreased below the level of detection before resurgence of the original Delta variant with no residual trace of Omicron. After 54 days of persistent infection, the patient tested negative for SARS-CoV-2 but ultimately succumbed to a COVID-19-related death. Despite protracted treatment with remdesivir, no antiviral resistance mutations emerged. These results indicate a unique case of persistent SARS-CoV-2 infection with the Delta variant interposed by a transient superinfection with the Omicron variant. Analysis of publicly available sequence data suggests the persistence and ongoing evolution of Delta subvariants despite the global predominance of Omicron, potentially indicative of continued transmission in an unknown population or niche. CONCLUSION A better understanding of SARS-CoV-2 intra-host population dynamics, persistence, and evolution during co-infections and/or superinfections will be required to continue optimizing patient care and to better predict the emergence of new variants of concern.
Collapse
Affiliation(s)
- Arghavan Alisoltani
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Maria Francesca Reyes Agnes
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | | | - William J Muller
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Larry K Kociolek
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Zhang T, Tian W, Wei S, Lu X, An J, He S, Zhao J, Gao Z, Li L, Lian K, Zhou Q, Zhang H, Wang L, Su L, Kang H, Niu T, Zhao A, Pan J, Cai Q, Xu Z, Chen W, Jing H, Li P, Zhao W, Cao Y, Mi J, Chen T, Chen Y, Zou P, Lukacs-Kornek V, Kurts C, Li J, Liu X, Mei Q, Zhang Y, Wei J. Multidisciplinary recommendations for the management of CAR-T recipients in the post-COVID-19 pandemic era. Exp Hematol Oncol 2023; 12:66. [PMID: 37501090 PMCID: PMC10375673 DOI: 10.1186/s40164-023-00426-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Weiwei Tian
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Xinyi Lu
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jing An
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Shaolong He
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jie Zhao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Zhilin Gao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Li Li
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Ke Lian
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Qiang Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Cardiovascular Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Liping Su
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Biotherapy Translational Laboratory, Boren Clinical Translational Center, Beijing GoBroad Boren Hospital, Beijing, 100070, China
| | - Qingqing Cai
- Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhenshu Xu
- Hematology Department, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, 350001, Fujian, China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, 100191, China
| | - Peng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, Guangdong, China
| | - Wanhong Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Jianqing Mi
- Shanghai Institute of Hematology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Chen
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Geriatrics, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Qi Mei
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
7
|
Liu C, Yoke LH, Bhattacharyya P, Cassaday RD, Cheng GS, Escobar ZK, Ghiuzeli C, McCulloch DJ, Pergam SA, Roychoudhury P, Tverdek F, Schiffer JT, Ford ES. Successful Treatment of Persistent Symptomatic Coronavirus Disease 19 Infection With Extended-Duration Nirmatrelvir-Ritonavir Among Outpatients With Hematologic Cancer. Open Forum Infect Dis 2023; 10:ofad306. [PMID: 37383248 PMCID: PMC10296060 DOI: 10.1093/ofid/ofad306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Persistent symptomatic coronavirus disease 2019 (COVID-19) is a distinct clinical entity among patients with hematologic cancer and/or profound immunosuppression. The optimal medical management is unknown. We describe 2 patients who had symptomatic COVID-19 for almost 6 months and were successfully treated in the ambulatory setting with extended courses of nirmatrelvir-ritonavir.
Collapse
Affiliation(s)
- Catherine Liu
- Correspondence: Catherine Liu, MD, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109 ()
| | - Leah H Yoke
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Pooja Bhattacharyya
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Ryan D Cassaday
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Hematology, University of Washington, Seattle, Washington, USA
| | - Guang-Shing Cheng
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Zahra Kassamali Escobar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Cristina Ghiuzeli
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Hematology, University of Washington, Seattle, Washington, USA
| | - Denise J McCulloch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Steven A Pergam
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Frank Tverdek
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | |
Collapse
|
8
|
Ambadapoodi RS, Arnold FW, Chariker JH, Glynn A, Lauer W, Marimuthu S, Rouchka EC, Smith ML, Wolf LA. Persistent SARS-CoV-2 Infection in a Multiple Sclerosis Patient on Ocrelizumab: A Case Report. RESEARCH SQUARE 2023:rs.3.rs-2768759. [PMID: 37066424 PMCID: PMC10104259 DOI: 10.21203/rs.3.rs-2768759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A 44-year-old female patient with multiple sclerosis (MS) treated with ocrelizumab was hospitalized with SARS-CoV-2 pneumonia three times over the course of five months, eventually expiring. Viral sequencing of samples from her first and last admissions suggests a single persistent SARS-CoV-2 infection. We hypothesize that her immunocompromised state, due to MS treatment with an immunosuppressive monoclonal antibody, prevented her from achieving viral clearance.
Collapse
Affiliation(s)
| | - Forest W. Arnold
- Division of Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY
| | - Julia H. Chariker
- Neuroscience Training Department, University of Louisville, Louisville, KY
| | - Alex Glynn
- Division of Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY
| | - William Lauer
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Subathra Marimuthu
- Division of Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY
| | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Leslie A. Wolf
- Division of Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
9
|
Abstract
The COVID-19 pandemic has been accompanied by SARS-CoV-2 evolution and emergence of viral variants that have far exceeded initial expectations. Five major variants of concern (Alpha, Beta, Gamma, Delta, and Omicron) have emerged, each having both unique and overlapping amino acid substitutions that have affected transmissibility, disease severity, and susceptibility to natural or vaccine-induced immune responses and monoclonal antibodies. Several of the more recent variants appear to have evolved properties of immune evasion, particularly in cases of prolonged infection. Tracking of existing variants and surveillance for new variants are critical for an effective pandemic response.
Collapse
Affiliation(s)
- Jana L Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| | - Ghady Haidar
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; , ,
| |
Collapse
|
10
|
Dioverti V, Salto-Alejandre S, Haidar G. Immunocompromised Patients with Protracted COVID-19: a Review of "Long Persisters". CURRENT TRANSPLANTATION REPORTS 2022; 9:209-218. [PMID: 36407883 PMCID: PMC9660019 DOI: 10.1007/s40472-022-00385-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2022] [Indexed: 11/13/2022]
Abstract
Purpose of Review Certain immunocompromised individuals are at risk for protracted COVID-19, in which SARS-CoV-2 leads to a chronic viral infection. However, the pathogenesis, diagnosis, and management of this phenomenon remain ill-defined. Recent Findings Herein, we review key aspects of protracted SARS-CoV-2 infection in immunocompromised individuals, or the so-called long persisters, and describe the clinical presentation, risk factors, diagnosis, and treatment modalities of this condition, as well as intra-host viral evolution. Based on the available data, we also propose a framework of criteria with which to approach this syndrome. Summary Protracted COVID-19 is an uncharacterized syndrome affecting patients with B-cell depletion; our proposed diagnostic approach and definitions will inform much needed future research.
Collapse
Affiliation(s)
- Veronica Dioverti
- Division of Infectious Diseases, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287 USA
| | - Sonsoles Salto-Alejandre
- Division of Infectious Diseases, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287 USA
- Clinical Unit of Infectious Diseases and Microbiology, Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital/University of Seville/CSIC, Avda. Manuel Siurot s/n 41013, Seville, Spain
| | - Ghady Haidar
- Division of Infectious Diseases, University of Pittsburgh and UPMC, 3601 Fifth Ave, Falk Medical Building, Suite 5B, Pittsburgh, PA 15213 USA
| |
Collapse
|
11
|
Hettle D, Hutchings S, Muir P, Moran E. Persistent SARS-CoV-2 infection in immunocompromised patients facilitates rapid viral evolution: Retrospective cohort study and literature review. CLINICAL INFECTION IN PRACTICE 2022; 16:100210. [PMID: 36405361 PMCID: PMC9666269 DOI: 10.1016/j.clinpr.2022.100210] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/03/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background Most patients with SARS-CoV-2 are non-infectious within 2 weeks, though viral RNA may remain detectable for weeks. However there are reports of persistent SARS-CoV-2 infection, with viable virus and ongoing infectivity months after initial detection. Beyond individuals, viral evolution during persistent infections may be accelerated, driving emergence of mutations associated with viral variants of concern. These patients often do not meet inclusion criteria for clinical trials, meaning clinical and virologic characteristics, and optimal management strategies are poorly evidence-based. Methods We analysed cases of SARS-CoV-2 infection from a regional testing laboratory in South-West England between March 2020 and December 2021, with at least two SARS-CoV-2 positive samples separated by ≥ 56 days were identified. Excluding those with confirmed or likely re-infection, we identified patients with persistent infection, characterised by an ongoing clinical syndrome consistent with COVID-19 alongside monophyletic viral lineage of SARS-CoV-2. We examined clinical and virologic characteristics, treatment, and outcome. We further performed a literature review investigating cases of persistent SARS-CoV-2 infection, reviewing patient characteristics and treatment. Results We identified six patients with persistent SARS-CoV-2 infection. All were hypogammaglobulinaemic and had underlying haematological malignancy, with four having received B-cell depleting therapy. Evidence of viral evolution, including accrual of mutations associated with variants of concern, was demonstrated in five cases. Four patients ultimately cleared SARS-CoV-2. In two patients, clearance followed treatment with casirivimab/imdevimab. Both survived beyond thirty days following viral clearance, having experienced infections of 305- and 269-days duration respectively, after failed attempts at clearance with alternative therapies. We found 60 cases of confirmed persistent infection in the literature, with a further 31 probable cases. Of those, 80% of patients treated with monoclonal antibodies cleared SARS-CoV-2, and none died. Conclusion Haematological malignancy and patients receiving B-cell depleting therapies represent key groups at risk of persistent SARS-CoV-2 infection. Throughout persistent infection, SARS-CoV-2 can evolve rapidly, giving rise to significant mutations, including those implicated in variants of concern. Monoclonal antibodies appear to be a promising therapeutic option, potentially in combination with antivirals, crucial for individuals, and for public health.
Collapse
Affiliation(s)
- David Hettle
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Stephanie Hutchings
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- United Kingdom Health Security Agency (UKHSA) South-West Regional Laboratory, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Peter Muir
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
- United Kingdom Health Security Agency (UKHSA) South-West Regional Laboratory, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| | - Ed Moran
- Department of Infection Sciences, Southmead Hospital, Bristol BS10 5NB, United Kingdom
| |
Collapse
|
12
|
DeWolf S, Laracy JC, Perales MA, Kamboj M, van den Brink MRM, Vardhana S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022; 55:1779-1798. [PMID: 36182669 PMCID: PMC9468314 DOI: 10.1016/j.immuni.2022.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin C Laracy
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Mini Kamboj
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA; Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha Vardhana
- Weill Cornell Medical College, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
Jung J, Lee J, Kim SK, Park S, Lim YJ, Kim EO, Park H, Park MS, Kim SH. Evaluation of In-Hospital Cluster of COVID-19 Associated With a Patient With Prolonged Viral Shedding Using Whole-Genome Sequencing. J Korean Med Sci 2022; 37:e289. [PMID: 36217571 PMCID: PMC9550637 DOI: 10.3346/jkms.2022.37.e289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Patients with hematologic malignancies may produce replication-competent virus beyond 20 days of SARS-CoV-2 infection. However, data regarding the transmission of SARS-CoV-2 from patients with prolonged viral shedding is limited. METHODS In May 2022, four additional cases of COVID-19 were reported in a hematologic ward at a tertiary care hospital in South Korea, after an 8-week isolation of a patient with prolonged viral shedding. We performed whole-genome sequencing (WGS) of SARS-CoV-2 to evaluate the possibility of post-isolation transmission from this prolonged viral shedding. RESULTS A patient (case 1) with acute myeloid leukemia was released from isolation 54 days after the diagnosis of COVID-19 based on rising Ct value of up to 29.3, and moved to a six-patient room. On days 10 and 11 post-isolation, his doctor (case 2) and 2 patients who were his roommates (case 3, 4) had positive SARS-CoV-2 PCR results. Additionally, 16 days post-isolation, another patient (case 5) in a remote room had positive SARS-CoV-2 PCR result. All the three patients were hospitalized for ≥ 14 days when they were diagnosed with SARS-CoV-2 infection. Except for case 3, the remaining 4 cases were available for WGS, which revealed that case 1 exhibited a 7 nucleotides difference in comparison to cases 4 and 5 and case 2 displayed a 20 nucleotides difference compared with case 1, while sequences of cases 4 and 5 were identical. CONCLUSIONS Despite the possibility of transmission from the patient with prolonged viral shedding, no evidence of the transmission of SARS-CoV-2 from the patient with prolonged positive RT-PCR using WGS was found.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Office for Infection Control, Asan Medical Center, Seoul, Korea
| | - Jungmin Lee
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Korea
| | - Sun-Kyung Kim
- Office for Infection Control, Asan Medical Center, Seoul, Korea
| | - Soyeon Park
- Office for Infection Control, Asan Medical Center, Seoul, Korea
| | - Young-Ju Lim
- Office for Infection Control, Asan Medical Center, Seoul, Korea
| | - Eun Ok Kim
- Office for Infection Control, Asan Medical Center, Seoul, Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, College of Medicine, Korea University, Seoul, Korea.
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Office for Infection Control, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
14
|
Laracy JC, Kamboj M, Vardhana SA. Long and persistent COVID-19 in patients with hematologic malignancies: from bench to bedside. Curr Opin Infect Dis 2022; 35:271-279. [PMID: 35849516 PMCID: PMC9922441 DOI: 10.1097/qco.0000000000000841] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Cancer patients, especially those with hematologic malignancies, are at increased risk for coronavirus disease 2019 (COVID-19)-related complications and mortality. We describe the incidence, clinical characteristics, risk factors, and outcomes of persistent COVID-19 infection in patients with hematologic malignancies. RECENT FINDINGS The syndrome of persistent COVID-19 in patients with hematologic malignancies manifests as a chronic protracted illness marked by waxing and waning or progressive respiratory symptoms and prolonged viral shedding. Immunosuppressed patients with lymphoid malignancies may serve as partially immune reservoirs for the generation of immune-evasive viral escape mutants. SUMMARY Persistent COVID-19 infection is a unique concern in patients with hematologic malignancies. While vaccination against severe acute respiratory syndrome coronavirus 2 has reduced the overall burden of COVID-19 in patients with hematologic cancers, whether vaccination or other novel treatments for COVID-19 prevent or alleviate this syndrome remains to be determined.
Collapse
Affiliation(s)
- Justin C. Laracy
- Infectious Diseases, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Infection Control, Division of Quality and Safety, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mini Kamboj
- Infectious Diseases, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Infection Control, Division of Quality and Safety, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha A. Vardhana
- Lymphoma Service, Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Markarian NM, Galli G, Patel D, Hemmings M, Nagpal P, Berghuis AM, Abrahamyan L, Vidal SM. Identifying Markers of Emerging SARS-CoV-2 Variants in Patients With Secondary Immunodeficiency. Front Microbiol 2022; 13:933983. [PMID: 35847101 PMCID: PMC9283111 DOI: 10.3389/fmicb.2022.933983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Since the end of 2019, the world has been challenged by the coronavirus disease 2019 (COVID-19) pandemic. With COVID-19 cases rising globally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, resulting in the emergence of variants of interest (VOI) and of concern (VOC). Of the hundreds of millions infected, immunodeficient patients are one of the vulnerable cohorts that are most susceptible to this virus. These individuals include those with preexisting health conditions and/or those undergoing immunosuppressive treatment (secondary immunodeficiency). In these cases, several researchers have reported chronic infections in the presence of anti-COVID-19 treatments that may potentially lead to the evolution of the virus within the host. Such variations occurred in a variety of viral proteins, including key structural ones involved in pathogenesis such as spike proteins. Tracking and comparing such mutations with those arisen in the general population may provide information about functional sites within the SARS-CoV-2 genome. In this study, we reviewed the current literature regarding the specific features of SARS-CoV-2 evolution in immunocompromised patients and identified recurrent de novo amino acid changes in virus isolates of these patients that can potentially play an important role in SARS-CoV-2 pathogenesis and evolution.
Collapse
Affiliation(s)
- Nathan M. Markarian
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Gaël Galli
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- CNRS, ImmunoConcEpT, UMR 5164, Université de Bordeaux, Bordeaux, France
- CHU de Bordeaux, FHU ACRONIM, Centre National de Référence des Maladies Auto-Immunes et Systémiques Rares Est/Sud-Ouest, Bordeaux, France
| | - Dhanesh Patel
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| | - Mark Hemmings
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Priya Nagpal
- Department of Pharmacology, McGill University, Montréal, QC, Canada
| | | | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center and Research Group on Infectious Diseases in Production Animals, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Silvia M. Vidal
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- McGill University Research Centre on Complex Traits, Montréal, QC, Canada
| |
Collapse
|
16
|
Macori G, Russell T, Barry G, McCarthy SC, Koolman L, Wall P, Sammin D, Mulcahy G, Fanning S. Inactivation and Recovery of High Quality RNA From Positive SARS-CoV-2 Rapid Antigen Tests Suitable for Whole Virus Genome Sequencing. Front Public Health 2022; 10:863862. [PMID: 35592078 PMCID: PMC9113430 DOI: 10.3389/fpubh.2022.863862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
The diagnostic protocol currently used globally to identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is RT-qPCR. The spread of these infections and the epidemiological imperative to describe variation across the virus genome have highlighted the importance of sequencing. SARS-CoV-2 rapid antigen diagnostic tests (RADTs) are designed to detect viral nucleocapsid protein with positive results suggestive of the presence of replicating virus and potential infectivity. In this study, we developed a protocol for recovering SARS-CoV-2 RNA from “spent” RADT devices of sufficient quality that can be used directly for whole virus genome sequencing. The experimental protocol included the spiking of RADTs at different concentrations with viable SARS-CoV-2 variant Alpha (lineage B.1.1.7), lysis for direct use or storage. The lysed suspensions were used for RNA extraction and RT-qPCR. In parallel, we also tested the stability of the viral RNA in the RADTs and the RNA extracted from the RADTs was used as a template for tiling-PCR and whole virus genome sequencing. RNA recovered from RADTs spiked with SARS-CoV-2 was detected through RT-qPCR with Ct values suitable for sequencing and the recovery from RADTs was confirmed after 7 days of storage at both 4 and 20°C. The genomic sequences obtained at each time-point aligned to the strain used for the spiking, demonstrating that sufficient SARS-CoV-2 viral genome can be readily recovered from positive-RADT devices in which the virus has been safely inactivated and genomically conserved. This protocol was applied to obtain whole virus genome sequence from RADTs ran in the field where the omicron variant was detected. The study demonstrated that viral particles of SARS-CoV-2 suitable for whole virus genome sequencing can be recovered from positive spent RADTs, extending their diagnostic utility, as a risk management tool and for epidemiology studies. In large deployment of the RADTs, positive devices could be safely stored and used as a template for sequencing allowing the rapid identification of circulating variants and to trace the source and spread of outbreaks within communities and guaranteeing public health.
Collapse
Affiliation(s)
- Guerrino Macori
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Tristan Russell
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Gerald Barry
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Siobhán C McCarthy
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Leonard Koolman
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Patrick Wall
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Donal Sammin
- Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland
| | - Grace Mulcahy
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland.,Conway Institute, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Abstract
The coronavirus infectious disease (COVID-19) shows a remarkable symptomatic heterogeneity. Several risk factors including advanced age, previous illnesses and a compromised immune system contribute to an unfavorable outcome. In patients with hematologic malignancy, the immune response to severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is significantly reduced explaining why the mortality rate of hematologic patients hospitalized for a SARS-CoV-2 infection is about 34%. Active immunization is an essential pillar to prevent SARS-CoV-2 infections in patients with hematologic malignancy. However, the immune response to SARS-CoV-2 vaccines may be significantly impaired, as only half of patients with hematologic malignancy develop a measurable anti-viral antibody response. The subtype of hematologic malignancy and B-cell depleting treatment predict a poor immune response to vaccination. Recently, antiviral drugs and monoclonal antibodies for pre-exposure or post-exposure prophylaxis and for early treatment of COVID-19 have become available. These therapies should be offered to patients at high risk for severe COVID-19 and vaccine non-responder. Importantly, as the virus evolves, some therapies may lose their clinical efficacy against new variants. Therefore, the ongoing pandemic will remain a major challenge for patients with hematologic malignancy and their caregivers who need to constantly monitor the scientific progress in this area.
Collapse
|
18
|
Álvarez H, Ruiz-Mateos E, Juiz-González PM, Vitallé J, Viéitez I, Vázquez-Friol MDC, Torres-Beceiro I, Pérez-Gómez A, Gallego-García P, Estévez-Gómez N, De Chiara L, Poveda E, Posada D, Llibre JM. SARS-CoV-2 Evolution and Spike-Specific CD4+ T-Cell Response in Persistent COVID-19 with Severe HIV Immune Suppression. Microorganisms 2022; 10:143. [PMID: 35056592 PMCID: PMC8780218 DOI: 10.3390/microorganisms10010143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/28/2021] [Accepted: 01/08/2022] [Indexed: 12/23/2022] Open
Abstract
Intra-host evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported in cases with persistent coronavirus disease 2019 (COVID-19). In this study, we describe a severely immunosuppressed individual with HIV-1/SARS-CoV-2 coinfection with a long-term course of SARS-CoV-2 infection. A 28-year-old man was diagnosed with HIV-1 infection (CD4+ count: 3 cells/µL nd 563000 HIV-1 RNA copies/mL) and simultaneous Pneumocystis jirovecii pneumonia, disseminated Mycobacterium avium complex infection and SARS-CoV-2 infection. SARS-CoV-2 real-time reverse transcription polymerase chain reaction positivity from nasopharyngeal samples was prolonged for 15 weeks. SARS-CoV-2 was identified as variant Alpha (PANGO lineage B.1.1.7) with mutation S:E484K. Spike-specific T-cell response was similar to HIV-negative controls although enriched in IL-2, and showed disproportionately increased immunological exhaustion marker levels. Despite persistent SARS-CoV-2 infection, adaptive intra-host SARS-CoV-2 evolution, was not identified. Spike-specific T-cell response protected against a severe COVID-19 outcome and the increased immunological exhaustion marker levels might have favoured SARS-CoV-2 persistence.
Collapse
Affiliation(s)
- Hortensia Álvarez
- Infectious Diseases Unit, Department of Internal Medicine, University Hospital of Ferrol, SERGAS, 15405 Ferrol, Spain
| | - Ezequiel Ruiz-Mateos
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (E.R.-M.); (J.V.); (A.P.-G.)
| | - Pedro Miguel Juiz-González
- Microbiology Department, University Hospital of Ferrol, SERGAS, 15405 Ferrol, Spain; (P.M.J.-G.); (I.T.-B.)
| | - Joana Vitallé
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (E.R.-M.); (J.V.); (A.P.-G.)
| | - Irene Viéitez
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), Complexo Hospitalario Universitario de Vigo, SERGAS-UVIGO, 36213 Vigo, Spain; (I.V.); (E.P.)
| | | | - Isabel Torres-Beceiro
- Microbiology Department, University Hospital of Ferrol, SERGAS, 15405 Ferrol, Spain; (P.M.J.-G.); (I.T.-B.)
| | - Alberto Pérez-Gómez
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, 41013 Seville, Spain; (E.R.-M.); (J.V.); (A.P.-G.)
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; (P.G.-G.); (N.E.-G.); (L.D.C.); (D.P.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Nuria Estévez-Gómez
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; (P.G.-G.); (N.E.-G.); (L.D.C.); (D.P.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Loretta De Chiara
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; (P.G.-G.); (N.E.-G.); (L.D.C.); (D.P.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Eva Poveda
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), Complexo Hospitalario Universitario de Vigo, SERGAS-UVIGO, 36213 Vigo, Spain; (I.V.); (E.P.)
| | - David Posada
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain; (P.G.-G.); (N.E.-G.); (L.D.C.); (D.P.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
| | - Josep M. Llibre
- Infectious Diseases and “Fight AIDS and Infectious Diseases” Foundation, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain;
| |
Collapse
|
19
|
Mistry P, Barmania F, Mellet J, Peta K, Strydom A, Viljoen IM, James W, Gordon S, Pepper MS. SARS-CoV-2 Variants, Vaccines, and Host Immunity. Front Immunol 2022; 12:809244. [PMID: 35046961 PMCID: PMC8761766 DOI: 10.3389/fimmu.2021.809244] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new beta coronavirus that emerged at the end of 2019 in the Hubei province of China. SARS-CoV-2 causes coronavirus disease 2019 (COVID-19) and was declared a pandemic by the World Health Organization (WHO) on 11 March 2020. Herd or community immunity has been proposed as a strategy to protect the vulnerable, and can be established through immunity from past infection or vaccination. Whether SARS-CoV-2 infection results in the development of a reservoir of resilient memory cells is under investigation. Vaccines have been developed at an unprecedented rate and 7 408 870 760 vaccine doses have been administered worldwide. Recently emerged SARS-CoV-2 variants are more transmissible with a reduced sensitivity to immune mechanisms. This is due to the presence of amino acid substitutions in the spike protein, which confer a selective advantage. The emergence of variants therefore poses a risk for vaccine effectiveness and long-term immunity, and it is crucial therefore to determine the effectiveness of vaccines against currently circulating variants. Here we review both SARS-CoV-2-induced host immune activation and vaccine-induced immune responses, highlighting the responses of immune memory cells that are key indicators of host immunity. We further discuss how variants emerge and the currently circulating variants of concern (VOC), with particular focus on implications for vaccine effectiveness. Finally, we describe new antibody treatments and future vaccine approaches that will be important as we navigate through the COVID-19 pandemic.
Collapse
Affiliation(s)
- Priyal Mistry
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Fatima Barmania
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Kimberly Peta
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adéle Strydom
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ignatius M. Viljoen
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - William James
- James and Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Michael S. Pepper
- Department of Immunology, Institute for Cellular and Molecular Medicine, University of Pretoria, Pretoria, South Africa
- South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Snyman J, Sanders EJ, Ndung’u T. COVID-19 in Africa: preexisting immunity and HIV. AIDS 2021; 35:2391-2393. [PMID: 34723854 PMCID: PMC8567318 DOI: 10.1097/qad.0000000000003079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Jumari Snyman
- Africa Health Research Institute
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Eduard J. Sanders
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thumbi Ndung’u
- Africa Health Research Institute
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|